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SUMMARY

Induction of broadly neutralizing antibodies
(bnAbs) that target HIV-1 envelope (Env) is a goal
of HIV-1 vaccine development. A bnAb target
is the Env third variable loop (V3)-glycan site. To
determine whether immunization could induce
antibodies to the V3-glycan bnAb binding site, we
repetitively immunized macaques over a 4-year
period with an Env expressing V3-high mannose
glycans. Env immunizations elicited plasma anti-
bodies that neutralized HIV-1 expressing only
high-mannose glycans—a characteristic shared by
early bnAb B cell lineage members. A rhesus re-
combinant monoclonal antibody from a vaccinated
macaque bound to the V3-glycan site at the same
amino acids as broadly neutralizing antibodies.
A structure of the antibody bound to glycan re-
vealed that the three variable heavy-chain comple-
mentarity-determining regions formed a cavity into
which glycan could insert and neutralized multiple
HIV-1 isolates with high-mannose glycans. Thus,
HIV-1 Env vaccination induced mannose-depen-
Cell Rep
This is an open access article under the CC BY-N
dent antibodies with characteristics of V3-glycan
bnAb precursors.
INTRODUCTION

Development of an effectiveHIV-1 vaccine is amajor goal ofHIV-1

prevention strategies (Fauci andMarston, 2014).One objective for

anHIV-1vaccine is toelicit broadly reactiveneutralizingantibodies

(bnAbs; Burton et al., 2012; Mascola and Haynes, 2013; Mascola

andMontefiori, 2010). Broad andpotent neutralization ofHIV-1 re-

sults from antibodies binding to virion-associated trimeric enve-

lope (Env) glycoproteins (Corti and Lanzavecchia, 2013; Parren

and Burton, 2001). HIV-1 Env is densely coated with host glycans

that provide both a shield against and a target for immune recog-

nition (Doores, 2015; Leonard et al., 1990; Scanlan et al., 2007a;

Wei et al., 2003). Most gp120 bnAb epitopes include contacts

with glycans (Blattner et al., 2014; Doria-Rose et al., 2014; Garces

et al., 2014; Kong et al., 2013;McLellan et al., 2011; Pancera et al.,

2014; Pejchal et al., 2011; Zhou et al., 2013), yet Env glycans in the

setting of vaccination are poorly immunogenic (Astronomo et al.,

2008, 2010; Doores et al., 2010b; Wang et al., 2008). Recent vac-

cine studies inmonkeys, rabbits, and transgenicmicehave shown

that the presence of glycans alters viral neutralization sensitivity

from potently neutralized to resistant (Bradley et al., 2016; Crooks
orts 18, 2175–2188, February 28, 2017 ª 2017 The Author(s). 2175
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:kevin.saunders@dm.duke.edu
mailto:barton.haynes@duke.edu
http://dx.doi.org/10.1016/j.celrep.2017.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.02.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B C

D F

E

G
H

(legend on next page)

2176 Cell Reports 18, 2175–2188, February 28, 2017



et al., 2015; McCoy et al., 2016; Sanders et al., 2015; Tian et al.,

2016). Thus, recognition of Env glycans is a major hurdle to

HIV-1 vaccine development.

One conservedbroadly neutralizing epitopeonEnv is a patch of

high-mannose glycans surrounding the V3 loop (Kong et al.,

2013). Human monoclonal bnAbs against the V3-glycan Env site

have been isolated from HIV-1-infected individuals, including

PGT121, PGT135, and PGT128, which bind N-linked glycans

near the V3 loop as well as make contacts with adjacent amino

acids (Walker et al., 2011). 2G12 is a neutralizing antibody isolated

from natural infection that binds to Env by contacting only the gly-

cans proximal to the V3 loop (Murin et al., 2014). Glycan-targeted

antibodies are of particular interest because they are among the

most potent bnAbs (Walker et al., 2011) and protect against

chimeric simian-human immunodeficiency virus (SHIV) infection

in macaques at low plasma concentrations (Moldt et al., 2012).

Here we vaccinated rhesus macaques with a group M

consensus Env (M.CON-S gp140CFI) bearing Man9GlcNAc2
high-mannose glycans on the asparagine at 301 (N301) and

the asparagine at 332 (N332) within the V3-glycan site (Go

et al., 2008). We show that Env vaccination induced antibodies

that blocked the binding of the HIV-1 Env glycan-targeting

bnAb 2G12 in ten of ten vaccinated macaques and elicited

plasma neutralizing antibodies for viruses with high-density

Man9GlcNAc2 glycans in six of ten macaques. We report the

isolation of a vaccine-induced recombinant Man9GlcNAc2-

dependent neutralizing antibody B cell clonal lineage (DH501)

that recognized the V3-glycan bnAb epitope and show that

both DH501 and V3-glycan bnAb lineage precursors demon-

strate Man9GlcNAc2-dependent neutralization.

RESULTS

Induction of Glycan bnAb-Blocking Antibodies
V3-glycan bnAbs develop in HIV-1-infected individuals only after

years of infection (Doria-Rose et al., 2009; Gray et al., 2011;

MacLeodet al., 2016;Sather et al., 2009;Simeket al., 2009;Simo-

nich et al., 2016; unpublished data). We asked whether vaccina-

tion over a long duration of time with an Env immunogen with

N301 and N332 high-mannose glycans (Figures S1A and S1B;

Go et al., 2008; Liao et al., 2013b) could elicit glycan-dependent
Figure 1. Repetitive Vaccination Elicits Antibodies Targeting the V3-G

(A) CON-S repetitive vaccination regimen. The immunization modality is shown b

(B) Plasma blocking of 2G12 binding to Env. Left: the percent blocking of 2G12 bin

2) or at the end of the vaccination regimen (week 204; Wilcoxon signed-rank test b

antibodies in the plasma of vaccinated macaques. The mean ± SEM of triplicate m

points.

(C) Fluorescence-activated cell sorting (FACS) plots of sorted single B cells fromw

macaque M636 that bind ConC gp120 but not N332A glycan knockout mutant g

(D) Surface plasmon resonance binding to the study immunogen, CON-S gp140

(E) Diagram of the Man9GlcNAc2 glycosylated peptide that recapitulates the PGT

(red N) and Asn332 (red N). The disulfide bond is shown with a straight horizonta

(F) Direct ELISA binding to the V3 base peptide with Man9GlcNAc2 glycans at Asn

V3), or at neither site (blue, aglycone) by vaccine-induced macaque antibody DH

(G) Biolayer interferometry binding of DH501 and its inferred UCA to the peptide

(H) Glycan luminex detection of antibody binding to 16 mM free glycan. The glyc

positive and negative controls, respectively. The complex glycan is Gal2Man3Glc

See also Figures S1 and S2.
antibodies. CON-S gp140CFI was chosen for the vaccination

because it is glycosylated at the V3 glycan sites with higher

percentages of high-mannose glycans than other 293 cell line-

derived recombinant Envs such as JR-FL gp140CF (Go et al.,

2008).Wevaccinated ten rhesusmacaqueswithplasmidDNAen-

codingM.CON-S gp145, boostedwith a recombinant adenovirus

serotype 5 viral vector encoding M.CON-S gp145, and further

boosted with gp140CFI protein 15 times over 204 weeks (Fig-

ure 1A; Figure S1C). We examined plasma antibody responses

for their ability to block HIV-1 Env binding of bnAbs 2G12,

PGT125, and PGT128, which are dependent on the N-linked

glycan at N332 for binding (Figure 1B; Figure S1D). Antibodies

that blocked the binding of 2G12 developed in ten of ten animals

byweek204after 15M.CON-Sgp140CFIglycoprotein immuniza-

tions (Figure 1B). PGT125 and PGT128 bnAbs were similarly

blocked by immune plasma (Figure S1D). However, both

PGT125 and PGT128 were blocked by the V3 loop linear peptide

monoclonal antibodies (mAbs) 19B and 447-52D (Figure S1E),

and, thus, the PGT125 and PGT128 plasma blocking assays

were not specific for V3-glycan epitope antibodies. Linear V3

loop antibodies were elicited in the macaques (Figure S1F);

thus, the PGT128 blocking could be convoluted by linear V3

loop antibodies. In contrast, the glycan-binding antibody

2G12 was not blocked by V3 loop mAbs (Figure S1E). Therefore,

plasma blocking of 2G12 binding to Env was a more precise

indicator of glycan-targeted plasma antibody responses than

PGT128 or PGT125. Next, we assessed plasma 2G12 blocking

over the course of immunization in M.CON-S CFI-vaccinated

macaques. DNA priming and rAd5 boost resulted in minimal

2G12 blocking (Figure 1B; Table S1). However, gp140CFI protein

immunizations every 8 to 16 weeks increased 2G12-blocking

activity, and repetitive gp140CFI boosting every 4 weeks further

boosted 2G12 plasma blocking activity (mean peak 2G12

blocking ± SEM = 45% ± 5%, n = 10). Thus, plasma blocking of

2G12 suggested that Env-induced antibodies targeting the

Man9GlcNAc2-dependentV3-glycanbnAbepitopewere induced.

Isolation of a Rhesus Glycan-Reactive Antibody that
Bound the V3-Glycan bnAb Epitope
We next isolated mAbs using antigen-specific memory

B cell sorting with fluorophore-labeled consensus Env gp120
lycan bnAb Epitope

elow the line, and the week of vaccination is noted above the line.

ding to B.JR-FL gp140C bymacaque plasma after one DNA vaccination (week

etween weeks 2 and 204, p < 0.05, n = 10). Right: the kinetics of 2G12-blocking

easurements is shown (n = 10). Arrows on the x axis indicate vaccination time

eek 192 peripheral bloodmononuclear cells (PBMCs) from CON-S-immunized

p120.

CFI, by DH501 and the DH501 UCA.

128 epitope. N-linked glycans (green and blue) are shown at positions Asn301

l line.

301 and Asn332 (black, Man9 N332 N301 V3), at Asn301 only (red, Man9 N301

501.

s shown in (E).

an-dependent bnAb PGT128 and peptide-binding antibody 19B were used as

NAc4.
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(Figure 1C). Antibody DH501 was isolated that used the rhesus

IGHV2 family and had a heavy-chain third complementarity-

determining region (CDR-H3) length of 17 amino acids (Table

S2). DH501 bound the vaccine immunogen CON-S gp140CFI

(Figure 1D) as well as Envs from multiple clades (Figure S2). So-

matic mutations were required for binding to CON-S gp140CFI

because the inferred unmutated common ancestor (UCA) of

DH501 did not bind CON-S gp140CFI (Figure 1D; Figure S2).

DH501 binding to M.CON-S gp140CFI was blocked 70% by

2G12 (concentration that inhibits 50% of replication [IC50] =

20 mg/mL; Figure S2B), whereas the peptide-binding V3 anti-

bodies 447-52D and 19B did not block DH501. We determined

the ability of DH501 to bind a synthetic glycopeptide with

Man9GlcNAc2 glycans at N301 and N332 (Man9-V3) that mimics

a portion of the gp120 V3-glycan bnAb site (Figure 1E). Both

PGT128 andDH501 bound the gp120 V3-glycanminimal antigen

(Figures 1F and 1G, top; unpublished data). Like PGT128, DH501

did not bind the aglycone peptide lacking N301 and N332 gly-

cans (Figures 1F and 1G, top). Removal of the glycan at N332

on the glycopeptide and on Env gp120 reduced concentration

at half-maximal response (EC50) binding titers 2-fold and 4-fold

for PGT128 and 2G12, respectively (Figure 1F), but did not affect

DH501 (Figures 1F and 1G, top). Thus, DH501 required the

Man9GlcNAc2 glycan at N301 for binding to the Man9-V3 glyco-

peptide. A key question is what Env form bound the DH501 UCA.

The DH501 UCA bound both Man9-V3 glycopeptides and agly-

cone peptide (Figure 1G, bottom), with strongest binding to the

aglycone. This binding pattern was identical to that of the UCA

of a V3-glycan bnAb B cell lineage, DH270 (unpublished data).

Thus, the DH501 lineage may have been initiated by a denatured

Env form or a peptide fragment (Hangartner et al., 2006; Kuraoka

et al., 2016).

Similar to PGT128,DH501boundstrongly to freeMan9GlcNAc2
(Figure 1H; Figure S2C; Pejchal et al., 2011). Additionally, DH501

bound weakly to Man7GlcNAc2 D1, Man8GlcNAc2 D1D3, and

Man8GlcNAc2 D1D2 (Figure 1H). Conversely, both DH501 and

PGT128 did not bind directly to Gal2Man3GlcNAc4 complex

glycans (Figure 1H). Therefore, terminal mannose residues on

all three glycan arms conferred optimal glycan binding by

DH501 and PGT128. In contrast to the mutated DH501 antibody,

the DH501 UCA did not bind free glycans (Figure 1H; Fig-

ure S2C). Expression of Env in cells capable of only high-

mannose glycosylation (GnTI�/� cells; Crispin et al., 2006; Eggink

et al., 2010; Reeves et al., 2002) improved DH501, PGT128, and

2G12 binding but had no effect on control V3 loop peptide

mAb 19B binding (Figure S2D). To express Env with high density

of Man9GlcNAc2 glycans, HIV-1 B.63521 gp140CFI was ex-

pressed in the presence of kifunensine (KIF) a glycosylation

pathway inhibitor that results in Man9GlcNAc2 glycosylation

(Doores and Burton, 2010; Scanlan et al., 2007b). As a positive

control, the binding titer (EC50) of PGT128 to KIF-treated

B.63521 Env (0.002 mg/mL) was improved 40-fold compared

with PGT128 binding to untreated Env (Figure S2E; Pejchal

et al., 2011; Walker et al., 2011). Similar to PGT128, the EC50

of DH501 for KIF-63521 Env improved 24-fold compared

with DH501 binding to untreated Env (Figure S2E). Thus, DH501

binding to Env was augmented when the glycans on Env were

restricted to Man9GlcNAc2.
2178 Cell Reports 18, 2175–2188, February 28, 2017
DH501 Was Elicited Late during the Vaccination
Regimen
We performed competition ELISAs to determine when, during

vaccination of macaque M636, antibodies targeting the DH501

epitope were elicited. M636 plasma antibody blocking of

DH501 binding to CON-S gp140CFI increased from weeks 156

to 204 of vaccination.

To determine the time of appearance of DH501 clonal lineage

B cells, we performed next-generation sequencing (NGS) of the

heavy-chain variable region (heavy chain variable region [VH])

at the beginning of the protein boosts (week 68), after 4 protein

boosts (week 117), and after 12 protein boosts (week 188; Figures

2A and 2B). After a single protein boost, there were no DH501 VH

sequences detected (Figure 2B), consistent with the lack ofM636

plasma blocking at the same time point (Figures 2A and 2B).

Seven DH501 VH sequences were detected at week 117 after 4

protein boosts. In contrast, 632 sequences were isolated from

duplicate sequencing experiments performed on blood B cells

after 12 protein boosts at vaccination week 188 (Figure 2B).

This late time point corresponded to the time of macaque M636

plasma peak blocking of mAb DH501 binding to Env (Figure 2A).

We clustered the DH501-related sequences to account for the

effect of PCR amplification error in NGS sample preparation and

examined the genealogy of the resulting NGS sequences. The

sequences segregated into two large branches with DH501 ap-

pearing in the branch that was the most genetically distant from

the UCA (Figure 2C). Three sequences from week 117 and one

sequence from week 188 were very similar to the inferred germ-

line antibody of DH501, suggesting that the lineage began at

approximately week 117. BnAbs can be limited by immunologic

tolerance (Haynes and Verkoczy, 2014); therefore, we deter-

mined whether DH501 was autoreactive. DH501 did not bind

to host proteins or DNA antigens, nor did it bind to HIV-unin-

fected HEp-2 cells (Figure S3).

Structural Analysis of Glycan mAb DH501
Wedetermined the structures of the Fab fragment of DH501 in its

unliganded state to 2.8-Å resolution (PDB: 5IIE) and in complex

with a chemically synthesized, biotinylated Man9GlcNAc2 mole-

cule to 2.0 Å (PDB: 5T4Z; Figure 3A; Table S3). Themannose res-

idues bound in a pronounced pocket on the paratope of DH501

(Figure 3B). This pocket was formed and bounded by the three

variable heavy-chain CDRs. Within the VH pocket, DH501 pri-

marily contacted themannose residues with the side-chain func-

tional groups of Asp100E in CDR-H3 and Tyr52 in CDR-H2. Addi-

tional stabilization of the complex was established with contacts

between the mannose residues and the polypeptide backbone

of residues Gly100A and Tyr100C in CDR-H3 as well as through

water H bonds to the Thr100D side chain and the carbonyl of

Gly100A in CDR-H3. Interestingly, the structure indicated that

the most proximal mannose residue had to be a terminal one

on the Man9GlcNAc2 molecule because the electron density

was well defined, and the structure showed no room for another

mannose residue. The electron density for the most distal

mannose residue was not as well defined but best corresponded

with an alpha1-3 linkage, indicating that the mannose residues

were from the D2 arm of the synthesized Man9GlcNAc2
compound.
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Figure 2. Genetic and Plasma Analyses Determine that DH501 Was Elicited after Multiple Protein Boosts

(A) Autologous plasma blocking of DH501 binding to the CON-S immunogen. The plasma from sequential time points frommacaqueM636 fromwhom the DH501

glycan-reactive antibody was isolated was used to block DH501 binding to Env. Time points where next-generation sequencing was performed in (B) are

indicated by black arrows. The red arrow indicates where DH501 was isolated by single B cell sorting and RT-PCR. Values greater than 20% are considered

positive. The mean ± SEM of triplicate measurements is shown (n = 10). Arrows on the x axis indicate vaccination time points.

(B) Comparison of the number of DH501-related sequences after DNA prime, rAd5 boost, and one protein boost, four protein boosts, or 12 protein boosts in

macaque M636, from which DH501 was cloned. Sequencing was performed twice at each time point, and DH501 clonal relatedness was determined using

Clonanalyst (second column). Sequences were clustered to account for sequencing errors. The number of sequence clusters represents the estimated minimum

number of DH501 members at each time point (last column).

(C) The maximum likelihood phylogenetic tree of the 73 total collapsed sequences (72 from NGS and DH501) that are clonally related to DH501. The time point at

which the sequence was observed is indicated by the color code at the bottom.

See also Figure S3.
The DH501 Fab structure was compared with known liganded

structures of gp120 V3-glycan antibodies: PGT122 (PDB: 4NCO;

Julien et al., 2013), PGT124 (PDB: 4R2G; Garces et al., 2014),

PGT128 (PDB: 3TYG; Pejchal et al., 2011), and PGT135 (PDB:

4JM2; Kong et al., 2013). In direct contrast to PGT128, which

had long CDR-H2 and -H3 in extended conformations, DH501

had shorter CDRs (Figure 3C). More generally, these shorter

CDRs distinguished DH501 from the broadly neutralizing anti-

bodies PGT128 and PGT135 because they all had heavy-chain

CDR insertions (Walker et al., 2011). Structurally, the long

CDRs with extended conformations were able to penetrate the

glycan shield to contact the gp120 polypeptide (Figures 3D

and 3E; Doores et al., 2015; Kong et al., 2013; Pejchal et al.,

2011; Walker et al., 2011). When DH501 was superimposed

on the structure of PGT122 binding to gp120 or the BG505

SOSIP.664 trimer, it was evident that the 26-amino acid CDR-

H3 of PGT122 made contacts with the Env trimer that DH501

would be less capable of making because of its shorter 17 amino

acid CDR-H3 (Figure 3E). However, despite these differences

in CDR lengths and conformations, the DH501 Fab bound the

near-native, closed BG505 SOSIP.v4.1 trimer (Kd = 0.31 mM; Fig-

ure 3F; de Taeye et al., 2015).

When the electrostatic surface potentials of the paratopes of

DH501 and other V3 glycan antibody structures were compared,
DH501 exhibited a large, negatively charged region overlapping

with the glycan-binding pocket (Figure 4). The strong negative

charge in the vicinity of the pocket was due to an Asp54-

Asp55 doublet in CDR-H2 as well as nearby Glu57. Within the

pocket itself, the negative charge was driven by the side chains

of Tyr52 and Asp100E (Figure S4). This charged pocket provided

a favorable environment for interacting with mannose residues in

contrast to the other V3 glycan antibodies that showed broader

surface features and, instead, used their long CDRs to establish

more interfaces with the glycoprotein.

DH501 Neutralization of HIV-1
We produced B.JR-FL, A.BG505, and AE.CNE8 pseudoviruses

in KIF to generate pseudoviruses enriched for a high density

of Man9GlcNAc2 glycosylation (KIF-JRFL, KIF-BG505, and KIF-

CNE8). We found that plasma gamma immunoglobulin (IgG)

from six of ten macaques neutralized at least one KIF-treated

tier 2 virus, whereas none were able to neutralize the corre-

sponding untreated tier 2 pseudoviruses (Figure S5A). However,

the plasma did have relatively high titers of neutralizing

antibodies against untreated, easy-to-neutralize tier 1 pseudovi-

ruses (Figure S5B). We produced seven additional pseudovi-

ruses in KIF-treated cells and tested neutralization by DH501

and its inferred UCA. The DH501 mAb neutralized ten of
Cell Reports 18, 2175–2188, February 28, 2017 2179



Figure 3. The Molecular Basis for High-Mannose and Env Recognition by DH501

(A) The structure of DH501 Fv (blue) with the paratope oriented upward. CDR-H3 is highlighted in cyan, CDR-L1 in magenta, and bound constituents of the

Man9GlcNAc2 compound in yellow.

(B) Specific interactions between DH501 (magenta carbons behind a surface rendering) and bound mannose residues (yellow carbons). H-bonding interactions

are shown with dashed lines, and interacting residues on the DH501 heavy chain are labeled.

(C) DH501 Fv (color scheme as in A) superimposed with PGT130 Fv in orange with its CDR-H3 in red and CDR-L1 in green.

(D) DH501 Fv superimposed with the Fvs of V3-glycan broadly neutralizing antibodies in complex with gp120. Gp120 and glycan moieties are shown in gray and

yellow, respectively. DH501 is colored as in (A), and compared antibodies are shown in orange. Long CDRs with extended conformations in V3 glycan bnAbs are

highlighted in red. N-linked Asn residues are numbered for identification of glycans.

(legend continued on next page)

2180 Cell Reports 18, 2175–2188, February 28, 2017



ten KIF-treated pseudoviruses (geometric mean titer IC50 =

0.34 mg/mL) but none of the untreated pseudoviruses (Figure 5A).

Neutralization activity was acquired with somatic mutation

because the DH501 UCA did not neutralize any of the KIF-

treated or untreated viruses (Figure 5A). As controls, KIF-treated

pseudoviruses were more sensitive to PGT128 neutralization

and more resistant to PG9 (V1V2 bnAb) neutralization than un-

treated pseudoviruses (Figure 5A; Walker et al., 2009, 2011).

Importantly, difficult-to-neutralize (tier 2) viruses remained tier

2 in neutralization sensitivity after KIF treatment (Table S4). Inter-

estingly, KIF-B.MN was the weakest neutralized pseudovirus

and lacked N301, whereas all remaining viruses in the panel

had an asparagine at position 301 (Figure S5C).

DH501 Targets V3 Glycans and the Base of the V3 Loop
for HIV Neutralization
To determine the glycans required for DH501 neutralization, we

eliminated the N-linked glycosylation sites at Env amino acids

295, 301, 332, 386, or 392 in B.JR-FL by mutating asparagine

to alanine at each of these positions. DH501 neutralized all

KIF-JR-FL mutant viruses equivalently, except the N301A

mutant, for which neutralization was abrogated (Figure 5B).

The N301 glycan was also necessary for neutralization of KIF-

JR-FL by PGT128 (Figure 5B), consistent with its interaction

with this glycan in the crystal structure of PGT128 in complex

with the B.JR-FL outer domain (Pejchal et al., 2011). However,

DH501 neutralized KIF-JR-FL N332A, whereas PGT128 showed

a decrease in potency for neutralization of KIF-JR-FL N332A

(Figure 5B). Thus, like Man9-V3 glycopeptide binding (Figures

1F and 1G), DH501 relied only on N301 for neutralization of

KIF-JR-FL.

Most of the V3-glycan bnAbs contact the highly conserved

amino acids Gly324, Asp325, Ile326, and Arg327 (GDIR motif)

at the base of the V3 loop (Garces et al., 2014; Pejchal et al.,

2011; Sok et al., 2016). Mutating Gly324 (ADIR) ablated neutral-

ization of KIF-JRFL by both DH501 and PGT128 (Figure 5C).

Asp325 and Arg327 were required by PGT128 for potent neutral-

ization of KIF-JRFL when mutated singularly (GAIR) or in tandem

(GAIA). These two residues were also required by DH501 for

neutralization when mutated in tandem (Figure 5C). Thus, like

known V3-glycan bnAbs, DH501 neutralization of KIF-treated vi-

ruses was not only N301 glycan-dependent but also relied on

amino acid residues within the GDIR motif of the base of the

V3 loop.

V3 Glycan bnAb Lineage Precursors Require
Man9GlcNAc2 for Heterologous Neutralization
The significance of antibodies that neutralize kifunensine-treated

viruses is a critical question. Thus, we examined the requirement

for Man9GlcNAc2 glycosylation for neutralization susceptibility

during the development of a V3-glycan bnAb lineage, DH270

(Figure 5D; unpublished data). The DH270 bnAb lineage is
(E) DH501 Fv (blue) superimposed on PGT122 Fv (orange) bound to the BG505

PGT122s CDR-H3 (red) to deeply penetrate the glycan shield (yellow).

(F) SPR binding of the DH501 Fab to a stabilized BG505 SOSIP.v4.1 trimer. Each

as indicated. The affinity measurements are displayed in the right corner of the g

See also Figure S4.
N332 and N301 glycan-dependent and requires the GDIR

motif for binding (unpublished data). The DH270 UCA did not

neutralize either untreated B.JR-FL or KIF-JR-FL (Figure 5D).

Similar to DH501, the first DH270B cell lineage intermediate anti-

body IA4 neutralized KIF-JR-FL (IC50 = 8.73 mg/mL) but not the

untreated B.JR-FL pseudovirus. The intermediate antibodies

IA2 and IA3 neutralized KIF-JR-FL 5-fold and 10-fold more

potently compared with untreated B.JR-FL, respectively. B.JR-

FL neutralization by more mutated DH270 bnAb lineage anti-

bodies was less affected by kifunensine treatment (Figure 5D).

Thus, like DH501, precursors in the V3-glycan bnAb lineage

required a high density of Man9GlcNAc2 for HIV-1 B.JR-FL

neutralization, whereas affinity-matured V3-glycan bnAbs ac-

quired the ability to neutralize B.JR-FL regardless of virus high-

mannose glycan enrichment.

DISCUSSION

Here we have demonstrated that Man9GlcNAc2-dependent Env

antibodies can be induced in the setting of vaccination with Envs

glycosylated with V3 Man9GlcNAc2 glycans. Several groups

have attempted to elicit 2G12-like antibodies using BSA conju-

gated to high-mannose (Astronomo et al., 2008), phage-bearing

high-mannose (Astronomo et al., 2010; Doores et al., 2010b), or

synthetic glycopeptides (Joyce et al., 2008). However, these

studies were unable to produce 2G12-like antibodies, perhaps

because of the domain swap within 2G12 (Calarese et al.,

2003), lack of immunogenicity of host glycans (Scanlan et al.,

2007b), or the lack of high mannose glycosylation on recombi-

nant 293 cell line-produced gp120 and cleavage-deficient non-

SOSIP gp140 immunogens (Bonomelli et al., 2011; Doores

et al., 2010a; Go et al., 2008). In a recent study, one of 15 rabbits

immunized with an Env trimer had a reduction in neutralization

potency when the N332 glycan site was deleted on HIV-1 Env

(Sanders et al., 2015). The rarity of V3-glycan-dependent anti-

bodies elicited by vaccination has raised the question of whether

Env high-mannose glycans are immunogenic (Scanlan et al.,

2007a). Mannose is a component of the cell wall of fungal

pathogens to which the human immune system has evolved

to make antibodies (Deshaw and Pirofski, 1995); however, the

recognition of the precise arrangement of mannose and the ac-

commodation or avoidance of complex glycans on Env may be

an obstacle for eliciting HIV-1 Env glycan antibodies (Garces

et al., 2015). Anti-fungal antibodies have been induced in rabbits

that neutralize HIV-1 produced in kifunensine (Agrawal-Gamse

et al., 2011; Dunlop et al., 2010; Zhang et al., 2015), but whether

these antibodies target bnAb epitopes such as the N332 glycan

or require the GDIR motif is unknown. Furthermore, our study

shows that the significance of kifunensine-dependent neutraliza-

tion is that when V3 glycan bnAb lineages are initiated in HIV-1

infection, bnAb precursors require Man9GlcNAc2 Env glycosyla-

tion for heterologous neutralization and evolve with affinity
.6R.SOSIP.664 trimer (gray). DH501’s CDR-H3 (cyan) lacks the length of the

trace represents a different concentration of Fab ranging from 50 to 200 mg/mL

raph.
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Figure 4. DH501 Accommodates High-Mannose Glycan by Forming a Negatively Charged Glycan-Binding Pocket

Shown are paratope surfaces rendered by electrostatic surface potential along with gp120 and labeled glycans in green and yellow, respectively. The elec-

trostatic potential surface renderings were calculated using Chemistry at HarvardMacromolecular Mechanics (CHARMM; Im et al., 1998; Jo et al., 2008a, 2008b)

and expressed in units of kcal/(mol$e). The paratope is shown from a top view, with the heavy chains oriented at the top and light chains at the bottom. CDRs with

extended conformations protruding from the paratope surface are labeled in italics. V3-glycan bnAbs were characterized by one or more long CDRs and an

amphipathic charge distribution. DH501 is distinguished by a pronounced pocket on its paratope bordered and formed almost entirely by the three heavy-chain

CDRs. The mannose residues of Man9GlcNAc2 that bind within the pocket are shown in yellow.
maturation to be less dependent on a high density of

Man9GlcNAc2. Structural studies of the PGT121 family have

shown that, as antibodies evolve, they acquire binding mecha-

nisms to avoid or accommodate interfering glycans (Garces

et al., 2015). Although the ability to neutralize KIF-treated

HIV is a trait of early V3-glycan bnAb precursors, it should be

emphasized that not all antibodies like DH501 that neutralize

KIF-treated HIV may have the capacity to affinity-mature to full

bnAb breadth. Thus, the only way to definitively know whether

DH501 is on the path to become an bnAb is to isolate a

DH501-like, affinity-matured bnAb, and work is underway to

seek such antibodies.

The mode of glycan recognition by DH501 is distinct from

bnAbs like PGT121 or PGT128, which use long loops in extended
2182 Cell Reports 18, 2175–2188, February 28, 2017
conformations to contact glycans (Figure 3). The lack of these

long, extended loops and, instead, the presence of a glycan-

binding pocket is compatible with a scenario in which the glycan

inserts into the cavity, allowing DH501 to move proximal to the

peptide backbone and, thereby, contact the GDIR motif.

How to increase the neutralization breadth of vaccine-induced

antibodies like DH501 is a key question. Superpositions of

DH501 with V3-glycan bnAbs demonstrated that DH501 lacked

the protruding CDR loops created by insertions (Figures 3C and

3D; Figure S4). Insertions and deletions are common in V3-

glycan bnAbs (Walker et al., 2011) but are events rarely found

in the antibody repertoire (Kepler et al., 2014) and may represent

a roadblock to bnAb induction. The removal of the insertion in the

CDR-H2 of PGT128 diminished its neutralization potency and



A

D

B

C

Figure 5. DH501 and Early V3 Glycan bnAb Lineage Antibodies Require Man9GlcNAc2 Glycosylation for Neutralization of HIV-1

(A) Neutralization titers against a cross-clade panel of tier 1 and tier 2 viruses in the TZM-bl assay. Each virus was produced untreated or treated with kifunensine.

PG9 (Man5GlcNAc2-reactive) and PGT128 (Man9GlcNAc2-reactive) were used as controls to demonstrate the modification of envelope glycosylation on virions.

Representative titers are shown from up to four independent assays.

(B) DH501 exhibits N301-dependent neutralization of kifunensine-treated B.JRFL. Shown is neutralization of kifunensine-treated B.JR-FL (KIF-JR-FL) with intact

wild-type N-linked glycosylation sites or with an alanine substitution at the indicated glycosylation site. SVA is a murine leukemia virus used as a negative control

for neutralization. Values are the geometric mean for two independent experiments.

(C) DH501 requires the GDIR motif for neutralization of kifunensine-treated B.JRFL. Shown are TZM-bl neutralization titers (IC50, micrograms per milliliter) for

DH501 and PGT128 against wild-type and GDIR alanine mutant viruses produced in kifunensine-treated cells.

(legend continued on next page)
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N332 glycan dependence (Doores et al., 2015; Pejchal et al.,

2011), supporting the notion that insertion and deletions may

be required for optimal neutralization breadth. Future studies

will aim to induce activation induced cytidine deaminase (AID)-

mediated insertions and deletions by vaccinating under condi-

tions that promote AID activity (Bowers et al., 2014). Also,

2G12 did not block 100% of DH501 binding to Env, which could

be due to DH501 requiring the N301 glycan more than the N332

glycan. The N332 glycan is one of the most abundantly targeted

sites on Env for broadly neutralizing antibodies in sera (Walker

et al., 2010). Whether N301 glycan recognition alone is sufficient

to confer broad neutralization is unknown.

To select V3-glycan antibodies that mature during vaccination

into broadly neutralizing antibodies will likely require a sequen-

tial Env vaccination regimen (Bonsignori et al., 2016; Escolano

et al., 2016; Haynes et al., 2012; Liao et al., 2013a; unpublished

data). Synthetic peptides from the base of the V3 loop that

bound to the DH501 UCA (Figure 1G) and the DH270 UCA could

prove useful as germline-targeting immunogens to initiate V3-

glycan bnAb antibodies. This peptide, although it contains a di-

sulfide bond to link the N and C terminus, providing a conforma-

tion similar to the base of the V3 loop, and binds to the UCA,

may not be optimal for induction of conformational Env anti-

bodies unless the disulfide-bonded loop is sufficient for this

purpose. The peptide does not contain the tip of the V3 loop

that is immunogenic for non-neutralizing antibodies but, instead,

includes the base of the V3 loop that contains the GDIR motif

that is bound by many V3-glycan bnAbs (Garces et al., 2014,

2015; Kong et al., 2013). Priming immunizations with the V3

base peptide may be more beneficial than priming with a

gp140 because the UCA of the V3-glycan bnAb DH270 did

not bind to the N332 and N301 glycan-deleted gp140 but did

bind to the aglycone V3 base peptide (unpublished data). This

difference in binding could be due to the V1V2 loop and its gly-

cans shielding the base of the V3 loop in the context of gp140

(Steichen et al., 2016; unpublished data). It will be of interest

to study this peptide in DH270 UCA VH and light chain

variable region (VL) bnAb knockin mice to determine the useful-

ness of the peptide as an immunogen. Subsequent boosts

could include repetitive vaccination with sequential Envs from

HIV-1-infected individuals who develop V3-glycan bnAbs that

have been expressed with only Man9GlcNAc2 because we

show here that the earliest bnAb lineage members require

Man9GlcNAc2 for recognition of the trimer (Escolano et al.,

2016; MacLeod et al., 2016; unpublished data). Additionally,

many bnAbs are limited by immunologic tolerance (Haynes

and Verkoczy, 2014); therefore, relaxing tolerance while vacci-

nating may also be necessary for bnAb induction. Relaxation

of tolerance controls coupled with the types of regimens

described above could shorten the time needed to elicit V3-

glycan antibodies compared with the study described here.
(D) Neutralization of B.JR-FL and KIF-JR-FL pseudovirus by the broadly neutrali

shown as IC50 (micrograms per milliliter). The IC50 for B.JR-FL neutralization

Neutralization titers are color coded as >50 (white), 49-1 (light yellow), 0.9–0.1 (ye

two independent experiments.

See also Figure S5.
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However, immunization occurs yearly with influenza and, thus,

may also be possible for HIV-1 vaccines. Vaccination of infants

and continued boosts throughout life may also be a plausible

method for repetitively vaccinating against HIV-1 in high-risk

populations. Nonetheless, the results presented here demon-

strate that induction of antibodies targeting the V3-glycan

bnAb epitope with an Env expressing Man9GlcNAc2 glycans at

the base of the V3 loop is possible with repetitive immunizations

and represent a first step in the induction of V3-glycan-targeted

neutralizing antibody B cell lineages in primates.

EXPERIMENTAL PROCEDURES

Experimental Design

Indian-origin rhesus macaques (n = 10) were administered CON-S gp145 or

gp140CFI as described in Figure 1A and the Supplemental Experimental Pro-

cedures. Indian-origin rhesus macaques were housed in an Association for

Assessment and Accreditation of Laboratory Animal Care (AAALAC)-ac-

credited facility, and all procedures were conducted with Institutional Animal

Care and Use Committee (IACUC) approval.

Oligomannose Bead Immunoassay

Antibody binding to free glycan was measured by a custom glycan luminex

microsphere assay as detailed in the Supplemental Experimental Procedures.

SurfacePlasmonResonanceDetection of AntibodyBinding to gp140

Binding of CON-S gp140CFI (100 mg/mL) or BG505 SOSIP.664.v4.1 gp140

(228 nM to 913 nM) was measured by surface plasmon resonance (SPR)

(BIAcoreS200, GE Healthcare) analysis following capture of each mAb on

anti-human Ig Fc immobilized or direct immobilization of Fabs on sensors as

described earlier (Alam et al., 2013).

Man9GlcNAc2-V3 Glycopeptide and Aglycone Bio-layer

Interferometry

Antibody binding to biotinylated synthetic glycopeptide was measured by bio-

layer interferometry (BLI, ForteBio Octet Red96) analysis.

Direct ELISAs

ELISA plates were coated with antigen, blocked, and incubated with serially

diluted antibodies. Biotinylated antigens were captured with streptavidin.

Bound antibody was detected with anti-human IgG (Rockland) or an anti-rhe-

sus IgG conjugated to horseradish peroxidase (HRP). HRP was detected with

tetramethylbenzidine (TMB) (KPL) and read with a SpectraMax plate reader

(Molecular Devices) and SoftMax Pro v5.3 (Molecular Devices). See also Sup-

plemental Experimental Procedures.

Plasma and Antibody Blocking of N332 Glycan-Dependent bnAb

B.JRFL gp140C-coated plates were incubated sequentially with blocking

plasma or blocking antibody, followed by addition of biotinylated antibodies

of interest. Binding in the presence of competitor was compared with binding

in the absence of the competitor antibodies to determine percent blocking.

See also Supplemental Experimental Procedures.

Epitope-Specific Single B Cell Sorting

B cell sorting was performed as described previously (Wiehe et al., 2014) with

fluorophore-labeled ConC gp120 and ConC N332A gp120 as stated in the

Supplemental Experimental Procedures.
zing N332 glycan-dependent DH270 lineage antibodies. Neutralization titer is

is shown in the first column, followed by the KIF-JR-FL neutralization titer.

llow), 0.09–0.023 (orange), and <0.023 (red). Titers are the geometric mean of



Rhesus Immunoglobulin RT-PCR

Immunoglobulin genes were amplified as described previously (Liao et al.,

2009; Wiehe et al., 2014). Contigs of the PCR amplicon sequence were

made, and genes were inferred with the human library in Somatic Diversifica-

tion Analysis software (SoDA) and the rhesus library in Clonanalyst (Volpe et al.,

2006; Wiehe et al., 2014). Unmutated common ancestor antibodies were in-

ferred using the rhesus library in Clonanalyst. Antibodies were expressed as

described in Zhang et al., 2016.

Next-Generation Sequencing of Antibody Genes

Illumina MiSeq sequencing of antibody heavy-chain variable, diversity, joining

(VDJ) sequences was performed on peripheral B cells as described previously

(Zhang et al., 2016). For each time point, sequencing was performed twice on

independent cDNA samples to confirm the absence or presence of antibody

sequences of interest. From single template NGS experiments, we have

observed that the number of errors introduced in PCR amplification in our

NGS sample preparation rarely exceeds four base pairs (<1%). Thus, two se-

quences that each differ by four base pairs (eight total base pair differences)

cannot be reliably determined to derive from two unique B cells. To conserva-

tively account for this, we clustered together sequences with eight or fewer

base pair differences. V, D, and J gene segment inference, clonal relatedness

testing, and reconstruction of clonal lineage trees were performed using the

Clonanalyst software package (Kepler, 2013).

HEp-2 Cell Immunofluorescence

Rhesus antibodies were tested at 25 and 50 mg/mL in the HEp-2 cell immuno-

fluorescence assay (InvernessMedical Professional Diagnostics) as described

previously (Moody et al., 2012).

Recombinant Env Expression

Recombinant Env was produced in 293F cells by transient transfection as

described in the Supplemental Experimental Procedures. BG505 SOSIP.v4.1

trimers were purified using PGT145 affinity chromatography as described pre-

viously (de Taeye et al., 2015).

Glycosylation Analysis

Glycan analysis was performed by liquid chromatography-tandemmass spec-

trometry (LC-MS/MS) as described previously (Go et al., 2013, 2015). See also

Supplemental Experimental Procedures.

In Vitro HIV-1 Neutralization

Neutralizing antibody activity was measured in 96-well culture plates by using

Tat-regulated luciferase (Luc) reporter gene expression to quantify reductions

in virus infection in TZM-bl cells.

Crystallography

Crystallization conditions were tested in a variety of commercially available

screens (QIAGEN, Hampton Research), and crystals of the unliganded Fab

were observed over a reservoir of 0.1MHEPES (pH 6.5), 20%polyethylene gly-

col (PEG) 6000 at a temperature of 20�C. Purified DH501 Fab was also mixed

with Man9GlcNAc2-biotin in a 1:3 molar ratio and then treated to the same pro-

cedure as the unliganded Fab. Crystals were observed over a reservoir of 0.2M

CaCl2, 20%PEG3350.Coordinates and structure factors havebeen deposited

in the PDB under accession codes 5IIE (unliganded Fab) and 5T4Z (liganded

Fab). Structural figures were generatedwith Pymol (DeLano, 2012). Further de-

tails can be found in the Supplemental Experimental Procedures.

Statistical Analysis Plan

Descriptive statistics were used to describe immune responses. Neutralization

data were averaged across experiments as geometric means. A Wilcoxon

signed-rank test was performed, including all ten animals, to compare

differences in plasma blocking at two different time points. Statistics were

calculated with SAS v9.4.

ACCESSION NUMBERS

The accession numbers for the coordinates and structure factors for the

DH501 unliganded Fab and the Fab-Man9GlcNAc2 complex reported in this
paper are PDB: 5IIE and 5T4Z. The accession numbers for the sequence of

DH501 heavy and light chain reported in this paper are GenBank: KY490540

andKY490541. The accession numbers for the sequence of DH501 unmutated

common ancestor heavy and light chain reported in this paper are GenBank:

KY490542 and KY490543.
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