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Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger
states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-
mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on
different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state
tomography, with a fidelity of 0.668� 0.025. Our results demonstrate the largest entanglement created so
far in solid-state architectures and pave the way to large-scale quantum computation.
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Entanglement is one of the most counterintuitive features
of quantum mechanics. The creation of an increasingly
large number of maximally entangled quantum bits (qubits)
is central for measurement-based quantum computation [1],
quantum error correction [2,3], quantum simulation [4],
and foundational studies of nonlocality [5,6] and quantum-
to-classical transition [7]. A significant experimental chal-
lenge for engineering multiqubit entanglement [8–10] has
been noise control [11,12]. With solid-state platforms,
the largest number of entangled qubits reported so far is
five [10], and further scaling up would be difficult as
constrained by the qubit coherence and the employed
sequential-gate method.
Superconducting circuits are a promising solid-state plat-

form for quantum state manipulation and quantum comput-
ing owing to the microfabrication technology scalability,
individual qubit addressability, and ever-increasing qubit
coherence time [13]. The past decade has witnessed signi-
ficant progress in quantum information processing and
entanglement engineering with superconducting qubits:
the preparation of three- and four-qubit entangled states
[14–17], demonstration of elementary quantum algorithms
[18,19], realization of three-qubit Toffoli gates, and quantum
error correction [20–24]. In particular, a recent experiment
has achieved a two-qubit controlled-phase gatewith a fidelity
above 99% with a superconducting quantum processor [10],

where five transmon qubits with nearest-neighbor coupling
are arranged in a linear array. Based on this gate, a five-qubit
Greenberger-Horne-Zeilinger (GHZ) state was produced
step by step; the number of entangled qubits is increased
byone at a time.With a similar architecture consisting of nine
qubits, digitized Trotter steps were used to emulate the
adiabatic change of the system Hamiltonian that encodes a
computational problem [25], where the digital evolution into
a GHZ state with a fidelity of 0.55 was demonstrated for a
four-qubit system.
In this Letter, we demonstrate a versatile superconducting

quantum processor featuring high connectivity with pro-
gramable qubit-qubit couplings mediated by a bus resonator
and experimentally produceGHZ stateswith up to ten qubits
using this quantum processor. The resonator-induced qubit-
qubit couplings result in a phase shift that is quadratically
proportional to the total qubit excitation number, evolving
the participating qubits from an initially product state to the
GHZ state after a single collective interaction, irrespective of
the number of entangled qubits [26]. We characterize the
multipartite entanglement by quantum state tomography
achieved by synchronized local manipulations and detec-
tions of the entangled qubits and measure a fidelity of
0.668� 0.025 for the 10-qubit GHZ state, which confirms
the genuine tenpartite entanglement [27] with 6.7 standard
deviations (σ). We also implement parallel entangling
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operations mediated by the resonator, simultaneously gen-
erating three Einstein-Podolsky-Rosen (EPR) pairs; this
feature was previously suggested in the context of ion traps
[28] and quantum dots coupled to an optical cavity [29], but
experimental demonstrations are still lacking.
The superconducting quantum processor is illustrated in

Fig. 1(a), which is constructed as ten transmon qubits (Qj for
j ¼ 1–10), with resonant frequencies ωj=2π tunable from 5
to 6 GHz, symmetrically coupled to a central resonator (B),
whose resonant frequency is fixed at ωB=2π ≈ 5.795 GHz.

Measured qubit-resonator (Qj-B) coupling strengths gj=2π
range from 14 to 20 MHz (see Supplemental Material [31]
for details on the device, operation, and readout) [43]. The
central resonator serves as a multipurpose actuator, enabling
controlled long-range logic operations, scalable multiqubit
entanglement, and quantum state transfer. In the rotating-
wave approximation and ignoring the cross talk between
qubits (see Supplemental Material [31]), the Hamiltonian of
the system is given by

H=ℏ¼ ωBaþaþ
X10

j¼1

½ωjj1jih1jj þ gjðσþj aþ σ−j a
þÞ�; ð1Þ

where σþj (σ−j ) is the raising (lowering) operator of Qj and
aþ (a) is the creation (annihilation) operator of B.
The qubit-qubit coupling can be realized through the

superexchange (SE) interaction [44] mediated by the bus
resonator B [45–48]. With multiplexing, we can further
arrange multiple qubit pairs at different frequencies to turn
on the intrapair SE interactions simultaneously. To illustrate
this feature, we consider three qubit pairs, Qk-Qk0 , Ql-Ql0 ,
and Qm-Qm0 , detuned from resonator B by Δj (≡ωj − ωB,
and ωj ¼ ωj0 ) for j ¼ k, l, and m, respectively, while all
other qubits are far detuned and can be neglected for now. In
the dispersive regime and when the resonatorB is initially in
the ground state, it will remain so throughout the procedure,
and the effective Hamiltonian for the qubit pairs is

H1=ℏ ¼
X

j∈fk;l;mg
λjðσ−j σþj0 þ σþj σ

−
j0 Þ

þ
X

j∈fk;l;mg

�
g2j
Δj

j1jih1jj þ
g2j0

Δj
j1j0 ih1j0 j

�
; ð2Þ

where λj ¼ ðgjgj0=ΔjÞ, jΔjj ≫ gj; g0j, and jΔj1 − Δj2 j ≫
λj1 ; λ

0
j1
; λj2 ; λ

0
j2
for j1, j2 ∈ fk; l; mg and j1 ≠ j2. With this

setting, the resonator B is simultaneously used for
three intrapair SE processes; the interpair couplings are
effectively switched off due to large detunings between
different pairs.
With the fast Z control on each qubit, coupling between

any two qubits can be dynamically turned on and off by
matching (intrapair) and detuning (interpair), respectively,
their frequencies; i.e., we can reconfigure the coupling
structure in situ without modifying the physical wiring of
the circuit. For example, by arranging Δk, Δl, and Δm in
Eq. (2) at three distinct frequencies, we create three qubit
pairs (Q2-Q9, Q3-Q8, and Q5-Q6) featuring programable
intrapair SE interactions with negligible interpair cross talk,
enabling parallel couplings as demonstrated in Fig. 1(b).
According to the probability evolutions shown in Fig. 1(b),
a characteristic gate time t ffiffiffiffiffiffiffiffiffi

iSWAP
p for each qubit pair can be

identified.
Operating multiple pairs in parallel naturally produces

multiple EPR pairs [45,46]. As the pulse sequence shows in
Fig. 2(a), three EPR pairs are produced after the completion

(a)

(b)

FIG. 1. (a) False-color circuit image showing ten superconduct-
ing qubits (star shapes) interconnected by a central bus resonator
B (gray). Each qubit has its own microwave line (red) for XY
control and flux bias line (blue) for Z control, except for Q2

and Q6, which share the microwave lines of neighboring qubits.
Each qubit has its own readout resonator, which couples to the
circumferential transmission line (orange) for simultaneous read-
out. (b) Parallel intrapair SE interactions for Q3-Q8 (top), Q5-Q6

(middle), and Q2-Q9 (bottom) at the corresponding detunings as
indicated. The anticorrelated, time-modulated occupation prob-
abilities P10 (red dots) and P01 (blue dots) of each pair indicate
that energy is exchanged within the pair [6], undisturbed by what
happens in the other two pairs: Six qubits in three pairs are
measured simultaneously, and we ignore outcomes of the other
qubits for the two-qubit data shown in each panel. All directly
measured qubit occupation probabilities are corrected for the
elimination of the measurement errors [30]. Lines (green) are
numerical simulations. The small high-frequency oscillations in
the simulation curve (green) for Q3-Q8 are due to the relatively
small qubit-resonator detuning. These small oscillations can be
reduced by using a larger detuning but at the price of a smaller
intrapair SE interaction strength.
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of all three SE-
ffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates [48], with the six-qubit

quantum state tomography measuring an overall state
fidelity of 0.904� 0.018. The inferred density matrix ρ
is validated by satisfying the physical constraints of
Hermitian, unit trace, and positive semidefinite. We further
perform partial trace on ρ to obtain three two-qubit reduced
density matrices, each corresponding to a EPR pair with a
fidelity above 0.93 [Fig. 2(b)].
Remarkably, our architecture allows the high-efficiency

generation of multiqubit GHZ states. In contrast to the
previous approach where GHZ states are generated by a
series of controlled-NOT (CNOT) gates [10], here all the qubits
connected to the bus resonator can be entangled with a single
collective qubit-resonator interaction. In the theoretical
proposal [26,50],N qubits are assumed to be equally coupled
to the resonator and are detuned from the resonator by the
same amount Δ that is much larger than the qubit-resonator
coupling. When all qubits are initialized in the same equal
superpositions of 0i and j1i, e.g., ðj0i − ij1iÞ= ffiffiffi

2
p

, the SE
interaction does not induce any energy exchange between
qubits; instead, it produces a dynamic phase that nonlinearly
depends upon the collective qubit excitation number k as
kðN þ 1 − kÞθ, where θ is determined by the effective
qubit-qubit coupling strength and the interaction time.
With the choice θ ¼ π=2, this gives rise to the GHZ state
ðjþ1;þ2;…;þNi þ ij−1;−2;…;−NiÞ=

ffiffiffi
2

p
, where j�ji ¼

ðj0ji � iN j1jiÞ=
ffiffiffi
2

p
[26].

Here we apply this proposal to our experiment. We find
that, though the qubit-resonator couplings are not uniform
and unwanted cross talk couplings exist in our circuit, we
can optimize each qubit’s detuning and the overall inter-
action time to achieve GHZ states with high fidelities as
guided by the numerical simulation. The pulse sequence is
shown in Fig. 3(a). We start with initializing the chosen N
qubits in ðj0i − ij1iÞ= ffiffiffi

2
p

by applying π=2 pulses at their
respective idle frequencies, following which we bias
them to nearby Δ=2π ≈ −140 MHz for an optimized
duration of approximately twice t ffiffiffiffiffiffiffiffiffi

iSWAP
p . The phase

of each qubit’s XY drive is calibrated according to the
rotating frame with respect to Δ, ensuring that all N qubits
are in the same initial state just before their SE interactions
are switched on [16,31]. After the optimized interaction
time, these qubits approximately evolve to the GHZ state
jΨ1i¼ ðjþ1;þ2;…;þNiþeiφj−1;−2;…;−NiÞ=

ffiffiffi
2

p
, where

φ may not be equal to π=2 as in the ideal case with uniform
qubit-qubit interactions; however, this phase variation does
not affect entanglement. Later on, we bias these N qubits
back to their idle frequencies; during the process, a
dynamical phase ϕj is accumulated between j0i and j1i
of Qj. Redefining j�ji ¼ ðj0ji � iNeiϕj j1jiÞ=

ffiffiffi
2

p
ensures

that the above-mentioned formulation of jΨ1i remains
invariant, which is equivalent to a z-axis rotation of the
x-y-z reference frame, i.e., x → x0 and y → y0. Tracking the
new axes is important for characterization of the produced
GHZ states.
Tomography of the produced states requires individually

measuring the qubits in bases formed by the eigenvectors of
the Pauli operators X, Y, and Z, respectively. Measurement
in the Z basis can be directly performed. For each state
preparation and measurement event, we record the 0 or 1
outcomes of each qubit and do so for N qubits simulta-
neously; repeating the state preparation and measurement
event thousands of times, we count 2N probabilities of
fP00…0; P00…1;…; P11…1g. Measurement in the X (Y)
basis is achieved by inserting a Pauli Y (X) rotation on
each qubit before readout. All directly measured qubit
occupation probabilities are corrected for elimination of the
measurement errors [30]. The 3N tomographic operations
and the 2N probabilities for each operation allow us to
reconstruct all elements of the density matrix ρ (see
Supplemental Material [31] for various aspects of our
tomography technique including measurement stability,
reliability with a reduced sampling size, and preprocessing
for minimizing the computational cost). The resulting
10-qubit GHZ density matrix is partially illustrated in
Fig. 3(b), with a fidelity of 0.668� 0.025, and the N-
qubit GHZ fidelity as a function of N is plotted in Fig. 3(b),
inset. The achieved fidelities are well above the threshold
for genuine multipartite entanglement [27].
The full tomography technique, though general and

accurate, is costly when N is large. The produced GHZ

(a)

(b)

FIG. 2. (a) Pulse sequence with detunings listed in Fig. 1(b).
Tomography is performed to reconstruct the six-qubit density
matrix, over which we perform partial trace to obtain the reduced
density matrix of each EPR pair. Each π-rotation (tomographic
π=2-rotation) pulse has a length of 60 (30) ns and a full width half
maximum of 30 (15) ns, designed following the derivative
reduction by adiabatic gate (DRAG) control theory [49]. (b) Real
parts of the reconstructed two-qubit density matrices for the three
EPR pairs of Q2-Q9, Q3-Q8, and Q5-Q6, with fidelities (con-
currences) of 0.932� 0.13 (0.869� 0.026), 0.957� 0.010
(0.915� 0.019), and 0.951� 0.010 (0.909� 0.019), respec-
tively. For clarity of display, single-qubit z-axis rotations are
numerically applied to Q2 (93°), Q3 (165°), and Q5 (42°) to
cancel the arguments of the major off-diagonal elements.
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states can also be characterized by a shortcut, since the ideal
GHZ density matrix consists of only four nonzero elements
in a suitably chosen basis. To do so, we apply to each qubit
a π=2 rotation around its y0 or x0 axis, transforming jΨ1i to
jΨ2i ¼ ðj00…0i þ eiφj11…1iÞ= ffiffiffi

2
p

(here and below,
we omit the subscripts of the qubit index for clarity).
The diagonal elements ρ00…0 and ρ11…1 can be directly
measured; the off-diagonal elements ρ00…0;11…1 and
ρ11…1;00…0 can be obtained by measuring the system
parity, defined as the expectation value of the operator
PðγÞ¼⊗N

j¼1 ðcosγY 0
jþsinγX0

jÞ, which is given by hPðγÞi ¼
2jρ00…0;11…1j cosðNγ þ φÞ for jΨ2i [9]. Polarization along
the axis defined by cos γY 0 þ sin γX0 can be measured after
applying to each qubit a rotation by an angle γ around the z0
axis [16]. The oscillation patterns of the measured parity as

functions of γ confirm the existence of coherence between
the states j00…0i and j11…1i [Fig. 3(c)]. The fidelity of
the N-qubit GHZ state jΨ2i can be estimated using the four
nonzero elements, which is 0.660� 0.020 forN ¼ 10. This
value agrees with that of the GHZ state jΨ1i obtained by
full state tomography.
A key advantage of the present protocol for generating

GHZ states is its high scalability as demonstrated in
Fig. 3(b). If limited by decoherence, the achieved fidelity
based on the sequential-CNOT approach, FN;C, scales

approximately as FN;C ∝ FN2=2
2;C at large N [see the red

dashed line in Fig. 3(b), inset], while that based on our
protocol scales as FN ∝ FN

2 (blue dashed line). Here
F2;C (F2) is quoted as the decoherence-limited fidelity of
the CNOT gate (present protocol) involving two qubits. The

(a)

(b)

(c)

FIG. 3. (a) Pulse sequence for the 10-qubit GHZ state with Δ=2π ≈ −140 MHz. (b) Partial elements of the measured 10-qubit
density matrix, with a fidelity of trðρidealρexpÞ ¼ 0.668� 0.025 relative to the ideal GHZ state jΨ1i ¼ ðjþ1;þ2;…;þNiþ
eiφj−1;−2;…;−NiÞ=

ffiffiffi
2

p
. For clarity of display, here a single-qubit rotation around the x0 axis by an angle of φ is numerically

applied to one of the qubits, which cancels the arguments of the dominant off-diagonal elements. Center inset: Cartoon illustration
showing ten entangled qubits. Top-left inset: Experimentally measured GHZ fidelity (blue dots) and the data adapted from Ref. [10]
(red dots) as functions of the qubit number N. Error bars are 1σ. Blue and red dashed lines are guides of different error trends. (c) Parity
oscillations observed for the N-qubit GHZ states jΨ2i defined as superpositions of the basis states j01; 02;…; 0Ni and j11; 12;…; 1Ni
with N ¼ 3–10. The fringe amplitudes are 0.964� 0.016, 0.956� 0.018, 0.935� 0.020, 0.926� 0.026, 0.796� 0.023,
0.782� 0.025, 0.729� 0.028, and 0.660� 0.032 from top to bottom. For N ¼ 10, the state preparation and measurement sequence
is repeated 81 000 times for a sample size large enough to count the 2N probabilities.
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falling of the experimental data (blue dots) below the
scaling line when N ≥ 6 is due to the inhomogeneity of gj
and the cross talk couplings. One can see that, even with the
two-qubit gate fidelity above 0.99 as demonstrated in two
recent experiments [10,51], the coherence performance of
the devices does not allow the generation of a 10-qubit
GHZ state with fidelity above the genuine entanglement
threshold using the sequential-CNOT approach.
In summary, our experiment demonstrates the viability

of the multiqubit-resonator-bus architecture with essential
functions including high-efficiency entanglement genera-
tion and parallel logic operations. We deterministically
generate the 10-qubit GHZ state, the largest multiqubit
entanglement ever created in solid-state systems, which is
verified by quantum state tomography for the first time as
well. In addition, our approach allows instant in situ
rewiring of the qubits, featuring all-to-all connectivity that
is critical in a recent proposal [52]. These unique features
show the great potential of the demonstrated approach for
scalable quantum information processing.
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