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Abstract Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes
an important contribution to the loss of volatiles from this planet. Data from NASA’s Mars Atmosphere and
Volatile Evolution mission combined with theoretical modeling are now helping us to understand the
processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation
exists for considering a simple approach to this problem and for understanding how the loss rates might
scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes
involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow
speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical
studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of
Qion ≈ 4 × 1024 s�1) of the total oxygen loss rate. The ion loss is found to approximately scale as the
square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic
pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of
300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the
decreasing ion-neutral collision frequency.

1. Introduction

The loss of oxygen and other volatiles from the atmosphere of Mars is the key driver of the evolution of the
atmosphere, and the MAVEN mission is making major advances in our understanding of the loss processes
(cf. Jakosky et al., 2015). A major loss process is the photochemical escape of O due to the dissociative recom-
bination of O2

+ ions that are present in the exosphere. Many papers have been devoted to this topic (see
Cravens et al., 2017; Lillis et al., 2015, 2017, and Fox & Hać, 2014, and the many references therein).
Another loss mechanism is transport of ions from the planet. Some of the ions created by ionization pro-
cesses in the upper atmosphere are accelerated to escape speeds via processes associated with the solar
wind interaction with the planet (e.g., pickup ions and fast day to night ionospheric flow). This topic has also
been extensively studied and has been the subject of several MAVEN investigations (cf. Brain et al., 2015).

Cravens et al. (2017) used a simple approach to finding expressions for photochemical loss of atomic oxygen
via dissociative recombination of ionosphere O2

+ ions. The global loss rate estimated was QO ≈ 8 × 1025 s�1

(I/I0), where I0 is the solar maximum solar EUV irradiance (actually, the atomic oxygen ionization frequency
can be used here). A key assumption was that almost any ionization event results in O2

+ production and thus
to loss of O if the ionization event takes place in the exosphere. In the chemically controlled part of the exo-
sphere, the loss will be photochemical (e.g., dissociative recombination reactions), but some ions could also
be lost via ion transport. In this paper, we estimate the location in the topside dayside ionosphere of the
transport/chemistry transition for ionospheric plasma and we assume that ions created above this transition
level are lost due to transport rather than to the photochemical loss mechanism. Note that in either case, the
oxygen is lost from the atmosphere. We do not consider the detailed ion acceleration mechanisms that actu-
ally provide the ions with the escape velocity (e.g., Brecht & Ledvina, 2014; Dong et al., 2014; Ma et al., 2004).
We also estimate how the ion loss scales with solar EUV irradiance and with solar wind dynamic pressure.

An implicit assumption in the current paper is that the ions that are controlled by transport processes at high
altitudes are eventually lost either by (1) some unspecified acceleration process at high altitude (e.g., ion
pickup) for loss out the tail or (2) transport to the nightside, where the O2

+ can recombine, also causing
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loss of O atoms. Figure 1 is a schematic showing ions being created,
plasma flow toward the night, and oxygen escape.

In the process of estimating ion escape rates we will also derive sim-
ple, approximate expressions for plasma flow speeds in the topside
dayside ionosphere that could prove useful for interpreting future
MAVEN data and output from global models of the solar wind inter-
action with Mars.

2. Production of Ions at Mars and
Ionospheric Chemistry

The loss of oxygen, either by the photochemical mechanism or by ion
loss, requires that the neutral gas be ionized by solar radiation or by fast
particles. The major neutral species in the thermosphere of Mars is CO2,
although atomic oxygen is the major neutral species at higher altitudes
(Benna et al., 2015; Bougher, Pawlowski, et al., 2015; Mahaffy et al., 2015;

Rahmati et al., 2015). See Figure 1. Photoionization of neutrals by solar EUV and soft X-ray radiation is repre-
sented by these reactions:

hνþ CO2→CO2
þ þ e

→COþ þ Oþ e

→Oþ þ COþ e

(1)

hνþ O→Oþ þ e (2)

Secondary ionization by photoelectrons also contributes about 10% to the total ionization rate. As discussed
by Cravens et al. (2017) and in many other papers, the production rate of photoions can be calculated using
standard aeronomical techniques (Schunk & Nagy, 2009). Ionization frequencies (Is in units of s�1 for species
s) are the ion production rates divided by the neutral density, and in the higher altitude, optically thin region
of the upper atmosphere the ion production rate for species s is just Ps = Is nns, where nns is the neutral den-
sity of the relevant species s. ICO2 = 1.8 × 10�6 s�1 and 6 × 10�7 s�1 at a heliocentric distance of 1 AU and for
solar maximum and minimum conditions, respectively (cf. Cravens et al., 2017). Similarly, for atomic oxygen,
IOx = 7 × 10�7 s�1 and 2.3 × 10�7 s�1 for solar maximum and minimum conditions, respectively. Later we
identify IOx0 = 7 × 10�7 s�1 as a reference value. These 1 AU values need to be scaled to the heliocentric dis-
tance of Mars.

CO2
+ ions react with O to produce O2

+ ions, which dissociatively recombine, thus producing hot oxygen
atoms. O+ ions can also react with CO2 to produce O2

+ ions:

CO2
þ þ O ➔ O2

þ þ CO (3)

Oþ þ CO2 ➔ O2
þ þ CO (4)

O2
þ þ e ➔ Oþ O (5)

The reaction rate coefficients associated with these reactions are k3 = 1.64 × 10�10 cm3 s�1,
k4 = 9.4 × 10�10 cm3 s�1, and α = 1.6 × 10�7 (300 K/Te)

55 cm3 s�1 for reaction (5) (cf. Fox, 1997, 2009; Fox et al.,
2015). In addition, N2

+ ions produced by ionization of N2 molecules largely end up as O2
+ due to ion-neutral

chemistry (Fox, 2009; Fox et al., 2015).

Figure 1. Schematic of the Martian upper atmosphere and ionosphere, illus-
trating the region of photochemical O production above the exobase and
the region of ion loss from day to night above the ion exobase.
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Table 1 lists some typical values of neutral density (nn) and electron den-
sity (ne) in the dayside ionosphere from MAVEN data (Benna et al., 2015;
Withers et al., 2015). These data are representative of the dayside iono-
sphere for April 2015 with solar zenith angles in the 40° to 60° range.

3. Ionospheric Dynamics—Simple Theory

The transport, and possible escape, of plasma from the topside iono-
sphere is in response to the net force on a plasma parcel. Horizontally,
the main drivers of the dynamics are magnetic forces and thermal pres-
sure forces. A full understanding of this force balance is complicated and
depends on the region of Mars, but one can consider two simple
regimes—(1) flow largely perpendicular to the draped magnetic field
that is induced in the topside ionosphere by the solar wind interaction
and (2) flow mainly parallel to the magnetic field driven by the thermal
pressure gradient. We will emphasize the first rather than the second,
although both are discussed.

3.1. Single-Fluid Momentum Equation

We need to start by estimating flow speeds in the topside ionosphere.
We use a single-fluid approach. The single-fluid plasma momentum
equation is (cf. Cravens, 1997; Cravens et al., 2010)

ρ
∂u
∂t

þ u∙∇u
� �

¼ �∇ pe þ pið Þ þ J�Bþ ρg� ρνin u� unð Þ (6)

where the plasmamass density is ρ, the flow velocity is u, and the acceleration due to gravity is g. The neutral
flow velocity is denoted un, and νin is the ion-neutral momentum transfer collision frequency. The electron
and ion pressures are pe = ne kB Te and pi = ne kB Ti, respectively, where ne is the electron density and kB is
Boltzmann’s constant. Te and Ti are the electron and ion temperatures, respectively. Note that quasi-neutrality
is assumed so that the ion density ni equals the electron density (ni = ne). J is the current density, and B is the
magnetic field. Ampere’s law can be used to write J × B as

J�B ¼ �∇
B2

2μ0

� �
þ 1
μ0

B∙∇B (7)

The magnetic pressure is given by pB = B2/2 μ0. Typical values of Ti and Te in the topside ionosphere are
1,000 K and 2,000 K, respectively (Ergun et al., 2015, 2016; McFadden et al., 2015). The ion-neutral momentum
transfer collision frequency is given by νin = kin nn, where nn is the neutral density and kin ≈ 10�9 cm3 s�1.

Numerical global MHD models solve the momentum equation, plus continuity equations and energy equa-
tions on a spatial grid. In the current paper, we will simplify the momentum equation and derive analytic
expressions for the flow velocity u.

3.2. Solar Wind Boundary Condition on Ionosphere

Plasma flow in the topside ionosphere is driven most notably by thermal pressure gradient forces and J × B
forces (roughly the same as magnetic pressure gradient forces). Except in regions with large crustal magnetic
fields, the topside ionospheric pressure (ptop = pe + pi + pB) is constrained at higher altitudes by solar wind
conditions. Solar wind dynamic pressure (psw0 = ρswusw

2) is largely converted to thermal pressure down-
stream of the bow shock and then mostly converted into magnetic pressure inside the magnetic pileup
boundary (MPB) (cf. Brain et al., 2015; Brecht & Ledvina, 2014; Crider et al., 2002, 2003; Edberg et al., 2009;
Ma et al., 2015; Modolo et al., 2016) in the magnetic pileup region (MPR).The subsolar magnetic pressure in
the MPR (or induced magnetic barrier), pB0, is approximately equal to the upstream solar wind dynamic pres-
sure, psw0. In the subsolar topside ionosphere, ptop ≈ psw0 = ρswusw

2. The magnetic barrier pressure on the

Table 1
Topside Neutral and Ionospheric Densities, Flow Speeds, and Time Constants

z (km) nCO2 (cm
�3) nO (cm�3) nN2 (cm

�3) nn (cm�3)

200 1.20E + 08 8.00E + 07 1.60E + 07 2.16E + 08
225 1.80E + 07 5.00E + 07 7.00E + 06 7.50E + 07
250 6.00E + 06 3.20E + 07 3.00E + 06 4.10E + 07
275 9.00E + 05 1.70E + 07 1.00E + 06 1.89E + 07
300 3.20E + 05 1.00E + 07 5.00E + 05 1.08E + 07
325 1.00E + 05 7.00E + 06 2.50E + 05 7.35E + 06
350 3.00E + 04 3.50E + 06 8.00E + 04 3.61E + 06
400 8.00E + 03 1.00E + 06 7.00E + 03 1.02E + 06
450 3.00E + 03 3.00E + 05 6.00E + 02 3.04E + 05

z (km) nO+ (cm�3) nO2
+ (cm�3) Electrons (cm�3)

200 200 20,000 20,200
225 500 7,000 7,500
250 800 5,500 6,300
275 900 2,000 2,900
300 900 1,200 2,100
325 900 800 1,700
350 800 500 1,300
400 600 250 850
450 300 150 450

Journal of Geophysical Research: Space Physics 10.1002/2017JA024582

CRAVENS ET AL. PLASMA FLOW LOSS IN THE MARS IONOSPHERE 10,628



dayside falls off with solar zenith angle according to MGS data (Akalin et al., 2010; Crider et al., 2003), MAVEN
magnetometer data (Connerney et al., 2015), and global interaction models (Ma et al., 2004).

The average magnetic pressure in the topside ionosphere measured by the MGS varies with θmpb, the angle
between the Sun, and the obstacle boundary normal, as (Crider et al., 2003)

pB ¼ psw0 cos2θmpb þ pt0 (8)

where ps0 is a relatively small pressure. Figure 2 displays a typical dayside magnetic field profile measured by
the MAVEN magnetometer (Connerney et al., 2015) for a region without crustal fields. And Figure 3 shows
average topside magnetic pressures versus solar zenith angle instead of θmpb from MGS magnetometer data
(Crider et al., 2003). The following approximate expression for the pressure versus solar zenith angle, χ, was
found to be reasonable:

Figure 2. Example of MAVEN magnetometer data in the dayside ionosphere. Magnetic field strength versus altitude for orbit 180. The magnetic pressure near
300 km is about 0.5 nPa.
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pB χð Þ≈psw0 0:66 cos2 χ þ 0:33 cos2 χ=2ð Þ� �
(9)

The total pressure in the topside ionosphere at a given location
should be roughly independent of altitude. We express the pres-
sure in terms of physical distance from the subsolar point, s, along
a constant radial distance r = RM + z, where RM is the Martian radius
and z is altitude. The incremental distance ds is given by

ds ¼ r dχ ¼ RM þ zð Þ dχ: (10)

The horizontal component of the magnetic pressure gradient (or
total pressure gradient because magnetic pressure dominates)
can be approximately expressed as

∇horpBj j ¼ 1
RM þ z

dpB
dχ

≃
2psw0
ReM

� �
2
3
sinχ cosχ þ 1

6
sin

χ
2
cos

χ
2

� 	

(11)

At locations with χ = 60° (i.e., middle of the dayside) the term in
brackets in the last equation is 0.36. The pressure gradient is
roughly psw0/(RM/2).

3.3. Simple Single-Fluid MHD Momentum Balance for
the Ionosphere

Next, we carry out various approximations to equation (6) and
obtain simple expressions for the horizontal plasma flow speed

using the horizontal pressure gradient just found. We assume that the vertical component of the flow velocity
u is much less than the horizontal component. That is, we assume that flow streamlines are largely horizontal
on the dayside. We also neglect magnetic tension forces or assume that they are comparable to the magnetic
pressure gradient force.

The time-independent horizontal momentum equation can now be written as

ρu
du
ds

¼ �d
ds

pe þ pi þ pBð Þ � ρυin u� unð Þ (12)

The total pressure is given by p = pe + pi + pB. Actually, the last term on the right-hand side is really the com-
ponent of the u � un vector along the flow direction, but for simplicity in our estimates, we assume that the
neutral and ion velocities are simply in the same (or opposite) directions.

The momentum equation can be further approximated by

d
ds

1
2
u2 þ p

ρ

� �
þ υin u� unð Þ ¼ 0 (13)

Note that for this last expression 1/ρ has been brought inside the derivative by assuming that the plasma
density does not vary much with horizontal distance s. Numerical solutions of equation (13) for u(s) (i.e.,
u(χ)) can be determined at different altitudes and for different solar wind pressures, assuming that
p(s) ≈ pB(s) as given by the empirical relation equation (11). See Figures 5 and 6. The solution of equation (13)
that is shown assumes thatmagnetic pressure dominates over thermal pressure and is given by equation (11).
Indeed, one empirically finds that in the topside ionosphere for z ≈ 300–400 km, the thermal pressure
pe + pi ≈ ne kB (Te + Ti) ≈ 0.15 nPa for ne ≈ 2,000 cm�3 and for Te + Ti ≈ 5,000 K (Ergun et al., 2015; Matta et al.,
2013; Sakai et al., 2015, 2016; L. Andersson, private communication, 2017), whereas the magnetic pressure

Figure 3. Average magnetic pressure versus solar zenith angle in the magnetic
pileup region from Mars Global Surveyor magnetometer data (Crider et al.,
2003). The angle between the radius vector and the magnetic pileup boundary
surface is θ, but we used the solar zenith angle in the current paper.
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(Figure 3) is about 4–5 times greater than this. That is, the plasma
beta is rather large (β ≈ 5). However, a more careful analysis taking
thermal pressure into account could be undertaken in the future.

The results show that flow speeds increase with solar zenith angle
generally, out to sza ≈ 60°, and also strongly increase with altitude
because the ion-neutral collision term, which opposes the pressure
gradient term, rapidly decreases with altitude.

3.4. High-Altitude Approximation

An even more approximate solution can be found at higher alti-
tudes where ion-neutral collisions can be neglected:

1
2
u2 þ p

ρ
¼ constant (14)

This solution applies along a streamline, assumed to be approxi-
mately constant in altitude, and it can be rewritten as

u2 ¼ u20 þ
2p0
ρ0

� 2p
ρ

¼ u20 þ C2
ms0 � C2

ms (15)

The subscript “0” denotes values at the start of a streamline near s0 ≈ 0 at the subsolar point. Cms is the mag-
netosonic speed and Cms ≈ CA, where CA is the Alfven speed. CA

2 = B2/ρμo and CA can be found using the
empirical average magnetic field B as a function of s (or θ). With u0 ≈ 0 and Cms ≈ 0 near the terminator
(θ = 90°), the terminator plasma flow speed in this approximation is just the subsolar Alfven speed in themag-
netic barrier: u ≈ Cms0 ≈ CA0.

3.5. Low-Altitude (Ambipolar Diffusion) Approximation

At lower altitudes, we can assume that u2 ≪ Cms
2 orMms ≪ 1, whereMms is the fast modeMach number. In this

case, the ion-neutral friction term balances the pressure gradient term in the momentum equation, and we
have the following approximate ambipolar diffusion solution:

u� un ¼ �1
ρνin

dp
ds

(16)

Letting the neutral flow speed be un ≈ 0, and for χ = 60°, the flow
speed from this diffusion approximation becomes

u≈2:5�1028
m
s

psw Pað Þ
ne m�3ð Þnn cm�3ð Þ

� �
(17)

The upstream solar wind pressure is psw (used instead of psw0 after
this point in the paper), and the units to be used are indicated. As
noted just after equation (11), the horizontal pressure gradient used
in equation (16) to get equation (17) was equation (11) with a solar
zenith angle of 45°, giving dp/ds = 0.7(psw/(RM/2)). Typically, near
Mars psw ≈ 1 nPa. The neutral and electron densities (nn and ne,
respectively) are needed to find u. Values of nn and ne from
Table 1 are used to obtain flow speeds and are shown
in Figures 4–7.

Figures 5 and 6 show the flow speed from all three methods versus
solar zenith angle for several different altitudes. Figure 7 shows flow

Figure 5. Flow speed versus solar zenith angle from simple MHD theory at
400 km. The red line is from the diffusion (i.e., low altitude) approximation and
the blue line from the “full” simple theory.

Figure 4. Flow speed versus solar zenith angle from simple MHD theory at
325 km. The red line is from the diffusion (i.e., low altitude) approximation and
the blue line from the “full” simple theory.
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speed versus neutral density. An altitude-independent neutral wind
speed of un = 100m/s in the same direction as the solar wind-driven
velocity was adopted. Note that below about 200–225 km the neu-
tral wind speed, un, is comparable to |ui � un|. The neutral wind
speed depends on season and location on Mars (Bougher,
Pawlowski, et al., 2015; Bougher, Cravens, et al., 2015). Note that
the ambipolar diffusion speed from equation (16) or (17) should
be a reasonable approximation below about 350–
400 km (nn < 106 cm�3).

3.6. Plasma Flow Parallel to the Magnetic Field

Parallel to the magnetic field the magnetic pressure gradient force
cannot operate and so the thermal pressure gradient force cannot
be neglected. Thermal pressure gradient forces move the plasma
as indicated by the above simple momentum equations. As stated
earlier, a careful analysis of this effect is beyond the scope of the

current paper, but a simple estimate is made here. We approximate the horizontal flow speed parallel to
the magnetic field as

u� un ¼ �∇ pe þ pið Þ
ρνin

≈� kB Te þ Tið Þ½ �
mikinnn

1
ne

dne
ds

(18)

A horizontal electron variation length scale is defined by Le
�1 ≈ (dne/ds)/ne, and we note that Le ≈ RM/2. In this

case, the flow speed is of the order of

∣u� un∣≈300 km=s Te=nnð Þ (19)

with u in units of km/s, Te in units of Kelvin, and the neutral density nn in units of cm�3. For example, near an
altitude of 400 km, where nn ≈ 106 cm�3, u ≈ 1 km/s, which is somewhat less than the 6 km/s flow speed
found for magnetic pressure gradient forces. The flow speed ratio is just the plasma beta. The scaling of this
speed with solar EUV irradiance depends on the scaling of the electron density with solar EUV irradiance.

3.7. Comparison of Simple Dynamical Model With Global Models

The ionospheric flow speeds found for the dayside from the simple analysis are compared with results from
global MHD code for comparable conditions and with flow. Figure 7 shows flow speed versus altitude for a
solar zenith angle of about 60° for MAVEN conditions. The 3-D MHD model results are from case 1 of Ma
et al. (2004). This run was for solar maximum conditions and for normal solar wind conditions (1.2 nPa

upstream dynamic pressure) with a 3 nT parker spiral. The IMF direction
was in the equatorial plane. The MHD velocity values were extracted at
60° latitude in the XZ (meridional) plane, which is generally consistent
with the generic dayside conditions assumed for the analytical solution.
Given that conditions were not exactly matched and given the simplicity
of the analytic expressions, the agreement is quite good.

Further work will be needed to expand on these comparisons with other
global models (e.g., Brecht & Ledvina, 2014; Ma et al., 2004, 2015;
Modolo et al., 2016) and with ion flow data from NGIMS and STATIC,
but this effort is beyond the scope of this initial exploratory work.

4. Ion Transport and Escape

In this section, the approximate flow speeds introduced earlier are used
to estimate the transition between a chemically controlled ionosphere
and a transport-controlled ionosphere on the dayside. This transition is
then used to estimate the ion loss from the planet via a production

Figure 6. Flow speed versus neutral density for a solar zenith angle of 60°.

Figure 7. Comparison of analytical flow speed with numerical MHD simula-
tion on the dayside (Ma et al., 2004). The solar zenith angle is 60°.
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rate technique. The transition altitude (or critical level—actually critical total neutral density, nnc) is deter-
mined by equating chemical lifetime, for either O+ or O2

+, with transport lifetime.

Once the critical neutral density, nnc, is found, then the total global ion loss rate is just the total ionization rate
at higher altitudes:

Q≈IOx nnc 2π HO RM
2 (20)

where HO ≈ 40 km is the atomic O scale height. Cravens et al. (2017) also discussed this expression. Note that
the ionization frequency at the location of Mars must be used. Equation (20) assumes that atomic oxygen is
the main neutral species at the relevant altitudes. Next, we find expressions for the critical level/density.

4.1. Plasma Continuity Equation and Chemical Lifetimes

The continuity equation for an ion species, s, in the ionosphere is given by (Schunk & Nagy, 2009, and
references therein)

∂ns
∂t

þ ∇∙ nsusð Þ ¼ Ps � Ls (21)

A dimensional analysis of this equation indicates that the transport time is τΤ ≈ L/u, where L is an appropriate
length scale and u is the flow speed. A typical horizontal length scale on the dayside is L ≈ RM/2, and horizon-
tal flow speeds were discussed earlier. For vertical transport, the length scale is a vertical scale height, H ≈ HO,
and a vertical flow speed should be used: (uz): τTz ≈ HO/uz.

The one-dimensional, multifluid, MHD model of Shinagawa and Cravens (1989) showed that the vertical
plasma speed in the Martian ionosphere is uz ≈ 10–20 m/s, and the vertical transport time is τTz ≈ 3,000 s.
However, in regions with a large radial component of the magnetic field (e.g., crustal magnetic field regions,
closed, or cusp), the radial flow speed is very likely to be higher than in draped field regions with consequent
lower radial transport times.

Now we consider chemical lifetimes in the ionosphere. The photochemical equilibrium approximation for ion
species s is given by Ps = Ls, where Ls = Ls ns, so that ns = Ps/Ls. An approximate photochemical equilibrium
expression for the O+ density is

nOþ ¼ IOx nO=k4 nCO2 (22)

where nO
+, nCO2, and nO are the densities of O+ ions, CO2, and O, respectively. A very approximate “empirical”

value for the CO2 density above about 200 km is given in Table 1, in terms of the total neutral density:

nCO2≈nn2=nO z ¼ 210 kmð Þ≈4�10�9 nn
2 cm�3 (23)

The O+ chemical lifetime associated with reaction (22) is τcO+ ≈ 1/k2 nCO2, when nCO2 can be taken from equa-
tion (23). Such time constant expressions are obtainable by a dimensional analysis of the relevant ion loss rate
(e.g., loss rate (units of cm�3 s�1) = k2nCO2nO+, for O

+ ions) (cf. Schunk & Nagy, 2009).

The photochemical approximation for the O2
+ density, assuming only chemical loss by dissociative recombi-

nation, is given by

nO2þ ¼ POþ þ PCO2þð Þ= α neð Þ≈POþ= α neð Þ≈IOx nO= α neð Þ (24)

The ionization of O dominates the total ionization rate for the topside ionosphere (z > 200 km). Further,
assuming that ne ≈ [O2

+] below about 300 km, the electron density expression becomes

ne≈
I0x
α

� �1=2

n1=2n (25)

With Te ≈ 2,000 K, α ≈ 6 × 10�8 cm3 s�1 (Peverall et al., 2001). For MAVEN conditions and for altitudes above
200 km, this expression becomes
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ne≈2 nn
1=2 with both densities in cgs unitsð Þ (26)

Using a solar maximum ionization frequency for atomic oxygen one
finds that equation (17) for the flow speed, using equation (26) for the
electron density, becomes

u≈1:3�1022
m
s
psw
n3=2n

(27)

where the solar wind pressure is units of Pascals (Pa) and the neutral
density, nn, is in cgs units. Putting in the solar activity and solar wind
pressure dependencies gives

u≈1:3�1013
m
s

I0x0
I0x

� �1=2 psw
psw0

� �
1

n3=2n

(28)

Let I0 = IOx0 be the solar maximum (the reference value) ionization fre-
quency for atomic oxygen and I = IOx be the ionization frequency at the actual time (and solar activity level).
IOx in equation (25) for the electron density becomes (IOx/IOx0) IOx0 with IOx0 = 7 × 10�7 s�1 for the solar max-
imum ionization frequency. The resulting ne expression is put into equation (17), as well as psw = (psw/psw0)
psw. Equation (28) results from these steps. Note that in terms of the F10.7 proxy of solar activity one has I0/
I ≈ 200/F10.7. Chemical and transport lifetimes are shown as functions of altitude in Figure 8 and in Table 2.
Also, in equation (28), a reference solar wind pressure, psw0 = 10�9 Pa, was adopted.

4.2. Critical Neutral Density for Ion Transport (Comparison of Time Constants)

An ion “exobase” or transport-chemical transition level can be defined where the chemical and transport
times are equal: τT ≈ τchem. Figure 8 displays these time constants plotted versus the neutral density for
the density values from Table 1 and for chemical and transport expressions introduced earlier. Table 2 also
lists these time constants. The transition density for O+ ions (nncO+) is about 10

7 cm�3 and for O2
+ ions is also

about 107 cm�3. The O+ and O2 densities are comparable near 300–400 km (Benna et al., 2015). Note that the
estimated flow speeds in Table 1, used to estimate transition densities, were found using equation (13) and
did not make the low-altitude approximation.

4.3. Analytical Scaling for Transition Level Densities

Now instead of using Table 1 values for ion and electron densities, photochemical expressions found in
section 4.2 are used, as well as the low-altitude flow approximation of equation (17) (i.e., equation (28)).
This allows purely analytical expressions for the critical neutral densities to be found. Flow speed from equa-
tion (28) is used in the transport time expression and equated to the photochemical lifetime of either O+ or
O2

+. The critical neutral density level for O+ is given by the expression:

ncOþ ≈4�106cm�3 I0x0
I

� �1=7 psw
psw0

� �2=7
(29)

The critical neutral density for O2
+ is given by

ncO2þ ≈1013cm�3

ffiffiffiffiffiffiffiffiffiffiffiffi
psw

I0x0RM

r
(30)

Expressing this equation in terms of the ionization frequency for oxygen
and in terms of solar wind pressure relative to the average reference
value psw0 = 10�9 Pa, it becomes

Figure 8. Chemical and transport time constants versus neutral density.

Table 2
Ionospheric Flow Speeds and Time Constants

z (km) τO+ (s) τO2
+ (s) u-un (m/s) utot (m/s) τT (s)

200 7.57E + 00 4.95E + 02 1.17E + 00 1.01E + 02 1.58E + 04
225 5.03E + 01 1.33E + 03 9.10E + 00 1.09E + 02 1.47E + 04
250 1.49E + 02 1.59E + 03 1.97E + 01 1.20E + 02 1.34E + 04
275 9.17E + 02 3.45E + 03 9.31E + 01 1.93E + 02 8.28E + 03
300 2.21E + 03 4.76E + 03 2.26E + 02 3.26E + 02 4.91E + 03
325 4.76E + 03 5.88E + 03 4.13E + 02 5.13E + 02 3.12E + 03
350 7.52E + 03 7.69E + 03 1.13E + 03 1.23E + 03 1.30E + 03
400 9.19E + 03 1.18E + 04 4.15E + 03 4.25E + 03 3.76E + 02
450 9.68E + 03 2.22E + 04 7.71E + 03 7.81E + 03 2.05E + 02
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ncO2þ ≈3�106cm�3 psw
psw0

� �1=2 I0x0
I

� �1=2

(31)

The solar irradiance, I, comes into equation (31) via the electron density for the chemical loss of O2
+ as well as

through the electron density in expression (17) for the speed (and later equations for the speed derived from
this). The critical densities for O+ and O2

+are both nnc ≈ 4 × 106 cm�3 from equations (30) and (31). Table 1
and Figure 7 give values that are a factor of 2 or so higher than this value. In either case, the corresponding
critical altitude is roughly 300–350 km for the MAVEN epoch. Using the low-altitude flow speed expression
introduces more uncertainty, but Figure 6 indicates that near the photochemical/transport transition altitude,
the low-altitude expression does a fairly good job for the flow speed.

5. Global Ion Escape and Discussion

What happens to ions transported from the dayside to the nightside? Considerable modeling and data ana-
lysis have addressed this topic (cf. Brain et al., 2015; Brecht & Ledvina, 2014; Ma et al., 2015; Modolo et al.,
2016). Ionospheric plasma transported from the dayside can either supply the nightside ionosphere or the
ions can be lost to Mars via “ion escape” out the tail or in the ion plume (cf. Brain et al., 2004, 2015; Fränz
et al., 2010). Ions that cross into the nightside can drift/diffuse downward and are ultimately lost via dissocia-
tive recombination of O2

+ ions deeper in the ionosphere, again leading to O escape. Either way most of the
ionization produced in the transport region (i.e., above the critical density, nnc, altitude) represents atmo-
spheric loss of O. The supply of ions for the “ion escape” is limited to the neutrals that can be ionized by solar
radiation (or by impact ionization due to external electron/ion precipitation) in the transport region above
about 300 km.

Equation (20) gives an overall estimate of the ion loss due to ionization of oxygen in the topside ionosphere,
but losses via O2

+ or O+ are not distinguished and depend on the details of the ion chemistry near the critical
level. We introduce a factor f that is the total local ion production (P ≈ IOnn) going into O+ after chemistry is
taken into account. The rest of the ion production, with the fraction (1� f), is assumed to become O2

+. Recall
that the O2

+ comes from the chemical reaction (equation (4)) of O+ with CO2.

We can now, with some degree of inconsistency, combine equation (20) with the critical neutral densities for
O2

+ and O+, found earlier, to obtain global loss rates for these species. The factors f and (1� f) for O+ and O2
+,

respectively, were thrown in so that the ion production rate was not double counted. Admittedly, this is bit ad
hoc. The overall dayside ion loss rate (to the night or lost from Mars) from ionization is then very roughly

QO2þ≈3 � 1024s�1 1� fð Þ I=IOx0ð Þ1=2 psw=psw0ð Þ1=2

QOþ≈4 � 1024s�1f I=IOx0ð Þ6=7 psw=psw0ð Þ2=7
(32)

Note that the ionization frequency ratio, I/IOx0, is roughly F10.7/200. The total O atom transport loss from Mars
due to ion loss is Qion = 2QO2+ + QO+.

The fraction f depends on altitude (or neutral density) via the critical neutral densities defined above, but we
make the additional approximation of evaluating f at just the O+ neutral critical density from equation (29).
The O2

+ and O+ critical neutral densities are very similar so this assumption makes little difference. Taking
the fraction f as f = nO+/(nO+ + nO2+) and using photochemical expressions for the ion densities derived
earlier gives

f ¼ 1= 1þ k4kc=2αð Þ nn3=2
n o

≈0:5 (33)

Note that f ≈ 0.5 for the MAVEN epoch. The Qion expression can now be evaluated. At the reference values of
solar wind pressure and solar EUV irradiance we find that Qion ≈ (0.4 × 3 + 0.8 × 4) × 1024 s�1 ≈ 4 × 1024 s�1.
However, it would probably be reasonable to just use equation (20) and a compromise O+/O2

+ critical neutral
density, which also gives an overall ion loss rate of ≈4 × 1024 s�1 for the current epoch.
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Qion is about 5–10% of the total O loss from photochemistry (cf. Lillis et al., 2017; Cravens et al., 2017, and
references therein). Of more interest is the variation with solar EUV irradiance and with upstream solar wind
pressure (i.e., variation goes as the square root). For comparison, the photochemical loss rate varies linearly
with the solar EUV irradiance according to Cravens et al. (2017). The equation (32) values of the global escape
rates are roughly consistent with results from global simulations and from data analysis (cf. Brain et al., 2015).
Lundin et al. (2013) found using MGS data that the heavy ion (O+ and O2

+) escape rate varied approximately
linearly with F10.7.

Note that all the above analysis applies to draped magnetic field regions and not to the crustal magnetic
field regions. Regions of the ionosphere containing strong crustal magnetic fields are shielded to a large
extent from solar wind effects, and ion transport should be largely parallel to the magnetic field. All such
ions should sooner or later be photochemically processed, even those ions created at high altitudes, and
thus eventually contribute to the photochemical neutral O loss in crustal field regions (see Cravens et al.,
2017). Another limitation of our results is that in order to derive the plasma flow speeds needed to find
the transport time constants and critical neutral densities flow parallel to the magnetic field purely due
to the thermal pressure gradient was not taken into account. One effect of this is that the plasma flow
from day to night is not azimuthally symmetric but depends on the orientation of the draped magnetic
field. This might reduce the net ion loss from the dayside by as much as a factor of 2 due to the lower
flow speeds parallel to the field.

6. Conclusions

Simple analytical and semiempirical expressions for ion flow speeds and ion loss were derived. MAVEN data
were used as input for the estimates. Typical ion flow speeds are found to be about 1 km/s in the dayside top-
side ionosphere near an altitude of 300–400 km, and, not surprisingly, the flow speed increases with altitude.
In agreement with more sophisticated models and with purely empirical studies, we found that the oxygen
loss rate due to ion transport is about 5% (i.e., a global O ion loss rate of Qion ≈ 4 × 1024 s�1) of the total oxy-
gen loss rate. The global ion loss rate is found to vary linearly with the solar EUV irradiance and as the square
root of the solar wind dynamic pressure. The estimates and simple MHD arguments that were made in this
paper are not meant to be quantitatively accurate or to replace more sophisticated numerical models, but
they should be able to help interpret these models as well as help to interpret MAVEN data.
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