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Abstract

Using a high-throughput, cell-based HCV luciferase reporter assay to screen a diverse small-

molecule compound collection (~300 000 compounds), we identified a benzofuran compound 

class of HCV inhibitors. The optimization of the benzofuran scaffold led to the identification of 

several exemplars with potent inhibition (EC50 < 100 nM) of HCV, low cytotoxicity (CC50 > 25 

µM), and excellent selectivity (selective index = CC50/EC50, > 371-fold). The structure–activity 

studies culminated in the design and synthesis of a 45-compound library to comprehensively 

explore the anti-HCV activity. The identification, design, synthesis, and biological characterization 

for this benzofuran series is discussed.
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INTRODUCTION

The hepatitis C virus (HCV) is the causative agent of hepatitis C and represents the major 

underlying cause of hepatocellular carcinoma and chronic liver disease. Infection with HCV 

leads to chronic hepatitis in 85% of cases. HCV remains a significant public health burden 

and is a leading cause of liver transplantations and is responsible for at least 10 000 deaths 

annually in the US.1 Globally, an estimated 180 million people are chronically infected by 

HCV, with an additional 3–4 million people being newly infected annually.2 There is 

currently no vaccine to prevent HCV infection.3 Effective broad-spectrum therapy against 

different HCV genotypes is currently unavailable.4 The previous standard of care, 

peginterferon (pegIFN) and ribavirin (RBV) for 24–48 weeks, depending on HCV genotype, 

showed low sustained virological response (SVR) rates for patients infected with genotype 

1, the most prevalent genotype in the US. This treatment is associated with severe adverse 

effects, including depression, myalgia, and hemolytic anemia. Recent research efforts have 

been directed toward the development of interferon-sparing regimens that contain one or 

more direct-acting antivirals (DAAs) that target one or more discrete biological targets for 

HCV (Figure 1). Prior clinical trials with DAAs as monotherapy were associated with rapid 

development of resistance, thereby necessitating their use as combinations.5 Two 

combinations of first-generation DAA, pegIFN, and ribavirin approved in 2011 have 

launched the era of DAA combination therapy for HCV.4 Current efforts toward interferon-

free regimens involve combination therapy of two or three DAAs. Several such regimens 

that are associated with high treatment response (~90% sustained virologic response) have 

been approved over the past 2 years.6 These regimens, while very effective and more 

tolerable, are associated with high costs. Despite therapeutic advances for orally active 

DAAs, the high cost, potential for drug-resistance emergence, and drug–drug interactions 

suggest that a significant unmet need for additional therapies that act on novel HCV targets 

remains.

RESULTS AND DISCUSSION

Hit Compound Identification and Initial SAR Screening

Hu and co-workers7 have developed a quantitative high-throughput screening (qHTS) assay 

platform representing the complete HCV replication cycle. The phenotypic assay 

incorporated two components: a recombinant infectious virus (HCVcc-Cre virus) and a 

stable host cell line (Huh7.5.1 LoxPGluc). This assay platform can identify inhibitors of all 

stages of the HCV replication cycle as well as compounds that interrupt host functions 
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important for HCV infection and propagation.7 The NIH Molecular Libraries Small 

Molecule Repository (MLSMR) library of 339 561 compounds was screened with this assay 

platform, affording 11 624 preliminary hit compounds (PubChem AID 651820). Elimination 

of known reactive groups and focusing on hits with a minimum of 50% inhibition reduced 

the number to 655 promising hits. Concentration– response confirmatory assays (PubChem 

AID 720575) and cytotoxicity countersceening (PubChem AID 720576) further narrowed 

the field to a set of 206 validated compound hits. The general structure 1 was shared by a 

structural cluster of several hit compounds, including two benzofuran-based compounds (1a 
and 1b) displaying low-micromolar inhibitory activities in the HCV-Luc assay (recombinant 

HCV carrying the Renilla luciferase reporter, Figure 2). The hit compounds were originally 

synthesized and submitted to the MLSMR by Larock and co-workers8 as part of library 

development efforts within the KU Chemical Methodologies and Library Development 

Center (KU CMLD). Common functional groups between the two compounds include an 

acetylene-linked aliphatic alcohol system at the C3-position, aryl substitution at the C2-

position, and an aryl/heteroaryl system at the C5-position of the benzofuran scaffold.

We decided to further explore this chemotype because substituted benzofurans, such as 

nesbuvir (HCV-796, Figure 1), display potent HCV NS5B polymerase inhibitory activity 

and have advanced to clinical trials.9 Thus, the structure–activity relationship (SAR) around 

the benzofuran scaffold was explored through a two-pronged approach. The biological 

activity of existing benzofuran exemplars from the KU CMLD Center compound collection 

was surveyed first, providing a rapid survey of diverse chemical space. Next, a focused 

compound library was constructed on the basis of the results from the first step to 

systematically explore the SAR around the most promising chemical space. Figure 3 

summarizes the analogs explored via this strategy; all three pendant groups on the 

benzofuran were investigated as well as nitrogen atom incorporation into the benzofuran 

centroid.

In the initial phase, 35 2,3,5-trisubstituted benzofuran compounds were selected from the 

KU CMLD Center compound collection and screened in the HCV-Luc assay in parallel with 

the ATPlite cytotoxicity assay.7 The results are summarized in Tables 1–3. The activity for 

our initial hit molecules 1a and 1b were independently validated (2{1} and 2{6}, 

respectively) with material directly obtained from the KU CMLD compound repository, 

showing potency and toxicity results that were comparable to the data from the qHTS (low-

throughput assay data shown throughout the manuscript for consistency, qHTS data 

available online PubChem AIDs 651820 and 720575). Five analogs (2{2}–2{5} and 3{4}) 

displayed improved potency (EC50 ≤ 980 nM) compared with 2{1}. Gratifyingly, the five 

analogs that displayed improved potency also maintained a favorable selectivity index or, in 

some cases, possessed reduced cytotoxicity (CC50) against Huh7.5.1 cells (Table 1). All five 

analogs contain a propargyl alcohol moiety at the C3-position, suggesting that this group 

may be important for activity.

Compounds in Table 1 contain a 4-methoxyphenyl group at the C2-position of the 

benzofuran scaffold, and the substituents vary at its C3- and C5-positions. Compound 2{2}, 

which has a propargyl alcohol at the C3 position and morpholino substitution at C5, showed 

improved potency but relatively higher cytotoxicity. In 2{3}–2{5}, introduction of a 

He et al. Page 3

ACS Comb Sci. Author manuscript; available in PMC 2018 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cyclohexyl group at the 2′-position of the propargyl alcohol (resulting in 1-

ethynylcyclohexanol) provided improved potency and greatly improved selectivity. 

Replacing the 4-methoxyphenyl group at the C5-position with the 2-methoxy-3-pyridyl ring 

(2{4}) reduced potency and cytotoxicity, resulting in a modest selectivity improvement. The 

best compound in Table 1, 2{5}, showed an EC50 of 84 nM and >1190-fold selectivity. 

Replacement of the alcohol with electron-rich aryl groups adjacent to the alkyne linker at the 

R3 position (2{6}–2{8}) led to reduced activity against HCV, although the low cytotoxicity 

(>100 µM) was preserved, indicating that the alcohol group is important for HCV inhibition. 

Even more dramatically, the lack of C3-alkynyl moiety (2{9}– 2{18}) led to either a 

significant or complete loss of HCV inhibitory activity.

Compounds in Table 2 contain a 3′-thiophene group at the C2-position of the benzofuran 

scaffold and vary at the C3- and C5-positions. Compounds with a C5-morpholine group 

(3{1}–3{3} and 3{5}–3{7}) show reduction in HCV inhibitory activity compared with the 

analog 2{1}. C5-morpholine-containing compounds 3{2}, 3{3}, and 3{7} show increased 

cytotoxicity compared with 2{1}. The best compound in this series, 3{4} with 3-(1-

ethynylcyclohexanol) and 5-(3′,4′,5′-trimethoxyphenyl) substitution on the benzofuran 

scaffold, showed an EC50 of 177 nM and >568-fold selectivity against Huh7.5.1 cells. Direct 

comparison between 3{3} and 3{4} in which the only aryl group at R2 is replaced with a 

morpholine moiety suggests that this replacement is not favorable for anti-HCV potency.

Analogs in Table 3 explored substituent changes at the C2-, C3-, and C5-positions 

simultaneously, often providing single forays into more drastic structural changes compared 

with the qHTS hit compounds. Compound 4{1} lacks the C5-substituent on the benzofuran 

scaffold and was found to be inactive in the HCV-Luc assay. Compounds 4{2}–4{5}, which 

contain a C5-morpholine moiety and vary at the C2- and C3-positions of the benzofuran 

scaffold, were found to lose activity against HCV. Thus, the screening results for compounds 

in Tables 1–3 indicate that HCV inhibitory activity is sensitive to substitutions at all three 

positions on the benzofuran scaffold. An aryl or heteroaryl group at the C5-position of the 

benzofuran scaffold is important for the inhibitory activity in the HCV-Luc assay. 

Substitution at the C2-position of the benzofuran is well-tolerated, with the introduction of 

various substituted aryl groups imparting nanomolar inhibitory potency. However, 

replacement of the propargyl alcohol moiety at the C3-position of the benzofuran with an 

aryl or heteroaryl group led to a complete loss of potency.

Library Design, Synthesis and Evaluation

On the basis of these encouraging results, we designed a library of 2,3,5-trisubstituted 

benzofuran compounds to systematically explore the SAR, utilizing the previously 

established synthetic sequence8 to readily access novel analogs of this chemotype (Figure 4). 

All target analogs were synthesized via the synthetic route outlined in Scheme 1. The 

synthesis of the 4-bromo-2-iodo-1-methoxybenzene intermediate 6 was achieved by 

regioselective iodination of commercially available 4-bromoanisole 5 using Selectfluor and 

iodine at room temperature.10 Sonogashira coupling of 6 with substituted aryl alkynes 

afforded 7, which was further diversified by Suzuki–Miyaura metal-catalyzed cross-coupling 

using various aryl boronic acid components to give 8. Iodocyclization of 8 using iodine 
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monochloride provided the intermediate 9. The final diversification step was achieved in 

parallel using Sonogashira cross-coupling with various alkyne fragments on the Bohdan 

MiniBlock platform. The target compounds 10 were purified by reversed phase, preparative, 

mass-directed HPLC fractionation (MDF), and the purity was determined using analogous 

analytical HPLC conditions.

Thiophene groups have been reported to present metabolic challenges;11–13 hence, we 

decided to explore more stable replacements for the thiophene group at the C2-position of 

analog 3{4} (R1 group in Figure 4), such as the 4-methoxyphenyl building block 11a 
(Figure 4), which was present in the C2-position of several promising compounds (2{1}–

2{5}; Table 1) and the more sterically similar imidazole 11b (Figure 4). We also attempted 

to improve the aqueous solubility through replacement of the benzofuran scaffold with a 

furo[3,2-b]pyridine scaffold using the building block 11c (Figure 4). During physiochemical 

property assessment for KU CMLD Center compounds in Tables 1–3, it was observed that 

the potent compound 2{5} showed poor (<1 mg/mL) aqueous solubility (Table 6). Thus, it 

was also of interest to improve solubility as a secondary design element for compounds in 

the library. Introduction of the polar C2-imidazole moiety and the furo[3,2-b]pyridine 

moieties into the scaffold were anticipated to improve solubility for these analogs.

Substituents at the R2-position were incorporated from the most active compounds from 

Tables 1–3. Substitutions at the R3-position retain the propargyl alcohols (13a and 13b in 

Figure 4), which were found to be important in the preliminary SAR studies. We focused 

instead on exploring the effects of increased steric bulk (13c in Figure 4) or introduction of 

additional cyclic oxygen atoms (13d and 13e in Figure 4) on potency and cellular toxicity.

Results from the biological evaluation of the library compounds 10{1}–10{45} are shown in 

Table 4. Compounds 10{1}–10{5} (R1 and R2 = 4-methoxyphenyl) were found to be less 

potent compared with the leading compounds from previous SAR exploration (i.e., 2{2}, 

2{3}, and 2{5}). The most active compound among 10{1}–10{5} was the propargylic 

alcohol 10{2}, possessing an EC50 of 210 nM and good selectivity. Steric bulk at the carbon 

atom adjacent to the alcohol moiety (10{3} and 10{1}) or introducing the oxygen-

containing heterocycles oxetane (10{4}) or tetrahydropyran (10{5}) were all detrimental to 

potency. Among compounds 10{6}–10{10} (R1 = 4-methoxyphenyl; R2 = dioxolophenyl), 

the tetrahydropyran-containing analog (10{10}) was the most potent (130 nM), with 

compounds 10{7} and 10{9} only slightly less potent. Other modifications at the R3 

position were less conducive to HCV inhibition. Among compounds 10{11}–10{15} (R1 = 

4-methoxyphenyl, R2 = 3′,4′,5′-trimethoxyphenyl), compound 10{13} (R3 = 2,2-

dimethylpropargyl alcohol) was the most potent compound (EC50 = 98 nM) and possessed 

excellent selectivity (SI = 879). In this subseries, HCV inhibition was reduced by 6-fold 

when the cyclohexyl ring on the propargyl alcohol at R3 (10{11}) was replaced with an 

oxetane ring (10{14}).

Compounds 10{16}–10{30} built upon the pyrido[3,2-b]furan moiety generally showed 

HCV inhibitory potency better than the imidazole analogs 10{31}–10{45} (R1 = N1-methyl 

imidazole), although they were slightly less active when compared with the corresponding 

benzofuran compounds 10{1}–10{15}. The pyrido[3,2-b]furan analogs displayed a similar 
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cytotoxicity level when compared with the corresponding benzofuran compounds 10{1}–

10{15}. The best compound in this series was 10{21} (R1 = 4-methoxyphenyl; R2 = 

dioxolophenyl; R3 = 1-ethynylcyclohexanol) with an HCV EC50 of 180 nM and ~555-fold 

selectivity.

Compounds 10{31}–10{45} (R1 = N1-methyl imidazole) showed reduced potency against 

HCV inhibition and reduced selectivity compared with the most active compounds from 

previous SAR exploration (i.e., 2{2}, 2{3}, and 2{5}), indicating that an imidazole ring is 

not well tolerated in this position. The most active compound in this series was 10{43} (R2 

= 3′,4′,5′-trimethoxyphenyl; R3 = 2,2-dimethylpropargyl alcohol) with an HCV EC50 of 

320 nM and ~100-fold selectivity. Overall, the systematic SAR investigation revealed the 

activity of individual analogs to be intricately dependent on the substitution at all positions 

combined. This is illustrated across the substitution at R3 for each series, for which, in some 

cases, the unsubstituted propargylic alcohol moiety (13b) was found to be most potent, but 

in other cases, the more substituted moieties (i.e., 1-ethynylcyclohexanol (13a), 2-

methylbut-3-yn-2-ol (13c), or 4-ethynyltetrahydro-2H-pyran-4-ol (13e)) were found to be 

preferred.

Anti-HCV Characterization

From the SAR campaign, promising compounds were selected on the basis of their antiviral 

activity, selectivity, and potential improvement in physicochemical properties. The activity 

of the promising compounds was confirmed for wild-type HCV (HCVcc, genotype 2a) 

infection in Huh7.5.1 cells. Both extracellular and intracellular viral levels were dramatically 

inhibited by the test compounds, among which 10{13} and 10{21} showed the most 

promising activity (Figure 5). It is worth noting that more reduction was observed in the 

intracellular viral levels with most compounds, suggesting this chemotype might be 

targeting HCV early stage infection. One advantage of this series of antivirals is their low 

cytotoxicity toward human hepatocytes. For further confirmation, the cytotoxicity of 

advanced compounds was determined in HepG2 cells and primary human hepatocytes. As 

shown in Table 5, all test compounds exhibited low cytotoxicity toward both types of cells 

(CC50 > 31.6 µM).

To explore the biological target of these compounds in the HCV replication cycle, HCV 

replication cycle assays were performed by infecting Huh7.5.1 cells with different types of 

modified viral particles. In the HCV single-cycle assay, single-round infectious HCV 

(HCVsc) was used to detect inhibition in the HCV replication steps prior to assembly. All 

the test compounds showed an inhibitory effect in the HCVsc assay (<35% of DMSO 

control results), suggesting a target in early stage HCV infection (Table 5). This is consistent 

with what was observed with the HCVcc infection assay. HCV pseudoparticle (HCVpp) and 

subgenomic replicon assays were then employed to detect whether HCVpp entry and HCV 

replication, respectively, were targeted by these compounds. The HCVpp entry was not 

significantly inhibited by the test compounds (≥69% of DMSO treatment), except for 

10{32} and, to a lesser extent, 10{21} (Table 5). Even less inhibition was observed in either 

HCV replicon cell lines of genotype 1b or 2a as well as in the transient genotype 1a replicon 

assay (all ≥74% of DMSO treatment, Table 5). Together, these replicon experiments indicate 
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that replication is highly unlikely to be the target of these compounds. Overall, this series of 

compounds inhibited infection at early stage and targeted neither HCVpp viral entry or HCV 

RNA replication. One possible mechanism of action could be through inhibition of viral late 

entry or trafficking in the infected cells. We previously reported a similar inhibitory pattern 

in the HCV replication cycle assays in a series of promising antiviral chlorcyclizine analogs.
14

Physicochemical Properties

To assess the ADME (absorption, distribution, metabolism, and excretion) of the test 

compounds, their physicochemical properties were evaluated (Table 6). Half-lives 

(microsomal stability) greater than 30 min were observed with all selected analogs, 

suggesting a potentially useful therapeutic half-life in vivo. The aqueous solubility was 

relatively low for all the compounds in Table 6. This solubility may be improved by further 

structural modifications, through formulation, or by preparing salt forms of the compounds 

(only applicable to compounds 10{21} and 10{32}). Low experimental solubility for all 

compounds was observed, despite improvements in the calculated cLogP values (e.g., 

10{13} and 10{32}). Compounds 10{6}, 10{13}, and 10{21} showed moderate 

permeability, and compounds 3{4} and 10{32} exhibited relatively lower permeability 

(Table 6).

CONCLUSION

In conclusion, we discovered a new chemical series with antiviral activity against HCV and 

explored the SAR around this chemotype utilizing our compound collection and the 

synthesis of a 45-member library of 2,3,5-trisubstituted compounds. In general, these 

compounds showed good potency (submicromolar to low-nanomolar) in the HCV infection 

assay and showed good selectivity compared to the initial qHTS hit. Representative 

compounds appear to inhibit an early stage of the viral lifecycle, possibly viral entry or 

trafficking. Further characterization of the precise biological target of these compounds is 

currently underway.

EXPERIMENTAL PROCEDURES

General Biological Assay Procedures

Human hepatoma cell lines Huh7.5.1 and HepG2 cells were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) (Life technologies, Grand Island, NY, USA) with 10% 

fetal bovine serum (FBS) (Life Technologies, Grand Island, NY, USA) and antibiotics in 5% 

CO2 at 37 °C. The primary human hepatocytes (obtained from S. Strom at the University of 

Pittsburgh through the NIH Liver Tissue and Cell Distribution System) were maintained in 

Williams E medium containing cell maintenance supplement reagents (Life Technologies, 

Grand Island, NY, USA). The primary screen and related bioinformatics were carried out as 

reported.7 Modified HCV particles for infection assays were produced and stocked as 

reported before.7,15,16 In all HCV infection assays, Huh7.5.1 cells were plated in 96-well 

plates at 104 cells/well and incubated overnight unless noted otherwise. HCV viral particles 

were used to infect the cells in the presence of the compounds of interest at a fixed 
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concentration (10 µM) or in concentration–response. After 48 h of incubation, the viral level 

was measured by luminescence unless noted otherwise.

HCV-Luc Infection and ATPlite Assays

HCV-Luc infection was carried out as described in the general procedure. Renilla luciferase 

signal was measured for viral load using the Renilla Luciferase assay system (Promega, 

Madison, WI, USA). Cytotoxicity was tested with the ATPlite assay kit (PerkinElmer, 

Waltham, MA, USA) in parallel. The compound concentration causing 50% effect (antiviral 

and cytotoxicity) was calculated as EC50 and CC50 values using the nonlinear regression 

equation in GraphPad Prism 5.0 software (GraphPad Software Inc., La Jolla, CA, USA).

HCV Replication Cycle Assays

In the HCVcc assay, Huh7.5.1 cells were cultured in 12-well plates at 105 cells/well 

overnight before infection in the presence of compounds. After infection overnight, the 

virus-containing medium was removed, and the compound was added back, followed by 48 

h of incubation. Quantitative real-time PCR was carried out to measure the viral RNA levels. 

The HCV single-cycle assay was performed as described in the general procedure. In the 

HCVpp assay, HCVpp was added to the cells in the presence of compound for 4 h and 

washed away. Cells were incubated for an additional 48 h, followed by a luciferase assay to 

detect inhibition on HCVpp entry. In the HCV subgenomic replicon assay, HCV replicon 

cells were plated as described in the general procedure and treated with test compounds for 

48 h before luciferase readout. In the transient replicon assay, Huh7.5.1 cells were 

transiently transfected with subgenomic replicon RNA before 48 h of incubation with 

compound treatment. Results were obtained as described in the general procedure. 

Cyclosporin A at 10 µM (in HCVsc and replicon assays) and bafilomycin A1 at 10 nM (in 

HCVpp assay) were tested as positive controls.

Physicochemical Properties

The cLogP values were calculated using CambridgeSoft Chemdraw software. For the 

measurement of in vitro microsomal stability, compounds were incubated with human, 

mouse, or rat microsomes at 37 °C with cofactor NADPH. At 0, 5,15, 30 and 45 min, the 

concentration of compounds was measured by LC–MS/MS. Half-life (t1/2) was calculated as 

described before.17 The fully automated HTP platform (pION Inc., Billerica, MA, USA) was 

used to measure the solubility and permeability of compounds following the protocol of 

µSOL Evolution and the double-sink PAMPA (parallel artificial memebrane permeability 

assay), respectively.

General Synthetic Procedures

All chemicals were used as received from commercial sources. Commercial anhydrous 

organic solvents (EtOAc, CHCl3, MeOH, EtOH, MeCN, DMF, hexane, toluene, etc.) were 

used for all reactions. The parallel chemistry reactions were carried out in a Mettler Toledo 

Miniblock or sealed microwave vials. Stirring was achieved with oven-dried, magnetic stir 

bars. Analytical thin layer chromatography (TLC) was performed using commercially 

prepared polyester-backed silica gel plates (200 µm), and visualization was effected with 
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short wavelength UV light (254 nm). Flash column chromatography was carried out using 

Teledyne Isco CombiFlash Rf employing normal phase disposable columns. 1H and 13C 

NMR spectra were recorded on a Bruker Avance spectrometer (400 MHz/500 MHz 1H and 

101/126 MHz 13C). Chemical shifts are reported in parts per million (ppm), and referenced 

to the solvent: CDCl3 with TMS as internal reference (0.0 ppm for 1H and 0.0 ppm for 13C) 

and DMSO-d6. Coupling constants (J) are reported in Hertz (Hz). Purification via 

preparative HPLC was achieved utilizing a Waters X-Bridge C18 column (19 × 150 mm, 5 

µm, with 19 × 10 mm guard column) at a flow rate of 20 mL/min. Samples were diluted in 

DMSO and purified using an elution mixture of water and MeCN, running a concentration 

gradient that increased by 20% MeCN over a 4 min period. Analytical analysis after 

preparative chromatography utilized a Waters Acquity system with UV detection and mass 

detection (Waters LCT Premier). The analytical method conditions included a Waters Aquity 

BEH C18 column (2.1 × 50 mm, 1.7 µm) and elution with a linear gradient of 5% MeCN in 

water to 100% MeCN at 0.6 mL/min flow rate. The purity of each sample was determined 

using the UV peak area detected at 214 nm wavelength. High-resolution mass spectra for the 

diversified products were recorded using a time-of-flight mass spectrometer.

All synthesized compounds tested were determined to be >95% purity by HPLC/HRMS 

determination, with the following exceptions: 10{13} (92.8%), 10{21} (93.9%), 10{34} 

(90.2%), 10{41} (92.9%), 10{42} (94.0%), 10{43} (94.4%), and 10{44} (94.6%). A table 

of the purity for all synthesized final analogs is provided in the Supporting Information.

Representative synthetic procedure, synthesis of 10{21} (experimental details for all 

synthetic intermediates and the preparation of an additional 19 library compounds is 

provided in the Supporting Information):

6-Chloro-2-iodo-3-methoxypyridine (6b)—In an oven-dried round-bottomed flask, 6-

chloro-2-iodopyridin-3-ol (2.5 g, 9.8 mmol) was dissolved in THF (20 mL), and then a 1 M 

solution of potassium tert-butoxide in THF (15 mL, 15 mmol) was added slowly to the 

reaction mixture at room temperature. The resulting reaction mixture was stirred for 15 min, 

and then iodomethane (0.914 mL, 15 mmol) was added slowly to the mixture, upon which 

the colorless solution turned into a white suspension. The reaction was quenched after 8 h 

with 20 mL of water and extracted with EtOAc (2 × 40 mL). The organic layers were 

pooled, washed with brine, dried over Na2SO4, and concentrated in vacuo. Silica gel column 

chromatography with EtOAc/hexane provided the desired compound as an off-white solid 

(1.5 g, 5.6 mmol, 57% yield). mp = 64–71 °C (uncorrected). 1H NMR (500 MHz, 

chloroform-d) δ 7.16 (d, J = 8.5 Hz, 1H), 6.91 (d, J = 8.5 Hz, 1H), 3.84 (s, 3H). 13C NMR 

(126 MHz, CDCl3) δ 155.04, 141.38, 123.65, 119.26, 108.97, 56.83. HRMS (ESI) m/z calcd 

for C6H6ClINO+ [M + H]+, 269.9177; found, 269.9171.

6-Chloro-3-methoxy-2-((4-methoxyphenyl)ethynyl)-pyridine (7c)—A solution of 

6-chloro-2-iodo-3-methoxypyridine 6b (1.43 g, 5.31 mmol), PdCl2(PPh3)2 (112 mg, 0.16 

mmol, 3 mol %) and CuI (61 mg, 0.31 mmol,6 mol %) in Et3N (12 mL) was stirred briefly 

at 0 °C, and then 1-ethynyl-4-methoxybenzene 11a (1.0 mL, 8 mmol) was added to the 

reaction mixture. The reaction mixture was warmed to rt and allowed to proceed under 

vigorous stirring for ~18 h under an argon atmosphere. The resulting mixture was diluted 
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with EtOAc (2 × 50 mL). The separated organic layers were washed with water and brine, 

dried over Na2SO4, and concentrated in vacuo. The crude product was purified by column 

chromatography on silica gel using EtOAc/hexane as the eluent to afford the corresponding 

product 7c as a yellow, amorphous solid (1.35g, 4.93 mmol, 93% yield). 1H NMR (400 

MHz, chloroform-d) δ 7.64–7.54 (m, 2H), 7.27–7.18 (m, 2H), 6.95–6.86 (m, 2H), 3.96 (s, 

3H), 3.86 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 160.31, 155.90, 141.65, 133.76, 133.43, 

123.67, 120.73, 114.23, 114.02, 95.60, 83.33, 56.39, 55.34. HRMS (ESI) m/z calcd for 

C15H13ClNO2
+ [M + H]+, 274.0629; found, 274.0602.

6-(Benzo[d][1,3]dioxol-5-yl)-3-methoxy-2-((4-methoxyphenyl)ethynyl)pyridine 
(8g)—To a solution of chloroalkyne 7c (370 mg, 1.35 mmol), X-PHOS (129 mg, 0.27 

mmol, 20 mol %) and Pd(OAc)2 (30 mg, 0.135 mmol, 10 mol %) in a dioxane (10 mL)/

water (2 mL) mixture, and K3PO4 (860 mg, 4.0 mmol) were added under an argon 

atmosphere to a 20 mL microwave vial. To the resulting mixture was added boronic acid 12b 
(450 mg, 2.7 mmol), and the mixture was vacuum-purged three times. The reaction mixture 

was heated at 100 °C for 120 min under microwave irradiation. Upon cooling to room 

temperature, the reaction mixture was extracted with EtOAc (2 × 40 mL). The combined 

organic extracts were dried over Na2SO4, concentrated, and purified by silica gel flash 

column chromatography using EtOAc/hexane as the eluent to afford the corresponding 

product 8g as a yellow solid (335 mg, 0.932 mmol, 69% yield). mp = 188–192 °C 

(uncorrected). 1H NMR (400 MHz, chloroform-d) δ 7.55–7.50 (m, 2H), 7.47 (d, J = 8.7 Hz, 

1H), 7.43 (d, J = 1.7 Hz, 1H), 7.38 (dd, J = 8.1, 1.8 Hz, 1H), 7.18 (d, J = 7.5 Hz, 1H), 6.83 

(s, 1H), 6.83–6.76 (m, 2H), 5.93 (s, 2H), 3.88 (s, 3H), 3.77 (s, 3H). 13C NMR (126 MHz, 

CDCl3) δ 160.03, 155.63, 149.59, 148.16, 147.92, 133.71, 133.26, 133.20, 120.48, 119.86, 

118.50, 114.81, 113.93, 108.35, 107.30, 101.22, 93.93, 84.57, 56.06, 55.32. HRMS (ESI) 

m/z calcd for C22H18NO4
+ [M + H]+, 360.1230; found, 360.1199.

5-(Benzo[d][1,3]dioxol-5-yl)-3-iodo-2-(4-methoxyphenyl)-furo[3,2-b]pyridine (9i)
—To a solution of the alkyne 8g (359 mg, 1.0 mmol) in CH2Cl2 (15 mL) was added 

gradually iodine monochloride (244 mg, 1.5 mmol) dissolved in CH2Cl2 (10 mL). The 

reaction mixture was allowed to stir at rt for 2 h and was monitored by TLC to establish 

completion. The excess iodine monochloride was removed by washing with saturated 

aqueous Na2S2O3 solution (2 × 30 mL). The organic layers were dried over anhydrous 

Na2SO4 and concentrated under vacuum to afford the crude product, which was purified by 

flash chromatography on silica gel using EtOAc/hexanes as the eluent to provide the 

benzofuran product 9i as an off-white solid (350 mg, 0.743 mmol, 74% yield). mp = 178–

182 °C (uncorrected). 1H NMR (500 MHz, chloroform-d) δ 8.23–8.21 (m, 2H), 7.73–7.68 

(m, 2H), 7.63–7.58 (m, 2H), 7.08–7.01 (m, 2H), 6.96–6.88 (m, 1H), 6.04 (d, J = 2.7 Hz, 2H), 

3.90 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 160.89, 156.78, 154.10, 149.28, 148.25, 

146.00, 133.90, 129.25, 122.22, 121.18, 118.43, 116.94, 114.06, 110.14, 108.42, 107.85, 

101.26, 62.92, 55.44. HRMS (ESI) m/z calcd for C21H15INO4
+ [M + H]+, 472.0040; found, 

472.0038.

1-((5-(Benzo[d][1,3]dioxol-5-yl)-2-(4-methoxyphenyl)furo-[3,2-b]pyridin-3-
yl)ethynyl)cyclohexanol (10{21})—To a 4 dram vial was added successively the 3-
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iodobenzofuran 9i (42 mg, 0.09 mmol), the alkyne 13a (22 mg, 0.18 mmol), PdCl2(PPh3)2 

(35 mg, 0.009 mmol, 5 mol %), CuI (2 mg, 0.009 mmol, 5 mol %), DMF (1 mL), and 

Et2NH (0.5 mL). The solution was stirred and flushed with argon and then heated to 80 °C 

for 15 h. The TLC revealed complete conversion of the starting material. The solution was 

allowed to cool and diluted with EtOAc (3 mL). The combined organic layers were 

concentrated in vacuo and purified by mass-directed, preparative HPLC to afford the 

trisubstituted product 10{21} (19 mg, 0.04 mmol, 44% yield). 1H NMR (500 MHz, 

chloroform-d) δ 8.32–8.21 (m, 2H), 7.78 (d, J = 8.6 Hz, 1H), 7.58–7.49 (m, 3H), 7.05–6.98 

(m, 2H), 6.92 (d, J = 8.1 Hz, 1H), 6.04 (s, 2H), 3.91 (s, 3H), 2.19 (d, J = 12.3 Hz, 2H), 1.88–

1.73 (m, 6H), 1.71–1.61 (m, 2H), 1.45–1.28 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 
161.20, 160.31, 153.61, 148.58, 148.19, 147.78, 145.98, 128.05, 122.01, 121.89, 119.28, 

117.07, 114.19, 108.45, 108.06, 102.73, 101.40, 97.93, 74.40, 69.19, 55.48, 40.98, 39.94, 

25.38, 23.55. HRMS (ESI) m/z calcd for C29H26NO5
+ [M + H]+, 468.1806; found, 

468.1843.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of representative HCV direct-acting antivirals.
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Figure 2. 
Confirmed qHTS hit compounds from the benzofuran series.
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Figure 3. 
Summary of explored modifications around 1a (PubChem compound CID 24747883).
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Figure 4. 
Library design and building blocks.
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Figure 5. 
Inhibition of wild-type HCV infection in human hepatocytes by selected analogs. Huh7.5.1 

cells were seeded in 12-well plates (105 cells/well) and cultured overnight. HCVcc was used 

to infect the cells with the treatment of compounds at 10 µM. Virus-containing medium was 

removed after 4 h incubation, and compound treatment was added back, followed by 

incubation for an additional 48 h. Intracellular and extracellular viral RNA levels were 

evaluated by quantitative real-time PCR. The results shown are the means of three replicates 

± SE. Cyclosporin A at 10 µM was used as a positive control.
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Scheme 1. 
General Synthetic Schemea

a(a) I2, Selectfluor, rt, 4 h (77% yield); (b) PdCl2(PPh3)2 (3 mol %), CuI (2 mol %), Et3N, 

23 °C 18 h (75–93% isolated yield); (c) “various Suzuki-Miayura cross coupling conditions” 

(41–93% isolated yield); (d) ICl, DCM, rt, 4 h (30–89% yield); (e) PdCl2(PPh3)2 (3 mol %), 

CuI (2 mol %), Et2NH, DMF, 80 °C 15 h (library synthesis and MDF purification)8
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Table 4

HCV Inhibition and Cytotoxicity of Benzofuran Library Analogs

a
Sample was tested independently (n ≥ 2), and value is an average.
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