View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

Submitted 16 October 2016
Accepted 2 February 2017
Published 1 March 2017

Corresponding author
Mark T. Holder, mtholder@ku.edu

Academic editor
Claus Wilke

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj.3058

© Copyright
2017 Redelings and Holder

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

provided by KU ScholarWorks

A supertree pipeline for summarizing
phylogenetic and taxonomic information
for millions of species

Benjamin D. Redelings'” and Mark T. Holder*”**

! Department of Biology, Duke University, Durham, NC, United States

? Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
3 Biodiversity Institute, University of Kansas, Lawrence, KS, United States

4 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

ABSTRACT

We present a new supertree method that enables rapid estimation of a summary tree
on the scale of millions of leaves. This supertree method summarizes a collection of
input phylogenies and an input taxonomy. We introduce formal goals and criteria for
such a supertree to satisfy in order to transparently and justifiably represent the input
trees. In addition to producing a supertree, our method computes annotations that

describe which grouping in the input trees support and conflict with each group in the
supertree. We compare our supertree construction method to a previously published
supertree construction method by assessing their performance on input trees used to
construct the Open Tree of Life version 4, and find that our method increases the

number of displayed input splits from 35,518 to 39,639 and decreases the number of
conflicting input splits from 2,760 to 1,357. The new supertree method also improves
on the previous supertree construction method in that it produces no unsupported

branches and avoids unnecessary polytomies. This pipeline is currently used by the

Open Tree of Life project to produce all of the versions of project’s “synthetic tree”

starting at version 5. This software pipeline is called “propinquity”. It relies heavily on
“otcetera”—a set of C++ tools to perform most of the steps of the pipeline. All of the
components are free software and are available on GitHub.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Taxonomy
Keywords Supertree, Phylogenetics, Taxonomy, Software, Tree of life

BACKGROUND

The Open Tree of Life project seeks to build a platform for summarizing what is known
about phylogenetic relationships across all of Life (Hinchliff et al., 2015). One primary goal
of the project is to build a summary tree from a comprehensive taxonomic tree and a set
of published trees. The summary tree is intended to transparently and justifiably represent
phylogenetic information from these inputs. The taxonomic tree is derived from the Open
Tree Taxonomy (OTT hereafter; publication in preparation). The phylogenetic inputs
are published trees that have been curated to align the tips to OTT and to identify the
correct rooting (see McTavish et al., 2015 for further details of the curation tools). Unlike
OTT, these phylogenetic trees do not include all leaf taxa. The inputs (taxonomy and

How to cite this article Redelings and Holder (2017), A supertree pipeline for summarizing phylogenetic and taxonomic information for
millions of species. PeerJ 5:3058; DOI 10.7717/peer;j.3058

https://core.ac.uk/display/213428683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:mtholder@ku.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3058

Peer

phylogenetic trees) and the output summary supertree are all rooted. Here we describe the
software pipeline (propinquity) that summarizes and integrates these smaller source trees
and the taxonomy tree into a single supertree and the noteworthy tools for manipulating
and solving supertrees in the ofcetera package.

Goals
Translating the goals of the Open Tree of Life’s summary tree into an explicit set of criteria
is not trivial. The summary supertree should represent the phylogenetic information from
source trees in a transparent and justifiable fashion. We would like to allow users to
correct errors in the supertree by improving the input information rather than requiring
modification to the supertree algorithm. The pipeline was designed to create a tree which:
1. displays no unsupported groups,
2. defers to groupings from higher ranked trees in the case of conflict,
3. contains no unnecessary polytomies, and
4. displays as many groupings from input trees as possible.

These goals are described more fully below. In order to accomplish transparency and
justification, our pipeline also produces annotations files with information about conflict
and support.

Goal 1: each grouping is supported by at least one input

We require that each edge in the supertree be supported by at least one input tree edge. In
addition to aiding interpretability, this requirement keeps the supertree from arbitrarily
representing information that comes from none of the input trees. Of course, in a supertree
analysis, the full tree will imply some relationships for subsets of the taxa that are not found
in any input tree. So, the meaning of “supported by’ needs some clarification.

Notation, terminology, and the definition of “supported by’ Cutting any edge j of a
rooted tree induces a bi-partition S(j) of the leaf taxa into two connected groups S;(j) and
S2(j). Such a bi-partition is called a rooted split and written S(j) = S;(j)| ® S2(j). Here S1(j)
is called the “cluster” of j, and contains tip taxa on the side of edge j that does not contain
the root. S,(j) contains the tip taxa on the side of edge j that contains the root. We refer to
S(j) as a rooted split because the right side of the split implicitly contains the root node, as
indicated by the e.

For any two rooted splits A= A;|e A, and B= B; | e B, we say that A displays Bif B; C A,
and B, € A,. We also say that A and B conflict if none of A} N B}, AN B,, and B,NA;
are empty. Note that the intersection of the right sides of the splits is considered to be

Htis possible to construct a rooted tree that 1o _empty even if A, N B, is empty, because the right sides implicitly contain the root. If

displays both A and B if and only if A and

B are compatible. A and B do not conflict, then we say that they are co171patible.l If A displays B, then A and
B must be compatible, since A} N B, and B; N A; must be empty. We adopt the shorthand
of referring to an edge k when we mean the split S(k). So, when we say that edge j conflicts
with edge k, we mean that S(j) conflicts with S(k).

Let S denote a supertree, and T; denote the ith input tree. We say that S displays an edge
j of T; if any edge of S displays j. We say that S conflicts with a edge j of T; if any edge of S
conflicts with j; otherwise S is compatible with j. We say that edge k of S is supported by edge

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

oD oD

oC oE

B Q oC

A oB
(a) (b)

oD oD

oC oE

—0 —OE OC

—0

O oB B

L 0A A
(c) (d)

Figure 1 An example demonstrating that our definition of “supported by’ does not imply entire com-
position of a grouping. (A) and (B) show 2 input trees and (C) and (D) depict trees that each display each
of the groupings in the input trees and which have no unsupported nodes. The BUILD algorithm (‘Sub-
problem solution’) would choose tree (D) that floats taxon E closer to the root.

j of T; if S displays j, but S would not display j if we contracted edge k. We also adopt the
shorthand of referring to edges by their tipward endpoint. By combining this with the above
shorthand, we could say that a node j conflicts or does not conflict with another node k.

The set of taxa that are mapped to the tips of the tree T; is £(i). S(i) denotes the summary
tree induced by tip nodes that are mapped to taxa in £(i) and the most recent common
ancestor of those leaves, and any other node that is an ancestor of some but not all of these
leaves.

Note that stating that a node in the summary tree is supported by an input does not
imply that every descendant of that node must be present in the input nor that every
taxon that is not a descendant must be excluded in order to display the node. Consider the
problem shown in Fig. 1; Figs. 1A and 1B show two input trees. Because taxa A and E do
not occur together in either input, there is some uncertainty about where to place them.
By our terminology, either output shown in Figs. 1C or 1D would be characterized as a
tree that displays all of the input groupings and which has no unsupported groups. Clearly
these criteria are insufficient to specify a unique solution, and users of the output tree need
to be aware that it may be possible for some taxa to “float” to multiple positions. In Fig. 1,
taxon E floats to different positions in Figs. 1C and 1D, whereas taxon A does not.

One of our aims in supertree construction is to minimize the amount of information in
the supertree that does not come from input trees. We permit information that comes from

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

oC oD oC
B C D

(a) (b) (c)
oD oC D

(d) (e) (f)

Figure 2 An example of three input trees shown in (A), (B), and (C) which do not conflict in a pairwise
manner, but cannot be jointly displayed in one tree. The 3 solution trees are shown in (D-F). (D) for
ranking the tree in (C) lowest. (E) shows the solution if the tree in (B) has the lowest rank. (F) shows the
solution if the tree in (A) is ranked lowest. Each of the solutions displays two of the three input groupings.

combinations of input trees, but not any single input tree. However, we seek to exclude
information that comes from none of the input trees. This motivates the criterion of not
having any unsupported edges, since these edges could be removed without decreasing the

support from any input tree.

Goal 2: Tree ranking

An appealing goal for the summarization would be to find the supertree that displays
the largest number of input tree edges. As discussed in Huson, Rupp ¢ Scornavacca
(2010; pages 92 and 131) the maximum compatibility problem is known to be NP-hard
via a reduction from Max-Clique (Karp, 1972). In addition to being computationally
daunting, this formulation of the supertree problem does not provide biologists who use
the summarization tool with an obvious avenue for fixing perceived problems with the
summary tree. For example, a grouping that a biologist expected may not be present in the
supertree, but it may not conflict with any of the input groupings which are displayed. This
can happen because displaying both node a from T} and node b from tree T, in a summary
tree may only be possible by displaying a grouping that is present in no input tree. All
other factors being equal, if this implied grouping conflicts with input node ¢ in tree T3,
then ¢ will not be displayed in the summary tree, but a biologist will not necessarily know
how to fix this problem. One solution is to use a ranking of groupings. If an expert were
quite confident in the ¢ grouping, then she could assign that input node a high ranking.
A supertree that used ranks could then recover this grouping even if its inclusion did not
increase the total number of input nodes that are displayed by the summary tree. Figure 2
shows an example of three input trees for which there is no pairwise incompatibility, but
no solution displays all of the input groups. Alternative rankings of inputs can result in
one of three summary trees shown in Figs. 2D-2F.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

Any approach to supertree construction must deal with the need to adjudicate between
conflicting input trees. We choose to deal with conflict by ranking the input trees, and
preferring to include edges from higher-ranked trees. The merits of using tree ranking are
questionable because the system does not mediate conflicts based on the relative amount of
evidence for each alternative. However, it is a reasonable starting point. It has the benefits
of making it easy to see why some groups are included or not (transparency), and it allows
simpler and cleaner algorithms.

Note that if some edge ¢ conflicts with a higher-ranked edge b, then ¢ may still be
included in the supertree. This can occur when the higher ranked edge b conflicts with a
yet-higher ranked edge 4, and thus b is not included. In that case, it will be possible for ¢ to
be represented in the summary tree. Thus, the fact that the summary tree displays an input
edge does not imply that none of the higher ranked input trees conflict with that edge.

In order to produce a comprehensive supertree, we also require a rooted taxonomy tree
in addition to the ranked list of rooted input trees. Unlike other input trees, the taxonomy
tree is required to contain all taxa, and thus has the maximal leaf set. We make the taxonomy
tree the lowest ranked tree. In our current formulation, the taxonomy tree is also unique
in that the taxonomy is the only source of taxonomic names. Each node in the taxonomy
tree corresponds to a named group. Taxonomic groups may have the same name, but each
node in the taxonomy tree is identified by a unique number (its OTT ID). Taxonomic
groups are identified in the summary supertree by finding a branch (or “node”) that has
exactly the same include|exclude relationship. The taxonomy supertree can meaningfully
possess degree-two nodes. Although these nodes can be removed without affecting the
relationships of the leaves, they do represent nested taxonomic groups that contain exactly
one subgroup. The taxonomy is also used to determine which tips are terminal taxa.

Goal 3: contain no unnecessary polytomies

The supertree should be as resolved as possible—in other words, it should have no
unnecessary polytomies. Thus, for each input edge that is not included, we can point to
a reason for non-inclusion by showing that the input edge conflicts with some edge of
the summary tree. Note, that the requirement to not display unsupported groups leads to
some “necessary”’ polytomies. For example any resolution of the polytomy shown in Fig. 2E
would continue to display the same two input groups. However, the additional grouping
would be unsupported, because the unresolved tree already displays both input groups.
Thus, the unresolved tree would be preferred by our criterion. However, collapsing either
internal edge of the tree shown in Fig. 2D would result in a tree which displays only one
input grouping. This tree would contain an unnecessary polytomy, because the polytomy
would permit refinement to the depicted tree which displays more input groupings.

Goal 4: display as many input nodes as feasible

We also seek to construct a supertree that represents as many input tree nodes as possible.
Since non-included input tree nodes must conflict with the supertree (or they would have
been added), this criterion is the same as minimizing the number of input nodes that
conflict with the supertree.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

Non-goal: phylogeny estimation

Many researchers construct supertrees for the purpose of inferring the true tree from the
input trees (Bininda-Emonds et al., 2007; Davis & Page, 2014). Such approaches treat input
trees as data or as surrogates for data matrices (Gatesy ¢ Springer, 2004), and the supertree
is seen as more accurate than the individual input trees because more input trees (and
presumably more data) stand behind it. For such methods, conflict resolution is a primary
aim of the method.

Our supertree method operates in a different paradigm. Phylogeny estimation is an
explicit non-goal of our supertree algorithm. We do not claim that the supertree is more
accurate than the input trees it summarizes, and so conflict resolution is not a primary
aim of the method. Most of our input trees have non-overlapping taxon sets, and so
conflict resolution is not the primary problem. Instead, we seek to merge and aggregate
phylogenetic information on the largest possible scale. Therefore, the primary aim of our
supertree method is to summarize and represent the input trees, even when they conflict
with each other. The annotations file constructed by our pipeline is essential for this task
because it includes information about conflict with our supertree as well as support for it.

Our method must resolve conflicts in order to construct a single supertree. However,
the rank information used to resolve conflicts is an input to the method, not an output
from the method. We thus perform curation-based conflict resolution, not inference-based
conflict resolution.

Summary of goals

These optimality criteria help to define what it means for the supertree to represent the
input trees, as well as justifying and explaining why various features of the supertree exist.
The pipeline described below produces a supertree that satisfies the first three optimality
criteria and is a greedy approximation of a solution to the fourth goal. It is not guaranteed
to display as many input nodes as possible. Even if the summary tree does accomplish
goal 4, it is not necessarily a unique optimum. The pipeline takes a greedy approach to
producing a summary tree by attempting to add groupings from the trees in order of the
trees ranking. This can be viewed as a greedy solution to the problem of finding the tree with
the maximum sum of displayed groups’ weighted scores criterion (MSDGWS, described
in the Appendix S1) where the weights from the trees are so extreme that displaying
one group from a highly ranked tree is preferred to displaying all of the groupings from
lower ranked trees. These large weights help to achieve our goal of allowing curators to fix
problems in the tree. While it is possible to view our pipeline as an optimization algorithm
by assigning weights to the input trees in this way, we are not trying to weight the evidence
in the input trees, and we do not actually ever calculate these weights in our pipeline. Note
that in this extreme form of weighting, we do not have to calculate the score of a tree, we
simply traverse the groupings by order of rank and add a group if it is compatible with the
previously added groups.

Comparison to other supertree methods
Matrix Representation Parsimony (MRP) is one of the most widely used supertree
approaches (Baum, 1992; Bininda-Emonds et al., 2007; Davis ¢ Page, 2014). MRP attempts

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058/supp-1
http://dx.doi.org/10.7717/peerj.3058

Peer

to encode branches of input trees as characters in a data matrix, and then find an optimal
tree according to the maximum parsimony criterion. Such an approach does not provide a
clear and transparent explanation for including particular edges in the supertree. MRP can
also infer edges that exist in none of the input trees, which violates our Goal #1 (Gatesy &
Springer, 2004).

Another commonly used method is MinCut (Semple ¢ Steel, 2000) or Modified MinCut
(Page, 2002). Like our approach, MinCut is based on the BUILD algorithm (Aho et al.,
1981). However, MinCut deals with conflicts by modifying the BUILD algorithm to resolve
incompatibilities by discarding edges that are present in the smallest number of input trees.
This approach thus violates our Goal #2 of resolving conflict via ranks that can be altered
by a curator to influence the output tree.

DESCRIPTION OF THE SUPERTREE METHOD

Preprocessing steps

Propinquity was designed to function as a part of the Open Tree of Life software
architecture, so the first few steps of the pipeline involve transforming artifacts from
that project into a set of rooted trees and a phylogenetic taxonomy. The phylesystem API
(McTavish et al., 2015) of Open Tree allows users to curate published estimates of trees and
create ranked collections of these trees. Early steps in the propinquity pipeline manipulate
the phylogenetic input trees to improve their usability and reliability. The first steps of the
pipeline (see Fig. 3) collect a list of trees to include (in the phylo_input subdirectory) and
store copies of these files (in the phylo_snapshot subdirectory) to make it easier to replicate
the operation (because the collection of trees and the tree files change due to curation).

Pruning questionable taxa from the taxonomy

OTT is a hierarchy of taxonomic names that implies a phylogenetic taxonomy. An OTT ID
has a position in the hierarchy, a taxonomic name, and set of references to the same name
in different taxonomies. In addition, the ID may also be associated with a set of flags that
can indicate that the taxon may be questionable. These flags can either encode information
taken from an input taxonomy (for example, taxa the NCBI refers to as “unplaced” are
assigned an “unplaced” flag) or can arise because of some form of conflict during taxonomy
construction (for example, if two taxonomies disagree on the name for a taxon, then the
taxon can be merged and the name will be retained without any descendants; this name
will have an OTT ID, but will be flagged as “barren”). Propinquity prunes the OTT down
to a more reliable taxonomy by pruning off parts of the tree that are flagged with suspicious
flags. The set of flags that lead to a subtree of the taxonomy being pruned is under the
control of the user (the set of flags used by the Open Tree of Life project can be found in
the config.opentree.synth file in the propinquity repository). For the purpose of the
rest of the pipeline, an OTT ID that has been pruned from the taxonomy will be treated
in the same way as invalid OTT ID. The output of this step is stored in propinquity’s
cleaned_ott subdirectory; this operation only needs to be performed when the OTT or
the pruning flags change.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

implied full config

collection_export.py

export_studies_from_collection.py

suppress_by_flag

phylo_snapshot

cleaned_ott

prune_to_clean_mapped.py

cleaned_phylo

otc-nonterminals-to-exemplars

exemplified_phylo

otc-uncontested-decompose

subproblems

otc-solve-subproblem

subproblem_solutions

otc-graft-solutions

grafted_solution

otc-name-unnamed-nodes

labelled_supertree /

otc-annotate-synth

annotated_supertree

treemachineLITE

Figure 3 Organization of the propinquity pipeline. Each colored pentagon labels a program (blue for
otcetera-based tools and red for python scripts in the propinquity or peyotl repository) that performs the
important operations in each step; the number before the tool name refers to the section in this paper that

describes the operation. The output of each step corresponds to a subdirectory of the propinquity sys-

tem which will hold the output artifacts for the step. Ovals are resources that are required (OTT and Open

Tree’s phylesystem repository). White pentagons are user-controlled inputs.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058

8/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

Pruning problematically mapped tips from input phylogenetic trees
Frequently, phylogenetic estimates are rooted using the outgroup criterion, which is an
assumption about the monophyly of the ingroup taxa. Because the rooting of the branches
in the outgroup portion of the tree is often uncertain, data curators can identify the ingroup
node of the tree; propinquity uses this annotation to prune off the outgroup taxa.

Frequently, not all tips in a phylogenetic input will have been mapped to a taxon in the
current version OTT. Unmapped leaves are pruned from each phylogenetic input. In some
cases, the OTT has changed and a taxon has been unambiguously mapped to another taxon.
This can occur when multiple species in one version of the taxonomy are “lumped” into
a single taxon in a subsequent version. OTT maintains a set of “forwarding” statements
about IDs that have been removed but can be mapped to an existing taxon; propinquity
uses these statements to update the OTU mapping of input trees.

Finally some leaves are mapped to taxa that occur more than once in the tree, or taxa
that have ancestors represented as tips of the tree. In these cases, leaves are pruned to assure
that tips are mapped to unique taxa that are not nested. In the case of nested taxa, the tip
mapped to the higher level taxon is pruned, and one of the lower level tips is retained.
In the case of duplicate occurrences of an OTT taxon, propinquity checks to see if a data
curator has selected one of the taxa to be the exemplar for the taxon. If this selection has
not been made, then the node with the lexicographically lowest ID is chosen to exemplify
the taxon. This choice is arbitrary, but repeatable. The pruned phylogenetic inputs are
stored in a cleaned_phylo subdirectory of propinquity.

Exemplifying tips mapped to higher taxa

Many input trees have tips that are not terminal taxa, but higher-order taxonomic groups.
It is not clear how to interpret a tip in a phylogenetic estimate that is labeled with the
name of a higher taxon. Several scenarios can lead to these cases: the data for the tip could
have been created by merging a chimeric set of character scores from constituent taxa;
the species sampled may not have been identified to the lowest taxonomic rank; or the
researcher may simply have used a higher taxonomic name because he/she assumed that
the taxon is monophyletic and the higher level name would be more recognizable. Rather
than allowing the ambiguity about interpretation of the higher-taxon mapped tips to
propagate throughout the entire pipeline, we transform the input trees by replacing higher
taxa at tips with a set of terminal-taxon exemplars for each taxon. One approach would
be to simply determine all descendant terminal taxa and attach them as children of the
problematic tip. However, this would create a clade rather than a tip; subsequent steps in
the supertree would interpret the clade as a claim of monophyly for the taxon. The input
tree may not have tested monophyly of the clade, so this interpretation is unwarranted.
We avoid it by attaching exemplar taxa as child nodes of the higher taxonomic tip but
then collapsing the edge between the former tip node and its parent. Thus, if A is a
non-terminal taxon containing terminal descendants a; and a, and B is a non-terminal
taxon containing terminal descendants b; and b, we would replace the subtree ((A, B),¢)
with ((ay,az,b1,b,), ¢) instead of the subtree (((a;,a,)A, (b1,b2)B),c).

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 9/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

E2
&
E1
G A2
A12
C F1 root A A1
B E1 A3
A3 A2 - sasep— D
A2 C ——————C
Al B -————8B
oE A1 oG
(a) (b) (c)
Figure 4 Input trees (A-B) and taxonomy tree (C).
:F>—0F1
E
G o—oE1
C EF‘ e
Al
B Ef root A
A3 A2 A3
——————0ABCD
A2 C ——oC
A1 B L— 0B
oE1 Al oG
(b)

(a) ()

Figure 5 Exemplified input trees (A-B) and pruned taxonomy tree (C) from Fig. 4. Taxon E in the
first input tree is exemplified by E1 in (A). Pruned taxa are E2, F2, and D. The taxa E and F are retained
as monotypic taxa in the pruned taxonomy. The red edge in the pruned taxonomy tree is an uncontested
higher taxon in the exemplified taxonomy (as explained in section ‘Subproblem decomposition”).

If a taxon is only present in the taxonomy (not in any of the input trees), then it can be
pruned from the taxonomy for the construction of the supertree and then grafted back on to
the summary tree later. Performing this pruning reduces the size of the supertree problem,
reducing the running time of the pipeline. Similarly, when we expand a higher taxon in the
exemplification step, we can omit members of the taxon if they do not occur in any of the
phylogenetic inputs. If there are no members of the higher taxon sampled in any other input
tree, then we arbitrarily choose one terminal taxon to represent the higher taxon. During
the exemplification step, a tool from otcetera (otc-nonterminals-to-exemplars) reads
the taxonomy and all of the “cleaned” phylogenetic estimates from the previous step.
Reading all of the inputs is necessary to assure that each higher taxon is replaced with the
same set of exemplars regardless of which tree the higher taxon occurs in, and that the
exemplars for a higher taxon is the union on the set of descendant terminal taxa that have
been sampled in a phylogenetic input. For example, the trees in Fig. 4 would exemplified
as shown in Fig. 5.

We prune the taxonomy by removing tips that are not present in any input tree to
produce the pruned taxonomy T,. The tips pruned in this step will be grafted back onto

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

the skeleton of the summary tree in a subsequent step. A terminal taxon that is represented
only in the taxonomy can be pruned and then regrafted onto the solution without affecting
which nodes are displayed by the final summary tree. Thus, this procedure does not impede
our ability to find a good summary tree. Removing these tips produces a smaller input to the
rest of the pipeline, which reduces running times. After producing the set of “exemplified”
phylogenetic inputs, this tool exports a pruned down version of the taxonomy that only
contains tips that are present in at least one phylogenetic input.

Summary tree construction

After the preprocessing steps, the inputs have been converted to a set of rooted phylogenetic
estimates in which each leaf is mapped to a terminal taxon in the exemplified taxonomic
tree. The goal of the remainder of the pipeline is to construct a tree that maximizes the
sum of displayed groups’” weighted scores (MSDGWS) criterion. This is accomplished
in four steps: (1) dividing the full problem into subproblems based on uncontested
taxa; (2) constructing a summary solution for each subproblem by greedily creating a
maximally-sized list of groupings that can all be displayed simultaneously; (3) grafting
the subproblem solutions into a single supertree; and (4) grafting (or “unpruning”) the
taxonomy-only taxa onto the solution to produce a complete summary tree.

Subproblem decomposition

For the sake of efficiency, propinquity uses a divide-and-conquer approach to construct
the supertree. Subproblems are identified by searching through the taxonomy tree to find
any taxa that are not contested by any single input tree. Here we say that input tree T;
contests taxon x in the pruned taxonomy, if x is not monophyletic in any resolution of
tree T;. Thus, polytomies in an input tree are treated as soft polytomies, and a taxon is not
contested merely because it is not displayed by an input tree.

This operation is performed by the otc-uncontested-decompose tool in otcetera; see
Appendix S2 for a description of the algorithm. The output is a series of subproblems,
each of which corresponds to a slice of the taxonomy and corresponding slices through
each relevant input tree. Each uncontested non-terminal and non-root taxon will show
up in two subproblems: it will be the root of its own subproblem and it will be tip in the
subproblem that covers the next slice deeper in the tree. The red edge in Fig. 5C highlights
the taxa that are not contested by the input shown in Fig. 5; Fig. 6 shows the subproblems
that would be emitted as a result of this set of inputs. The supertree operation of Hinchliff
et al. (2015) also used this otcetera-based decomposition step.

Note that decomposition into uncontested groups does not necessarily allow us to
find the tree that maximizes the MSDGWS score. For example, see Fig. 7; that example
is a variant of the situation shown in Fig. 2. In this case the groupings from each of the
phylogenetic estimates, shown in Figs. 7A and 7B, could be displayed. That solution is
shown in Fig. 7D, it displays two of the three input splits, but is optimal because no
solution displays all three input groupings and the depicted solution displays the two
highest ranked groupings. However, neither of the trees shown in Figs. 7A or 7B contest
the taxon B shown in the taxonomy panel Fig. 7C. Thus, when using our decomposition,

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 11/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058/supp-2
http://dx.doi.org/10.7717/peerj.3058

Peer

oC oC
C
B oB
oA3 A2 A3
A2 B A A2
A12
A1 A1 At
(a)
— oABCD — oF
F I oF
(@]
E ——— oABCD
G I — Y
(b)

Figure 6 Subproblems (A) ABCD and (B) root generated from the exemplified trees shown in Fig. 5.
A trivial statement from the first tree that a taxon labelled ABCD is sister to E has been omitted, because
trees with only two leaves do not contain phylogenetic information.

the branches leading to taxa Bl and B2 in the input phylogenetic trees would be sliced
during the decomposition, and relabeled to refer to taxon B. This taxonomically-informed
interpretation of the inputs views the two phylogenetic inputs as in conflict; so the solution
returned by propinquity would defer to the higher ranked tree. The tree shown in Fig. 7E
would be returned. This example arises from the fact that the trees in Figs. 7A and 7B jointly
contest taxon B, but neither contests taxon B when the trees are considered in isolation.

Despite the fact that the use of otc-uncontested-decompose can worsen the final score
of the summary tree, we use this approach in propinquity because it makes the construction
of the tree faster and it is easy for users to correct issues caused by incorrect taxa being
constrained to be monophyletic. By adding a tree (even a low-ranked tree) that contests a
taxon to the corpus of input trees, then the next synthetic tree will no longer consider the
taxon to be uncontested. Thus the procedure encourages curation of more phylogenetic
inputs as a means of improving the summary tree.

Subproblem solution

When solving sub-problems, we sequentially incorporate splits from trees in order of
ranking, retaining splits that are compatible with the current set of splits (Fig. 8). The order
of splits from the same tree is not specified by this approach, and we incorporate splits using
one of the possible post-order traversals of the tree. We make use of the BUILD algorithm
(Aho et al., 1981) to assess compatibility. This strategy avoids unnecessary polytomies,
since splits of later input trees are only rejected from the summary supertree if they conflict
with higher-priority splits. Finally, we use the BUILD algorithm to construct a supertree
displaying all of the splits in the set of compatible splits. Using the BUILD algorithm to
construct the subproblem summary tree satisfies criterion 3, because trees from the BUILD
algorithm do not contain unsupported branches.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

oC

oC oB2 B2

-
B1 C B1

(a) (b) ()
oB2 oC
C B2
B
B1 B1
A A
(d) (e)

Figure 7 An example with three input trees: the highest ranked phylogenetic input (A), the second
ranked phylogenetic (B), and the taxonomy in (C). The summary tree in (D) has the highest possible
score, but the summary shown in (E) would be returned from the pipeline that uses uncontested taxon
decomposition.

Algorithm ConsistentSplitsFromRankedList
Require: An ordered list of M splits, R = [Ry, R, Rs,..., R3, ..., Ry]
C =[Ri]
for each split 7 in [2,3...M] do
T+ C+R; > where ‘4" means concatenating 2 lists
if BUILD(T) does not return null then
C+—T
end if
end for
return C

Figure 8 Algorithm ConsistentSplitsFromRankedList.

The BUILD algorithm as originally stated by Aho et al. (1981) applies to a collection
of rooted triplets. Instead of decomposing each input split into a collection of rooted
triplets, we instead modify the BUILD algorithm to apply directly to larger rooted splits.
The modified BUILD algorithm constructs a tree compatible with a collection of rooted
splits, and returns failure if such a tree does not exist. This modified algorithm recovers
the original BUILD algorithm if only rooted triplets are supplied as input. When larger
splits are supplied as input, the results are the same as if each was was decomposed into
all implied triplets. The modified build algorithm has order O(N? + N?E + NL) where N
is the number of splits passed in, E is the average size of the exclude group, and L is the
total number of leaves. This simplifies to O(N?) if all splits are triplets. In this approach

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

oC
oABCL oB G
O A3 .
A A2 oroot E
A12
A1l oABCD

(a) (b)

Figure 9 Solutions to (A) subproblem ABCD and (B) subproblem root depicted in Fig. 6.

splits are either entirely retained or entirely discarded—consistent rooted triplets from
conflicting splits are not retained. However, when unpruning taxonomy-only taxa (see
below), we make an attempt to break ties in a way that preserves some partial information
from conflicting splits by attaching taxa from conflicting splits at their common ancestor.
Figure 9 shows the solutions that would be obtained by applying our modified version of
the BUILD algorithm to the subproblems shown in Fig. 6.

Solution grafting

To produce a tree that spans all of the taxa sampled in the exemplified set of

input trees, we graft the subproblem solutions into a single tree (stored as the
grafted_solution/grafted_solution.tre by propinquity); see Fig. 10. Recall that
each non-root uncontested taxon used for decomposition occurs as a leaf taxon in one
subproblem and as a root taxon in one other subproblem. Thus, the grafting operation
simply consists of reading all of the subproblem solutions into memory and then merging
the nodes that are labeled with the same OTT ID.

Unpruning unsampled taxa

As described above, taxa that do not have any descendants in a sampled phylogenetic input
are pruned from the taxonomy for the sake of efficiency. These taxa are reattached by an
“unpruning step.” For those taxa that are compatible with the grafted tree, this step simply
amounts to adding any unsampled taxonomic children to the node that represents the
taxon in the grafted solution tree. For example, the tree in Fig. 10 is unpruned to produce
the tree in Fig. 11.

However, a taxon may be incompatible with the grafted solution; we refer to such taxa
as “broken taxa.” If a broken taxon contains some unsampled children, it is not clear where
these unsampled children should be attached to the grafted solution. One approach would
be to mimic the application of Algorithm ConsistentSplitsFromRankedList (Fig. 8)
to the full (unpruned) taxonomic tree. This would be equivalent to collapsing each edge
in the taxonomy that attaches a broken taxon to its parent. The unsampled children of
broken taxa would attach at their least inclusive ancestral taxon which is unbroken. In cases
of several adjacent taxa are broken, this can lead to polytomies of very high degree deep

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 14/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

>ABCGD oB

0O

—o A3

oroot | A{2
A1

0O
J
_I-I

E

Figure 10 Grafted solution produced from the subproblems from Fig. 9 and which is the backbone
onto which taxa that are not included in any phylogeny will be placed.

in the tree. This can make the summary tree difficult to navigate. Thus, we have adopted
an alternative solution. The otc-unprune-solution-and-name-unnamed-nodes tool
from otcetera attaches the unsampled children of a broken taxa to the grafted solution as
children of the MRCA of the sampled children.

Figure 12 illustrates the two approaches to unpruning. Taxa G, M, and R (Fig. 12A) are
broken because they conflict with the grafted solution (Fig. 125); among these, only taxon
R has children that were unsampled in the grafted solution. Ignoring all broken taxa when
unpruning would cause the unsampled children (R4, R5, and R6) to attached directly at
taxon N (as in the tree shown in Fig. 12C), because that is the least inclusive unbroken
ancestor of R. The tree illustrated in Fig. 12D shows the tree that would be produced by
propinquity; the children of the broken taxon R and instead attached at the MRCA of
sampled children (R1, R2, and R3). Their attachment point does not correspond to any
taxon in the taxonomic tree.

Naming unnamed nodes

In order to annotate each node in the summary supertree, it is first necessary that each
node have a unique identifier. Nodes whose include group correspond exactly to the
include group of a node in the taxonomy are given the same identifier as the corresponding
taxonomy node. These identifiers are of the form o#tX where X is an integer OTT ID. We
generate a label of the form mrcaottX; ottX, for an non-taxonomic node n where X; and X,
are the OTT IDs for two leaves, n is the MRCA of these leaves, and X; is the numerically
smallest OTT ID that is a descendant of n, and X, is the next the smallest ID that can be

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 15/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

)
J
M

oroot Eq

>ABCD

O

A12
A1

Figure 11 Unpruned tree with internal taxa. Taxa unsampled in phylogenetic statements have been
added to the grafted tree shown in Fig. 10.

chosen to designate n as the MRCA. Because new taxa added to OTT will be given higher
OTT IDs, the use of the lowest numbered OTT IDs as designators increases the chance that
anode label can be encountered in a subsequent version of the tree (though the taxonomic
content may change). The deterministic choice of designators also makes the labeling
insensitive to branch rotation of the grafted solution tree.

Annotation
To reveal the connections between the groupings found in the a summary supertree and
the input trees, propinquity uses a few Python scripts and the otc-annotate-synth tool
from otcetera to create an annotations file describing the pipeline used and the connections
between phylogenetic information in the inputs and the summary. The JSON file produced
by otc-annotate-synth encodes a “nodes” property that holds a mapping between a
node name for the summary tree (using the naming convention described in the previous
section) and a node provenance object that categorizes the relationship between the node
and the inputs. The node provenance object for node x uses several properties to categorize
the relationship between the node and the inputs; each property in the node provenance
object maps to a structure storing the tree ID and node IDs for the input tree nodes.
Conceptually, this annotation operation is equivalent to considering every node j in
each input tree i and the summary tree node x. Because the vast majority of nodes in

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 16/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

c
P2
)| p
L .p1
P2
T2
r a
B T P1
32 M2
Is
= os1 B T
G
R6 l: s
L In
RS — R3
——— R4 M1
R
- R3 R2
R2 "1
RL
. (b)
Im
oM
(a)
c c
R6 P2
P
RS l: P1
B
B R4 M2
P2 T2
P —
_E P1 N TL
LN
M2 s2
s
™ _E s1
T
L .11 - Rre
s2 L Rrs
s
_E S1 I ~ V)
— .R3 - R3
M1 M1
RL _E RL
(c) (d)

Figure 12 Two approaches to unpruning. Taxa G and R in the taxonomy (A) are broken because they
conflict with the grafted solution (B). Removing these broken taxa from the taxonomy before unpruning
leads to taxa R4, R5, and R6 being attached directly at taxon N, as in tree (C). In tree (D), the children of
the broken taxon R are instead attached at the MRCA of R1, R2, and R3. Our method follows the second
approach.

the input studies will be compatible but not directly relevant to node x we do not list
all of the compatible groupings. If node x is not included in the induced tree S(i), then
none of the nodes of tree i will be referred to in the annotations for node x. Even if x is
included in S(i), many of the nodes of T; will be compatible with x while being relevant to
other parts of the summary tree. The only input nodes listed for node x are with rooted
taxon bipartitions which conflict with, are displayed by, or are resolved by the the rooted
taxonomic bipartition associated with node x. All input nodes that cannot be displayed
by any supertree that contains x are stored in a “conflicts_with” property of the node

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

provenance object. If node j of T; is displayed by the summary tree and x is part of the path
of S(i) that displays the split between descendants of j and other taxa, then a reference to the
node j will be in the node provenance object. The exact categorization of this annotation
will depend on the configuration of node x on the induced tree S(i):

e if x is on a terminal path in the induced tree then node j will be listed in the “terminal”
property;

e if x is along an internal path that contains some nodes with out-degree equal to 1, then
node j will be listed in the “partial_path_of” property; and

e if x is along an internal path without any node of out-degree 1, then node j will be listed
in the “supported_by” property, because node j supports the existence of grouping x
in the sense that collapsing the edge that separates x from its parent would cause the
summary tree to no longer display node j.

These three relationships are illustrated in Fig. 13. Finally, if T; does not display x from
S(i), but there exists an unresolved node j in T; which could be resolved such that the tree
would then display x, then a reference to node j will be listed in the “resolves” property
of node x.

The otcetera annotation tool can also detect cases in which including information from
node j in T; could further resolve a polytomy x in the summary tree; such a case would
be annotated using the “resolved_by” property of x. However, because of our goal of
excluding unnecessary polytomies, none of the nodes in propinquity’s summary tree will
use this annotation when they are annotated with the set of input trees.

Self-documentation

An optional step in the propinquity pipeline (triggered by the executing the “make html”
target) can compose an “index.html” file for each directory created during the pipeline
to explain the artifacts held in that directory and report summary statistics about the
summarization run.

RESULTS

We seek to assess the performance of our new supertree method by comparing it to the
supertree method of Hinchliff et al. (2015). The method of Hinchliff et al. (2015) was used
to construct the Open Tree of Life v4 (OTLv4). Therefore, in order to facilitate comparison,
we applied our method to the same input trees and taxonomy used by OTLv4. We refer
to the resulting supertree as OTLv4’ since it was constructed by applying the propinquity
pipeline to the same inputs as OTLv4.

Inputs

The flag-cleaned version of OTT used in the construction of both supertrees contained
2,424,255 leaves. The OTLv4 supertree was constructed from 482 phylogenetic inputs,
containing a total of 45,385 leaves, of which 41,029 were unique. After flag-cleaning and
exemplification by propinquity, these trees contained 40,323 unique tips. We used the
same cleaning flags to trim the taxonomy and input trees when constructing OTLv4’, so
OTLv4 and OTLv4 contain the same number of leaves.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

ott7 oott7
mrcaott5ott7 % mrcaott5ott7
ott7 ott
we ott11
otts ott1000 otts5 ootts
node17
ott2
%node1 5 mrcaottiott4
oott2
ottt ott10
(@) oott1
(c)
{
"nodes": {
"mrcaottlott4": { "partial_path_of": { "treel": ‘"nodelb", T3,
"ott10": { "partial_path_of": <{ "treel": '"nodelb", LR
"mrcaottbott7": { " " { "treel": '"nodel6", } 3,
Ilott1II: { n n { "treel": "Ottl", } }’
"ott2": { " " { "treel": "ottt 2" , } } R
"otth": { n " { "treel": ”Ott5", } }’
"ottl11": { n n { "treel": "Ott5", } }’
"ottt 7" : { n n { "treel": "ott7" , } }

(d)

Figure 13 The relationship of edges in summary tree S in (B) to edges in the input tree T; named
“treel” in (A). Only edges of S that are present in the induced tree S(1) in (C) are represented by JSON
annotations in (D). Taxon names are here suppressed in favor of OTT IDs, and edges are referenced via
their tipward nodes. Edges in S(1) that correspond to terminal edges of T; are orange; edges of S(1) that
are supported by edges of T; are blue; where multiple edges of S(1) correspond to the same edge of T;
they are green. There is no conflict in this example. Also, if this were output from propinquity, then each
internal node of S would be supported by other inputs trees that are not shown here.

Subproblems

In the OTLv4’ summary tree, the decomposition procedure produced 5,406 subproblems,
but only 1,422 of these were non-trivial to solve. If a subproblem contains only two tips it
is trivial; 2,362 subproblems were trivial in this way. Similarly, if a subproblem contains
only 2 trees it is trivial to solve because the solution will simply be all of the groupings from
the first tree combined with all of the groupings from the second tree that are compatible
with the first tree; 3,052 subproblems were trivial in this way. The subproblem with the
largest number of tips contained 946 tips. The largest subproblem, in terms of the number
of input trees (including the taxonomic tree) that were relevant, had 16 trees. Without
decomposition, the supertree problem would have had 482 input trees and 41,226 leaves.

Representing input splits
We performed an annotation of both the OTLv4 tree and the OTLv4’ tree as described in
section ‘Annotation’ to assess the ability of our new supertree method to represent splits

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

Table 1 Representation of input splits in the OTLv4 tree and the OTLv4’ tree.

supported_by partial_path_of terminal conflicts_with resolved_by resolves
OTLv4 34,595 923 45,385 2,760 2,718 473
OTLv4 only 745 54 0 2,055 2,718 0
OTLv4' 38,521 1,118 45,385 1,357 0 515
OTLv4 only 4,671 249 0 652 0 42

Table2 Representation of taxonomy splits in the OTLv4 tree and the OTLv4’ tree.

supported_by partial_path_of terminal conflicts_with resolved_by resolves
OTLv4 125,384 0 2,424,255 1,998 4 3,676
OTLv4 only 296 0 0 19 4 17
OTLv4' 125,107 0 2,424,255 2,279 0 3,883
OTLv4 only 19 0 0 300 0 224

from input phylogenies. Table 1 classifies the input phylogeny splits according to how
they relate to a summmary tree, so that each input edge falls in one of supported_by,
partial_path_of, terminal, conflicts_with, or resolved_by. For example, the
numbers in the conflicts_with column indicate the number of input splits j with at
least one summary edge x such that the relation “x conflicts_with j” holds. The total
number of non-terminal input phylogeny splits considered was 40,996.

The number of displayed input splits (supported_by + partial_path_of) increased
from 35,518 (for OTLv4) to 39,639 (for OTLv4'); an 11% increase. When examining which
splits are displayed, we find that the OTLv4’ tree displays 4,920 input splits that are not
displayed by the OTLv4 tree, whereas the OTLv4 tree displays only 799 input splits that
are not displayed by the OTLv4’ tree. The number of input splits that conflict with the
summary (conflicts_with) dropped from 2,760 to 1,357, a decrease of 1,403, or 51%. In
accordance with the goal of not containing unnecessary polytomies, the number of input
splits that do not conflict with the summary tree, but are not incorporated (resolved_by)
dropped from 2,718 to 0. We also find that the number of polytomies in input phylogenies
that are resolved by the summary tree increases from 473 for OTLv4 to 515 for OTLv4'.

We also performed an annotation of the OTLv4 tree and the OTLv4’ tree to assess
the degree to which these trees represent taxonomy splits (Table 2). The OTLv4’ tree
conflicts with 281 more taxonomy splits than the OTLv4 tree. Since the taxonomy is the
lowest ranked input tree, this increased conflict with the taxonomy is an expected result of

incorporating more splits from higher-ranked input phylogenies.

Checking reliability of the method

To test the reliability of our methods, we divided the OTLv4’ summary tree into a collection
of input trees. The input trees were obtained by splitting the grafted tree at each taxonomy
node, so that each input tree has a taxonomy node at the root, and taxonomy nodes as
tips, but no taxonomy nodes internally. Each leaf node that was an internal taxon was then
replaced with a leaf taxon. This approach ensures that any taxa that were contested in the

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 20/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

original analyses remain contested in this new analysis. We then constructed a summary
tree from these input trees using the propinquity pipeline. The resulting summary tree was
identical to the OTLv4’ summary tree.

Sensitivity of the OTLv4’ supertree to ranks

We ran the pipeline on the OTL4 data with the ranks reversed. This drastic alteration of

the ranks led to a summary supertree that conflicted with 1,264 branches of the OTLv4'.

Compared to this, the OTLv4 supertree tree conflicts with 1,387 branches of the OTLv4’

supertree. Thus, reversing the ranks makes a smaller different in the OTLv4’ supertree than
the new synthesis algorithm. We also note that a total of 36,533 edges of the grafted tree

could be altered by changing the ranks, and most of these edges are unaffected.

CONCLUSIONS

Here we have described the motivation and methodology used by our new supertree
method that is currently used by the Open Tree of Life project to build summary supertrees
on the scale of millions of leaves. Our new method represented 11% more input phylogeny
splits with 51% less conflict compared to the Open Tree of Life version 4 summary tree,
when applied to the same inputs. Unlike the previous method (Hinchliff et al., 2015), our
new method is guaranteed to incorporate input splits unless they conflict with the summary
tree. The method is implemented in the Open Source software package propinquity. A
modified version of the treemachine software which built the summary tree described
in the Hinchliff et al. (2015) paper is used by the project to serve the tree produced by
propinquity via Open Tree of Life APIs.

Our supertree pipeline makes it possible to summarize and merge information from
across the Tree of Life. However, we do not claim that our supertree is more accurate
than the input trees that it summarizes. Before using the output of our supertree pipeline
as input to an evolutionary analysis, researchers should first assess the accuracy of the
output supertree in the clade of interest, possibly adjusting the ranks of the input trees to
produce a more useful outcome. We have demonstrated that ranks supplied by curators
have substantial effects on the output of the pipeline. This can be considered to be a benefit
of our approach, since it allows curators to adjust the output of the pipeline, and it is easy
to see why the supertree contains the relationships that it does. However, one downside of
our current approach is that every node in an input tree must recieve the same rank. As a
result, bootstrap proportions and posterior probabilities are not taken into account.

The migration of summary tree construction from treemachine (used for version 4)
to propinquity (for all versions from v5.0 to present) has increased the pace of synthesis
tree releases from the Open Tree of Life project. This is partly because the newly available
annotations feature has made it possible to identify which input trees are responsible for
taxa being included or excluded from the summary tree. Additionally, the new propinquity
software pipeline has decreased the computational time required to construct a supertree
from several hours to about 8 min (after some preprocessing steps which only have to be
performed when the input taxonomy changes). The amount of RAM required during tree
construction has also decreased substantially.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 21/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058

Peer

ACKNOWLEDGEMENTS

Thanks to Emily Jane McTavish, Karen Cranston, Jonathan Rees, Jim Allman, Cody
Hinchliff, Stephen Smith, and Joseph Brown for discussions and feedback. Thanks to Luay
Nakleh and an anonymous reviewer for their helpful comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

NSF grant 1208393 (DEB), NSF grant 1208393 (AVATol), the University of Kansas, and the
Heidelberg Institute for Theoretical Studies provided funding for this work. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
NSF grant: 1208393 (DEB), 1208393 (AVATol).

University of Kansas.

Heidelberg Institute for Theoretical Studies.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Benjamin D. Redelings performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.

e Mark T. Holder conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, reviewed drafts of the paper.

Data Availability

The following information was supplied regarding data availability:
GitHub: https://github.com/OpenTreeOfLife/propinquity
https://github.com/OpenTreeOfLife/otcetera
https://github.com/OpenTreeOfLife/peyotl.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.3058#supplemental-information.

REFERENCES

Aho AV, Sagiv Y, Szymanski TG, Ullman JD. 1981. Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. STAM
Journal on Computing 10(3):405—-421 DOI 10.1137/0210030.

Redelings and Holder (2017), PeerdJ, DOI 10.7717/peerj.3058 22/23

https://peerj.com
https://github.com/OpenTreeOfLife/propinquity
https://github.com/OpenTreeOfLife/otcetera
https://github.com/OpenTreeOfLife/peyotl
http://dx.doi.org/10.7717/peerj.3058#supplemental-information
http://dx.doi.org/10.7717/peerj.3058#supplemental-information
http://dx.doi.org/10.1137/0210030
http://dx.doi.org/10.7717/peerj.3058

Peer

Baum BR. 1992. Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Taxon 41(1):3-10
DOI 10.2307/1222480.

Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R,
Price SA, Vos RA, Gittleman JL, Purvis A. 2007. The delayed rise of present-day
mammals. Nature 446:507-512 DOI 10.1038/nature05634.

Davis KE, Page RDM. 2014. Reweaving the tapestry: a supertree of birds. PLOS Currents
Epub ahead of print Jun 9 2014
DOI 10.1371/currents.tol.c1af68dda7c999ed9f1e4b2d2df7a08e.

Gatesy J, Springer MS. 2004. A critique of matrix representation with parsimony
supertrees. In: Bininda-Edmonds ORP, ed. Phylogenetic supertrees: combining
information to reveal the tree of life. Computational biology, vol. 3. Dress A, ed.
Dordrecht: Springer, 369-388.

Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, Crandall
KA, Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA, Laughinghouse
HD, McTavish EJ, Midford PE, Owen CL, Ree RH, Rees JA, Soltis DE, Williams T,
Cranston KA. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree
of life. Proceedings of the National Academy of Sciences of the United States of America
112(41):12764-12769 DOI 10.1073/pnas. 1423041112,

Huson DH, Rupp R, Scornavacca C. 2010. Phylogenetic networks: concepts, algorithms and
applications. Cambridge: Cambridge University Press.

Karp RM. 1972. Reducibility among combinatorial problems. In: Complexity of computer
computations. Berlin Heidelberg: Springer, 85-103.

McTavish EJ, Hinchliff CE, Allman JF, Brown JW, Cranston KA, Holder MT, Rees JA,
Smith SA. 2015. Phylesystem: a git-based data store for community-curated phyloge-
netic estimates. Bioinformatics 31(17):2794-2800 DOI 10.1093/bioinformatics/btv276.

Page RD. 2002. Modified mincut supertrees. In: International workshop on algorithms in
bioinformatics. Berlin Heidelberg: Springer, 537-551.

Semple C, Steel M. 2000. A supertree method for rooted trees. Discrete Applied Mathe-
matics 105(1):147-158 DOI 10.1016/S0166-218X(00)00202-X.

Redelings and Holder (2017), PeerJ, DOI 10.7717/peerj.3058 23/23

https://peerj.com
http://dx.doi.org/10.2307/1222480
http://dx.doi.org/10.1038/nature05634
http://dx.doi.org/10.1371/currents.tol.c1af68dda7c999ed9f1e4b2d2df7a08e
http://dx.doi.org/10.1073/pnas.1423041112
http://dx.doi.org/10.1093/bioinformatics/btv276
http://dx.doi.org/10.1016/S0166-218X(00)00202-X
http://dx.doi.org/10.7717/peerj.3058

