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Abstract 

Adequate sleep is paramount for children’s healthy development of emotion regulation, 

academic achievement, and cognitive performance. The critical need for sleep in children has 

sparked extensive research in which four independent domains have emerged, some providing 

inconclusive support for detrimental outcomes in health-related quality of life (HRQOL) when 

impaired. Yet, daytime sleepiness, which uniquely captures a child’s subjective sleep experience, 

has seldom been explored. To determine the chronicity of sleepiness, the current study employed 

latent class growth analysis to identify longitudinal trajectories, or classes, of children’s daytime 

sleepiness. Trajectories were subsequently utilized to assess their association with HRQOL. The 

present sample included 158 elementary-age children. Children’s self-report of daytime 

sleepiness and HRQOL was collected at three time points across an academic year. Results 

provided support for three trajectories (i.e., classes) of sleepiness and a significant association 

between class membership and later HRQOL, F(2, 124) = 17.38, p < .001. Post hoc tests 

revealed significant differences in HRQOL between the Low and Moderate trajectories (p < .01), 

Low and High trajectories (p < .001), and between the Moderate and High trajectories (p < .01). 

Analyses indicated that children with high and stable sleepiness experienced impairments in 

HRQOL comparable to children with chronic health conditions. Results suggest that sleepiness is 

more pervasive and widespread than other facets of sleep behavior. Implications include the 

establishment of daytime sleepiness as a pervasive state with both statistical and clinical 

significance. Future research should focus on generating empirically derived normative data to 

provide researchers and clinicians reference values to assess sleepiness reports relative to clinical 

impairment.  
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Introduction 

 Sleep is a universal phenomenon necessary for sustaining life and achieving optimal daily 

functioning. Despite the seemingly passive nature of the sleep state, sleep is a time in which 

complex, neurophysiological functions occur (España & Scammell, 2004). The consolidation of 

memories, regulation of neuroendocrine functioning, and the growth and development of the 

central nervous system are heavily dependent upon the sleep process (Mindell & Owens, 2009). 

Adequate sleep is critical for growth, development, and cognitive performance, including 

learning and executive functioning (Sadeh, 2007). 

 Children and adolescents spend as much as 40% of their day sleeping (Mindell & Owens, 

2015), which has prompted more than a century of research needed to understand how sleep 

impacts behavior. Initial studies of sleep were largely limited to documentation of “quantitative 

aspects of sleep” (i.e., sleep duration) of children in orphanages and nursery schools (Reynolds 

& Mallay, 1933, p. 349). Subsequently, researchers have studied sleep from many perspectives, 

and have therefore developed more precise terminology to characterize aspects of sleep behavior. 

Four main constructs have emerged as domains used to understand children’s sleep: quality, 

disturbances, duration, and sleepiness. Although these domains share some commonalities and 

may influence one another, research suggests that they have unique characteristics, and at times, 

different outcomes (Dewald, Meijer, Oort, Kerkhof, & Bögels, 2010; Meijer, Habekothé, & van 

den Wittenboer, 2000; Pilcher, Ginter, & Sadowsky, 1997).  

  Sleep quality, one domain of sleep behavior, measures the feeling of restfulness and 

satisfaction with the sleep experience (Pilcher et al., 1997). Sleep quality, when measured 

objectively through actigraphy, is commonly reported as efficiency (Paavonen et al., 2010), and 

includes factors such as early onset of sleep and fewer sleep disturbances and early awakenings 
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(Meijer et al., 2000). Correlations between number of hours slept and sleep quality are low or 

nonsignificant, indicating that sleep quality is a unique and independent construct from duration 

(Dewald et al., 2010; Meijer et al., 2000; Pilcher et al., 1997).  

 Research suggests that sleep quality is more strongly associated with subsequent daytime 

sleepiness, emotional state, behavior, and cognitive function than other sleep domains (Dewald 

et al., 2010). For example, Segura-Jiménez, Carbonell-Baeza, Keating, Ruiz, and Castro-Piñero 

(2015) examined the relationship between perceived sleep quality and positive psychological 

health in a sample of children ages 6-11 years. Sleep quality was associated with improved 

reported health status, life satisfaction, positive family relationships, and better academic 

performance. Consistent with these findings, sleep quality has also been related to academic and 

cognitive performance (Dewald et al., 2010; Paavonen et al., 2010; Sadeh, Gruber, & Raviv, 

2002). Sadeh et al. (2002) reported that children’s performance on complex neurobehavioral 

tasks is impaired in the presence of poor sleep quality. Paavonen et al. reported similar findings 

in that sleep quality negatively impacts verbal reasoning. In a meta-analysis by Dewald et al. 

(2010), the negative effects of poor sleep quality are especially pronounced when using 

subjective sleep quality reports and in samples of younger children. The sequela of negative 

outcomes associated with poor sleep quality is indicative of its impact on a child’s functioning in 

a wide array of domains.  

Sleep disturbances collectively describe difficulties with the initiation or maintenance of 

sleep, and include phenomena such as restless legs symptoms, nightwakings, night terrors, sleep 

walking/talking, and insomnia. Despite their occasional use as a proxy for sleep quality 

(Paavonen et al., 2010), sleep disturbances may also impact sleep duration. This domain may be 

described as “sleep disruptions” or “problems,” and is commonly measured through self-report 
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assessments (e.g., Children’s Report of Sleep Problems, Meltzer et al., 2013; Sleep Disturbance 

Scale for Children, Bruni et al., 1996). Sleep disturbances may also be assessed using objective 

measures including polysomnography and actigraphy (Meltzer et al., 2013). Approximately 25-

40% of healthy, typically developing children experience some type of sleep problem (Mindell & 

Owens, 2009), including difficulty with sleep onset latency, bedtime resistance, and increased 

nighttime fears (Mindell, Carskadon, Chervin, & Meltzer, 2004; Smaldone, Honig, & Byrne, 

2007).  

 A growing body of research has examined the relationship between sleep problems and 

child outcomes. For example, in a prospective longitudinal study of child sleep, Price, Wake, 

Ukoumunne, and Hiscock (2012) found that parent-reported infant sleep problems (at 12 

months) were related to poorer self-reported psychosocial and physical health-related quality of 

life (HRQOL) at 6 years. Evidence for a concurrent association between these variables was also 

found. Quach, Hiscock, Canterford, and Wake (2009) studied patterns of sleep problems at two 

time points over a two-year period. At wave 1, 33.6% of parents reported a sleep problem; 

whereas, at wave 2, a reduction was found with only 22.6% of parents reporting their child had a 

sleep problem. Children with parent-reported sleep problems at both time points (2.9%) and 

those with sleep problems during the second time point (2.8%) presented with the poorest 

HRQOL. Finally, in a cross-sectional study of children ages 4-8 years, 38.6% of parents reported 

their child had a sleep problem, which yielded a strong, adverse association with all HRQOL 

domains (Quach, Hiscock, & Wake, 2012). These findings suggest that past and present sleep 

problems in childhood have strong implications for child outcomes, specifically, HRQOL.  

 Sleep Duration may be viewed as the most objective domain of children’s sleep (Dewald 

et al., 2010). It is defined as the actual time a child is asleep, and is assessed via parent- and/or 
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child-report and actigraphy and polysomnography. In the literature, it may be referred to as 

“insufficient,” “diminished,” “disrupted,” or “inadequate” sleep duration, sleep “quantity,” or 

(less precisely) as “time in bed” (Dewald et al., 2010; Graef, Janicke, McCrae, & Silverstein, 

2014; Matricciani, Olds, & Petkov, 2012b; Pilcher et al., 1997).  

Although age-based recommendations for sleep duration have been provided (e.g., 

American Academy of Sleep Medicine, 2012; Blair et al., 2012), recent challenges to these 

recommendations have been published (Matricciani, Olds, Blunden, Rigney, & Williams, 2012). 

Indeed, research has consistently demonstrated that sleep duration is highly variable among 

children and considerable inter-individual variability exists. Blair et al. (2012) noted that sleep 

duration ranged from 10 to 17 hours in infancy, although this window narrowed to 8.5 to 11 

hours at age 11 years. Similar findings were reported by other investigatory teams (Iglowstein, 

Jenni, Molinari, & Largo, 2003; Jenni, Molinari, Caflisch, & Largo, 2007). 

Despite a high degree of variability across children, sleep duration tends to be a trait-like 

quality in that sleep patterns remain relatively stable (i.e., within person) through childhood. For 

instance, children who sleep shorter periods than their peers tended to do so throughout their 

childhood (Blair et al., 2012; Jenni et al., 2007; Magee, Gordon, & Caputi, 2014). Jenni et al. 

(2007) further noted that smaller intra-individual yearly fluctuations, relative to inter-individual 

differences, in sleep duration also occur. Findings from these recent longitudinal sleep studies 

necessitate that recommendations for appropriate sleep duration in children must consider the 

significant individual variability related to child characteristics (Blair et al., 2012; Jenni et al., 

2007). In light of the literature on insufficient sleep and various outcomes, Matricciani, Blunden, 

Rigney, Williams, and Olds (2013) commented on sleep as a complex phenomenon, which may 

not be accurately summarized into a set of age-dependent recommendations. Rather, the amount 
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of sleep a child needs is largely influenced by a number of factors including intra-individual 

variability (Jenni et al., 2007), gender (Blair et al., 2012), socioeconomic status (Blair et al., 

2012), and cultural background (Liu, Liu, Owens, & Kaplan, 2005). This suggests that there is 

something more to the relationship between obtaining, or failing to obtain, the recommended 

sleep duration and various dependent variables. 

Despite the controversy regarding age-based recommendations, inadequate sleep duration 

has been linked to a range of maladaptive physical and psychosocial outcomes including 

increased sensitivity to emotional and stressful events (for review see Vandekerckhove & 

Cluydts, 2010), more internalizing and externalizing behavior problems (Paavonen, Porkka-

Heiskanen, & Lahikainen, 2009), and higher family stress (Sadeh et al., 2000). Research has 

further associated insufficient sleep with key health behaviors such as higher rates of obesity 

(Chaput, Brunet, & Tremblay, 2006) and greater perceptions of health problems (Graef et al., 

2014). Generally speaking, insufficient sleep is thought to increase risk for these outcomes by 

increasing emotional instability and impairment in executive functioning (Graef et al., 2014; 

Hiscock, Canterford, Ukoumunne, & Wake, 2007; Paavonen et al., 2009). 

  Daytime sleepiness is the most common byproduct of inadequate sleep duration and poor 

sleep quality (e.g., Blunden et al., 2006; Dahl & Lewin, 2002; Dewald et al., 2010; Liu et al., 

2005; Quach et al., 2012; Shochat, Cohen-Zion, & Tzischinsky, 2014). Sleepiness can be 

assessed from physiological, subjective, and/or behavioral perspectives (Fallone et al., 2002).  

 Physiologically, sleepiness is characterized by homeostatic and circadian influences, 

including length of time since the last sleep period and the amount of sleep debt (Fallone, 

Owens, & Deane, 2002). Several laboratory-based measures of sleepiness and wakefulness have 

been developed to objectively measure the physiological experience of daytime sleepiness. 
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During these assessments, the tendency to fall asleep or the ability to stay awake are measured. 

Despite advances in these objective measures of sleepiness, weak correlations have been found 

between the subjective self-report measures of sleepiness and values obtained from the objective 

tests (Arand et al., 2005; Chervin, Aldrich, Pickett, & Christian, 1997), suggesting that subjective 

and objective measures assess different aspects of sleepiness (Arand et al., 2005). 

 Subjective and behavioral manifestations of sleepiness commonly rely on self- and 

proxy-report measures. Subjective sleepiness, or children’s psychological experience, is typically 

measured using questionnaires and scales (e.g., Children’s Report of Sleep Patterns – Sleepiness 

Scale [Meltzer et al., 2012], Pediatric Daytime Sleepiness Scale [Drake et al., 2003]). As a 

behavioral dimension, sleepiness can be assessed through manifestations of “sleepy” behavior, 

such as yawning, rubbing eyes, and even inattentiveness and hyperactivity. For instance, the 

Teacher’s Daytime Sleepiness Questionnaire (Owens, Spirito, McGuinn, & Nobile, 2000) was 

developed to assess the frequency of yawning, complaining about sleep, and difficulty staying 

awake in the classroom. Similarly, parents may be asked to report daytime hyperactivity and 

propensity for a child to fall asleep during daytime situations (Melendres, Lutz, Rubin, & 

Marcus, 2004; Moore et al., 2009).   

 Previous research has demonstrated a strong relationship between psychosocial health 

and sleepiness (Blunden et al., 2006; Carskadon & Acebo, 2002; Dahl & Harvey, 2007; Dahl & 

Lewin, 2002; Shochat et al., 2014). Associations between sleepiness and mood (Shochat et al., 

2014) and poor coping skills (Matthews, Hall, Cousins, & Lee, 2015) have been found in both 

child and adolescent samples. Additionally, researchers have noted associations between 

sleepiness and impairments in attention, learning, executive functioning, and mood (Beebe, 

2011; Chorney, Detweiler, Morris, & Kuhn, 2008; Curcio, Ferrara, & De Gennaro, 2006; 
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Gregory & Sadeh, 2012). Within academic domains, sleepiness is a stronger predictor of school 

performance than sleep duration or quality (Dewald et al., 2010). Specifically, sleepiness has 

been negatively correlated with reading, math, and language achievement (Keller, El-Sheikh, & 

Buckhalt, 2008). Parents and teachers tend to report more behavioral difficulties, poorer emotion 

regulation, and difficulties with higher-order cognitive processes when children are sleepy 

(Dewald et al., 2010; Smedje, Broman, & Hetta, 2001). 

 Findings from the aforementioned studies provide general insight into the relationship 

between psychosocial outcomes of interest (e.g., anxiety, attention, mood) and sleep duration; 

however, they are limited in their ability to characterize a child’s overall adjustment across a 

range of contexts. These previous studies have relied on very specific, sometimes narrow, 

outcome assessments that do not address the “overall functioning” of the child (e.g., Chorney et 

al., 2008; Curcio et al., 2006). Further, the use of assorted psychosocial measurements is 

problematic as it introduces variability in outcome variables because measures diverge in 

conceptual frameworks, length of administration, and change over time (Drotar, 2014; Spieth & 

Harris, 1996). Therefore, it may be more beneficial to assess a child’s health and functioning by 

capturing their physical, mental, and social adjustment in one measure (Drotar, 2014; Eiser & 

Varni, 2013).  

As first conceptualized by the World Health Organization (WHO) in 1947, the construct 

of HRQOL emerges as a possible avenue for exploring a child’s overall well-being. Defined by 

the WHO (1947), HRQOL refers to a multidimensional approach to understanding health by way 

of three identified dimensions: physical, mental, and social. HRQOL has emerged as a construct 

used to understand individuals’ perceptions of their physical, emotional, and social well-being, 

focusing on individuals’ disease- or treatment-specific experiences (National Institutes of Health, 
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2014). Subsequently, HRQOL is important as a patient-reported outcome and individuals with a 

chronic condition evidence poorer HRQOL relative to their healthy peers. This effect is further 

compounded for individuals with comorbid diseases (Rothrock et al., 2010). Since its inception 

in 1947, the core components of HRQOL have expanded and additional domains have been 

suggested as important constructs to consider when measuring HRQOL (Spieth & Harris, 1996).  

Currently, evidence for the relationship between sleep duration and HRQOL is relatively 

mixed. Although a number of measures of HRQOL have been developed and validated (see 

Palermo et al., 2008, for review), a dearth of research has explored the relationship between 

sleepiness and HRQOL. Findings from one study of 4- to 5-year-old children determined that 

morning tiredness (i.e., daytime sleepiness) most negatively impacted HRQOL, more so than 

sleep problems such as snoring and nightwakings (Hiscock et al., 2007). Therefore, this study 

documents a concurrent relationship between sleepiness and HRQOL and, thereby indicates that 

sleepiness has a global impact on a child’s well-being. 

A number of recent studies has provided mixed evidence for a relationship between 

HRQOL and sleep duration. In a longitudinal sleep duration study spanning from infancy to age 

7 years, Magee, Gordon, and Caputi (2014) identified four sleep trajectories (typical sleepers, 

initially short sleepers, poor sleepers, and persistent short sleepers), each with unique 

implications for HRQOL. Children classified as “initially short” and “poor sleepers” had poorer 

physical HRQOL. “Persistent short sleepers” evidenced greater impairment across HRQOL 

domains and had significantly lower physical, emotional, and social HRQOL compared with 

“typical sleepers.” In a second study, Vella, Magee, and Cliff (2015) modeled longitudinal 

trajectories of HRQOL in children beginning at age 4 through 13 years with sleep duration data 

collected every 24 months. Sleep duration at ages 4 and 5 years was not found to be a significant 



  9 

  

predictor of HRQOL trajectories in their sample. The null finding may be attributed to intra-

individual variability, as well as changes in sleep need from preschool to adolescence. Finally, in 

a cross-sectional study, children with poorer HRQOL at age 6-7 years had increased sleep 

duration (Price, Quach, Wake, Bittman, & Hiscock, 2015), but this relationship was not found in 

children ages 4-5 and 8-9 years. Taken together, these findings demonstrate that the link between 

sleep duration and HRQOL is not well understood and there are many factors, such as 

developmental age range, study design, and frequency and format of assessment that likely 

contribute to the mixed findings.  

Limitations of Existing Research  

 Despite an abundance of research exploring the outcomes of poor sleep quality and 

insufficient sleep duration, the current literature remains limited in several areas. First, 

longitudinal research in children’s sleep in relation to HRQOL is scarce, particularly with regard 

to longitudinal evaluations of sleepiness. The data provided by currently available longitudinal 

studies of sleep duration and problems (Magee et al., 2014; Price et al., 2012; Price et al., 2015; 

Quach et al., 2009) provide insight into children’s sleep behavior and its association with 

HRQOL. However, no studies to date have examined longitudinal associations between 

sleepiness and HRQOL. Given that, concurrently, sleepiness is a better predictor of HRQOL than 

sleep problems, longitudinal studies of the association between sleepiness and HRQOL are 

needed to inform future research and clinical practice. Based on the literature reviewed above, it 

is anticipated that trajectories of daytime sleepiness will evidence significant associations with 

HRQOL.  

 The current longitudinal research is also limited to samples of children up to age 7 years 

(e.g., Magee et al., 2014; Price et al., 2012; Price et al., 2015), using sleep duration and 
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problems, and often focusing on preschool children preparing to transition into school. This is 

problematic as sleep recommendations change from 11 to 13 hours per night in preschoolers to 

10 to 11 hours in elementary-aged children. Without biological basis to substantiate these 

recommendations, and given the significant inter-individual variability, it is unclear how these 

transitional periods may affect outcomes. Therefore, studies assessing the longitudinal 

associations between sleepiness and outcome measures are needed across the range of 

developmental periods of children, including middle childhood (Iglowstein et al., 2003; Jenni et 

al., 2007). 

 Third, existing longitudinal studies of both sleep duration or sleep problems and 

associations with HRQOL frequently rely on parent-reported assessments of sleep. For example, 

parents have been asked if their child has sleep problems (“no”, “mild”, “moderate”, or “severe”; 

Price et al., 2012; Quach et al., 2009). When assessing sleep duration, parents were provided a 

sleep diary and were asked to report on sleep patterns during an interview (Magee et al., 2014). 

Sleep duration and problems assessed in this manner may lack accuracy and sensitivity to factors 

that could affect quality and quantity (e.g., Magee et al., 2014; Price et al., 2012; Price et al., 

2015). Additionally, in the majority of longitudinal studies, parents provided proxy ratings of 

HRQOL. Unfortunately, there is substantial evidence to suggest that HRQOL measured by 

parent-report may not accurately capture children’s well-being as it is a subjective experience 

(e.g., Buttitta, Iliescu, Rousseau, & Guerrien, 2014; Vella et al., 2015). Studies that examine 

child-reported sleep problems (including daytime sleepiness) and HRQOL will add to the 

growing literature on the impact of sleep on HRQOL.   

 Fourth, extant longitudinal studies of sleep and HRQOL typically rely on annual or 

biennial assessments of sleep behavior (e.g., Magee et al., 2014; Price et al., 2015). Although it is 
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believed that sleep duration is trait-like (Jenni et al., 2007), research indicates that there may be 

significant intra-individual variability (e.g., Quach et al., 2009). However, children with 

persistent sleep problems have been shown to evidence compromised HRQOL (Price et al., 

2012; Quach et al., 2009; Quach et al., 2012). Therefore, multiple assessments may be needed to 

capture true patterns and fluctuations of sleep behavior. Also, for children with persistent sleep 

problems, it is imperative to know how pervasive the effects of long-term sleepiness are and how 

sleepiness continues to impact their HRQOL. Although previous research has included HRQOL 

as an outcome measure (e.g., Hiscock et al., 2007; Magee et al., 2014; Price et al., 2012; Price et 

al., 2015), it is unclear whether continued sleep problems affect HRQOL over time. Several 

researchers have noted this as a limitation and have called for research to better delineate how 

sleep patterns and behavior affect overall functioning (e.g., Dahl & Lewin, 2002; Fallone et al., 

2002; Shochat et al., 2014).  

 Finally, although evidence in preschool children provides preliminary support for a 

concurrent relationship between sleepiness and HRQOL (Price et al., 2012; Price et al., 2015; 

Quach et al., 2009), the dynamic, longitudinal association between the two constructs remains 

unexplored (Dahl & Harvey, 2007; Dahl & Lewin, 2002; Shochat et al., 2014). Several 

publications have recognized these limitations and call for investigations of longitudinal data 

following sleep patterns and daytime functional outcomes (Dewald et al., 2010; Shochat et al., 

2014). As of yet, these questions remain unanswered, but if studied, may shed insight into the 

pervasive effects of sleepiness in childhood. 

Present Study 

 The present study was designed to evaluate two previously unexamined questions 

regarding the longitudinal pattern of sleepiness and its association with HRQOL. In Aim 1, this 
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study explored the longitudinal trajectories (patterns) of sleepiness over an academic year (nine-

month span). Previous work has highlighted the relative intra-individual stability of sleep 

duration (Jenni et al., 2009), with some fluctuations noted (Quach et al., 2009). What remains to 

be examined is the trajectory of sleepiness across time. Assessing sleepiness longitudinally will 

likely capture any changes or fluctuations that may occur, and may better represent children’s 

experiences. Additionally, by using a person-centered analytical approach, it can be determined 

whether a child’s sleepiness is persistent, or even chronic. Previous research has suggested 

several patterns of sleep problems and duration across childhood (e.g., Magee et al., 2014; Quach 

et al., 2009); however, the literature lacks a conceptualization of sleepiness patterns, which limits 

the ability to estimate or hypothesize the number of trajectories that will emerge. Therefore, an 

exploratory approach was employed, which allowed the data to guide the model selection 

process. Identifying and determining these trajectories will lead to an improved understanding of 

how sleepiness influences health and well-being. 

 Aim 2 of the present study was designed to use the trajectories gathered in Aim 1 to make 

determinations about the associations between trajectories of sleepiness and HRQOL. Literature 

has previously demonstrated that different patterns of sleep behavior (i.e., problems, duration) 

have important implications for children’s psychosocial well-being (Magee et al., 2015; Price et 

al., 2012; Price et al., 2015; Quach et al., 2009; Quach et al., 2012), but only one study has 

documented the negative impact of morning tiredness (i.e., sleepiness) on HRQOL (Hiscock et 

al., 2007). Using trajectories, rather than a single assessment, will provide more specific 

information about patterns of sleepiness that ultimately contribute to a global outcome, HRQOL. 

Although the exact number of classes (i.e., trajectories) that will emerge cannot be estimated a 

priori, it was hypothesized that children with chronic and/or worsening sleepiness across time 
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will evidence the poorest HRQOL; whereas, children with low and/or decreasing sleepiness will 

experience stable or improved HRQOL at Time 3 (T3HRQOL). 

This study is unique in that it relies solely on children’s perceptions of these constructs. 

In the present literature, parent-reports of HRQOL and sleep duration and problems are generally 

used (e.g., Magee et al., 2014; Price et al., 2012; Quach et al., 2009). However, as children enter 

school, they are more able to provide meaningful reports of their behavior and experiences 

(Meltzer et al., 2008; Riley, 2004). Further, evidence suggests that parents tend to under- or 

overestimate HRQOL (Buttitta et al., 2014; Eiser & Morse, 2001; Tsiros et al., 2009) and under-

report sleep behavior (Owens et al., 2000; Paavonen et al., 2000). Taken together, evidence 

indicates that proxy reporters may not adequately capture the relationship between sleepiness and 

HRQOL. Therefore, children’s perceptions (through self-report) will guide the extent and 

severity of sleepiness and will indicate how impairing their sleepiness trajectory is at the end of 

the school year. 

Method 

Participants 

After receiving approval from the University of Kansas Institutional Review Board, 

Unified School District 497, and respective building principals and teachers, 3rd, 4th, and 5th 

grade students were recruited from two elementary schools in Lawrence, Kansas. Eligibility 

criteria were (a) the child was enrolled in 3rd–5th grade, (b) the student spoke and read English, 

and (c) the child’s parent or custodial caregiver provided consent for participation. All eligible 

students were given a consent form that was completed by the child’s parents before the child 

could participate in the proposed study. In addition, children were assented prior to data 

collection and were given the opportunity to withdraw from the study.  
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Procedures 

Questionnaire packets included measures about physical activity, eating attitudes, 

HRQOL, and affect as part of a three-year longitudinal study. Time 1 (October 2015) and Time 3 

(April 2016) data collection occurred in the schools. Research assistants read questionnaires to 

participating children. Time 2 (December 2015) packets were distributed at school and sent 

home for completion. Research assistants provided reminder calls and sent emails to ensure 

successful return rate of packets. Research assistants returned to the schools to collect the 

questionnaire packets. Students who completed packets at Time 1 and Time 3 were mailed a $5 

gift card as an incentive for participation. 

Measures 

 The Children’s Report of Sleep Patterns – Sleepiness Scale (CRSP-S; Meltzer et al., 

2012) is a 5-item self-report measure of sleepiness that has been shown to differentiate between 

children presenting to a primary care provider, sleep laboratory, and sleep clinic. The CRSP-S 

has been validated in children ages 8-12 years (Meltzer et al., 2012) and has demonstrated good 

internal consistency (α = .86; Poppert Cordts & Steele, 2016; George & Mallery, 2003). Test-

retest reliability was .82, p < .001 and the intraclass correlation between parent- and child-report 

was .20, suggesting that children are able to uniquely contribute information that parent reports 

may not be capturing (Meltzer et al., 2012). Internal consistencies for the present sample are 

provided in Table 2 (p. 21).   

 The PedsQL 4.0 Generic Core Scales (PedsQL; Varni, Seid, & Kurtin, 2001) is a 23-item 

self-report measure of HRQOL, which has been widely used in sleep research (Magee et al., 

2014; Price et al., 2012; Price et al., 2015; Quach et al., 2009; Quach et al., 2012). The measure 

provides four subscale scores: Physical (8 items), Emotional (5 items), Social (5 items), and 
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School Functioning (5 items), as well as a Psychosocial Health Summary Score (15 items) and 

Total Score. Consisting of a 5-point Likert scale, response options range from “Never a problem” 

to “Almost always a problem.” Responses are reverse scored to a “0” to “100” scale and the 

subscale scores are derived by summing items and dividing by the number of items answered 

with higher scores signifying better HRQOL. Internal consistency statistics are consistently in or 

above the acceptable range for research use (α > .80; Streiner, 2003). Internal consistencies for 

the present study are provided in Table 2.   

Data Analytic Plan 

 Data were examined for skewness and non-normality. Robust (full information) 

maximum likelihood estimation were used to model the data. Full information maximum 

likelihood allows use of all available data points by modeling missing data (Little, Jorgensen, 

Lang, & Moore, 2014). The use of auxiliary variables to predict missingness and multiple 

imputation were considered to handle missing data; however, these approaches are either not 

possible in a mixture modeling framework or prevented the later use of model comparison 

likelihood ratio tests (Berlin, Parra, & Williams, 2014). In robust maximum likelihood, non-

normally distributed data are accounted for by adjusting the standard errors and scales chi-square 

statistics (Berlin et al., 2014).  

 Latent class growth analysis (LCGA), a subtype of growth mixture modeling, is a person-

centered approach used to identify significant predictors of outcomes (Jung & Wickrama, 2008).  

LCGA allows researchers to identify response patterns and group individuals into classes based 

on similarities. LCGA differs from growth mixture modeling in that variances and covariances 

within each class are fixed to zero. By doing this, homogeneity of individual growth trajectories 
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is assumed. LCGA was performed using structural equation modeling in Mplus 7 (Muthén & 

Muthén, 2014).  

 To evaluate Aim 1, an exploratory approach was taken to identify trajectories of classes. 

Factor loadings were set to 0, 1, and 3 to represent equidistant time intervals. A single-class 

latent growth curve model was specified first. This model served as the baseline and comparison 

model for subsequent analyses. After establishing the baseline model, additional models were 

specified while increasing the number of classes. Classes were continually estimated as long as 

they produced proper solutions, including model nonconvergence, nonplausible values, or 

unidentified local maxima (Berlin et al., 2014; Ram & Grimm, 2009). Comparisons between the 

models were used to determine the most likely number of unobserved groups.  

 Various fit statistics were considered when assessing model fit and determining the final 

model. First, although specific criteria cannot be determined, lower values on the Akaike 

Information Criteria (AIC) and Bayesian Information Criteria (BIC) indicated better fitting 

models (Muthén, 2003; Nylund, Asparouhov, & Muthén, 2007; Ram & Grimm, 2009). Next, 

entropy, ranging from 0.00 to 1.00, was used as a summary indicator of the probability of group 

membership (Jedidi, Ramaswamy, & DeSarbo, 1993). Entropy values approaching 1.00 suggest 

clear class delineation (Celeux & Soromenho, 1996); values greater than 0.80 are generally 

interpreted to indicate that individuals are correctly classified. Higher entropy values also 

suggest significance of class separation and greater certainty of class membership and 

classification accuracy (Berlin et al., 2014; Ram & Grimm, 2009). As recommended by Ram and 

Grimm (2009), models with higher entropy were selected when multiple models had similar fit 

indices (e.g., BIC). Finally, a series of likelihood ratio tests was used to compare models. 

Specifically, the Vuong-Lo-Mendell-Rubin likelihood ratio test (VLMR-LRT) and adjusted Lo-
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Mendell-Rubin likelihood ratio test (Adjusted LRT) were used to compare the models (Lo, 

Mendell, & Rubin, 2001; Muthén, 2004; Nylund et al., 2007; Vuong, 1989). A significant 

likelihood ratio test (p < .05) indicated that the model with fewer classes (C – 1) should be 

rejected in favor of the model with more classes (C). Finally, class trajectories were plotted to 

further examine their distinctiveness as recommended by Jung and Wickrama (2008) and Ram 

and Grimm (2009).   

 As an added step of trajectory confirmation, a k-fold cross-validation procedure was used 

to empirically examine the number of extracted classes (Grimm, Mazza, & Davoudzadeh, 2016). 

This procedure was designed to determine whether the number of classes derived in finite 

mixture modeling is meaningful and substantively useful. In finite mixture modeling, fit indices 

tend to improve as additional classes are specified because the model is more accurately 

representing the data with each increasing class. Additionally, model selection becomes more 

subjective when fit indices are not unanimous (e.g., the AIC provides support for one model, but 

the Adjusted LRT indicates another) and provide conflicting information about the optimal 

number of classes (Grimm et al., 2016).  

 To evaluate Aim 2, and using trajectory class membership obtained in Aim 1, an analysis 

of covariance (ANCOVA) was used to test the hypothesis that sleepiness trajectories are 

associated with T3HRQOL while controlling for T1HRQOL. Only T3HRQOL was included as 

the outcome measure as the present study intended to assess the cumulative effect of sleepiness 

on children’s psychosocial well-being, and focused less on the changes in HRQOL over time. 

Statistical Power 

Currently, no rule exists specifying how large a sample size should be when conducting 

growth mixture modeling (Ram & Grimm, 2009). Further, determining the necessary sample size 
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in LCGA is difficult due to a number of factors, including the size of the between-group 

differences, group sizes, and measurement reliability (Ram & Grimm, 2009). However, other 

longitudinal methods often require greater statistical power than LCGA and are more limited in 

their ability to handle non-normally distributed data and partially missing data (Curran, Obeidat, 

& Losardo, 2010). Despite limitations in using sophisticated power analytic techniques (e.g., 

Monte Carlo simulation studies), rudimentary programs can be used to provide a baseline, 

generalized estimate of sample size. Therefore, a power analysis using the G*Power computer 

program version 3.1.6 (Faul, Erdfelder, Lang, & Buchner, 2007) was conducted to estimate the 

approximate sample size needed to detect significant results. Using ANOVA repeated measures 

between factors design with 95% power and alpha at .05, the power analysis indicated that a total 

sample size of 168 was needed to detect medium effects (f = .25; defined by Cohen, 1992).  

Results 

Descriptive Statistics 

 Data presented in this study were collected as part of a larger investigation of 

psychosocial variables associated with health behaviors and academic performance. Research 

assistants attended school events, provided information about the study, and distributed consent 

forms to parents of eligible children. Additionally, study information was sent home in weekly 

folders by classroom teachers and parents were prompted to return the completed consent form 

regardless of whether they gave consent. At the time of the first data collection, 314 students 

were eligible for the study, according to the State Department of Education. Recruitment efforts 

resulted in 246 (78.3%) returned parental consent forms. Of these, 174 (70.7%) consent forms 

granting participation were returned and 72 (29.3%) denied parental permission. Of the 174 

potential participants for whom parental permission was granted, 15 (8.6%) participants moved 
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away from the school and one participant was unable to complete the measures due to data 

collection time constraints. The final sample included 158 3rd, 4th, and 5th grade students (Mage = 

9.42 years, SD = .95). Demographic characteristics and descriptive statistics for the CRSP and 

PedsQL are presented in Table 1 and Table 2, respectively. Children predominantly identified as 

Caucasian (60.8%), although nearly 10% of participating children identified as “bi-racial” or 

“multiracial,” while 12% indicated that they belonged to a racial or ethnic category that was not 

presented (i.e., “Other”). Slightly more than half (52.5%) were female. 

  

Table 1  

Demographic Characteristics of the Present Sample  

Demographics 
Quail Run Elementary 

(n = 104) 

New York Elementary 

(n = 54) 

Total Sample 

(N = 158) 

Age (years) 9.42 (SD = .99) 9.41 (SD = .88) 9.42 (SD = .95) 

Gender    

Male 48 (46.2%) 27 (50%) 75 (47.5%) 

Female 56 (53.8%) 27 (50%) 83 (52.5%) 

Race/Ethnicity    

White (non-Hispanic) 73 (70.2%) 23 (42.6%) 96 (60.8%) 

Black (non-Hispanic) 6 (5.8%) 0 (0%) 6 (3.8%) 

Hispanic 6 (5.8%) 3 (5.6%) 9 (5.7%) 

Asian 5 (4.8%) 0 (0%) 5 (3.2%) 

American Indian 2 (1.9%) 6 (11.1%) 8 (5.1%) 

Biracial/Multiracial 6 (5.8%) 9 (16.7%) 15 (9.5%) 

Other 6 (5.8%) 13 (24.1%) 19 (12.0%) 
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Table 2 

Summary of Bivariate Correlations, Means, and Standard Deviations for Study and 

Demographic Variables  

 1 2 3 4 5 6 7 8 9 

1. T1 CRSP -         

2. T1 HRQOL -.43** -        

3. T2 CRSP .35** -.41** -       

4. T3 CRSP .49** .40** .45** -      

5. T3 HRQOL -.26** .67** -.37** -.53** -     

6. Age -.11 .12 .01 -.12 .04 -    

7. Gender -.07 .01 -.10 -.14 -.04 .24** -   

8. Race/Ethnicity .04 -.06 .22* .10 .06 -.07 -.11 -  

9. School -.27** .25** .02 -.16 .22** .01 -.04 -.29** - 

M 8.12 77.94 7.03 7.11 79.89 9.42 - - - 

SD 3.60 14.97 3.05 2.40 12.67 .95 - - - 

α .80 .90 .83 .61 .90 - - - - 

Note. **p < .001; *p < .05. T1 CRSP = Time 1 CRSP Sleepiness Scale; T1 HRQOL = T1 

PedsQL HRQOL Total Score; T2 CRSP = Time 2 CRSP Sleepiness Scale; T3 CRSP = Time 3 

CRSP Sleepiness Scale; T3 HRQOL = Time 3 PedsQL HRQOL Total Score. 

 

Data Screening 

 Prior to performing analyses, data were screened for non-normality and the majority of 

items were found to be positively skewed (i.e., < 1.0). Patterns of missingness were assessed 

using Little’s Missing Completely at Random test in SPSS version 23 (IBM Corp., 2015). Data 

were determined to be missing completely at random after the test failed to reject the null 

hypothesis (X2(8) = 7.30, p > .50). Therefore, to accommodate skewness and missingness, robust 

(full information) maximum likelihood was used to estimate all models.  

Aim 1 

 Structural equation modeling (SEM) in Mplus Version 7 (Muthén & Muthén, 2014) was 

used for model generation. Latent class growth analyses were estimated using robust maximum 

likelihood and slope and intercept variances were fixed to zero. Maximum likelihood values, 

entropy, adjusted LRT, and VLMR-LRT are presented in Table 3. Initially, a univariate growth 

model was specified in which the data were forced to converge into one class. In line with 

recommendations by Ram and Grimm (2009), additional classes were added to the model until 
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convergence issues were encountered. Two-, three-, and four-class models were estimated. 

Relative to the 2-class model, the 3-class model yielded better model fit as evidenced by a 

decrease in the AIC and BIC; however, likelihood ratio tests were not significant, indicating the 

2-class model should not be rejected in favor of the 3-class model. When comparing the 3-class 

and 4-class models, fit indices marginally decreased as the number of classes increased. 

Likelihood ratio tests of the 4-class model were significant, suggesting that the more 

parsimonious, 3-class model should be retained. A 5-class model was specified, but failed to 

converge; therefore, no additional models were specified. Entropy was adequate for the 2- to 4-

class solutions (.92, .86, & .86 for 2-class to 4-class models, respectively).  

 

 As outlined in the Data Analysis Plan and following recommendations from Jung and 

Wickrama (2008) and Ram and Grimm (2009), visual inspection of plotted means was also used 

as an ancillary step in model evaluation. Specifically, graphs generated by Mplus for class 

trajectories were evaluated after each model was specified (Figure 1). The visual display of class 

means provided another opportunity to assess if there were logical group differences among the 

classes, or if the specified model resulted in considerable overlap. While the cursory review of 

the graphs was not “diagnostic” in model selection, it generated dialogue about the substantive 

meaningfulness of the classes. When used in conjunction with the aforementioned fit statistics, it 

Table 3 

Parameters of fit of latent class growth analysis 

Class AIC BIC ABIC Entropy 
Adjusted LRT VLMR-LRT 

p 2LL p 

1 1899.161 1914.474 1898.646 - - - - 

2 1813.696 1838.197 1812.873 .916 85.814 .0007 .0004 

3 1779.488 1813.177 1778.357 .857 37.724 .0801 .0675 

4 1769.305 1812.181 1767.864 .863 15.184 .5052 .4909 

Notes. AIC, Akaike information criterion; BIC, Bayesian information criterion; ABIC, 

Sample-size adjusted BIC; Adjusted LRT, Lo-Mendell-Rubin likelihood ratio test; 

VLMR-LRT, Vuong-Lo-Mendell-Rubin likelihood test. 
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provided a more comprehensible understanding of the data and guided model interpretation and 

selection.  

Figure 1. Estimated Means and Observed Individual Growth Trajectories for the 3-Class Model 

 

Although the aforementioned fit statistics provide information for model evaluation and 

guidance in model selection, ambiguity often remains in interpretation as assorted information 

criteria may not present a clear or consistent “answer” about model fit. Of further concern is the 

increased likelihood of Type 1 error inflation when researcher inferences are made following 

model selection (Hurvich & Tsai, 1990; Lubke & Campbell, 2016). Despite these noted 

limitations, previous research has predominantly relied on information criteria when conducting 

growth mixture modeling (e.g., Berlin et al., 2014; Magee et al., 2014; Ram & Grimm, 2009). In 

light of these concerns, Grimm and colleagues (2016) suggested a supplemental method for 

model selection, k-fold cross-validation, which attempts to standardize the model selection 

process by relying less on researcher subjectivity. To empirically examine the number of 

extracted classes, the k-fold cross-validation technique was performed using the R statistical 

program (R Core Team, 2014), the MplusAutomation package (Hallquist & Wiley, 2014), and 

Mplus (Muthén & Muthén, 2014). Following steps outlined by Grimm, Mazza, and 
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Davoudzadeh (2016), the dataset was divided into 10 folds in R. Next, the MplusAutomation 

package was used to specify the model and fit the model to the k-1 partitions, creating a “training 

sample.” The MplusAutomation package was then used to specify a “test sample” in which the 

parameter estimates obtained from the training sample were equated to the parameter values. The 

-2LL and entropy mean and standard deviation were retained from the test sample as indices of 

model fit (Table 4). 

Given the novelty of the k-fold cross-validation approach, four different approaches were 

used to interpret the -2LL findings and discern the appropriate number of classes. First, the 

model with the smallest mean -2LL was examined, indicating that the 3-class model would be 

selected (See Table 4). The second approach recommended by Grimm et al. (2016) is to choose 

the model with the fewest parameters whose mean -2LL is within one standard error of the best-

fitting model. Using this criterion, the 2-class model is preferred. The third approach shares 

similarities with commonly used likelihood ratio tests. Beginning with the univariate model, 

models that differ by one class are compared. Using this approach, the 2-class model was 

indicated. The 1-class model mean was within one standard error of the 2-class model mean. 

Finally, in the same vein as the third approach, the model with the smallest -2LL (i.e., 3-class 

model) is compared to the 4-class model. Because they were within one standard error of one 

another, this suggests that they fit similarly. 
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Of note, the confidence intervals for the -2LL and entropy values overlap in each of the 

models specified by the k-fold cross-validation. Traditionally, overlapping confidence intervals 

signals a lack of statistical significance, despite instances in which statistically significant 

differences exist (e.g., Austin & Hux, 2002; Knezevic, 2008; Payton, Greenstone, & Schenker, 

2003; Schenker & Gentleman, 2001). Nevertheless, the first criterion proposed by Grimm et al. 

(2016) does not rely on confidence intervals for interpretation, but rather posits that the model 

with the smallest mean -2LL (3-class model) could be used for model selection. In sum, findings 

were evaluated following recommendations by Grimm et al. (2016), but should be interpreted 

with caution as this is a novel approach with budding empirical support and guidance around this 

issue is not yet available. 

In light of the overlapping confidence intervals produced by the k-fold cross-validation 

and novelty of the technique, supplemental multiple comparisons of CRSP scores across time 

and class were conducted (Table 7). A one-way analysis of variance (ANOVA) was used to 

further elucidate differences among classes of sleepiness. There was a significant effect of class 

on T1CRSP [F(2, 129) = 22.05, p < .001], T2CRSP [F(2, 99) = 14.90, p < .001], and T3CRSP 

[F(2, 141) = , p < .001]. Tukey post hoc tests demonstrated a statistically significant difference 

between the Low and High (p < .001) and Moderate and High (p < .001), but not between Low 

and Moderate (p = .50) classes at Time 1. For Time 2, differences were observed between the 

Table 4 

k-fold Cross-Validation Parameters of Fit 

  

Class 
-2LL Mean  

(SD) 

95% Confidence Interval 
Entropy  

(SD) 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 190.02 (19.47) 177.95 202.09 - - - 

2 182.27 (17.27) 171.57 192.97 .91 (.06) .87 .94 

3 170.16 (16.66) 159.83 180.49 .86 (.06) .82 .90 

4 177.82 (27.41) 163.92 191.72 .86 (.05) .83 .95 
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Low and Moderate (p < .01) and Low and High (p < .001), but not between Moderate and High 

(p = .07) classes. Finally, at Time 3, there was a statistically significant difference among and 

between all classes, Low and Moderate (p < .001), Low and High (p < .001), and Moderate and 

High (p < .001).  

Figure 2. Mean trajectories obtained from the 3-Class Model of the latent class growth analysis. 

 

Using information obtained from the fit indices in the LCGA, the k-fold cross-validation, 

and researcher interpretation of substantive usefulness, it was concluded that the 3-class model 

provides the best fit to the data and contributes the most meaningful number of classes. These 

classes were seen as representing three distinct trajectories of sleepiness over the course of an 

academic year: Low, Moderate, and High sleepiness classes.  

Aim 2 

 To evaluate Aim 2, class membership assignments were extracted from Mplus and 

analyses were conducted in SPSS Version 23 (IBM, 2015). The deviation from the data analytic 

plan arose from an unforeseen challenge associated with conducting the Aim 2 analyses in latent 
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space. Research indicates that adding a covariate and a distal outcome variable increases the 

likelihood that class membership will change (Asparouhov & Muthén, 2014; Vermunt, 2010). 

Class membership is based on posterior probabilities, meaning an individual’s likelihood of 

belonging to a class, rather a definitive class membership assignment. Therefore, when adding 

covariates and outcome variables, it creates opportunities for individuals to shift classes. Such 

shifts can cause substantial changes and yield invalid results (e.g., Asparouhov & Muthén, 2014; 

Vermunt, 2010). 

Table 5 

Descriptive statistics of CRSP and T3HRQOL scores by class 

 
Class Mean (SD) 

95% Confidence Interval 

Lower Bound Upper Bound 

T1 CRSP Low 7.24 (2.79) 6.48 8.00 

Moderate 8.14 (2.39) 6.87 9.42 

High 12.40 (4.53) 10.55 14.25 

T2 CRSP Low 6.07 (2.12) 5.37 6.77 

Moderate 8.00 (3.63) 6.83 9.17 

High 10.30 (3.50) 8.60 12.00 

T3 CRSP Low 5.49 (.77) 5.28 5.70 

Moderate 8.62 (.59) 8.27 8.97 

High 12.10 (1.29) 11.59 12.61 

T3 HRQOL Low 82.77 (.99) 80.80 84.74 

Moderate 77.07 (1.58) 73.93 80.20 

High 68.21 (2.27) 63.72 72.70 

 

Levene’s test and normality checks were carried out and the assumptions were met. An 

ANCOVA was performed in which class membership served as the independent variable, 

T3HRQOL functioned as the outcome (dependent) variable, and T1HRQOL was entered as the 

covariate. There was a significant effect of class on T3HRQOL after controlling for T1HRQOL, 

F(2, 124) = 17.38, p < .001. Post hoc tests demonstrated a statistically significant difference 

between Low and Moderate (p < .01), Low and High (p < .001), and Moderate and High (p < 

.01) classes. Comparisons of the estimated marginal means indicated that T3HRQOL decreased 
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across sleepiness classes. Children in the High sleepiness class reported the poorest HRQOL at 

Time 3 (x̅ = 68.21, SD = 2.27). Ratings of T3HRQOL subsequently improved in the Moderate (x̅ 

= 77.07, SD = 1.58) and Low sleepiness (x̅ = 82.77, SD = .99) classes. 

  

To elucidate class characteristics, assorted demographic information is presented in Table 

7. Additionally, a series of parametric and non-parametric analyses were conducted. There was 

not a statistically significant difference in children’s age across groups [F(2, 155 ) = 1.61, p < 

.05], nor was there a difference in race/ethnicity [X2(12) = 20.39, p > .05] or school of 

attendance [X2(2) = 5.37, p > .05]. However, a significant association between gender and class 

membership was observed [X2(2) = 7.48, p < .05].  

 

  

Table 6 

Multiple Comparisons of Sleepiness Scores Across Classes and Time Points 

 
Class 

Mean Difference  

(SE) 

95% Confidence Interval 
p 

Lower Bound Upper Bound 

T1 CRSP Low Moderate -.91 (.75) -2.69 .88 .50 

 High -5.16 (1.01)* -7.56 -2.77 <.001 

Moderate Low .91 (.75) -.88 2.69 .45 

  High -4.26 (1.13)* -6.95 -1.56 .001 

 High Low 5.16 (1.01)* 2.77 7.56 <.001 

  Moderate 4.26 (1.13)* 1.56 6.95 .001 

T2 CRSP Low Moderate -1.93 (.69)* -3.57 -.30 .016 

 High -4.23 (.92)* -6.43 -2.03 <.001 

Moderate Low 1.93 (.69)* .30 3.57 .016 

  High -2.30 (1.04) -4.77 .17 .07 

 High Low 4.23 (.92)* 2.03 6.43 <.001 

 Moderate 2.30 (1.04) -.17 4.77 .07 

T3CRSP Low Moderate -3.13 (.20)* -3.62 -2.64 <.001 

  High -6.61 (.28)* -7.27 -5.95 <.001 

 Moderate Low 3.13 (.20)* 2.64 3.62 <.001 

  High -3.48 (.31)* -4.22 -2.74 <.001 

 High Low 6.61 (.28)* 5.95 7.27 <.001 

  Moderate 3.48 (.31)* 2.74 4.22 <.001 
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Discussion 

Problematic sleep behavior (broadly defined) has been consistently linked to a range of 

psychosocial, academic, and cognitive concerns (e.g., Dewald et al., 2010; Paavonen et al., 2010; 

Sadeh et al., 2002). Specific detriments experienced by children with poor sleep include poor 

coping skills, greater mood dysregulation, and impairments in attention, learning, executive 

functioning. Further, some cross-sectional and longitudinal research suggests associations with 

poorer HRQOL in elementary-aged children (i.e., Price et al., 2012; Quach et al., 2012).  

Despite evidence indicating specific impairments across many domains, definitions of 

sleep behavior are muddled. The inconsistent definition of “problematic” sleep behavior and 

amalgamation of multiple constructs (e.g., sleep quality, sleepiness, sleep problems, sleep 

disturbances, inadequate, insufficient, disrupted sleep duration) has created ambiguity in the 

literature as these distinct constructs have demonstrated different implications for outcomes. 

Further compounding this issue is the interindividual variability in sleep duration requirements 

Table 7 

Demographic Characteristics Presented by Class 

 

Demographics Low Moderate High p-value 

Age (years) 9.46 (.97) 9.49 (.89) 9.05 (.91) > .05 

Gender    .02 

Male 57 (54.8%) 10 (28.6%) 8 (42.1%)  

Female 47 (45.2%) 25 (71.4%) 11 (57.9%)  

Race/Ethnicity    > .05 

White (non-Hispanic) 66 (63.5%) 20 (57.1%) 10 (52.6%)  

Black (non-Hispanic) 3 (2.9%) 1 (2.9%) 2 (10.5%)  

Hispanic 7 (6.7%) 1 (2.9%) 1 (5.3%)  

Asian 2 (1.9%) 3 (8.6%) 0 (0%)  

American Indian 5 (4.8%) 3 (8.6%) 0 (0%)  

Biracial/Multiracial 10 (9.6%) 0 (0%) 0 (0%)  

Other 11 (10.6%) 7 (20.0%) 6 (31.6%)  

School    > .05 

Quail Run 75 (72.1%) 19 (54.3%) 10 (52.6%)  

New York 29 (27.9%) 16 (45.7%) 9 (47.4%)  
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(Blair et al., 2012; Iglowstein et al., 2003; Jenni et al., 2007; Matricciani et al., 2012), which 

complicates measurement and the ability to draw conclusions about impairment when assessing 

outcomes. 

Despite these inconsistencies, some research indicates that sleepiness emerges as a more 

consistent predictor of children’s psychosocial wellbeing (e.g., Hiscock et al., 2007). Broadly, 

research has documented a strong relationship between psychosocial health and sleepiness (e.g., 

Blunden et al., 2006; Carskadon & Acebo, 2002; Dahl & Harvey, 2007; Dahl & Lewin, 2002; 

Shochat et al., 2014). More specifically, cross-sectional research in preschool children provides 

preliminary support for the concurrent relationship between sleepiness and HRQOL (Hiscock et 

al., 2007). The extant literature lends credence to the notion that sleepiness in children may 

directly influence their overall well-being and provides support for the present study in which 

two aims were developed to evaluate this relationship. In Aim 1, the stability of sleepiness over 

an academic year was investigated. Using a person-centered approach, classes, or trajectories, of 

sleepiness were identified to determine whether interindividual differences exist in a community 

sample of elementary-aged children. Using the information derived in Aim 1, Aim 2 gives 

meaning to the classes and generates implications for how sleepiness (or lack thereof) affects 

HRQOL. 

With respect to the first study objective (i.e., determine classes of sleepiness over the 

course of an academic year), the LCGA yielded three distinct classes of sleepiness: Low, 

Moderate, and High. A k-fold cross-validation model, a novel statistical approach to provide 

objective support for the determination of classes (Grimm et al., 2016), confirmed these classes. 

Previous research has provided evidence for a clustering of children’s sleep duration and, for 

“persistent short sleepers,” their inadequate sleep duration may be chronic (Magee et al., 2014, p. 
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e1561). A similar effect has been demonstrated in children’s sleep problems. Quach, Hiscock, 

Canterford, and Wake (2009) longitudinal research of sleep problems indicated that 10.1% of 

children with parent-reported problems resolved after two years; however, 2.9% of parents 

reported a “natural history of moderate/severe sleep problems” continuing across time.  

Despite investigations of sleep duration and problems, the longitudinal nature of 

sleepiness, a stand-alone domain, had not yet been explored. Findings from the present study are 

particularly important as they suggest that some children display a chronic pattern of sleepiness, 

which remains stable across an academic year and may be associated with sustained impairment 

of functioning. This pattern shares commonalities with the trajectories of sleep duration 

established by Magee et al. (2014), in which 11.6% of the sample was characterized as 

“persistent short sleepers,” but indicates that three classes sufficiently captures trajectories of 

sleepiness in elementary-aged children. Furthermore, 12% of children in this sample reported 

chronic sleepiness, suggesting that this distinctive domain is more widespread and pervasive than 

sleep problems reported by parents (Quach et al., 2009). Not only do these results reflect the 

functional nature of sleep (sleepiness), a previously unexplored domain, they provide more 

robust, temporally-sensitive information when considering the collection of three self-reported 

assessments in nine months. 

Further, and consistent with the Aim 2 hypothesis (i.e., children with chronic and/or 

worsening sleepiness across time will evidence the poorest HRQOL; whereas children with low 

and/or decreasing sleepiness will experience stable or improved HRQOL at Time 3), the 

established sleepiness classes have implications for later HRQOL. Results from the present study 

echo previous cross-sectional and longitudinal research in which children with concurrent and 

ongoing sleep duration and problems displayed poorer HRQOL (Magee et al., 2014; Price et al., 
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2012; Quach et al., 2009; Quach et al., 2012). Specifically, children in the Low sleepiness class 

evidenced Time 3 HRQOL in line with community population norms (µ = 80.64; Varni, 

Burwinkle, & Seid, 2006). Conversely, the High sleepiness class reported poorest Time 3 

HRQOL, with a mean HRQOL Total Score comparable to samples of children with chronic 

health conditions (i.e., µ = 71.59; Varni et al., 2006). This suggests that the High sleepiness class 

characterizes their overall well-being as significantly compromised. This finding is particularly 

concerning as this community sample was recruited to represent a healthy, typically developing 

population of elementary-aged children. Although chronic illness diagnosis was not collected 

and is unknown, some children within this sample are exhibiting impairments in HRQOL in line 

with children in clinic populations. Additionally, the relationship between sleepiness and 

HRQOL lends support to Hiscock, Canterford, Ukoumunne, and Wake’s (2007) cross-sectional 

study of preschool children in which daytime sleepiness was the greatest predictor of impaired 

HRQOL, as well as provides evidence for an enduring association between the two constructs in 

a sample of older, elementary-aged children.   

Interestingly, the association between HRQOL and sleepiness in this sample is 

inconsistent with Price, Quach, Wake, Bittman, and Hiscock’s (2015) findings, in which 6-7 year 

old children with poorer HRQOL slept longer (i.e., an inverse relationship between sleep 

duration and HRQOL). However, data from 4-5 and 8-9 year olds did not suggest increased sleep 

duration needs when HRQOL was impaired. Vella et al. (2015) reported similar findings in that 

longitudinal trajectories or classes of HRQOL could not be predicted by sleep duration. Price et 

al.’s (2015) null findings could be attributed to the directionality of the study design in which 

HRQOL was used to predict sleep duration, rather than an attempt to explain children’s HRQOL 

as an outcome of sleepiness. Similarly, Vella et al.’s (2015) use of sleep duration at the first time 
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point likely does not provide sufficient information to be used as a predictor of longitudinal 

HRQOL trajectories, as extant research indicates that many children do not experience ongoing 

sleep issues as they age (e.g., Magee et al., 2014; Quach et al., 2012). Therefore, using an initial 

assessment of sleep duration may be inappropriate and may not be expected to be associated 

longitudinally with HRQOL unless problems persist.   

Beyond statistical significance, and perhaps even more important, are the clinical 

implications of these findings. As described by Copay, Subach, Blassman, Polly, and Schuler 

(2007), Minimal Clinically Important Difference (MCID) can be used to evaluate whether a 

statistical difference between groups translates to observable and “worthwhile” changes in 

subjective experience (p. 542). Furthermore, in large samples, data considered in aggregate may 

yield significant findings, but may not reflect changes experienced at the individual level (Copay 

et al., 2007). One method of assessing MCID is through a distribution-based approach, such as 

the standard error of measurement (SEM). In SEM, the unreliability of the measure (i.e., 

measurement error) is considered. Mean group change scores less than the SEM are likely due to 

measurement error; whereas scores greater than the SEM can be attributed to observed change. 

Research suggests that one SEM can be used as the “yardstick of true change” (Copay et al., 

2007; p. 544). 

The MCID is especially important to consider in the case of sleepiness and HRQOL. 

Presently defined, both constructs are largely subjective and rely on children’s perceptions of 

impairment. Previous research has determined that the MCID for PedsQL is 4.4-point change in 

Total Scale Score for child self-report (Varni, Burwinkle, Seid, & Skarr, 2003). In the present 

study, the difference between the Low and High sleepiness (difference = 14.56) classes is 3.3 

times the MCID value suggested by Varni et al. (2003). These findings exceed the recommended 
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standard of one SEM and provide robust support for the effects of chronic sleepiness on 

children’s well-being. Specifically, within a given classroom, children in the High sleepiness are 

experiencing impairments in their HRQOL unmatched by their non-sleepy peers. Without 

intervention, deficits in HRQOL may result in ongoing, poorer perceptions about their health and 

promote negative health appraisals as children age (Vingilis, Wade, & Seeley, 2002). 

Overall, this study is characterized by several strengths. First, the use of latent class 

growth analysis, a person-centered approach that is responsive to individual patterns of behavior, 

provides information about the relationships among individuals, rather than describing the 

relationships among the variables. Conventional growth modeling approaches and variable-

centered approaches (e.g., regression, factor analysis) may oversimplify the data and fail to 

identify complex patterns that explain interindividual change within a larger population (Jung & 

Wickrama, 2008). For example, the use of traditional approaches (e.g., regression) would have 

failed to identify different classes of participants and may have yielded null findings or washed 

out effects. Alternatively, researcher-derived groups in which classes of individuals are 

categorized based on demographic traits or characteristics (e.g., socioeconomic status, age, 

race/ethnicity) likely do not account for unobserved heterogeneity within the sample and may not 

capture intraindividual change among group members (Jung & Wickrama, 2008). 

An additional strength of this study is the use of the k-fold cross-validation procedure to 

empirically confirm classes. Previous research has relied on more subjective interpretations of 

various fit indices, which may lack agreement and are dependent on model characteristics (e.g., 

number of estimated parameters, sample size). When fit statistics yield different results, 

determination of classes falls researcher interpretation (Grimm et al., 2016). The cross-validation 
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procedure creates the opportunity to confirm classes quantitatively and increases the likelihood 

of replication in future studies through improved model selection (Grimm et al., 2016).  

Building on previous research, the present study addresses key gaps in the existing 

literature. First, the longitudinal design and use of multiple assessments over an academic year 

captures true fluctuations and patterns in children’s sleepiness. To date, research has relied on 

annual or biennial assessments (e.g., Magee et al., 2014; Price et al., 2015). Multiple snapshots 

of children’s sleepiness helps characterize the pervasiveness and provides support for its stability 

across time. Relatedly, not only is longitudinal research in children’s sleep scarce, previous 

longitudinal studies have predominantly been limited to samples of children up to age 7 years 

(e.g., Magee et al., 2014; Price et al., 2014; Price et al., 2015). The current study extends this age 

range by including children ages 8-11 years and captures children in a different developmental 

period during which sleep recommendations change to 10-11 hours per night. Further, children’s 

self-report of sleepiness and HRQOL offers a unique perspective on their experiences. Extant 

research has relied on parent-report of HRQOL and sleep behavior (i.e., Magee et al., 2014; Price 

et al., 2012; Price et al., 2015; Quach et al., 2009). While parents may be able to provide more 

accurate information about sleep duration, they may be less able to report on the subjective 

feeling of sleepiness and well-being (Buttitta et al., 2014; Vella et al., 2015).  

In light of these findings, some limitations should be considered. First, because both the 

independent and outcome variables were based on self-report, the results may be subject to 

common method variance (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). Although the use of 

self-report measures introduces a new source of error, this was a necessary component of this 

study as sleepiness and HRQOL are defined as subjective constructs. Using a reporter other than 

the child would likely answer a different research question as caregiver or teacher’s perceptions 
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of these constructs may not fully reflect a child’s experience (Theunissen et al., 1998). This may 

be an important area for future research. Concomitant with common rater effects, an additional 

limitation is the occasional overlap in content between measures of HRQOL and sleepiness. 

Although only one question on the PedsQL directly asks about sleep behavior (i.e., “I have 

trouble sleeping”), it is a noted limitation that several questions seemingly tap constructs related 

to outcomes from poor sleep (e.g., “I have low energy”).  

A concern regarding the internal consistency of the CRSP Sleepiness Scale should be 

noted. Specifically, Cronbach’s alpha coefficient was considerably lower for Time 3 (α = .61), 

relative to the other time points (α = .80 & .83, respectively), as well as reports in previous 

publications (Meltzer et al., 2012; Poppert Cordts & Steele, 2016). Investigations into this issue 

failed to produce any tenable explanations or solutions. Although outside the scope of this 

project, an exploration of the factor structure may be warranted to determine the stability and 

reliability of the measure across time.   

An additional limitation of the present study is the modest sample size, relative to other 

growth mixture models. Because statistical power cannot be calculated a priori, it remains 

unknown whether the 5-class model failed to converge because of the sample size, or because no 

more classes could be extracted from the data. However, the k-fold cross-validation procedure 

provides some assurance that the appropriate number of classes were specified.  

Although LCGA is an innovative approach to better understand within- and between-

person differences, the present study did not detect any complex growth patterns across time. 

Arguably, however, the eventual assignment of participants to their respected trajectories could 

not have been determined a priori. Given the general lack of significant findings in demographic 

characteristics distinguishing group membership (factors that are commonly used to identify and 
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form groups; Berlin et al., 2014; Jung & Wickrama, 2008) researcher-driven decisions about 

class assignments may have been based on variables lacking significance in the present sample. 

Relatedly, LCGA considers individual behavior across time; whereas, variable-centered 

approaches may rely on classification based on a single event or time point. Therefore, although 

the patterns seem to suggest a relatively predictable split in the data, a variable-centered 

approach with researcher determinations about class membership assignments may not have 

yielded meaningful results.  

 Finally, an unanticipated problem with modeling a covariate and distal outcome in a 

growth mixture model required that Aim 2 analyses be conducted out of latent space Asparouhov 

& Muthén, 2014; Vermunt, 2010). Although no longer able to control for measurement error, 

ANCOVA is robust statistical technique that is widely used and accepted. 

Findings from the present study address several gaps in the existing literature, while also 

generating ideas for further research. Future work with larger sample sizes would allow for more 

advanced statistical modeling techniques, such as latent transition analysis. More sophisticated 

growth mixture modeling could be used to track interindividual trajectories, while also 

considering intraindividual change as children could transition classes across time (e.g., Berlin et 

al., 2014; Jung & Wickrama, 2008; Ram & Grimm, 2009). Further, the establishment of clinical 

norms for the CRSP may give more context to these findings. Presently, normative scores on the 

CRSP Sleepiness Scale have not been reported for either clinical or community samples. 

Empirically derived normative data would provide researchers and clinicians reference values to 

assess children’s sleepiness reports relative to clinical impairment. While the present study 

provides some data to suggest that there are both statistically and clinically meaningful 
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differences in HRQOL as sleepiness increases, normative values would be beneficial for future 

use.  

In summary, the findings from the present study provide further support for the chronicity 

or stability of sleep behavior in elementary-aged children. Previous research has focused on sleep 

duration and problems; therefore, this study evidences a similar trend in sleepiness, a related, 

albeit distinct construct in the sleep literature. Furthermore, results confirm an association 

between sleepiness and later HRQOL, such that children with chronic sleepiness tend to 

experience levels of HRQOL in line with reports by children with chronic illnesses. This 

relationship is both statistically and clinically significant indicating that children in the High 

sleepiness class notice subjective impairment. Results from this study may be used to inform 

future research through early identification of chronically sleepy children who may benefit from 

intervention.   
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