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Abstract

Following the exponential growth in the usage of unmanned aerial systems (UASs)

across the Aerospace Industry, more intelligent and robust guidance, navigation,

and control algorithms are vital to cope with increasing levels of mission com-

plexity. Additionally, many unmanned aerial operations require large payloads

and long endurance such as extended reconnaissance, large-scale search and res-

cue and fine resolution terrain mapping. However, the stringent payload of a

single agent or small UASs reduces their overall practicality and effectiveness.

My research aims to address these inherent limitations of small UASs with a

swarm by holding the required formation in order to distribute tasks and payload

among multiple UASs. The goal of this research is to overcome the challenges

of operating multi-agent systems by developing phasic navigation and guidance

algorithms. Aircraft dynamics and their interactions with surrounding agents

are highly nonlinear, which makes autonomous formation flight very sensitive

to aircraft initial conditions. The phasic navigation algorithms are proposed

and consist of hybrid mathematical approaches: Frenet-Serret curvature control,

Hungarian algorithm and moving mesh methods. At the first phase, the curva-

ture control alleviates the sensitivity to initial conditions of multi-agent UASs

in unstructured environments by matching agents’ heading angle to the united

direction. A variation of Hungarian algorithm is implemented with a moving

virtual terminal to assign each agent to the formation position. In the second

phase of navigation, the moving mesh methods are applied for holding the for-

mation by defining the outer agents’ position for the boundary condition. The
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significance of the moving mesh methods is a scalability and a inherent inter-

collision avoidance. Due to the profound difference between the longitudinal and

lateral-directional motion of a fixed-wing aircraft, a multi-scale moving point

guidance algorithm has been designed to create the separate virtual reference

points in the longitudinal and lateral-direction planes for the first time. This

method has been shown to greatly reduce tracking oscillations and improve the

overall tracking quality and coherency of the formation. Monte Carlo simulations

are performed to ensure the stability and robustness of implementing proposed

algorithms through an essentially exhaustive search. A broad range of random

initial conditions have been used to validate the effectiveness of guidance, navi-

gation, and control algorithms. Another unique contribution of this work is the

validation and verification of proposed algorithms by the hardware-in-the-loop

testbed and the numerous flight tests. The hardware-in-the-loop testbed is de-

signed to test the avionics and communication before the flight test by simulating

onboard 6-degrees of freedom nonlinear equations of motion. Over one hundred

flight tests have been conducted using three distinct aircraft platforms between

2016 and 2018 to validate the fundamental building blocks of this architecture.

In summary, this dissertation provides a conceptual and practical foundation for

guidance, navigation, and control of multi-agent cooperative/collaborative UASs

by unique approaches.
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Systems (UASs) have been developed intensively in recent decades due

to cost advantages, broad applications, saving human pilot’s lives, efficiency, and flexibil-

ity to accomplish complex missions. Now that UASs have become an integral part of the

aerospace industry, new areas of research have emerged. One of the new areas is multi-agent

collaborative UASs that have become one of the most active research fields in Aerospace

Engineering and Guidance, Navigation, and Control. The necessity of collaborative and

cooperative UASs is fueled by increasingly elaborate missions. Examples of complex mis-

sions are (1) Search and rescue (2) Reconnaissance (3) Attack and (4) Earth science, see

Ref. [24]. However, UASs have stringent payload capabilities when they are considered as

individuals. By distributing the payload to multiple agents, multi-agent UASs have the re-

quired flexibility and robustness to reduce cost and operate complex mission as the single

agent can perform. Instead of operating one Global hawk which has the unit cost of 131.4

million dollars (see Ref. [95]), multiple of cheaper systems can be operated. For example,

the formation flight of multiple UASs reduces overall induced drag so that fuel is consumed

efficiently. Ref. [69] shown that the maximum drag reduction of two and three agents forma-
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tion flight is estimated 30±3% and 40±6%, respectively. In addition, multi-agent systems

have a considerably larger coverage footprint when compared to the footprint an individual

agent covers in the same amount of time.

Formation and swarm are neither a new nor a man-made phenomena. Many animals and

insects perform swarm or aggregate themselves to achieve their goals to survive in wildlife

environments (Ref. [10]). Army ants, known as the strongest ants in the world, swarm to

defend themselves from predators like snakes, and protect other ants while they carry food

(Ref. [65]). In the case of large birds such as swans, cranes, and geese, they fly in a V-shape

formation flights. The reason is because a V shape helps save energy (e.g., increased L/D)

by using the vortex generated from the front birds so that birds can minimize the collective

and required energy to migrate long distances (Ref. [5]). In addition, birds take turns in the

leader position and change their position with other adult birds to increase their range and

endurance.

The multi agent UASs can take the same advantage of swarm or formation flight as

birds do. Swarm is defined as the flight in which agents proceed to an average direction

(e.g. the state of consensus) with unsteady proximity between agents. In other words, the

state of consensus can change at any time. Swarm is also called aggregation (Ref. [14]).

However, formation flights are a special case of swarm flights. While all agents travel toward

a desired direction, they should also maintain a certain shape or relative distance between one

another. Formation flights can reduce the induced drag and save fuel so that the endurance

of UASs can be increased (Ref. [59, 66, 73, 101]). With the increased endurance, UASs can

fly longer and finish given complex tasks. For example, more area can be mapped within

a shorter time if five UASs collaborate for a reconnaissance mission rather than one UAS

operating this task. However, autonomous multi-agent swarm or formation flight is not an

analytically trivial nor a practical task to be achieved. According to the report by Ref. [89],

the complications and intricacies of autonomous control increase exponentially as a function

of mission requirements, see Figure. 1.1.
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Figure 1.1: Autonomous Control Level based on mission requirements, [89]

1.2 Related Work

1.2.1 Guidance, Navigation, and Control for Multi-agent Systems

Theoretical challenges of self-organizing multi-agent UASs can be summarized as follows:

(1) Guidance, navigation, and control (GNC) of swarm by multiple UASs in unstructured

environments are rarely considered. These environments have the nonlinearity that makes

swarm of UASs sensitive to an agent’s initial conditions. (2) Many swarm algorithms have

been designed for a small number of agents and lack scalability. (3) Although tools such

as convexity and Lyapunov theory can be used for the stability analysis of multi-agent sys-

tems, the proof of the stability for large number of UASs is not a trivial task. In many

cases, no analytical solution can be found. (4) Achieving close formation by large UASs with

high speed and high inertia is very challenging due to the several requirements: following

the desired trajectory, maintaining the relative distance between one another and collision

avoidance at the same time. From a practical standpoint, difficulties of achieving a coherent
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swarm of multi-agent UASs are exacerbated by the following items: communication delays or

drop; flights in GPS-denied areas; input delays; GPS position errors; inter-collision; tracking

errors; obstacle avoidance and morphing of swarm; and task allocations.

Before the multi-agent systems are considered, all individual autonomous flight systems

require three main elements: Guidance, Navigation, and Control (GNC). Guidance provides

the state commands such as speed, pitch angle, and roll angle to follow the designated path

in 3D space. Navigation is used to plan the path towards the desired position by using the

current location and the vehicle’s attitude angles. Control executes guidance commands to

follow the desired path.

When it comes to multi-agent flights, the navigation algorithm becomes exponentially

more challenging. Beside following the desired path, all agents must maintain the formation

shape and avoid collision among one another. Many recent swarm navigation algorithms

are variations of the Boids model which has been developed (Ref. [82]). The Boids model

proposed three simple rules to achieve the swarm: separation, alignment, and cohesion.

Separation is the rule to keep agents a certain distance apart to avoid a collision. Align-

ment implies that all agents’ velocity has to converge toward the average direction of all

agents. The cohesion indicates that all agents should steer toward the average position

of surrounding agents. Once these three conditions are satisfied, the agents aggregate to

swarm. Many researchers have proposed the navigation for swarming by using Reynold’s

model (Ref. [36, 79, 96]).

Formation is the branch of swarm flight with higher level of complexities. The formation

flight must not only follow Boids model, but also must hold the formation shape. Many

approaches have been proposed for formation flight: (1) the artificial potential field using

attractive and repulsive forces, (2) the optimization algorithm using the cost functions, (3)

the virtual structure which considers the formation as a rigid body, (4) artificial intelligence,

(5) graph theory approaches and (6) the leader-follower approaches.

The most popular method for the multi-agent UASs is the leader-follower approach
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(Ref. [3, 7–9, 16–18, 20, 31, 32, 34, 47, 50, 51, 55, 61, 73, 81, 84, 103]). The leader-follower

scheme designates one of the agents as the leader and all paths are planned around it. The

advantage of this approach is that the leader provides the reference of the formation so the

path planning algorithm can be designed in a way that is decoupled from the followers. In

other words, the path planning for the leader is simple since the only task for the leader is to

follow the desired path. Now, the goal for the follower is only to follow the leader. However,

the leader-follower method lacks the robustness towards safeguarding against the failure of

the leader or a point failure.

To remedy the drawback of the leader-follower scheme, the virtual leader-follower ap-

proach has been proposed. This scheme does not have a physical leader among agents

(Ref. [6, 11, 14, 15, 21, 35, 37, 38, 44, 48, 57, 72, 76–78, 90, 104, 106]). Due to the absence

of actual or physical leader, the navigation algorithm should be more intelligent compared

to the leader-follower scheme. This is because each agent should assess the situation and

decide on the proper course of action to fly itself and cooperate with other agents while also

avoiding collision with one another.

The artificial potential field is one of the methods that has been most widely used be-

cause it provides the inter-collision avoidance among agents. Usually, the attractive and

repulsive potential fields are combined together for multi-agent systems to hold agents by

the attractive force and prevent a collision with others by the repulsive force. From the

perspective of implementing algorithms, the potential field has the advantage of scalability

by superposition properties. In addition, the nonlinear potential function guides agents effi-

ciently to desired positions with nonlinearity of the gradient fields. Many researchers use the

typical circular potential field which is not proper for high speeds and high inertia vehicles

(Ref. [3, 12, 47, 96, 99, 108]). Due to the circular contour of potential fields, the path is not

efficient to avoid obstacles and come back to the desired trajectory. Morphing potential field

has been developed to improve the efficiency of the potential field and reflect the aircraft

and obstacle dynamics (Ref. [88]).
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Another popular method for the multi-agent system is the graph theory. A graph is the

mathematical concept to visualize the pairing of agents within the group using vertices and

edges. If the edge does not have any difference between the direction of edges (e.g., A to

B is same as B to A), this type of the graph is called an undirected graph. This graph

forces all agents to reach the desired formation at the same time (Ref. [12, 71, 90, 107]). On

the other hand, the directed graph (which dictates the direction of the edge) has a lower

convergence rate than the undirected graph since only one agent at a time changes its po-

sition (Ref. [7, 26, 93]). Many researchers use the graph theory to construct the formation

and indicate the communication link between agents (Ref. [14, 21, 39, 103]). Similarly, the

virtual structure approach considers the formation as a rigid body. This approach provides

formation positions defined geometrically by the desired relative position (Ref. [20, 48, 105]).

The disadvantage of these methods is the lack of adaptation towards external disturbances

or a collision. To resolve this drawback, many researchers have proposed to combine the

graph theory or the virtual structure method with other methods such as the potential field

methods and the optimization approaches. Since the graph theory only provides the geo-

metric parameters of the formation agents, it does not have the capability to adapt the path

if the agents are too close to one another due to external disturbances. Similarly, the virtual

structure approaches provide the desired agent positions for holding the formation but do

not produce the attractive forces needed to converge the agents to these positions.

Another approach has been used for multi-agent system navigation based on the opti-

mization using the cost function. Many researchers define a cost function by the distance

between agents, trajectories and obstacles (Ref. [15, 54, 91, 100, 102]). The problem with the

distance-based cost function is the inability to reflect the aircraft dynamics. The distance

between the aircraft and the target does not consider the aircraft’s movement. The distance

that the aircraft travels would be longer than the Euclidean distance between the aircraft and

the target due to the minimum turning radius constraint and the aircraft heading. Similarly,

the artificial intelligence approaches are introduced by using the optimization techniques
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employing the cost function (Ref. [19, 25]). The setbacks of the artificial intelligence-based

approaches are that they need a vast amount of data to have better performance and the

users lack the knowledge on how the system makes decisions which renders them unable to

control the system.

The common denominator of many existing works is the point mass assumption for the

vehicle dynamics which simplifies the guidance and control designs for aircraft (Ref. [6, 9,

14, 16, 47, 55, 71, 86]). The point mass assumption can be held for small mass and slow

speeds; however, spatiotemporal requirements for the scientific missions often necessitate

the high speeds and high inertia vehicles while holding the close proximity formation. This

assumption may result in the dramatic discrepancies in performance between the simulations

and actual flights.

Another challenge for the multi-agent system is the assignment sequence and strat-

egy (e.g., where agents should form appropriate formations regardless of their initial po-

sitions and states). As the number of agents increases, the combinations of formation posi-

tions will be increased dramatically. The typical solutions for the assignment problem are

known as the Hungarian and iterative closest point algorithms based on the distance error

(Ref. [4, 62, 91, 94, 102]).

Guidance and control are essential elements for reaching the desired path from the current

states. Most researchers have not investigated impact of guidance and control for multi-agent

agent systems for the actual flight tests, nor have they used Commercially-Off-The-Shelf

products since the complexity of designing embraced systems is very high (Ref. [8, 18, 55]).

However, the development of entire GNC systems is very important not only for implement-

ing intelligent algorithms reflecting the aircraft dynamics but also for completing multi-agent

system designs to verify and validate them by actual flights.

To achieve a coherent multi-agent autonomous system, stability analysis must be per-

formed. Analytically, researchers have shown the stability of swarm in mainly two ways:

Lyapunov function (Ref. [47, 57, 81, 99]) and the bounded distance errors among agents and
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desired formation positions (Ref. [37, 38, 92]). Exhaustive simulations and the Monte Carlo

approach have also been used to show the convergence rate (Ref. [37]).

This research aims to address analytical and practical challenges of autonomous multi-

agent UASs formation flights using a phasic navigation. Phasic navigation was introduced

for multi-agent systems navigation by Dr. Shawn Keshmiri in 2017. This navigation has

phases of guiding agents to assemble the formation from random initial conditions. The

two phases are proposed to deal with randomness of initial conditions: assignment with ag-

gregation and holding the formation. The curvature control and Hungarian algorithms are

applied for aggregate agents into a united direction and assigning each agent to the proper

formation position. The moving mesh methods have been utilized for holding the formation

by using an adaptive numerical solution of partial differential equations. The sensitivity of

the developed methods has been also investigated on three different UASs in the same UAS

classification (less than 100 lb) with a wide range of inertial, aerodynamics, and propulsive

characteristics. In the proposed work, the following items have been considered:

• The mass is not assumed as a point or a particle. Six degrees of freedom (6 DoF) aircraft

dynamic models are obtained by using engineering level software (e.g. AAA and AVL).

• Proposed guidance, navigation, and control algorithms have been designed for three dif-

ferent UASs ranging from 9 to 73 lbs to investigate the impact on a broad range of UAS’s

geometry, trim speed, and stability and control derivatives.

• The overall stability of the developed algorithms for guidance, navigation, and control

of swarming UASs has been verified by exhaustive search approaches and Monte Carlo

simulations. With no prior information regarding initial conditions of the agents in the

swarm, this process allows the improvements in the robustness towards random initial po-

sitions/states and also enhances the intelligence of the guidance and navigation algorithms

to handle formation flights.

• A morphing potential algorithm is implemented to avoid external and inter-collisions on
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top of inherent collision avoidance feature in the moving mesh methods. This potential field

has a morphed contour field towards the relative velocity direction. Such redundancy has

a profound impact on the swarm of high speed and high inertia vehicles where obstacles

are avoided as a function of relative speed. The aircraft are able to converge into the

desired path much quicker than the classical circular potential field.

• The virtual leader scheme is used to enhance the robustness towards a point failure.

Intelligent layers are added for each agent to decide where to go and what to do so that

each agent can be independent from the success or failure of other agents.

• A sequential and optimized formation assignment algorithm has been developed with an

adaptive cost function to not only account for distances between agents but also their re-

quired heading and rotation angle changes. Such adaptive sequential assignments alleviate

commanding large heading angles and abrupt control inputs.

1.2.2 Verification and Validation of the Multi-agent Autonomous

System

The testbed is an essential tool for validating and refining all developed algorithms. Mainly,

testbeds are divided in two parts: Hardware-in-The-Loop (HiTL) testing and actual UAS

flight tests. Hardware-in-The-Loop testing has been designed to verify the integration of all

algorithms into the embedded system and to simulate actual hardware and software perfor-

mance using 6 DoF aircraft dynamic model and GNC modules. With given initial conditions

and communication to ground station, the GNC algorithm embedded in the autopilot sys-

tem continuously generates control outputs to accomplish a given mission. For a swarm of

UASs, a mesh network must be in place so that agents can wirelessly communicate their

dynamic states. This process is a practical way to assess the performance of algorithms and

interaction among software, embedded operating systems, and hardware before the actual

flight tests. As the integrated systems traverse through the design, development, and im-
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plementation processes, a challenge appears in maintaining system robustness with respect

to repeatability and reliability in adverse conditions. Therefore, simulating the system in

its entirety with minimal assumptions and similarity to pragmatic flight conditions becomes

exceedingly crucial and requires extensive tests and validation (Ref. [30, 60, 64]). There is

substantial literature addressing the importance of Software-in-The-Loop development and

testing (Ref. [22, 33]). HiTL simulation techniques provide one such tool to validate the

developed GNC algorithms on the on-board computer systems in the following categories:

testing sensor integration, the hardware reliability (e.g., data exchange and communication

for multi-agent aircraft systems), see Ref. [70]. Such a tool can help in identifying any under-

lying deficiencies within the GNC algorithms before performing actual flight tests. Ref. [8]

shows that a HiTL testbed for testing multiple fixed-wing UASs to explore higher level path

planning and control by using a Commercial-Off-The-Shelf (COTS) autopilot for lower level

control. Ref. [40] designed HiTL testbeds for eight UASs using centralized off-board path

planning and a COTS autopilot, known as the Piccolo from Cloud Cap Technologies, with

900 MHz communication. Eventually flight tests must be performed to validate the perfor-

mance of this system of systems. Flight test validation for fixed-wing UASs is relatively rare.

Table 1.1 shows the related work for multi-agent flight using fixed wing vehicles.

As shown in Table 1.1, most UASs used in these flight tests have low weights except for

the Brumby MK III done by the University of Sydney using only two agents. The payload

capacity of most UASs in Table 1.1 is not sufficient to carry heavy equipment (e.g. KU

CReSIS dual frequency radar system weighs 6-7 lb) (Ref. [1, 18, 39, 52, 58, 83, 87, 102]).

Another common factor for many flight tests is the usage of a launcher for takeoff. Launching

UASs is a convenient way to autonomously takeoff in the absence of pilots and it can create

consistent UASs initial conditions. In this work, a high fidelity testbed has been designed

for Software-in-The-Loop and Hardware-in-The-Loop tests. All algorithms have been also

assessed through actual flight tests.

• The pilot manually launches each UASs for takeoff and landing as well as the autopilot
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Table 1.1: Specification of UASs for related works

system. Since the pilot has only visual information for the vehicle, it is always very hard to

engage the UASs at desired steady state conditions (no accelerations/trimmed condition)

or at an exact desired geographic position. This is because the robustness of the initial

conditions have been enhanced by intelligent guidance, navigation, and control.

• The Software-in-The-Loop test is performed by using numerous random initial conditions

for each agent using Monte Carlo methods to verify stability and robustness of the devel-

oped algorithms for swarming UASs.

• In order to verify the integration of algorithms and avionics, the performance and reli-

ability of GNC algorithms and avionics has been tested by Hardware-in-The-Loop test.

The Robot Operating System (ROS) is used to implement the sensors and the developed

algorithms in a way that they are modular, easy to manage and exchange data among

them.

• Actual flight tests have also performed to validate the proposed GNC algorithms. After

the flight test has also been performed, the dynamic model and algorithm parameters are
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refined and adjusted to improve the effectiveness of the system of systems.

1.3 Outline

Figure 1.2 shows the outline of this dissertation. Chapter 2 presents the algorithm design

for guidance, navigation, and control for the autonomous flight system. In Chapter 3, the

design and procedure of multi-agent testbed is discussed. In Chapter 4, simulation and flight

test results are presented for the validation of the proposed algorithms.

Figure 1.2: Thesis Outline
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Chapter 2

Autonomous System Development

Intelligent Guidance, Navigation, and Control (GNC) are required to empower the autonomy

in flights for Unmanned Aerial Systems (UASs). These components have roles identical to

human pilots in flights. Guidance is to compute the required states (e.g., the pitch angle and

speed for the longitudinal motion, the roll angle for the lateral-directional motion) of the

aircraft to the desired states from the current states (e.g., position, Euler angles). Control

provides how much the control surface deflections are required to achieve the desired states

obtained from the guidance. Navigation identifies the path for the aircraft to follow the

desired trajectory. In case of the multi-agent system, navigation algorithms have higher

complexity than the single agent system since they should provide the path to avoid the

other agents, construct the formation by considering other agents’ location, and follow the

desired trajectory at the same time. In this section, GNC development is discussed for

the multi-agent autonomous systems. GNC algorithms have been designed to enhance the

intelligence and robustness towards random initial conditions to overcome aforementioned

limitations in Section 1.2 and 1.2.2:

• Payload capacity is not sufficient for the scientific missions. Most research has used

small platforms with low speeds and small moments of inertia.

• The popular configuration for existing work is a flying wing. Moreover, the maximum
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number of flight tested fixed-wings for multi-agent system is two agents.

• Pilots are not involved during takeoff nor engage the autonomous flight mode. How-

ever, the flights involving pilots have random initial conditions when (s)he engages the

autopilot.

• The classical circular contour of the potential field has been applied for most collision

avoidance path planning algorithms. This approach is not adequate for applications

related to high moment of inertia and high speed flights.

Figure 2.1 shows the overview of this chapter.

Figure 2.1: Road map for Chapter 2

Multi-scale guidance algorithm with the sigmoid function is newly developed to improve

tracking. Individual algorithm for navigation has been developed such as the curvature

control, Hungarian algorithm, and the moving mesh method. These algorithms are modified

for a multi-agent system in this work. The curvature control algorithm has been combined

with 6 DoF aircraft dynamics for the aircraft application. The cost function of Hungarian

algorithm has been designed to reflect the aircraft dynamics by adding the difference of

heading and rotation angle between the aircraft and the desired formation. In addition, the
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moving mesh methods is applied by defining the boundary condition as the outer agents’

position. In summary, the different engineering disciplines are modified to utilize as the path

planning algorithms for multi-agent systems.

2.1 Guidance

2.1.1 Multi-Scale Moving Point Guidance

Multi-Scale Moving Point (MSMP) guidance has been developed to increase the quality of

tracking since formation flights require very tight position control with respect to the desired

trajectory for maintaining the shape of a formation. In this work, the state commands for the

guidance algorithm are defined as follows: the speed (VTcmd), roll (φcmd), pitch (θcmd), and

sideslip (βcmd) angles. The number of agents does not impact the complexity of the guidance

algorithm since it is applied to each agent individually. The fundamentals of MSMP guidance

algorithm are rooted in a nonlinear guidance law, see Ref. [40]. It has been developed in two

dimensional space and can be easily visualized by considering the ‘carrot and stick’ concept.

Figure 2.2: Carrot and stick approach

Garcia and Keshmiri expanded a nonlinear guidance law to three dimensional space by

applying an identical algorithm on the longitudinal plane, see Ref. [27]. In addition, it

became the moving point guidance by updating the desired trajectory segment at each time

step, see Fig. 2.3.

15



Figure 2.3: Moving points generation scheme, see Ref. [27]

This algorithm is significant for navigation since it allows tracking of an arbitrary shape.

However, severe oscillations in the attitude angle commands (φcmd and θcmd) are caused due

to the adaptive gains in calculating the desired roll and pitch angles and identical reference

points (carrots) on both longitudinal and lateral-directional planes. In order to reduce the

oscillations in commanded angles, MSMP guidance algorithm separates the reference points

for longitudinal and lateral-directional planes. The nature of dynamics has been reflected in

the guidance algorithm by separating the reference points in longitudinal and lateral-direction

plane. For example, IxxB is usually smaller than IyyB . This means the time constant of a

roll mode is much smaller than the short period. This leads to the fact that the rolling

motion can react faster and handle large roll angle commands. The longitudinal motion has

the structural constraints via the acceleration in the z body axis. In order to compute the

attitude commands (θcmd and φcmd), the geometric parameters should be defined as shown

in Figure. 2.4.

Consider points A and B creating a line segment by expanding the line made by two

moving points (o[k] and o[k − 1]) for the desired trajectory where k is the current time

step and k − 1 is the previous time step. Moving points are computed from the navigation

algorithms and defined mathematically in the inertial frame as follows:

o[k] : {−→p o[k] = poN [k], poE[k], poH [k]; −→v o[k] = voN [k], voE[k], voH [k]} (2.1)
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Figure 2.4: Multi-Scale Moving Point (MSMP) Guidance Law Geometric Concept

Eq. 2.1 presents a general moving point position (−→p [k]) and velocity (−→v [k]) in a discrete

time (k) where superscript o indicates a moving point not the aircraft.
−→
d is perpendicularly

projected point on the line segment as follows:

−→
d =


dNLat(t)

dELat(t)

dHLat(t)


I

=
−→
A + qd(t)[

−→
B −

−→
A ], qd(t) =

[−→p −−→A] · [−→B −−→A]
d2
AB

(2.2)

where dAB is the Euclidean distance between A and B point.
−→
RLon and

−→
RLat are virtual

reference points that the aircraft wants to track on longitudinal and lateral-directional plane,

respectively. This is the core of the MSMP guidance algorithm. The reference point of the

lateral-directional and longitudinal plane are computed separately by using ddRLat and ddRLon
as follows:

−→
RLat(t) =


RNLat

RELat

RHLat

 =
−→
d +mrLat(t)

[−→
B −

−→
d (t)

]
, mrLat =

ddRLat
ddB(t)

(2.3)

−→
RLon(t) =


RNLon

RELon

RHLon

 =
−→
d +mrLon(t)

[−→
B −

−→
d (t)

]
, mrLon =

ddRLon
ddB(t)

(2.4)
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where ddRLat and ddRLon are predefined distances for the lateral-directional and longitudinal

plane, respectively.
−→
L Lon and

−→
L Lat are the vectors from the position of the UAS to the

reference points (
−→
RLon and

−→
RLat). ηLon and ηLat are error angles between the velocity vector

and
−→
L Lon and

−→
L Lat, respectively. In order to compute ηLon and ηLat, the velocity vector

(
−→
V ), LLon, and LLat should be transformed from the inertial frame to the tracking line frame

(T ), which is aligned with the extended line segment generated by two consecutive moving

points. Figure 2.5 shows the attitude angles between the inertial frame, (I) and the tracking

line frame, (T ): αtrack, βtrack.

Figure 2.5: The tracking line frame and the attitude angle definition for the transformation

Since the velocity vector(
−→
V ), LLon, and LLat are first order tensors, the rotation matrix

(HT
I ) is used to transform the coordinate system (see Appendix A) and it was defined as

follows:

HT
I =


cosαtrack cos βtrack sin βtrack sinαtrack cos βtrack

− cosαtrack sin βtrack cos βtrack − sinαtrack sin βtrack

− sinαtrack 0 cosαtrack

 (2.5)

Then, the coordinate system of
−→
V , and

−→
L Lon and

−→
L Lat are transformed to the tracking

line frame as follows:

[−→
V
]
T

= HT
I ·
−→
V = HT

I ·


ṗN (t)

ṗE(t)

ṗH(t)


I

=


ṗNtrack(t)

ṗEtrack(t)

ṗHtrack(t)


T

(2.6)
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[−→
LLat

]
T

(t) = HT
I ·
−→
LLat = HT

I ·
[−→
RLat(t)−−→p (t)

]
I

= HT
I ·


RNLat − pN (t)

RELat − pE(t)

RHLat − pH(t)

 =


RNLat − pN (t)

RELat − pE(t)

RHLat − pH(t)


T

(2.7)

[−→
LLon

]
T

(t) = HT
I ·
−→
LLon = HT

I ·
[−→
RLon(t)−−→p (t)

]
I

= HT
I ·


RNLon − pN (t)

RELon − pE(t)

RHLon − pH(t)

 =


RNLon − pN (t)

RELon − pE(t)

RHLon − pH(t)


T

(2.8)

The error angles (ηLat and ηLon) are calculated by the following equations:

ηLat = tan−1

(
[RNLat − pN(t)]T
[RELat − pE(t)]T

)
− tan−1

(
ṗNtrack(t)

ṗEtrack(t)

)
(2.9)

ηLon = tan−1

 ṗHtrack(t)[−→
V NE

]
T

− tan−1

(
[RHLon − pH(t)]T

[LLonNE ]T

)
(2.10)

where
[−→
V NE

]
T

= |[ṗNtrack(t), ṗEtrack(t)]| ,

[LLonNE ]T = |[RNLon − pN(t), RELon − pE(t)]T |

Since these error angles should be bounded between −π to +π, ‘atan2’ function in MAT-

LAB is used to wrap the angles into this range. Now, the attitude commands (φcmd and

θcmd) can be found by error angles. In Ref. [27], the commands are computed based on PI

controller approach. In this work, the lateral-directional guidance law was modified to trans-

late the required lateral acceleration to the roll angle command (φcmd) in order to improve

the quality of tracking.

From Figure 2.4 (left), R is the radius of the temporary circle trajectory to reach the

virtual reference point (
−→
RLat). ascmd is the desired lateral acceleration (Eq. 2.11) as follows:

ascmd =
V 2
T

R
=

2V 2
T sin ηLat
−→
L Lat

, where R =
LLat

(2 sin ηLat)
(2.11)
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The guidance algorithm commits two goals: the reduction of the position error between

the aircraft and the desired trajectory and the alignment of the aircraft velocity to the

direction of the desired trajectory. It can achieve these goals at once if the error angles (ηLat

and ηLon) become zero. φcmd is computed by using the required lateral acceleration in a way

that it reduces the lateral error angle (ηLat), see Ref. [45].

φcmd = tan−1

(
ascmd
g

)
(2.12)

In addition, an acceleration term (VTωzI ) is fed back to the lateral acceleration commands in

order to improve the lateral-directional guidance performance, see Ref. [45]. A steady state

level turn condition does not reflect the reality in actual flights so Eq. 2.11 is not always valid.

The acceleration term (VTωzI ) is fed back to the lateral acceleration command (Eq 2.11). If

we see the unit of this term, it is easy to observe that it is the acceleration term. The unit

of VT is ft/sec and the unit of ωzI is rad/sec. As the result, the unit of this term is ft/sec2.

The feedback loop scheme is shown in Fig. 2.6.

Figure 2.6: Acceleration Feedback Loop

For the longitudinal error angle (ηLon), PI controller approach was kept to compute the

pitch angle command (θcmd) from Ref. [27].

θcmd = tan−1

{
kaLon · ηLon ·

(
kpLon +

kiLon
s

)}
where KaLon =

2|
−→
V |2

|
−→
L Lon|

(2.13)

kpLon and kiLon are proportional and integral gains for a PI controller. kaLon is an adaptive

gain and it is defined as a fixed value for this work to reduce the oscillation. The sideslip
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angle command, βcmd is designated as zero.

The speed command(VTcmd) is fixed to the aircraft speed when the autopilot was engaged

to reflect random initial conditions.

Figure 2.7 presents the comparison of position tracking. Indeed, the north and east

position graph shows that the MSMP guidance algorithm tracked the desired race track

pattern better than the moving point guidance. In order to quantify the tracking error, the

root-mean-square (RMS) of distance error is computed. The tracking error is defined as

the distance between the aircraft position and waypoint lines. MSMP guidance algorithm

reduced 80% of the RMS for the tracking error in the lateral-directional plane for the specific

initial condition shown in Fig. 2.7. Moreover, the oscillations in the tracking was decreased

dramatically. On the other hand, RMS of the longitudinal tracking error is increased 44.5%.

However, the aircraft could maneuver more smoothly comparing to the moving point guid-

ance. In conclusion, the oscillation and quality of tracking are improved by using MSMP

guidance algorithm comparing to the moving point guidance.
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2.1.2 Impact of Guidance Parameters on Tracking and States

In this section, the results of the investigation on the guidance parameters is discussed. All

guidance parameters are tuned for different vehicle dynamics affecting the aircraft behaviors.

2.1.2.1 ddRLat and ddRLon for φcmd and θcmd

A longer ddRLat and ddRLon cause smaller error angles (ηLat and ηLon), respectively, as shown

in Fig. 2.8.

Figure 2.8: Impact of the length of ddRLat and ddRLon

Sequentially, smaller error angles (ηLat2 and ηLon2 in Fig. 2.8) decrease the attitude com-

mands (φcmd and θcmd). This phenomena is very profound in terms of the pitch angle

command. Since the large magnitude and rapid changing pitch angle command, it can easily

cause stall or instability of the aircraft. In other words, when the pitch angle command

increases, the angle of attack also changes. Then, the aircraft velocity takes time to catch

up the pitch angle command and the angle of attack becomes large which can cause stall.

Therefore, the pitch angle command is always desired to be small. When it comes to the

roll angle command, the roll mode is a very fast dynamic mode which means the damping

ratio is larger than the phugoid and short period modes since roll mode is the first order

system. This is because the roll angle command is allowed to be relatively larger than the

pitch angle command. Figure. 2.9 shows the comparison between the short and long length

of ddRLat and ddRLon .
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As Fig. 2.9 shows clearly, less ddRLat and ddRLon cause more error angles (ηlat and ηlon).

Due to larger error angles, the roll and pitch angle commands are increased. The lateral error

angle (see Fig. 2.9 (left) ) is increased from 12 to 25 degrees when ddRLat is decreased from 460

to 260 ft. Consequently, the roll angle command also has the same trend. It was increased

from 5 to 10 degrees when shorter ddRLat is applied. For the longitudinal error angle, it has

the identical phenomena but is less sensitive than the roll angle command. When ddRLat and

ddRLon are longer, the tracking quality appears error-prone but the maneuver becomes very

smooth.

2.1.2.2 The impact of the proportional, integral, and adaptive gains for the

pitch angle command

In this section, the impact of longitudinal guidance parameters (KpLon , KiLon , and KaLon) is

discussed. Eq. 2.13 presents the pitch angle command (θcmd) for tracking the moving point

on the longitudinal plane.

• KpLon is the proportional gain for calculating the pitch angle command using the longi-

tudinal error angle (ηLon). The pitch angle command increases by the larger error angle

(ηLon).

• KiLon is the integral gain for calculating the pitch angle command. As the longitudinal

error angle (ηLon) increases, the pitch angle command starts to build the integral of the

error angle (
´
ηLondt) to compensate the accumulated error.

• Regarding the adaptive gain (KaLon), the induced oscillation is observed during the inves-

tigation of KaLon impact, see Eq. 2.13. The reason is because the pitch angle command

changes rapidly as the aircraft speed varies. In other words, the adaptive gain (KaLon)

changes nonlinearly since it is the function of the square of the aircraft speed (|VT |2).

When the aircraft speed is low, the oscillation is small so the performance is acceptable.

However, if the aircraft speed is large, the pitch angle command increases dramatically
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since the adaptive gain (KaLon) increases nonlinearly with a large speed. This causes large

elevator deflections, that are very dangerous for the aircraft dynamics. Large amount of

elevator deflections induces large values of the pitch rate (Q). Eventually, large pitch rate

leads the stall due to high angle of attack. Therefore, the adaptive gain (KaLon) is set

as a constant value to remove the induced oscillation and produce smooth pitch angle

command in this work.

Figure. 2.10 shows the influence of the proportional, integral, and adaptive gains (KpLon ,

KiLon , and KaLon) for the pitch angle command (θcmd). In order to investigate the impact

independently, the integral and adaptive gains (KiLon and KaLat) are set to constant as 0.03

and 3, respectively, while the proportional gain (KpLon) changes. The proportional gain

(KpLon) does not change the pitch angle command dramatically while it changes from 0.0005

to 0.1. However, it shows that the higher pitch angle command when the proportional gain

(KpLon) is at (0.1). In order to test different integral gains, the proportional and adaptive

gains (KpLon and KaLon) are assumed as 0.03 and 4, respectively. The integral gain (KiLon)

has higher sensitivity then the impact of the proportional gain (KpLon). When the integral

gain (KiLon) changes from 0.01 to 0.06, the pitch angle commands has higher value (from 3 to

10 degrees) with hight frequency comparing to the smaller integral gain (KiLon). Regarding

to the adaptive gain (KaLon), larger ones cause higher pitch angle command from 3 to 10

degrees as it changes from 1 to 5. The proportional and integral gains (KpLon and KiLon) are

fixed at 0.1 and 0.03, respectively.
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2.1.3 Smoothing Function for Guidance and Control Commands

The smoothing function is a great tool for transitioning from the remote control (RC) to the

autopilot flight. The guidance and control outputs are smoothed out to reduce the abrupt

changes when the autopilot is engaged by using the following equation:

xsmooth = xRC +

(
1

2
− 1

2
cos

(
π

ts
∆t

))
(xAuto − xRC) (2.14)

where x are the guidance and control outputs as follows:

xRC = {VT , θ, , φ, β, δT , δe, δa, δr} (2.15)

xAuto = {VTcmd , θcmd, , φcmd, βcmd, δTcmd , δecmd , δacmd , δrcmd} (2.16)

ts is the desired amount of time for applying the smoothing effect; ∆t is the sample time.

Figure 2.11 shows the example of smoothing effect in arbitrary states and controls (x) for

10 seconds of ts. x starts at zero and its desired value is 1 after 10 seconds.

Figure 2.11: Smoothing function from 0 to 1. xinitial = 0, xfinal = 1, ts = 10

As Figure 2.11 shows well, x reaches to the desired value very smoothly after 10 sec-

onds. Now, it is worth noting how this effect can help change guidance and control outputs

smoothly. Figure 2.12 shows the comparison between the guidance outputs with and without

applying the smoothing function. Firstly, the following figure shows the impact in guidance

commands: the speed command (VTcmd), the pitch angle command (θcmd), the roll angle
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command (φcmd), and sideslip angle command (βcmd).

Figure 2.12: Guidance and control outputs comparison between smoothing off and smoothing
on, VT = 49, φ = 20◦, θ = −20◦, β = 0

Initially, the speed, pitch angle, roll angle, and sideslip angle (VTcmd , θcmd, φcmd and

βcmd) starts at 49 ft/sec, -20 degrees, 20 degrees, and 0 degree, respectively. When the

smoothing function is applied, the errors between states and guidance commands are zero to

avoid abrupt changes in the control outputs. When the smoothing function is not applied,

the pitch and roll angle have very large errors (20 degrees in magnitude of both angles)

which can cause very high control deflections initially. Regarding the speed command, it

varies from 49 ft/sec to 65 ft/sec when the smoothing function is applied. This is because

it reflects the current aircraft speed while it is smoothing the command value. The speed

command increases in this specific initial condition since the aircraft was descending. There

is no benefit to change the speed command since it activates the phugoid mode which will

affect to change the angle of attack. Therefore, the smoothing function is not applied to the

speed command during the flight test. The sideslip angle is always commanded at zero so it
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does not have any impact. This is because there is no sensor to measure the sideslip angle

so it was always assumed to be zero. The following figure shows the comparison in control

outputs.

Figure 2.13: Control outputs comparison between the result when the smoothing function is
on and off.

If the smoothing function is not applied to the control outputs, they are changed dramat-

ically after the autopilot is engaged. The elevator is changed from 1 to -14 degrees within

2 seconds which is very aggressive for the aircraft due to high angle of attack and excessive

structural loading. Moreover, the aileron is changed from 0 to 5 degrees within 1 second.

The rudder is commanded from 2 to -4 degrees in less than 2 seconds. These maneuvers are

not desired since they cause a quick rolling and yawing motion. When the smoothing effect

is applied, the control surfaces change gradually. As an exception, the throttle changes more

smoothly when the smoothing function is not applied to the speed command since it did not

excite the phugoid mode.
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2.1.4 Adaptive ddRLat Algorithm

Using a constant length of ddRLat , the aircraft could track the moving point in lateral plane

without oscillations. However, a large overshoot is observed due to the location of the

reference point (RLat) when the waypoint line segments are changed.

Figure 2.14: Overshoot due to position of the reference point, Rlat

As Figure 2.14 shows, the reference point is too far out from the corners and causes an

overshoot in the aircraft trajectory. This is because the reference point is generated based

on the projected aircraft position onto the waypoint line segment. Therefore, the reference

point can be located outside of the waypoint box or lines, even though the moving point did

not reach to the next line segment but the aircraft already reached.

The solution of reducing the overshoot is proposed by using the Sigmoid function to

change ddRLat as a function of the yaw rate (R). The advantage of using the yaw rate is that

ddRLat is automatically adaptive based on the aircraft dynamics. When the Sigmoid function

is designed, it is important to have the abrupt slope of the Sigmoid function transition since

the shallow one causes the oscillation similarly when the adaptive gain (KaLat) is applied.

The other cause of the overshoot is due to the spatial constraint in the flight test area.

The confined area forces the aircraft to turn more frequently. If there is no spatial constraint,
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the overshoot can be reduced as Fig. 2.14 shows.

Figure 2.15: Comparison of the highest overshoot (at the first turning point, waypoint #2)
between small and large box

The overshoot is reduced by 69.5 ft (from 296.5 to 227 ft) in this specific simulation when

the waypoint box is larger.

2.1.4.1 Sigmoid Approach for Adaptive ddRLat

The Sigmoid function produces the adaptive length of ddRLat using the yaw rate (R) as

follows:

ddRLatAdaptive = ddRLat −∆ddRLat ·
1

1 + e−C1(|R|−C2)︸ ︷︷ ︸
Correction term

(2.17)

∆ddRLat is the desired increment length for changing ddRLat . C1 is the positive constant to

decide how shallow or steep the slope of Sigmoid function transition is. If C1 is large, the

Sigmoid function varies its values slowly from 0 to 1. For example, if C1 is 6 deg/s, then the

value changes within the large range of the yaw rate. If C2 is 10 deg/s, then Sigmoid function
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will change the values between 4 and 16 deg/s. C2 is the positive constant which determines

where the average value of transition meets in terms of the yaw rate. The average value of

transition is 0.5 in this case since the value changes from 0 to 1. For example, if C2 is 10

deg/s, then the middle value of transition in the Sigmoid function would happen at 10 deg/s

of the yaw rate. In other words, it provides the threshold of changing ddRLat . The correction

term of Eq. 2.17 is subtracted from the original value of ddRLat instead of adding it due to

the shorter ddRLat reduces the overshoot in position tracking by larger lateral acceleration

commands.

As Figure 2.16 shows, ddRLat changes from 360 to 260 ft whenever the yaw rate (R)

starts to change. Then, it comes back to the original value after the aircraft finishes turning

maneuvers. The RMS of the distance error is reduced by 10.3 % due to the adaptive ddRLat .
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2.2 Navigation

In this section, ‘phasic’ navigation is introduced for path planning of the multi-agent systems.

In the first phase, formation initiation and assignment algorithms are introduced: Curvature

control and Hungarian Algorithm. In the second phase, six different algorithms have been

developed to hold the formation: intelligent waypoint modification and index assignment,

path planning by LQ guidance for the virtual leader, the virtual point formation for the outer

agent, moving mesh methods for the inner agent and morphing potential for the collision

avoidance.

2.2.1 Phase 1: Formation initiation and Formation Assignment

2.2.1.1 Curvature control path planning algorithm using Frenet-Serret Equa-

tions

This algorithm aligns the velocity of each moving point to the identical heading, which is

the average or designated direction without the collision. This algorithm has been developed

for robot cars with very slow speed in two dimensional space, see Ref. [68]. It has also

been expanded to three dimensional space by Ref. [46]. In order to utilize this algorithm for

the aircraft dynamics, two main features are improved: the application of 6 DoF dynamic

constraints and the translation of the curvature and torsion into the heading and pitch

angle change using the Frenet-Serret Equation, respectively. This algorithm has a critical

drawback that it cannot hold the formation shape. However, this algorithm is very powerful

to aggregate all random velocity vectors into a united direction. This is the reason why

this algorithm is the first stage of phasic navigation to deal with the randomness of initial

conditions. A Frenet-Serret frame and associated formulas are utilized to compute the desired

curvature and torsion to align the velocity vector with other agents. This frame consists

of the unit tangent, normal, and binormal vector (xfs, yfs, and zfs, respectively) on the

differentiable trajectory (r(s)) which is a function of arc length (s). The unit tangent vector
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(xfs) aligns with the moving point velocity. The unit normal vector (yfs) always faces the

center of the turning radius on the trajectory (r). The unit binormal vector (zfs) is a cross

product of the tangent and normal vectors. Figure 2.17 shows the geometric description of

Frenet-Serret frame.

Figure 2.17: Frenet-Serret
Frame

Using the Frenet-Serret frame, its formula can be presented

as follows (subscript fs was omitted for simplicity):

ẋ = κy (2.18)

ẏ = −κx+ τz (2.19)

ż = −τz (2.20)

where κ is the curvature; τ is the torsion. These equations show three partial differential

equations in respect to the arc length (s). Eq. 2.18 to Eq. 2.20 represent how the vectors

(xfs, yfs, and zfs) would change depending on the curvature and torsion. With Frenet-Serret

formulas, the curvature and torsion should be computed to guide the agents to aggregate.

These terms are calculated by following equations:

κk =
∑
j 6=k

κjk (2.21)

where κjk = −ηκ
(
rjk
|rjk|

· xk
)(

rjk
|rjk|

· yk
)

︸ ︷︷ ︸
term1

− f(|rjk|)
(
rjk
|rjk|

· yk
)

︸ ︷︷ ︸
term2

+µκxk · yk︸ ︷︷ ︸
term3

τk =
∑
j 6=k

τjk (2.22)

where τjk = −ητ
(
rjk
|rjk|

· xk
)(

rjk
|rjk|

· zk
)

︸ ︷︷ ︸
term1

− f(|rjk|)
(
rjk
|rjk|

· zk
)

︸ ︷︷ ︸
term2

+µτxk · zk︸ ︷︷ ︸
term3

where k indicates each agent; rjk is the relative position vector from kth agent to jth agent

(rj − rk). |rjk| is the distance between a pair of agents. α, ηκ,µκ, ητ , and µτ are constants.
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f(|rjk|) is the potential function to avoid collision between the agents as follows:

f(|rjk|) = α

[
1− (

r0

|rjk|
)2

]
(2.23)

The first term of κjk is to align a pair of agents. Particularly, the velocity of agents would

be perpendicular to the relative position vector (rjk). The second term uses the potential

field (Eq. 2.23) to generate the curvature for the collision avoidance between agents. The

last term makes the tangent and normal vectors of agents into a common orientation. With

these three terms, the curvature and torsion aggregates agents into one direction. κk and τk

are the basic laws of swarming agents. Figure 2.18 shows the result of the simulation in two

dimensional space.

Figure 2.18: Aircraft simulation with the aircraft dynamics using the curvature, In this
simulation, all agents travel at 50 ft/sec.

Agents have the random heading angles when the algorithm begins. After the curva-

ture control algorithm is applied, all agents proceeds to the identical direction. During the

simulation, the limitation in total curvature is applied not to violate the minimum turning
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radius.

Figure 2.19: Aircraft simulation with the aircraft dynamics using torsion

Figure 2.19 shows the result of the torsion control. One agent ascends while the other

one descends when the simulation is started. Torsion control can guide agents to converge

to the altitude by matching the velocity direction to the virtual leader’s velocity direction.
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2.2.1.2 Formation Assignment Algorithm

When all agents proceed to one direction, each agent should determine which formation

position is the desired one. This problem is called the assignment problem in mathematics.

The optimal solution of the assignment problem is well known as Hungarian algorithm, see

Ref. [53]. Let’s consider that there are four people (person A,B,C, and D) and four jobs (job

1,2,3, and 4). Figure 2.20 shows the simple example of the cost matrix in the assignment

problem. Figure 2.20 (right) shows the result of assignment job to each person. The assigned

job has minimum cost with respect to each person.

Figure 2.20: Example of the assignment problem: given cost matrix(left), assigned re-
sult(right)

In order to utilize Hungarian algorithm, the cost function should be defined. Existing

work in Section 1.2 only uses the distance error between each agent to the formation position

to calculate the cost. However, this approach has the drawback of ignoring the aircraft

dynamics. In this work, the heading and rotation angle errors are added to the cost function

to include the aircraft motion. Fig 2.21 shows the definition of heading and rotation angles.

Eventually, the cost function consists of three different categories: distance error between

each agent to the formation position (term 1), the heading angle error (term 2), and the

rotation angle error (term 3), see Eq. 2.24.

Jij = c1 |−→p i −−→p j|
2︸ ︷︷ ︸

term1

+ c2 ∗ (ψi − ψj)2︸ ︷︷ ︸
term2

+ c3

(
ψri − ψrj

)2︸ ︷︷ ︸
term3

(2.24)
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Figure 2.21: Definition of the rotation angle of the formation and agents(1st row) and the
heading angle of the formation and agents (2nd rows)

where i = 1, · · · , n is the number of agents; j = 1, · · · ,m is the number of the formation

position; ψi is the aircraft heading angle; ψj is the desired heading angle; ψri is the rotation

angle of the agent respect to the centroid of agents position; ψri is the rotation angle of

the formation respect to the centroid of desired position; c1, c2, and c3 are the constant

coefficients. Once the cost matrix is obtained, the Hungarian algorithm can be applied as

follows:

Step 1. For all rows, find the minimum cost for each row and subtract throughout all

elements.

Step 2. For all columns, find minimum cost for each column and subtract throughout all
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elements. If there is zero in the column, skip this step.

Step 3. Find the row or column that has only one zero among all elements. Cover all zeros

until all rows and columns are checked. If the number of the assignment is needed as

n, the same number of zeros should be assigned to each element. Otherwise, proceed

to the next step.

Step 4. Find the rows or columns that are not covered from the previous stage. Find the

minimum values (k) among uncovered elements and subtract it from them. However,

if the element is already covered then add the minimum value (k) to them.

In order to provide the formation reference to agents, the virtual terminal is used. This

terminal will wait for closest agents sequentially until all agents arrived at each formation

position. The virtual terminal can wait but the moving point will travel continuously in order

to design the suitable path planning for high speeds and high moment of inertia configuration.

Each formation position is obtained by using ‘Virtual Point Formation Algorithm’ discussed

in Section 2.2.2.3.

Details of path planning using Hungarian algorithm are presented as follows:

Step 1. The virtual terminal is defined by the center of formation and desired relative

distance. The center of formation is location ahead of all agents. The design parameter

in this step is how far the center will be from agents.

Step 2. Based on the virtual terminal, the Hungarian algorithm is applied and assigns all

agents to the formation position.

Step 3. Once closest agents arrive at the desired formation position, fix this assignment

and rerun the Hungarian algorithm except the agent already arrived.

Step 4. Then, the virtual terminal will be updated based on the next closest agent. In

order to catch up to the formation position, the virtual terminal is assumed to travel

90% of the desired speed to prevent stall. Therefore, the relative speed will be 10% of
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the desired trim speed. Since we know how fast the formation travels, the time can be

calculated to reach next closest formation. The following equation is used to calculate

the time to catch up the next formation position:

tarrival =
−→p i −−→p ij

0.1|
−→
V desired|

(2.25)

where tarrival is the time which takes to catch up from the agent to the formation

position; −→p i is the closest agent to the next virtual terminal; −→p ij is the assigned

formation position based on the next virtual terminal;
−→
V desired is the desired trim

speed of the aircraft.

Step 5. Once the closest agent arrives at the designated formation position by Hungarian

algorithm, repeat from Step 3 until all agents are assigned to the formation position.

In order to generate a path and avoid collision, the morphing potential and path follow-

ing algorithm is applied. The details of these algorithms are discussed in Sec. 2.2.2.5 and

Sec. 2.2.2.6.

The result of Hungarian algorithm is presented in Figure 2.22.

Figure 2.22: Simulation result of Hungarian method for the formation. Ref. [13] is used for
the practical implementation.
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2.2.2 Stage 2: Formation Holding

2.2.2.1 Intelligent waypoint modification and its index decision algorithm

• Intelligent waypoint modification algorithm

This algorithm modifies the given waypoints based on the aircraft position and velocity in

order to assist the smooth transition from the remote control to the autopilot. The first

waypoint is set to the intersection point on the waypoint box by using the aircraft position

and velocity. This provides the time to settle the aircraft attitude angles since the first

task of the autopilot is to follow the straight line. In case of the multi agent flight, the

average of position and velocity vector is used to find the intersection point. Based on

the intersection point, the initial virtual leader position and velocity can be obtained as

follows:

−→
V virtual =

1

n

n∑
i=1

−→
V UAV
i (2.26)

−→p virtual =

(
1

n

n∑
i=1

−→p UAV
i

)
+
−→
V virtual · np∆t (2.27)

where np is the number of the time step; The equation shows that the initial position

of the virtual leader is located ahead of all agents by the designated time step (np) to

avoid abrupt maneuvers. However, the line aligned with the aircraft velocity can have the

multiple intersection points among all line segments made by given waypoints. In order

to select the appropriate intersection point, the following algorithm has been designed.

Step. 1 Compute all intersection points between the aircraft velocity and all waypoints.

In order to proceed, all lines (li) that can be made by a pair of consecutive waypoints

are identified as follows:

li =

(
pwayi+1 N

− pwayi N

)(
pwayi+1 E

− pwayi E

) (x− pwayi E) + pwayi N (2.28)
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where −→p way
i is the waypoints position defined as {pwayi N , p

way
i E, p

way
i H}

T . When the

final waypoint is selected, the first waypoint is used to form a pair of points so that

it can make the line.

Step. 2 Obtained lines are equated to the line aligned with the aircraft velocity (or

average velocity vector for the multi-agent system), see Eq. 2.28 and Eq. 2.29.

lvirtual = tan

(
V virtual
N

V virtual
E

)
x+ b (2.29)

lvirtual = li (2.30)

where b = pwayi N − tan
(
V virtualN

V virtualE

)
pwayi E.

Step 3. Once all lines are identified, the intersection points between each line can be

determined by solving x and y.

Step 4. Select the proper intersection point based on the following criteria:

– The direction alignment criteria: The relative distance vector and the aircraft

velocity should be in the identical direction. The relative distance vector is de-

fined from the initial virtual leader position to the intersection point. Otherwise,

the agent can proceed to the opposite direction from the first waypoint. This

is not a desirable navigation strategy since the required heading angle change is

180 degrees which can cause abrupt changes in the roll angle command.

– The minimum turning radius criteria: The distance between the aircraft and

the first waypoint should be at least larger than the minimum turning radius to

plan the physically feasible flight path. If the first waypoint is closer than the

minimum turning radius, the next possible intersection point is chosen.

– Staying the waypoint box area: The intersection point should be inside of the

waypoint box area. If the intersection point is located outside of the waypoint

box, it should not be chosen for the first waypoint.
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For example, Figure. 2.23 shows that four intersection points can be found by equating

Eq. 2.28 and Eq. 2.29. Based on these criteria, the intersection point 3 is chosen in this

Figure 2.23: Example of intersection points using Eq. 2.28 and Eq. 2.29

example, see Fig 2.23. Intersection point 1 violates the direction alignment criteria. The

aircraft should turn to a 180 degree heading angle to follow this point. At the same time,

it is located outside of the waypoint box area. Intersection point 2 is closer than the

minimum turning radius, so the next possible one will be considered. Intersection point 4

is located outside the waypoint box. Since the intersection point is properly chosen, the

error angles in multi-scale moving point guidance will be very small. Consequently, the

roll angle command should not be large or abrupt when the autonomous flight mode is

engaged.

• Waypoint index decision algorithm

This algorithm provides the guideline for choosing the sequence of waypoints in a way that

requires less aggressive maneuvers. When the waypoint index or sequence is not updated,

the tracking of waypoints has huge overshoot since the aircraft tries to follow the wrong

sequence of waypoints. Figure 2.24 shows one of these cases.
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Figure 2.24: Simulation without waypoint index decision algorithm

As Figure 2.24 shows, the tracking error is very large. If the navigation is intelligent

enough, it could guide the aircraft to follow the closest waypoint which is number 3

instead of number 2. The procedure of this algorithm is presented as follows:

– If an intersection point exists,

Step. 1 The first waypoint is the aircraft position and the intersection point is allocated

as the second waypoint.

Step. 2 Since the line segment that crosses the intersection point is known, the required

heading angle changes can be found by the current and neighbor waypoints. For

example, let’s assume the line segment where the intersection point is located is

made by the waypoints of index 2. Then, the neighbor waypoints are index 1 and

3. Then, the required heading angle changes (∆ψij) are calculated by the following

equation:

∆ψij = tan−1

((
pEj − pEinter

)(
pNj − pNinter

))− tan−1

(
viE
viN

)
(2.31)

where j = k or k + 1; k is the waypoint index which contains the line where the

intersection point is located; i is the agent; −→p inter is the position of the chosen
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intersection point. Repeat this step with the other neighbor waypoint.

Step. 3 Allocate the next waypoint which has smaller required heading angle changes

(∆ψij).

Step. 4 Repeat the previous step until all waypoints are assigned.

– Depending on the initial conditions, the aircraft velocity might not have the intersection

points with the waypoint box. If the intersection point does not exist,

Step. 1 Calculate the distance between the initial aircraft position for a single agent

or the initial virtual leader position for multi-agents as follows:

dij =
∣∣∣−→p i −

−→
j
∣∣∣ (2.32)

where i is the agent; j = 1, ..., nway is the waypoint index of given nway waypoints.

Then, choose two points that are most closest from the aircraft (−→p i).

Step. 2 Compute the required heading angle with respect to two chosen points (−→p c

where c = 1, 2).

∆ψic = tan−1

(
(pEi − pi)
(pNi − pi)

)
− tan−1

(
viE
viN

)
(2.33)

Step. 3 Allocate the next waypoint by the one that has smaller ∆ψic.

Step. 4 Repeat the previous steps until all waypoints are allocated.

Figure 2.25 shows the result of the waypoint index decision algorithm. Figure 2.25 (left)

shows the result when the waypoint index are not updated properly. The RMS of the failed

case is 160.7 ft. Figure 2.25 (right) presents the result when the waypoint index decision

algorithm is applied. Instead of planning the path towards to waypoint 2 (Figure 2.25 (left)),

the waypoint index sequence is updated based on the required heading angle change. Now,

the aircraft follows the different waypoint sequence. The tracking RMS is reduced 6.3 % for

this specific initial conditions.
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Figure 2.25: Result of the waypoint allocation based on the required amount of the heading
angle change
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2.2.2.2 Virtual Leader: LQ guidance Path Planning

In this work, this guidance has been utilized as the path planning algorithm. The advantage

of this algorithm is that the commanded lateral acceleration is optimized based on Linear

Quadratic Regulator (LQR) control theory. This approach is very useful since the principle

of LQR control is to regulate all states to zero. In this case, the states are defined as the

position and velocity error. LQ guidance has been developed in two-dimensional space with

3 DoF dynamics, see Ref. [80]. In this work, the LQ guidance algorithm is expanded to three

dimensional space with 6 DoF aircraft dynamics. In order to obtain the state space used for

solving the Ricatti equation, the error dynamics are found by the relationship between the

current and desired position and velocity. Figure. 2.26 shows the geometry.

Figure 2.26: Formulation geometry for 3 dimensional space

The rate of position errors (ḋlat and ḋlon) are expressed by the speed and differences of the

heading (ψ) and pitch angles (θ) for lateral-directional and longitudinal plane, respectively.

ḋlat =
∣∣∣−→V ∣∣∣ sin (ψ − ψdesired) (2.34)

ḋlon =


∣∣∣−→V ∣∣∣ sin (θdesired − θ) , if θdesired ≥ 0∣∣∣−→V ∣∣∣ sin (θ − θdesired) , otherwise

(2.35)

where ψdesired and θdesired are the desired heading and pitch angle. The position errors (dlat

and dlon) are considered on the bounded range with respect to the desired trajectory. These
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error bounds are the constraints that define how aggressive the tracking is by using the

accelerations.

|dlat| ≤ dblat (2.36)

|dlon| ≤ dblon (2.37)

From Fig. 2.26, the position and velocity errors rate can be found as follows:

vdlat = ḋlat = v sin (ψ − ψdesired) (2.38)

vdlon = ḋlon =


v sin (θdesired − θ) , if θdesired ≥ 0

v sin (θ − θdesired) , otherwise

(2.39)

In order to obtain the state space, the time derivative of velocity errors (vdlat and vdlon) are

derived as follows:

v̇dlat = v
(
ψ̇ − ψ̇desired

)
cos (ψ − ψdesired) (2.40)

v̇dlon =


v
(
θ̇desired − θ̇

)
cos (θdesired − θ) , if θdesired ≥ 0

v
(
θ̇ − θ̇desired

)
cos (θ − θdesired) , otherwise

(2.41)

Since the trajectory information is arbitrary, the change of desired heading and pitch angles

(ψ̇desired and θ̇desired) are assumed to be zero. Substitute Eq. 2.47 and Eq. 2.48 with the

small angle assumption, so the errors between the current and desired angles are very small

((ψ − ψdesired) = (θdesired − θ) = (θ − θdesired) → 0). When all assumptions are applied to

Eq 2.38 and Eq. 2.39, the following equations are obtained:

v̇dlat = ulat = vψ̇ (2.42)
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v̇dlon = ulon =


vθ̇, if θdesired ≥ 0

−vθ̇, otherwise

(2.43)

Therefore, the lateral-direction and longitudinal state space can be presented using a general

linear model (Eq. 2.44) as follows:

ẋ = Ax + Bu (2.44)

• Lateral-directional state space

 ḋlat
v̇dlat

 =

0 1

0 0


dlat
vdlat

+

0

1

ulat (2.45)

• Longitudinal state space

 ḋlon
v̇dlon

 =

0 1

0 0


dlat
vdlat

+

0

p

ulon, p =


1, if θdesired ≥ 0

−1, otherwise

(2.46)

In addition, the control (u) should be identified to change the virtual leader’s heading

and pitch angle. The lateral and longitudinal acceleration are presented as follows:

ulat = vψ̇ (2.47)

ulon =


vθ̇, if θdesired ≥ 0

−vθ̇, otherwise

(2.48)

where v =
∣∣∣−→V ∣∣∣ is the speed of the virtual leader. Now, the cost function is considered to solve

the desired accelerations by the Ricatti equation. The quadratic cost function is introduced

as follows:

J =
1

2

ˆ ∞
t0

[
xTQx+ Ru2(t)

]
dt (2.49)
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The cost function (J) contains the weighting matrices (Q and R ), the state vector (x) and

control (u). In this work, R is assumed to be 1. By using the Riccati equation, the control

can be found as follows:

ẋ = Ax+Bu (2.50)

u∗ = −R−1BTPx (2.51)

P is the solution of Riccati equation which is presented as follows:

ATP + PA− PBR−1BTP +Q = 0, Q ≥ 0, R > 0 (2.52)

The state weighting matrix (Q) is considered to be adaptive by the term in the diagonal

elements:

Qlat =

q2
1lat

0

0 q2
2lat

 ≥ 0, Qlon =

q2
1lon

0

0 q2
2lon

 ≥ 0 (2.53)

The way to calculate the adaptive weighting is presented at the end of this section. Rlat and

Rlon are assumed to be 1.

Rlat = Rlon = 1 (2.54)

Now, the Riccatti equation is solved by substituting the aforementioned terms as follows:

• Lateral-directional

By using Eq. 2.51, the lateral control is presented as follows:

u∗ = −R−1
latB

T
latPxlat, where P =

p11 p12

p21 p22

 (2.55)

Substitute all matrices to the Riccati equation.
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0 0

1 0


p11 p12

p21 p22

+

p11 p12

p21 p22


0 1

0 0


−

p11 p12

p21 p22


0

1

 1−1

[
0 1

]p11 p12

p21 p22

+

q2
1lat

0

0 q2
2lat

 = 0 (2.56)

 0 0

p11 p12

+

0 p11

0 p21

−
p12p21 p12p22

p22p21 p2
22

+

q2
1lat

0

0 q2
2lat

 = 0 (2.57)

−p12p21 + q2
1lat

p11 − p12p22

p11 − p22p21 p12 + p21 − p2
22 + q2

2lat

 = 0 (2.58)

Solve for p11, p12, p21, and p22.

p12 = p21 = q1 (2.59)

p22 =
√

2q1 + q2
2lat

(2.60)

p11 = q1

√
2q1 + q2

2lat
(2.61)

Therefore, the optimal control (u∗lat) is the following equation:

u∗lat = −
[
0 1

]p11 p12

p21 p22


dlat
vdlat

 = −
[
q1latdlat +

√
2q1lat + q2

2lat
vdlat

]
(2.62)

The adaptive gain (q1lat) is used with the maximum allowable position error (dblat).

q1lat =

∣∣∣∣ dblat
dblat − dlat

∣∣∣∣ (2.63)

53



Eq. 2.62 can be expressed by using Eq. 2.63 as follows:

u∗lat = −

[∣∣∣∣ dblat
dblat − dlat

∣∣∣∣ dlat +

√
2

∣∣∣∣ dblat
dblat − dlat

∣∣∣∣+ q2
2lat
vdlat

]
(2.64)

• Longitudinal

Since the derivation of the control (u∗lon) for the positive desired pitch angle (θdesired ≥ 0)

is similar to the lateral-directional control, the derivation of a negative desired pitch angle

is presented. Substitute all matrices to the Riccati equation.

0 0

1 0


p11 p12

p21 p22

+

p11 p12

p21 p22


0 1

0 0


−

p11 p12

p21 p22


 0

−1

 1−1

[
0 −1

]p11 p12

p21 p22

+

q2
1lon

0

0 q2
2lon

 = 0 (2.65)

 0 0

p11 p12

+

0 p11

0 p21

−
p12p21 p12p22

p22p21 p2
22

+

q2
1lat

0

0 q2
2lat

 = 0 (2.66)

−p12p21 + q2
1lon

p11 − p12p22

p11 − p22p21 p12 + p21 − p2
22 + q2

2lon

 = 0 (2.67)

Solve for p11, p12, p21, and p22.

p12 = p21 = q1 (2.68)

p22 =
√

2q1 + q2
2lon

(2.69)

p11 = q1

√
2q1 + q2

2lon
(2.70)
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Therefore, the optimal control (u∗lon) is the following equation:

u∗lon = −
[
0 −1

]p11 p12

p21 p22


dlat
vdlat

 = −
[
−q1londlon −

√
2q1lon + q2

2lon
vdlon

]
(2.71)

The adaptive gain (q1lon) is used with the maximum allowable position error (dblon).

q1lon =

∣∣∣∣ dblon
dblon − dlon

∣∣∣∣ (2.72)

Eq. 2.71 can be rewritten by using Eq. 2.72.

u∗lon =

[∣∣∣∣ dblon
dblon − dlon

∣∣∣∣ dlon +

√
2

∣∣∣∣ dblon
dblon − dlon

∣∣∣∣+ q2
2lat
vdlon

]
(2.73)

The following conditions are presented to check the stability of the system:

• Controllability: |{B,AB}| should not be zero. By using Eq. 2.45 and Eq. 2.46, the

determinant of the controllability matrices are -1.

|{Blat,AlatBlat}| =

∣∣∣∣∣∣∣
0 1

1 0


∣∣∣∣∣∣∣ = −1 (2.74)



|{Blon,AlonBlon}| =

∣∣∣∣∣∣∣∣
0 1

1 0


∣∣∣∣∣∣∣∣ = −1, if p = 1

|{Blon,AlonBlon}| =

∣∣∣∣∣∣∣∣
 0 −1

−1 0


∣∣∣∣∣∣∣∣ = −1, otherwise

(2.75)

• Blat and Blon are not zero. (B 6= 0)

• Q ≥ 0 and R > 0: Eq. 2.53 and Eq. 2.54 satisfy these conditions.
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• f(x) = Ax ∈ C1 and f(0) = 0 should be satisfied.

Alatxlat =

0 1

0 0


dlat
vdlat

 =

dlat
0

 , if dlat = 0, f(0) =

0

0

 (2.76)

Alonxlon =

0 1

0 0


dlon
vdlon

 =

dlon
0

 , if dlon = 0, f(0) =

0

0

 (2.77)

In order to implement the result of the derivation for the flight simulation, the linear

trajectory is considered as follows:

Figure 2.27: LQ guidance geometries for the linear trajectory: lateral-directional (left) and
longitudinal (right)

Rlat and Rlon are the length from waypoint 1 to the virtual leader; ψR and θR are angles

measured from the east axis to Rlat and Rlon; ψp and θp are desired heading and pitch angles;
−→
V is the virtual leader velocity vector. The position and velocity errors are defined for three

dimensional space as follows:

dlat = Rlat sin (ψR − ψp) (2.78)

ḋlat = v sin (ψ − ψp) (2.79)

dlon = Rlon sin (θR − θp) (2.80)

ḋlon = v sin (θ − θp) (2.81)
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Therefore, the desired accelerations (ulat and ulon) can be obtained by Eq. 2.64 and Eq. 2.73.

They are translated to the desired heading and pitch angles (Eq. 2.47 and Eq. 2.48) to update

the virtual leader position and velocity.

Lastly, the desired trajectory line segment should be updated to follow the race track pattern.

The threshold called ‘switching distance’ is introduced to provide the criteria to update the

next desired line segment. The switching distance is usually designed to be larger than the

minimum turning radius to achieve a physically feasible trajectory. If the distance between

the virtual leader and the next waypoint is smaller than the switching distance (called ‘Point

based waypoint index update algorithm’), then the waypoint index is updated so that the new

line segment can be selected. When the virtual point reaches the last waypoints, it returns

to the first index of the given waypoints. From Section 2.2.2.1, the intersection waypoint is

added from the predefined waypoints. Therefore, newly added waypoints should be ignored

after the first lap of the race track is completed. Figure 2.28 shows the geometries of the

switching distance for point-based and line-based waypoint index update algorithm. Fig 2.29

Figure 2.28: Comparison between the point-based and line-based switching distance.

(left) shows the failure of updating the waypoint index. When the line segment length is

not long enough to arrive in time to the designated waypoint, the waypoint index cannot be

updated because it cannot reach the switching distance zone. In contrast, Fig 2.29 (right)
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shows that the line based waypoint index update algorithm resolves these failures. Instead

of calculating the distance between the virtual leader and next waypoint, the remaining

distance is calculated between the next waypoint line (not a coordinate of waypoint) and

the virtual leader position. As a result, the waypoint index can be updated even though the

virtual leader does not arrive at the switching distance zone in Figure 2.28 (left).

Figure 2.29: Line based waypoint index update algorithm could resolve the issue. (right)

The following figure shows the example of the moving point position in 3D plane. The

moving point starts to travel at 300 ft AGL and gradually planned to ascend the altitude to

500 ft AGL.

Figure 2.30: The result of the moving point position by using LQ guidance path planning in
3D space
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2.2.2.3 Outer Agents: Virtual Point Formation Algorithm

Figure 2.31: Reference Point Forma-
tion Algorithm

In order to maintain the consistency of the formation

shape, the virtual point formation algorithm is used.

This algorithm assigns the path to each agent with

respect to the virtual leader position by using the de-

sired relative distance. Each agent has the identical

heading direction as the virtual leader to keep the

coherent formation. Figure 2.31 shows the geomet-

ric description of this algorithm. ψref is the heading

angle of the virtual leader. The following equations

calculates each agent formation position by using the

desired relative distances and the position and heading angle of the virtual leader:

pNi = pNRP − ‖Ei‖ sinψRP + ‖Ni‖ cosψRP (2.82)

pEi = pERP + ‖Ei‖ cosψRP + ‖Ni‖ sinψRP (2.83)

pHi = pHRP (2.84)

where pNi , pEi , pHi are the north, east and height of each agent (i = 1, · · · , Nagent) position;

‖Ei‖, and ‖Ni‖ are desired relative distances in the east and north direction from the virtual

leader; pNRP , pERP , pHRP the north, east and height of the virtual leader position; ψRP is

a heading angle of the virtual leader. In this research, the formation height is set by the

aircraft altitude when the autopilot is engaged.

2.2.2.4 Inner Agents: Moving Mesh Methods

Moving Mesh Methods (MMM) have been developed to enhance the resolution (or quality) of

the solution for partial differential equations (PDE). Huang. et al developed these methods,

see Ref. [43]. MMM have been utilized in various fields such as applied mathematics, engi-
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neering and biology. The multi-phase flow for a diesel injector nozzle has been investigated

by using MMM (Ref. [63]). Incompressible Navier-Stokes equations have been solved by us-

ing MMM very efficiently, see Ref. [23]. The glaciers model developed by Oerlemans in 1984

has been solved by the MMM (Ref. [75]). Ref. [56] proposed the modeling of tumor growth

using the MMM. The common ground of using the MMM is to help the numerical solution of

partial differential equations for complex geometries. In this work, the MMM play a role of

creating the path for the multi-agent systems since they generate the node position in a way

that they do not collide each other and find the optimal position to make the mesh distri-

bution as uniform as possible. Mesh creation by MMM does not make the nodes overlap or

tangle with each other. Nodes organize themselves using energy distribution between mesh

elements or nodes. These features are very profound for the multi-agent system to perform

formation flight in the perspective of coordinating with other agents safely and efficiently.

Figure 2.32: Mesh example for the
triangle formation

Unlike the existing work, the agents’ position does

not have a fixed boundary. For this reason, the path

planning of the outer agent should be developed to

provide the boundary condition for the moving mesh

methods. Hereafter, inner agents should be defined

as agents located within the formation shape. For

example, inner agents are defined as ones who stay

inside of the triangle made by agent 1, 2, and 3, see

Fig. 2.32. In this work, moving mesh methods pro-

vide the desired path for inner agents by solving moving mesh partial differential equations

(MMPDE). In order to apply MMM to the path planning algorithm, the moving mesh nodes

are considered as the aircraft position. For generating the physically feasible flight path,

6 DoF dynamic constraints (e.g., the minimum turning radius) are applied to the nodes’

movement. Fundamentals of the moving mesh methods begins with understanding the mesh

or triangulation with geometric concepts. Mesh or triangulation is the division of the geo-
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metric area with triangles in two dimension or tetrahedrons in three dimensional space. The

following lists are the properties of the meshes:

• There is no empty element. Mesh cannot be degenerate.

• Union of sub-domain in an element (K) is equal to a designated domain (Ω̄)

• The mesh elements cannot be overlapped.

• Boundary of the mesh element (K) is Lipschitz-continuous.

• Any vertices of the mesh cannot be located inside of the mesh or the edge of an element.

Simplexes are introduced to generalize triangles in any dimension to present the meshes

in the mathematical description. The mesh element (K) is described as d-simplex which is

the convex hull of points (xi) as follows:

K =

{
x =

d∑
i=0

λixi : 0 ≤ i ≤ 1, i = 0, ..., d,
d∑
i=0

λi = 1

}
(2.85)

Edge matrix is defined by the collection of the relative distance vector of all points (x)

in d dimension, see Eq. 2.86. If the meshes are defined in d dimension, there are d+ 1 points

to deal with. For example, 2 dimensional meshes has 3 points to describe its simplex which

is a triangle. The edge matrix are presented as follows:

EK = [x1 − x0, · · · , xd − x0] = [pK1 − pK0 , · · · ,pKd − pK0 ] (2.86)

where pKi is the position of the aircraft (pi = (piN , p
i
E, p

i
H)T ); i = 1, · · · , n is the number

of agents. The volume of the mesh element (K) is presented by the edge matrix and the

dimension (d) as follows:

|K| = 1

d! |det(EK)|
(2.87)

Equidistribution and alignment of the mesh is derived from simplicial mesh properties.

Simplicial mesh consist of d-simplexes and are mapped into the reference mesh element (K̂)
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by using the affine mapping. The affine mapping is the technique for rotating, scaling, and

transforming the geometry in one domain to other domains. In two dimensional space, the

reference mesh element (K̂) is usually a right triangle or an equilateral triangle. It is also

defined by the other shape of the triangle depending on the metric definition. For example,

the uniform mesh can be defined in the metric M as follows:

M =

1 0

0 2

 (2.88)

In this case, the right square mesh is not the uniform in metric M anymore, see Fig. 2.33.

Figure 2.33: Example of the uniform circle in different metric: Euclidean and Metric, M

In order to implement MMM, the Delaunay triangulation method is used to find the

connectivity, boundary or outer nodes and mesh elements. The connectivity shows the

collection of each mesh element by the node index. In addition, this method can identify

the nodes (e.g., boundary nodes or outer nodes). This is how the outer agents are found in

the algorithm so the inner agents can plan their path from MMM. Figure 2.34 shows the

example of the Delaunay triangulation.

K1 through K5 is the triangular mesh by six agent. The agent position is presented at

the right side of Fig. 2.34. The connectivity of Delaunay triangulation is given by the node

index as follows:
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Figure 2.34: 2D Delaunay Triangulation Example Mesh with the position of Agents

Connectivity =



4 6 5

6 1 5

5 1 2

6 4 1

5 2 3


(2.89)

The subscription of agents in Fig. 2.34 is the node index. Now, the two mathematical

conditions are introduced to make the uniform mesh based on the mesh information obtained

by using the Delaunay triangulation method as follows:

1. All mesh elements should have the identical size. (Condition 1)

|K| = |Ω|
N
, ∀K ∈ Th (2.90)

where |K| is the volume of the mesh element (K); Th is the defined mesh; Ω is the mesh

domain; N is the number of mesh elements.
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2. All mesh elements are similar or identical to the reference element (K̂). (Condition 2)

In order to express this condition mathematically, the mesh edge length should have the

same ratio comparing to the reference mesh element, see the following equation:

‖ xKi − xK0 ‖= θ
1/2
K ‖ ξi − ξ0 ‖, i = 1, · · · , d (2.91)

where xKi is the coordinate of the mesh nodes, and ξ is the reference element coordinates

(K̂). θK is the ratio which is a positive constant. The affine mapping matrix (FK) provides

the following equation:

FK (ξi) = xKi , i = 1, · · · , d (2.92)

Jacobian matrix (JK = F ′(ξi)) is utilized as follows:

JK (ξi − ξ0) = xKi − xK0 , i = 1, · · · , d (2.93)

Substitute Eq. 2.93 to Eq. 2.91.

(ξi − ξ0)T (JK)T (JK) (ξi − ξ0) = θK (ξi − ξ0)T (ξi − ξ0) , i = 1, · · · , d (2.94)

Using Lemma 4.1.1 from Ref. [43], the equation is simplified as follows:

(JK)T (JK) = θKI (2.95)

where I is the identity matrix; The sufficient condition is found by using arithmetic-mean

and geometric-mean inequality (Ref. [43]):

1

d
trace

(
JKJTK

)
= |K|−

d
2 , for any element K (2.96)

where JK is the Jacobian matrix which is defined as K̂E−1
K to apply the affine mapping
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from the mesh element (K) to the reference mesh element (K̂).

As it is mentioned above, the moving mesh methods distributes the energy equally for

all mesh elements. A free energy is defined as follows:

Ih =
∑

all elements K

|K|G(JK , det(JK)), (2.97)

det(JK) is the determinant of matrix JK and

G(JK , det(JK)) =
1

3

(
trace(JKJTK)

)d
+

1

3
dd (det(JK))2 . (2.98)

Ih is a Riemann sum of a free energy, see Ref. [41]. By minimizing Ih with respect

to the agents’ position, all mesh elements should be as uniform as possible and meet two

aforementioned conditions. The gradient field of Ih is defined by the mesh velocity to find

the new inner agents’ position as follows:

dpiN
dt

= −1

τ

∂Ih
∂piN

,
dpiE
dt

= −1

τ

∂Ih
∂piE

,
dpiH
dt

= −1

τ

∂Ih
∂piH

, (2.99)

or in a more compact form,
d~pi

dt
= −1

τ

[
∂Ih
∂~pi

]T
, (2.100)

where τ is a positive and constant parameter used to adjust a time scale of mesh movement.

Eq. 2.98, and the scalar-by-matrix differentiation are used (see Ref. [42]) to find the analytical

solution of Eq. 2.97 and Eq. 2.100. As the result, the following equation can be obtained:

d~pi

dt
=

1

τ

∑
K∈ωi

|K|~vKiK , (2.101)

where ωi is the collection of mesh elements having the position of agent i as one of its vertices,

iK denotes the local index of agent i inK, and ~vKiK denotes the part of the velocity contributed

by an element K to agent i. Eq. 2.101 is valid for all interior mesh nodes. This equation
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is very important since it is a weighted sum of the velocity contributed from surrounding

elements to ith agent by the volume, |K|. Also, this can be expressed mathematically as

follows: 
(
~vK1
)T
...(

~vKd
)T

 = −GE−1
K + E−1

K

∂G

∂J
ÊE−1

K +
∂G

∂r

det(Ê)

det(EK)
E−1
K , (2.102)

~vK0 = −(~vK1 + · · ·+ ~vKd ), (2.103)

where G is defined in Eq. 2.98 and ∂G/∂J and ∂G/∂r are derivatives of G with respect to

its first and second arguments; r is defined as 1/3dd(det(J)). Derivatives can be found as

∂G

∂J
=

2d

3

(
trace(JKJTK)

)d−1 JTK ,

∂G

∂r
=

2

3
dd det (JK) .

The new position of inner agents can be computed by integrating Eq. 2.101 in respect to

time. The following lists are the procedure to operate the moving mesh method algorithm

practically:

(i) At the current mesh, compute edge matrices for all elements.

(ii) Compute velocities contributed by each mesh element (K) to its vertices according to

Eq. 2.102 and 2.103.

(iii) The mesh velocity for each interior vertex is computed according to Eq. 2.101 by

assembling velocities contributed by its neighboring elements to the vertex.

(iv) Each interior vertex is updated by using computed node velocities and a time integra-

tion scheme such as Euler’s method.

In summary, the moving mesh method has two significant features: nonsingularity and
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inter-collision avoidance, see Ref. [98]. If the moving mesh is nonsingular initially, the min-

imal height and volume exists by the total number of mesh elements, see Eq. 2.101. This

feature makes the mesh elements bound by the positive number so that they can be sepa-

rated at all times. This is also similar to the virtual forces (e.g. attractive and repulsive)

since the forces would be balanced when the agents are located as uniformly as possible.

2.2.2.5 Morphing Potential Field Collision Avoidance Path Planning

The morphing potential algorithm provides the direction vector to avoid the static and

dynamic obstacles, see Ref. [88]. The general form of the potential field is usually in a

circular shape as follows:

pf = A exp

{
−d
σ

}2

(2.104)

where pf indicates a potential function; A is an amplitude of a potential function; d is the

distance between obstacles and the agents; σ is the radius of the obstacle size. The biggest

advantage of the morphing potential field is the ability to avoid collision in advance based

on the relative speed between the aircraft and obstacle. The morphing potential function is

defined as follows:

mpf = exp

−Γ

∣∣∣−→p obs −−→p UAS +
−→
S
∣∣∣

σ


2

(2.105)

where mpf is the morphing potential function; Γ is the morphing factor; −→p obs is the position

of the obstacle; −→p UAS is the aircraft position;
−→
S is the shifting vector. The shifting term

is added to make the potential field efficient. By shifting the center of the obstacle towards

the aircraft, the actual path can be planned to avoid the unnecessary cost after the agent

passes the obstacle. The shifting term (
−→
S ) is defined by the radius (R, see Eq. 2.109).

|
−→
S | = ds =

1

3
R (2.106)
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The following equation shows the morphing factor (Γ) for the potential function:

Γ = (1− Γ0) sin2 ηv + Γ0; Γ0 ∈ (0, 1], ηv ∈ [−π, π] (2.107)

where Γ0 is the extension term of the morphing factor, see Eq. 2.108. The squared sine

function is used to obtain the smooth bell shape potential contour when the potential field

is morphed. ηv is the error angle between the relative distance and velocity vector. The

relative distance and velocity vectors are defined between the agent and the obstacle. The

magnitude of the extension term (Γ0) is defined as follows:

Γ0 =


(

σ
σ+R−ds

)2

, |ηv| < π/2(
σ

σ+ds

)2

, else
(2.108)

When the error angle is 90◦, the morphing factor (Γ) is same as Γ0. Also, it becomes as same

as the radius of the obstacle (σ) if the shifting distance is zero. The radius (R) is defined

based on the relative speed as follows:

R =
|−→v r|

2

g tanφmax
(2.109)

where−→v r is the relative velocity; g is the gravity acceleration; φmax is the maximum allowable

roll angle.

Figure 2.35 describes the geometric definition for the morphing potential field. The

obstacle velocity is assumed as zero to consider it as the static obstacle. The negative

gradient of the morphing potential function is calculated to obtain the direction vector for

avoiding the collision. The following equation presents the negative gradient of the morphing

potential:

∇mpf = Rmpf = −mpf 2

σ2

−→d c −
(1− Γ0) cos ηv

∣∣∣−→d c

∣∣∣
|−→v r|

−→v r

 (2.110)
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Figure 2.35 (right) shows the negative gradient field of the morphing potential field

presented in Figure 2.35 (left).

Figure 2.35: Left: Graphical Description of Morphing Potential Contour and Definitions,−→
d c is the relative distance vector. Right: Negative Gradient field of Morphing Potential.
The aircraft velocity is [42,−72.8, 0]T ft/sec for the north, east, and height in the inertial
coordinate. The maximum allowable roll angle is designated as 60◦. The radius of the
obstacle (σ) is 50 ft.

2.2.2.6 Path Following Algorithm using the Vector Field

In addition to the morphing potential algorithm, the path following logic is required to

combine the negative gradient field of the morphing potential. This algorithm has been

developed in order to take into account the presence of the wind for UASs for a guidance

algorithm, see Ref. [67]. In this work, it is utilized as the path planning algorithm. The

following equations are used to determine the vector field.

ψapp = ψ∞
2

π
tan−1 (ky) (2.111)

Rtraj = [cos (ψapp + ψtraj) , sin (ψapp + ψtraj)]
T (2.112)
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where ψapp is an approach heading angle; ψtraj is the desired heading angle; Rtraj is a unit

vector for reaching the desired trajectory; k is the constant for the transition speed from ψ∞

to the desired angle; ψ∞ is the maximum allowable heading angle for the moving point; As k

is larger, ψ∞ converges faster to the desired angle. The lateral distance from the trajectory

to the aircraft (y) is calculated by the following equation:

y =
(
poN − p

traj
N

)
sinψtraj −

(
poE − p

traj
E

)
cosψtraj (2.113)

where ptrajN and ptrajE are the north and east coordinates of the desired trajectory in the

inertial frame. For example, Figure. 2.36 (left) shows the result of the vector field and

Figure. 2.36 (right) shows the combination of the vector field and the negative gradient field

of the morphing potential.

Figure 2.36: The example of the vector field path following

where ψ is the heading angle of the moving point; The maximum allowable heading

angle (ψ∞) is assumed to be 45 deg; The desired heading angle (ψtraj) is −45 deg; k is 0.01;

The moving point velocity
−→
V = [100,−100] ft/sec (north, east component, respectively).

The advantage of this algorithm is the robustness towards the random initial condition. No

matter where the moving points are initially located, this vector field can direct to the desired

70



trajectory. Now, the negative gradient field of the morphing potential can be combined with

the path following vector field in a weighted way to have the final desired path. If the

morphing potential is higher, the gradient of morphing potential has more impact on the

final direction vector (see Eq. 2.114) than the path following vector field has. The following

equation shows the weighted sum of two fields:

RFinal = mpf ·Rmpf + (1−mpf)Rtraj (2.114)

After the moving point position and velocity is planned, the heading angle change (∆ψ)

is checked and compared with the maximum heading angle.

∆ψmax =
g tanφmax

|
−→
V |

∆t (2.115)

If the heading angle change is larger than the maximum value (∆ψmax), then the moving

point position and velocity is redefined using the maximum heading angle (∆ψ = ∆ψmax).

2.3 Control

This section discusses the linear quadratic regulator (LQR) controller and the nonlinear

model predictive controller (NMPC). Based on the flight test result, the elevator correction

and updating the trim control are introduced to improve the tracking and reduce the abrupt

changes when the autopilot is engaged.

2.3.1 Linear Quadratic Regulator Controller

A Linear Quadratic Regulator (LQR) controller is designed in this work to execute the

guidance state commands. LQR controller is established from the linear optimal control

theory. The linear time invariant (LTI) state space is applied to the linear dynamics equation
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as follows:

ẋ = Ax+Bu, x(t0), u(t0) given (2.116)

where x is the state vector in the size of n× 1; u is the control vector in the size of m× 1;

x(t0) and u(t0) are the initial states and controls. Since the LQR control theory is based on

the optimization approach, the cost function or performance index (J) should be defined. In

LQR control theory, the quadratic cost function is used, see Eq. 2.117

J =

ˆ T

t0

(xTQx+ uTRu)dt (2.117)

where t0 is the initial time; T is the final time; Q and R are the weighting matrices. In this

work, only Lagrangian type is considered.

As the problem formulation, the regulator problem is defined as follows:

When the plant has nonzero initial states, the regulator provides inputs (u∗(t))

to bring the plant back to states as zeros. Therefore, the regulator problem is to

minimize the defined performance index, J by finding optimal control u∗(t), t ∈

[t0, T ].

In order to find the solution for minimizing the performance index, the state (x) and

control (u) should be zero. This is why this theory is called the regulator. Next, the Lagrange

multiplier (λ) is used to derived the three conditions to minimize the cost function.

J =
1

2

ˆ T

t0

[
(xTQx+ uTRu) + 2λT (Ax+Bu− ẋ)

]
(2.118)

dJ =

(
∂J
∂x

)
dx+

(
∂J
∂u

)
du+

(
∂J
∂λ

)
dλ = 0 (2.119)

For the first condition, the partial derivative in respect to u is considered.

∂J
∂u

=

ˆ T

t0

{
∂

∂u

(
1

2
uTRu+ λTBu

)
dt

}
=

ˆ T

t0

(Ru+BTλ)dt = 0 (2.120)

72



Ru+BTλ = 0 (2.121)

u = −R−1BTλ (2.122)

Next, the partial derivative in respect to λ is considered.

∂J
∂λ

= 2

ˆ T

t0

∂

∂λ

(
λT (Ax+Bu− ẋ)

)
dt (2.123)

= Ax+Bu− ẋ = 0 (2.124)

ẋ = Ax+Bu (2.125)

Lastly, if we take the partial derivative of the performance index in respect to the state

(x), the result is the following equation.

λ̇ = −ATλ−Qx (2.126)

Now, the symmetric matrix P is used to linearly transform the Lagrange multiplier to

the state (λ = Px). As the result of combining condition 3 and 2, the Ricatti equation is

found as follows:

−Ṗ = 0 = PA+ ATP − PBR−1BTP +Q (2.127)

Since the regulator makes all states zero (or make the system in the steady state), this leads

to Ṗ becoming zero. Therefore, the optimal control (u∗) can be expressed as follows:

u∗(t) = −R−1B′Px(t) (2.128)

Using the generated guidance outputs (VTcmd , φcmd, θcmd, βcmd), the role of the controller

is to compute the desired control surface deflections to follow the guidance commands. In

this work, the decoupled LQR controllers has been designed by separating the lateral and
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longitudinal controllers. The state space obtained from Appendix A is used to formulate

the LQR gain. The regulator terms are added to solve the non-zero set point problem.

The following equation shows the augmented linear state space and states for each LQR

controller.

ẋauglat = Aauglatxauglat +Bauglatuauglat (2.129)

ẋauglon = Aauglonxauglon +Bauglonuauglon (2.130)

All states denoted here are perturbed states . For calculating the regulator terms, they are

in total states so that the difference between guidance commands and states are considered

as perturbed values.

xlat =



β

φ

p

r
´
βcmd − β´
φcmd − φ


ulat =

 ∆δa

∆δr

 , xlon =



VT

α

θ

q
´
VTcmd − VT´
θcmd − θ


ulon =

 ∆δT

∆δe

 (2.131)

The following equations are presenting the numerical result of the augmented linear state

space.

Alat =



−0.44127 0.5449 −0.0074 −0.9847 0

0 0 1 0 0

−10.7386 0 −20.9688 2.9327 0

10.0800 0 −1.2881 −0.6602 0

−1 0 0 0 0

0 −1 0 0 0


, Blat =



0 0.1616

0 0

140.5772 0.6242

−6.7747 −6.4997

0 0

0 0


(2.132)
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Alon =



−0.2030 −7.7004 −32.1874 0 0

−0.0177 −9.6416 −0.0151 0.9632 0

0 0 0 1 0

0.2003 −121.3565 0.0093 −5.4812 0

−1 0 0 0 0

0 0 −1 0 0


, Blon =



3.0391 −0.8475

2.327 · 10−5 −0.3067

0 0

−1.7311 −40.8156

0 0

0 0


(2.133)

With this state space model, the Q and R weighting matrices have been designed for

each controller. By considering the behavior of the DG808 from the simulation result and

parametric studies, the following Q and R matrices were designed.

Qlat = diag (131.31, 0.912, 2.05, 2.05, 11.46, 11.46) (2.134)

Rlat = diag (50, 300) (2.135)

Qlon = diag
(
0.00012, 3 · 10−6, 0.099, 0.003, 0.003, 15

)
(2.136)

Rlon = diag (300, 300) (2.137)

where diag(a, b, · · · , d) indicates the diagonal matrix in Rn×n whose diagonal have num-

bers such as a, b, · · · , d . With all the information, the LQR gain was computed as shown

in Table 2.1.

Table 2.1: Lateral and Longitudinal LQR gain

Lateral mode[
0.0065 0.0057 −0.011 −0.001 −0.0015 −0.198

4.3 · 10−5 0.22 −0.31 −0.02 −0.003 0.103

]
Longitudinal mode[
1.016 0.82 0.128 −0.229 −0.152 −0.45
0.084 −0.083 −0.00124 −0.068 −0.18 0.062

]
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2.3.2 Elevator correction for improving altitude tracking

Due to the nature of the aircraft dynamics, the roll motion causes a reduction of lift when

the aircraft starts to turn from the steady state level wing condition. Due to the decreasing

lift, the altitude is decreased during the roll maneuvers, see Fig. 2.37. In order to improve

Figure 2.37: Reduced lift force due to the rolling motion.

the altitude tracking, elevator correction is implemented. The elevator correction is derived

from the lift equations.

Lcruise = CLq̄S, Lroll = CLq̄S cosφ (2.138)

Now, the lift at cruise is equated to the lift at the roll motion. Then, the elevator correction

can be found by compensating the lift difference.

Lcruise −
Lroll
cosφ

= L∆δe (2.139)

CLq̄S

(
1− 1

cosφ

)
= CLδe q̄S∆δe (2.140)

∆δe =
CL
CLδe

(
1− 1

cosφ

)
(2.141)

We can consider CL
CLδe

as the constant K. Therefore, the following equation represents the

elevator correction using the roll angle.

∆δe = K

(
1− 1

cosφ

)
(2.142)
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Figure 2.38 shows the impact of this algorithm. The elevator commands increase whenever

the aircraft turns the corner. The result when the correction is not applied shows the altitude

drop and also pitch angle decrease. After the correction is applied, the altitude and the pitch

angle changes are smoothed out.
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2.3.3 Trim States and Control Surface Updates During the Flight

When the controller is implemented into on-board avionics, the trim states and trim condi-

tions are set to fixed constant values. When the autopilot engages, the controller does not

have any information about the trim values and states that the pilot uses. The drawback of

missing trim control and states causes the dramatic changes in the control outputs: throttle,

elevator, aileron, and rudder. Figure 2.39 shows the probability density function for controls

usage of three difference pilots during the flight test. As Fig. 2.23 shows, each pilot uses

Figure 2.39: The probability density function for the aileron and elevator usage of three
different pilots.

the different amount of control deflections for the Skyhunter. When the pilot engages the

autopilot, it is very difficult to engage at the exact trim states and controls based on the

visual cues. Since the pilot uses difference combinations of throttle and elevator to trim the

aircraft, the abrupt control commands are induced when the pilot engages the autopilot.

The solution of this drawback is proposed to implement the adaptive trim states and con-

trols. Figure 2.40 shows the behavior of the controller between the fixed and adaptive trim

values. With the fixed trim values, the control surfaces moves aggressively and generates

large amounts of control deflections to correct the error. However, the adaptive trim value

algorithm could alleviate the abrupt changes in the control outputs.
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Figure 2.40: Comparison between the fixed trim value and adaptive trim values for throttle
and elevator.

2.4 Nonlinear Model Predictive Controller

In this section, Nonlinear Model Predictive Controller (NMPC) is presented. This control

is the variation of Model Predictive Control which uses the linear model. Since NMPC uses

the nonlinear model, the prediction of the plant or system can be improved and described

more delicately. NMPC requires the sequence of the optimal control outputs based on the

physics based model. The sequence of control outputs are called the horizon which relates

a certain amount of time towards the future. In this work, the length of the horizon is 20

samples which predicts within 1 second of the future with 0.05 seconds of the sampling time.

Besides of the optimization of the control outputs, NMPC can also consider the control

surface constraints. Figure 2.41 shows the control diagram of NMPC.

Since the multi-agent system has been designed by using the virtual leader scheme, the

decentralized GNC algorithms are implemented in this work. The operation of centralized

NMPC depends on the computation capability of the processors on board. In addition, this

approach is prone to single-point failure. Practically, the centralized NMPC is very infeasible

to operate as its workload increases exponentially as the number of agents increases. Once the
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Figure 2.41: A guidance, navigation, and augmented NMPC

horizon of moving points are given to NMPC, it generates the sequence of control deflections

to follow the given moving points by considering the control surface constraints, see Table.

2.2.

Table 2.2: Control surfaces constraints

The decentralized implementation of GNC is illustrated in Fig. 2.42.

An integrated guidance and NMPC scheme (Ref. [28]) has demonstrated good perfor-

mance for agents with high speeds and high inertia during tight turns. The implemented

guidance allows all agents to follow the time-varying moving points (see Ref. [27, 29, 74] for

the detailed development). In order to optimize the control deflections, the cost function is

defined, see Eq. 2.143

J (e,u) =
N∑
k=1

eTk+1Qk+1ek+1 + uTkRkuk (2.143)

where the aircraft discrete dynamics is defined as xk+1 = fd (xk,uk). Qk and Rk are the

weighting matrices which are positive definite. N is the length of the horizon. The additional
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Figure 2.42: The process of operating decentralized NMPC and centralized moving points
guidance

cost function (Y (u, λ)) is defined to included the control deflection constraints:

Y (u, λ) = J (u)− λT c̄ (u) (2.144)

where c̄ (u) is the updated constraint vector based on the currently violated constraints.

For the optimization methods, the Sequential Quadratic Programming (SQP) is used from

Ref. [27]. SQP acts only when the constraints are violated. Otherwise, the optimization

problem can be reduced to a Newtonian type search. Once the constraints are violated, the

correction terms are computed for the length of the horizon, i = 1, 2, · · · , N . Therefore,

the optimized control deflection are defined by the sum of current control outputs and the

correction terms.

ui+1

λi+1

 =

ui
λi

+

∆ui

∆λi

 (2.145)
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The correction terms are calculated by using the following equation:

∇2J (ui) −AT (ui)

A (ui) 0


∆ui

∆λi

 =

∇J (ui) + AT (ui)λT

c̄ (u)

 (2.146)

where AT is the Jacobian of the constraints vector (c̄); ∇J (ui) and ∇2J (ui) are the

gradient and Hessian of the cost function (J).
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Chapter 3

Autonomous System Testbed

Development

In this section, Hardware-in-The-Loop (HiTL) testbed is introduced. The testbed develop-

ment has been done with the collaboration with the Department of Electrical Engineering

in KU, see Ref. [97]. Before the actual flight tests are conducted, the systems including the

hardware and software should be verified for the purpose of evaluating safety, risk, and cost

related to the flight test operation. HiTL test involves the flight simulation with nonlinear

6 DoF equations of motion using the actual onboard hardware and software. This has the

profound advantages of identifying possible failures in the hardware and software that could

not be seen or discovered in the SIMULINK environment. The important point for HiTL

testing is that it is operating the systems as close as possible to actual flight test conditions.

A 900 MHz telemetry radio is used to test communications between the aircraft avionics

and the ground station system. The following sections are discussing the details of the HiTL

process.
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3.1 Hardware-in-The-Loop Testbed

HiTL testing requires all hardware and software that would be used in the flight test. The

purpose of this test is to verify whether all system elements work correctly and flawlessly

Figure 3.1: Hardware-in-The-Loop Schematic
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before the flight test is conducted. Figure. 3.1 shows the HiTL setup. The two platforms (top:

DG808 and bottom: Skyhunter) are sitting on the bench and are connected to the laptop

which runs the SIMULINK model. Nonlinear 6 DoF equations of motion are simulated

by SIMULINK model to generate the aircraft states required for the guidance and control

systems in the onboard avionics. The Ground Control System (GCS) communicates via 900

MHz radio to each aircraft. The GCS plays the role of observing outputs of the controller,

uploading waypoints to the aircraft, and displaying the tracking of the aircraft.

The procedure of the HiTL test is designed as close as possible to the actual flight test

to verify the system properly and thoroughly. For example, the waypoints are known in the

simulation environment. However, the waypoints should be sent to the onboard avionics

by GCS when the flight test is conducted. HiTL provides a great opportunity to test this

procedure. In addition, the actual communication radios are used to help ensure full system

integration. For example, during HiTL testing, an issue in the software algorithm was found

when the radio was physically disconnected. In addition, the setting of HiTL testing is

universal so any different type of platforms can be tested.

Another example of discovering potential malfunction is the communication algorithm

failure. When the communication cable is intentionally disconnected, the communication

program is terminated immediately and it never reconnects to the communication despite

the physical connection being recovered. In actual flights, the physical connection of a

communication module can be lost due to the vibration of the airframe. If the communication

link does not reestablish itself, the aircraft is very prone to accidents and stall if the vehicle

is in the autonomous flight mode. During HiTL testing, this potential risk can be identified

and the algorithm can be modified to restart the communication link whenever physical

connection is available again. The communication loss problem motivated the development

of the algorithm for the recovery procedure during the multi-agent formation flight. Loss of

communication during formation flight can cause collision or risky situations to occur. To

prevent this, a wait time was added to the algorithm in order to provide time to recover the
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communication and continue the formation flight. If the communication never comes back,

the aircraft transfers to the solo flight mode to provide the reaction time for the pilot and

prevent stalling the aircraft. In the following section, the details of hardware and software

implementation are discussed.

3.2 Hardware and Software Implementation

In this section, the avionics and software implementation are discussed. For autonomous

flights, the sensors, microprocessor, and data acquisition board are essential. For the modular

implementation of these devices in software, Robot Operating System (ROS) is used.

3.2.1 Hardware

Two main processor boards are used for the hardware: a Tegra K1 and a custom built Data

Acquisition Board (DAQ), see Ref. [97]. For the communication, an Xbee 900 MHz device

is used with typical UASs state sensors, see Fig. 3.1.

• Sensors: State sensors include GPS (Global Positioning System), IMU (Inertial Mea-

surement Unit) and a dynamic pressure sensor. For the GPS and IMU measurements,

a VectorNAV VN-200 module is used. An AMS 5812 pressure sensor is used for mea-

suring the dynamic pressure (airspeed) via a pitot tube.

• Tegra K1 and Odroid: This is a powerful processor containing four ARM Cortex-

A15 cores running at 2.3 GHz, and has 192 Kepler based GPU cores. The VectorNAV

sensor and the DAQ board are connected to this board. The GNC algorithm runs as

a ROS node on the Tegra K1. Additionally, Odroid is used for Skyhunter specifically

to reduce the weight. The software is available for various platforms.

• DAQ: This board acts as an interface for data exchange between the sensors and the

Tegra. The board is connected to all sensors except the GPS and IMU. It collects
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data from these sensors and sends it to Tegra through serial communication. The

DAQ board also receives the controller outputs from Tegra and sends them to the

servos. This board houses an Arduino Mega processor that is its primary computational

platform.

• Communication device: A telemetry radio device Xbee Pro 900 XBP9B-DMST-

002 is used as the main communication transceiver for exchanging data between the

ground control station and both aircraft. Communication reliability and robustness

are the most important factors for maintaining formation in cooperative autonomous

flight. The Xbee supports mesh networking that enables efficient and fast data packet

transfers in real time. Experiments show that the maximum round trip time taken by

two aircraft in exchanging data is 2ms.

• Remote Control Receiver: This device accepts the signal from the remote control

and sends the PWM signals to the Electric Speed Controller (ESC) to actuate the

control surface servos and motor. In addition, it has an auxiliary channel that is used

to change the flight mode from manual flight by the pilot to the autonomous flight

mode.

3.2.2 Software

ROS plays a very significant role in the software implementation. Due to various features

of ROS such as ad-hoc network, modular scheme using nodes, and so on, a large amount

of code can be managed and operated with using simple procedures. A “node” in ROS is

an element executing one program. Thus, there exists separate nodes for each functionality

such as IMU, GNC, and communication as examples. If designers wanted to add any other

function, (s)he can add more nodes to perform the desired functionality. ROS has the feature

to transfer data between nodes through the topic using messages. For the detail of topics,

see Fig. 3.2.
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• Operating System : Tegra runs on Linux operating system (Ubuntu 14.04 LTS).

This is also because ROS has its most stable version in Ubuntu 14.04 LTS. Linux

systems have many advantages when operating embedded systems such as the avionics

in this work. It is an open source operating system and is very efficient and easy to

update the kernal to support hardware chips such as I2C and SPI devices.

• GNC source code : For GNC algorithms, the Code generation toolbox in MATLAB

is used to generate the source code in C language to implement via ROS. When the

code is generated, the configuration setting should be carefully selected to ensure that

the correct code is produced, such as the fixed time solver setting rather than using the

variable time setting. Due to ROS running at certain frequency, it is very important

to set the configuration and the entire SIMULINK simulation development under the

discrete time scheme with the fixed time step solver.

• Ground station software : Mavlink protocol is used to perform data exchange

between ground station and both aircraft. Q Ground Control (Q-GC) is used for

the ground station software. It is the open source software and customized for the

autonomous flight by the Flight System Team at the University of Kansas.

• Data acquisition and transfer software: The Arduino Mega runs the program that

enables communication between the Tegra, the sensors, and the DAQ board. It uses

I2C, interrupts, and servo library from Arduino IDE to read sensor data and generate

servo commands.

• ROS : A powerful meta-operating system Robot Operating System (ROS) framework

is used as the main communication server that manages all the individual sensors and

GNC sub-routines. Figure 3.2 shows the software architecture.

1. Controller node: In this node, the GNC algorithm was implemented using auto-

generated code in C language. It publishes the autopilot output (throttle, elevator,
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aileron, and rudder) to “servo_op” as the message and sends to Arduino node.

In this node, all information is published in the “data” topic to send to ground

station and log all data.

2. Arduino node: This node communicates with the DAQ board. Once the controller

publishes the message, this node subscribes the autopilot output, converts the

signal to PWM and sends it to the DAQ board. Also, it publishes the message

to “pwm” topic with the autopilot switch, pressure sensor data, voltage of battery,

and remote control command values.

3. VectorNav node: This node is responsible for data acquisition from the IMU sen-

sor. All IMU data publishes to “ins” topic. The message includes GPS position,

GPS velocity, attitude, angular rate, and accelerometer measurements.

4. Ground station node: This node deals with the Xbee 900 MHz communication.

It receives data from the aircraft and publishes it to the ground station and

topic “data”. It also obtains waypoint information from the ground station and

publishes it to the “way” topic and sends it to the controller node.

Figure 3.2: ROS based software architecture
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Chapter 4

Result

This section discusses the results of simulation and flight tests by using aforementioned

algorithms. The following figure shows the three fixed-wing vehicles used in this work.

Figure 4.1: Platforms used for the flight tests by KU Flight System Research Lab. Left:
Skyhunter, Middle: DG808, Right: Yak-54 40%.

Simulation results for phasic navigation are presented. Phasic navigation contains the

curvature control, Hungarian algorithm, and the moving mesh methods. The comprehensive

simulation result is shown to describe each stage of phasic navigation algorithm. In addition,

Hardware-in-The-Loop (HiTL) test results are presented for various scenarios: swarming,

swarming with external disturbances, communication loss, and collision avoidance. Initial

conditions are selected from actual flight test data to enhance simulation reliability. Lastly,

the flight test validation results are presented. Simulation results are compared with flight

test results with identical initial conditions. All guidance parameters, control weighting

matrices and gains are presented in Appendix E. Figure 4.2 shows the roadmap for this

chapter.
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Figure 4.2: Roadmap of Chapter 4

4.1 Formation holding using Moving Mesh Methods

In this section, simulation results are presented for five Yak-54 40% (Fig. 4.1 (right)) in two

different flight formation scenarios: diamond and triangle. Four trajectory scenarios have

been simulated: a straight line with the diamond formation, a circular curve, an arbitrary

curve and a sinusoidal curve with triangle formation. The diamond formation is made by

four outer agents and one inner agent. In order to investigate the impact of the moving

mesh methods, all agents are allocated for the outer and inner agent in advance. In the

next section of this chapter, the formation assignment using Hungarian algorithm is shown.

The path for the outer agents are generated by using the virtual point formation algorithm.

The inner agent position is corrected adaptively by using the moving mesh methods. The
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triangle formation consists of three outer agents and two inner agents. The simulation has

been operated in three dimensional environment with 6 DoF nonlinear aircraft dynamic

model.

4.1.1 Diamond Formation Shape Simulation

Fig. 4.3 shows the simulation results of holding a diamond shape formation. In Fig. 4.3(a),

the dots represent the moving point position and the thin line represents the aircraft’s trajec-

tory. In order to shape the diamond formation, the horizontal and vertical relative distances

are defined at 30.5 m. Therefore, one inner agent should have the distance to other agents

as 15.2 m since it is located at the center of a diamond formation. Fig. 4.3 demonstrates

5 seconds of the flight simulation where agents were flying at 60 knots speed with 20 Hz

update rate. The agents are commanded to the heading angle of +45 degree. The virtual

leader are computed using Eq. 2.82, 2.83, and 2.84. Fig. 4.3(b) provides a close view of

the formation to show the effect of the moving mesh methods clearly. The triangle markers

shows the moving point position and they are rotated by the heading angle. Fig. 4.3(c)

represents the wingtip-to-wingtip distance between the inner and outer agents. The track-

ing of formation is satisfactory since the distance from the inner agent to another agents

converges to 15.2 m which is the desired distance from the center of formation. In addition,

the collision is avoided since the distance between agents are above 3 m which is the length

of a wingspan. Fig. 4.3 (d) shows that the heading angle of all agents are converged at 45

degrees. Fig. 4.4(a) shows the commanded values for the control surfaces deflections and

Fig. 4.4(b) shows the angle of attack, sideslip angle, bank angle and pitch angle. Hereafter,

the aircraft performance assessed based on the criteria, see Table 4.1. Since UASs do not

have the handling qualities, the criteria acquired from numerous flight tests. Regarding the

controller performance, the threshold of the overshoot is set to 5%. In the general control

theory, the damping ratio is desired to be above 0.7 which is corresponding to 5% overshoot.
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Table 4.1: Performance assessment criteria

Items Acceptable Range Items Acceptable range
P ±25 deg/sec φcmd 5% Overshoot or ±3 degree
Q ±15 deg/sec θcmd 5% Overshoot or ±3 degree
R ±15 deg/sec VTcmd 5% Overshoot
φ ±60 deg Lateral TE 5% Overshoot
θ ±10 deg Longitudinal TE 5% Overshoot
δ̇T ±8 %/sec δ̇A ±20 deg/sec
δ̇E ±10 deg/sec δ̇R ±10 deg/sec

Collision avoidance σ ≤ distance ≤ 2σ

where TE is the tracking error. In addition, the sideslip angle is desired to be bounded

between ±5 degrees. Based on Table 4.1, the pitch angle tracking has 33% overshoot and it

damped out after 10 seconds. This is caused due to the turning maneuver at the beginning

of this simulation. When the turning maneuver is over, the pitch angle tracking is accept-

able since the overshoot is 3.3%. The pitch angle performance is also acceptable since its

magnitude is stayed within 10 degrees. The roll angle tracking is also similar to the pitch

angle tracking. At the beginning of the simulation, the roll angle error is 40 degrees than

the controller could follow the command after 12 seconds. The overshoot of the roll angle

tracking is around 20% which is larger than the acceptable overshoot. The sideslip angle is

acceptable since the magnitude of the sideslip angle is within 5 degrees. In addition, NMPC

tries to correct error very fast since the speed of elevator at the beginning it changes between

-5 and 5 degrees within 0.1 second (100 deg/sec). Overall, the aircraft heading angle has

45 degree error to follow the moving point and converged to the desired states: the sideslip

angle converges to zero, the roll angle went to zero since all agents heading angle reaches 45

degrees, and the pitch angle converges to 3.2 degrees. The initial position of each agent is

presented in Table 4.2.
Table 4.2: The initial position for diamond shape formation
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Figure 4.3: Simulation result of Diamond formation. (a) Moving points and actual agents’
position. (b) Formation shape at distinct sample times to show effect of the moving mesh
method. (c) Distance between outer and inner agents. (c.g.-to-c.g.) (d) Heading angle of
actual agents

Figure 4.4: Commanded values and states in 3D simulation environment (a) Commanded
control values for the control surfaces and throttle. (b) States (Angle of attack, Sideslip
angle, Bank angle, and Pitch angle)
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4.1.2 Triangle Formation Shape Simulation

In this simulation, the circular trajectory is defined by Eq. 2.82, 2.83, 2.84 and the following

equation:


pRPN [1, · · · , N + 2] = pRPN [0] + tfs ·∆t · ‖Vd‖+ r · sin

(
‖Vd‖
r
·∆t ·

(
tfs − tfsd + (0 : N + 1)

))
,

pRPE [1, · · · , N + 2] = pRPE [0] + r
(

cos
(
‖Vd‖
r

∆t · ((tfs − tfsd) + (0 : N + 1))
)
− 1
)
,

pRPH [1, · · · , N + 2] = pRPH [0],

(4.1)

where tfs is the flight sample time, tfsd is the desired flight sample time to change to the

circular trajectory, and r is the radius of the circular trajectory at 305 m. This trajectory

has been intentionally designed to be challenging (e.g., 180 degree heading angle changes)

for high speeds and high inertia aircraft in order to assess the performance of the moving

mesh methods in the desired triangle formations defined in Table 4.3. The triangle for

the formation is defined as the height and base at 18 m. Three outer agents generate the

triangle’s circumference and two inner agents are placed inside the triangle. The simulation

has been operated by 1200 iterations at 20 Hz, which corresponds to 1 minute of flight time.

The trim speed of the aircraft is 60 knots. Table 4.3 presents the initial position and the

desired relative distance from the virtual leader in this scenario.

Fig. 4.6 (a) shows the trajectory of the moving points and the actual agents. All agents

start at [0,0] m in north and east coordinate and follows the demanded circular trajectory.

As Fig. 4.6(b) shows, the inner agents (light blue and black color markers) stay inside of

the formation. At the flight time 0 seconds, the inner agents are located closer to the outer

agents that are at the base of the triangle comparing to the first outer agent. The distances

between inner agents to the first outer agents are 13 and 19 meters while the distances

between inner agents to the second and third agent are 7.2 and 5.7 meters. The moving
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Table 4.3: The initial position for triangle shape formation (left) and relative distance for
virtual point formation (right)

mesh methods corrects the inner agent location towards the center to make the mesh as

uniform as possible. In order to quantify this feature, the distances from each inner agents

to outer agents are averaged and compared with the mean of distances from the outer agents

to the centroid of the triangle formation(11.2 m). At the initial condition, the averaged

distances from each inner agents to outer agents are 11.8 and 15.56 m for inner agent 4

and 5, respectively. After the moving mesh methods are applied, they became 11.65 and

11.53 m for inner agent 4 and 5, respectively. We can observe these values are more closer

to the averaged distances from outer agents to the triangle centroid (11.2 m). Fig. 4.6(c)

presents the distance between the inner and outer agents. All agents are able to keep a

specified distance from one another (see Figure 4.5) so that they do not collide each other

(Figure 4.6 shows the distances are always kept above zero.). In addition, the inner distance

between agents is very close (their distance is 2.5 m which is shorter than the length of

its wingspan as 3 meter.) without collision considering the size and speed of Yak-54 40%

platforms. Fig. 4.6(d) shows that the heading angles of the agents are coherent during the

simulation. All agents changes their heading angle from zero to -180 degrees which matches

with the desired trajectory. Fig. 4.7(a) shows all control surfaces deflections and Fig. 4.7(b)

presents the following states: the angle of attack, sideslip angle, bank angle, and pitch angle.

The sideslip angle is met the criteria since the magnitude is kept within 5 degrees defined in

Table 4.1.
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Figure 4.5: The distances between the moving points position for outer and inner agents

Figure 4.6: Simulation result of Triangle formation. (a) Moving points and actual agents’
position. (b) Formation shape at distinct sample times to show the effect of the moving
mesh method. (c) Distance between outer and inner agents. (c.g.-to-c.g.) (d) Heading angle
of actual agents. All figure legends are identical to Fig. 4.3 and 4.4.
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Figure 4.7: Commanded values and states in 3D simulation environment (a) Commanded
control values for control surfaces and throttle. (b) States (Angle of attack, Sideslip angle,
Bank angle, and Pitch angle). All figure legends are identical to Fig. 4.3 and 4.4.
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4.1.3 Arbitrary Curve Simulation

In this scenario, the arbitrary curve trajectory is chosen to assess the ability of holding the

formation by using the moving mesh methods. The virtual leader was commanded to change

the heading angle, shown in Fig. 4.9(d). Table 4.4 shows the initial agents’ position and the

desired relative distance which makes the triangle formation defined by the height and base

length at 19.5 m and 24 m, respectively.

Table 4.4: The initial position for a triangle formation (left) and relative distance for virtual
point formation (right)

The simulation is conducted for 190 seconds at 20 Hz with the trim speed of 60 knots.

Fig. 4.9(a) displays the trajectory of the moving points and the agents.

All agents followed the virtual leader position with high accuracy and smoothness.

Fig. 4.9(b) presents the closer look for the moving points at the certain flight time. The

triangle shape was rotated as the virtual leader heading is changed by the virtual point

formation logic. Then, the moving mesh methods is applied and the inner agents are located

at the balanced positions in respect to the free energy (Eq. 2.97).

Fig. 4.9(c) and 4.8 shows the distance between the outer and inner agents’ moving points.

As the previous results showed, all agents avoid the collision since the distances are always

larger than zero between agents. In addition, the outer formations is kept by maintaining the

desired distances as 22 (between U1&U2 and U1&U3) and 24 (between U2&U3) meters. In

Fig. 4.10(a) and (b), control surface deflections and states are presented. Within 5 seconds

of the simulation, the abrupt changes are observed in the control deflections and the states

also fluctuate consequently. For example, the throttle of all agents are changed from 31.5%
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Figure 4.8: The distance between outer and inner agents’ moving point

to 91.44% within 0.15 seconds which is corresponding to 399.6%/sec exceeding the defined

criteria in Table 4.1. The sideslip angle is acceptable result but it has oscillation between

-1 and 1 degree by 1 Hz frequency whichi is not desirable. The pitch angle tracking is

acceptable since the maximum error is 1.7 degree (≤ 3 degree). The roll angle tracking is

not satisfied since the maximum error is 1 degree larger than 3 degrees criteria. Since NMPC

has aggressive reactions (states are not met the defined criteria in Table 4.1) to very small

errors, an LQR controller is used for the flight tests.
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Figure 4.9: Simulation results for the arbitrary trajectory: (a) Moving points and actual
agents’ position. (b) Moving point position at certain flight time to see the effect of the
moving mesh method. (c) Distance between outer and inner agents. (c.g.-to-c.g) (d) Heading
angle of actual agents. The legends are equivalent to Fig. 4.3 and 4.4.
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Figure 4.10: Commanded values and states in 3D simulation environment (a) The control
deflections. (b) Zoomed-in view for (a) plot for the first 5 seconds. (c) States (Angle of
attack, Sideslip angle, Bank angle, and Pitch angle). (d) Zoomed-in view for (c) plot for the
first 5 seconds. The legends are equivalent to Fig. 4.3 and 4.4.
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4.1.4 Sinusoidal Curve Simulation

The sinusoidal trajectory is simulated to evaluate the comprehensive performance of the

moving mesh methods and virtual point formation algorithm. The triangle formation is used

and defined by the height and base length of 18 m. Three agents compose the boundary of

the triangle formation and the remaining two agents are placed inside of the triangle. This

simulation is performed for 235 seconds at 60 knots speed. The initial agents’ position and

the desired relative distances from the virtual leader are presented in Table. 4.5. Fig. 4.11

Table 4.5: The initial position for triangle shape formation (left) and relative distance for
virtual point formation (right)

(a) displays the moving points and the agents position. Agents make 180 degree turns four

times which is a demanding maneuver for such a tight formation. Fig. 4.11 (b) shows a closer

look of the moving point position at the distinct flight times. The virtual point formation

algorithm provides the outer agents position based on the desired relative distance in given

Table. 4.5. Then, the moving mesh methods generate the inner agents’ position based on

the outer agents’ position. Fig. 4.11 (d) presents the heading angle of the actual agents.

Based on these figures, it is observed that the triangle formation is rotated as the virtual

leader makes the turn to keep the coherency of the formation flight as the heading angle is

changed (the overshoot from the desired heading angle is 3.6% (≤ 10% defined in Table 4.1)).

Fig. 4.11 (c) and Fig. 4.12 shows the distance between all agents’ moving points. The outer

agents kept the desired formation distances that are 20.1 (between agent 1&2 and 1&3) and

18 m (between agent 2&3). Fig. 4.13 shows the control surface deflections and the states.

The pitch angle tracking is acceptable since the maximum error is 1.2 degree (≤ 3 degree

from the criteria) at the beginning of the simulation (0.2 seconds). The roll angle tracking
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is also acceptable since the maximum error is 0.6 degree which is less than 3 degree criteria.

Figure 4.11: Simulation result of Triangle formation. (a) Moving points and actual agents’
position. (b) Formation shape at distinct times to see effect of the moving mesh method. (c)
Distance between outer and inner agents. (c.g.-to-c.g.) (d) Heading angle of actual agents
Legends for all figures were referred from Fig. 4.3 and 4.4.

Figure 4.12: The distance between outer and inner agents’ moving points
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Figure 4.13: Commanded values and states in 3D simulation environment (a) Commanded
control values for the control surfaces and throttle. (b) States (Angle of attack, Sideslip
angle, Bank angle, and Pitch angle) Legends for all figures were referred from Fig. 4.3 and
4.4.
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4.1.5 Wind Gust Evaluation

To investigate the robustness of the moving mesh methods algorithms, the simulation is

performed with external disturbances (e.g., a wind field). The agents are exposed to a cross

wind which is a 5 knots (or 2.6 m/s) East wind field shown in Fig. 4.15. To simulate the

unsteadiness of the wind field, the magnitude of the wind is increased after 15 seconds by

20% (6 knots or 3.1 m/s). As the wind is applied to agents individually, the actual aircraft

position is shifted to the west direction due to the wind. Depending on the heading angle of

agents, they face the different direction wind (e.g., head wind, tail wind, and cross wind). For

example, a tail wind is applied when agents follow a circular portion of the trajectory. While

agents are exposed to the external disturbances, they hold the desired formation (the outer

agents are kept at 20.1 (between agent 1&2 and 1&3) and 18 m (between agent 2&3)) and

do not collide with each other (distance between agents is kept above zero), see Figure 4.14.

Although they are disturbed and drifted 8 m (at the beginning of the simulation) and 22 m

(after the virtual leader finished turning) by the cross wind, they come back to follow the

virtual leader.

Figure 4.14: Distance between outer and inner agents’ moving point
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Figure 4.15: Wind gust simulation for the circular trajectory. Wind blows from east (until
15 seconds flight, 5 knots east wind (2.6 m/s) is applied. After 15 seconds of flight, 6 knots
(3.1 m/s) east wind was applied)

4.1.6 Tracking Error Anaylsis

The initial condition and flight conditions are identical with Sec. 4.1.1 and 4.1.2. To ob-

serve how the tracking error settles, the simulation time is extended for each scenario. The

diamond shape formation with a linear trajectory is simulated for 75 seconds. The triangle

shape formation with the circular trajectory is simulated for 100 seconds. The tracking error

is defined as the lateral distance from the line made by two consecutive moving points. As

shown in Fig. 4.16, the tracking error is reduced to zero after approximately 40 seconds for

the linear trajectory scenario. For the circular trajectory, the error settles to zero after ap-
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proximately 70 seconds. The circular trajectory takes longer time because the moving point

heading is changed continuously comparing to the linear trajectory (The linear trajectory

heading is not changed at all). The linear trajectory scenario has higher tracking error since

the required heading angle change is 45 degrees while the circular trajectory requires zero

heading angle change. If the initial heading angles of all agents are zero for both scenarios

then moving points are planned as the virtual point proceeds.

Figure 4.16: Tracking error analysis. (a) Linear trajectory with the diamond shape forma-
tion, (b) Circular trajectory with the triangular shape formation, (c) Tracking error for the
linear trajectory simulation (d) Tracking error for the circular trajectory simulation

4.1.7 Moving mesh methods with the navigation algorithms

This section addressed the result of implementation with the moving mesh method and the

navigation algorithms: the intelligent waypoint modification and index decision algorithm,

LQ guidance path planning, and the virtual point formation algorithm. The waypoint is
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given an example of the remote sensing mission in Greenland. Six Skyhunters are used with

the desired formation shape in this simulation as shown in the following table.

Table 4.6: The desired relative distance from the virtual leader

Agent North [ft] East [ft]
Outer 1 50 0
Outer 2 0 -50
Outer 3 0 50
Outer 4 -50 0

Figure 4.17: Moving mesh methods with the intelligent navigation algorithm

As Figure 4.17 shows, the moving points can be planned correctly. Formation is kept

throughout the flight while the virtual leader follows the given waypoints. The intelligent

waypoint modification and index decision algorithm connects the initial virtual leader posi-

tion to the waypoint box.
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4.1.8 Moving mesh methods with the morphing potential field

In this simulation, the morphing potential algorithm is implemented to the moving mesh

methods. The goal of this simulation is that the virtual leader avoids the two obstacles and

all agents keep their formation shape. The assessment criteria is specified in Table 4.1 that

the farthest distance from the obstacle should be within the range of [σ, 2σ] where σ is the

radius of the obstacle size. Five of Yak-54 40% are used with the desired relative distance

shown in Fig. 4.18. The two obstacles are located at [213.4,−15.2] and [335.3, 15.2] m with

Figure 4.18: The desired relative distance from the virtual leader

Figure 4.19: Distance between the outer and inner agents’ moving points

the radius of 15.2 and 24.4 m, respectively. Fig. 4.20 presents the positions of the moving

points and all agents. In order to show this accurately, Figure 4.21 shows a closer view of
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the moving point position. All moving points kept the formation shape by the virtual point

formation algorithm while the virtual leader avoided two obstacles. Figure 4.19 shows that

the outer agents kept the desired formation distance as 20.45 (between agent 1&2 and 1&3)

and 18.2 m (between agent 2&3). After the obstacle is cleared, all moving points go back

to the desired trajectory of a zero heading angle in this simulation. The coherency of the

formation shape and the obstacle avoidance are achieved successfully. In order to assess the

avoidance assessment, only agent 2 is considered since it is closest toward the obstacles. The

avoidance assessment is not met the criteria and the result is conservative comparing to the

criteria. The farthest distance for smaller obstacle is 65.5 and 52.54 for the moving point and

the agent 2 position, respectively (this is larger than 2σ = 30.4 m). The farthest distance for

larger obstacle is 44.54 and 69.34 m for the moving point and the agent 2, respectively (this

is larger than 2σ = 48.8 m). In order to meet the avoidance criteria, more tight tracking is

required. Fig. 4.22 shows various states of the agents throughout the simulation.

112



Figure 4.20: Morphing potential implementation with the moving mesh methods

Figure 4.21: Closer view for the moving points position

Figure 4.22: Morphing potential implementation with the moving mesh methods
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4.1.9 Summary of Moving Mesh Methods Swarm Simulation

The virtual point formation logic and moving mesh methods are utilized to plan the moving

points to maintain the multi-agent formation coherently. Dynamic constraints (e.g., the min-

imum turning radius) are added to produce dynamically feasible flight paths. Decentralized

NMPC and moving point guidance are applied to track the planned moving points. Four

different flight trajectory scenarios are simulated using five fixed-wing aircraft with high

speed and high inertia. As the simulation results show, the proposed decentralized guid-

ance and control and centralized navigation are effective to keep the formation coherency

(the outer agents distances are always kept at the desired distance as it was presented in

the previous sections), avoiding inner collisions (the farthest distances from the obstacle are

met the criteria or conser), and performing challenging maneuvers (such as 180 turns and

sinusoidal curves). Wind gust is simulated to validate robustness, coherency, and internal

collision avoidance. Regardless of the formation shape, the inner agents are kept inside of the

formation in a way that makes the mesh as uniform as possible. The moving mesh methods

as the navigation algorithm has advantages such as scalability and adaptivity regardless of

the number of agents and the formation shape. As long as the outer agents are defined by

the formation shape, the inner agents can be located inside of the formation by the moving

mesh methods. Two additional simulations have been done to show the application of the

moving mesh methods with the intelligent navigation and the morphing potential field. The

collaboration with the intelligent navigation algorithm guides the virtual leader to follow the

given waypoint box. Consequently, the moving mesh methods are utilized to operate the

science mission like the remote sensing of ice sheets. Lastly, the morphing potential field is

also added to the moving mesh methods to avoid the obstacles.
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4.2 Phasic Navigation Simulation Result

This section presents the results of the phasic navigation algorithms. This simulation is to

verify the phasic navigation algorithm using practical examples. As it is mentioned in the

previous section, the large waypoint box is given for the science mission. This algorithm

goes through the phase of each navigation to form the formation. The first phase is the

aggregation and assignment. The key part of this stage is to match all agents’ velocity

direction to the desired direction. The initial heading and position for six Skyhunters is

presented in Fig. 4.24 and the following table. Fig. 4.23 (a) shows the position of the moving

Table 4.7: Initial heading angle for all agents

U1 U2 U3 U4 U5 U6

ψ0 [deg] -164 107 -122 72 -93 18

point and all agents throughout the simulation. The different stages (Fig 4.23 (b), (c),

(d)) are presented individually to show each stage better. In the first phase of the phasic

navigation, all moving points aggregated to the desired direction (90 degree of the heading

angle), which is east in this simulation. After all agents’ moving points aggregates, the

Hungarian algorithm starts to assign each moving point to the desired formation position

sequentially. The virtual terminals are updated based on the arrival of the moving points

to the formation position. Figure 4.25 shows the sequentially assigned formation with the

updated virtual terminals. The hollow red triangle shows the desired formation position and

different colors of triangles presents each agents. As it shows that the virtual terminals are

updated when each agent arrives the assigned formation position. Finally, all agents’ moving

points arrive to the desired formation and the moving mesh algorithm correct the inner

agents’ position by using MMPDE as it was discussed in the previous section. Figure 4.25

shows that colored triangle (agents’ moving point) arrived at the hollow triangle (the virtual

terminal). In addition, 3D curvature control shows the altitude also converged to the virtual

leader’s direction, see Fig. 4.24. As a result, the random heading angles (Table 4.7) are

converged to the desired direction (90 degrees of the heading angle) by the curvature control
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algorithm. Then, the formation shape is formed by assigning agents to the formation position

using Hungarian algorithm, see Figure 4.25. Finally, the moving mesh methods holds the

formation, see Figure 4.23(d).

Figure 4.23: Phasic navigation algorithm simulation result
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4.3 Monte Carlo exhaustive search

In this section, the result and practical advantage of Monte Carlo exhaustive search is pre-

sented. Exhaustive Monte Carlo simulation is conducted for various flight test scenarios and

captures the error in the implementation very effectively. In this section, the swarm flight

Monte Carlo simulation is introduced. In order to begin the Monte Carlo simulation, the

following range of states are selected randomly.

Table 4.8: The range of states for Monte Carlo

Item Minimum Maximum Interval
North [ft] -588 659 100
East [ft] -1700 1544 100
Height [ft] 250 450 10
ψ [deg] -180 180 15
φ [deg] -30 30 5
θ [deg] -10 10 5
P [deg/s] -50 50 5
Q [deg/s] -20 20 5
R [deg/s] -20 20 5

For the swarm simulation, 1405 cases are simulated. The filtering criteria check if the

distance between two agents is less than double wing span (2b). As a result, 478 cases (34%

of the simulation) are closer than the double wing span. The error in the assignment of

the formation is found due to the implementation failure. Two agents are able to be closer

since they are assigned to the same formation position. In addition, the simulation produced

null values (NaN) of the moving point position velocity due to the initial heading angle.

The initial virtual leader position is generated by the average velocity vector of two agents.

However, two agents moving in the opposite direction to one another meaning the difference

of two agents’ heading angle is 180 degree, see Fig. 4.26. This error is resolved by adding the

little bias of the heading angle (2 degrees, this bias can be the design parameter) to mitigate

the simulation failure due to the special situation when the average velocity is a zero. In

summary, the Monte Carlo simulation is able to be applied for any algorithm development to

check the implementation flaws against random initial condition before the flight tests. The
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common error during the implementation is the division by zero. Monte Carlo simulation

has the ability to capture of the error cases by drawing random initial conditions.

Figure 4.26: Failed cases during the Monte Carlo simulation

4.4 Multi-agent Autonomous System Hardware-in-The-

Loop (HiTL) Testbed

In this section, HiTL simulations are performed for four different scenarios: swarming,

swarming with external disturbances, communication loss, and collision avoidance. Each

case is discussed with results for the moving point and the aircraft trajectory together with

the user defined waypoints’ trajectory. A simple setup of the close proximity formation flight

is tested as the first scenario, shown in Fig. 4.27 (left). Two agents start to fly left of the race

track with different heading angle (ψ): the first agent has 45 degrees and the second agent

has 135 degrees. Fig. 4.27 (right) shows the distance between agents during the simulation.

During the first 20 seconds, the distance between agents increases from 60 to 110 m since

the agents change their own heading (45 and 135 degrees) to the average heading angle (90

degrees of the heading angle). Then, the agents are gradually converging to the desired

distance (70 m). This result is not satisfactory since the distance between aircraft is ended

up at 50 meter (28.6% error from the desired distance) after 200 seconds of the swarm flight
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due to the fixed length of ddRLat .

Figure 4.27: Case 1 LEFT - Blue Solid: Aircraft 1, Red Solid: Aircraft 2, Blue Triangles:
Moving Points for aircraft 1, Red Triangles: Moving Points for aircraft 2 and Black Dashed:
Desired waypoint Trajectory. Right: Distance between agents

Fig. 4.28 shows the snapshot of the ground station view during HiTL test.

Figure 4.28: Q-GCS snapshots

The second scenario is the communication loss by intentionally disconnecting the Xbee

communication radio from one of the aircraft, shown in Figure 4.29. Fig. 4.29 (b) shows the

moving point position throughout the simulation. As Fig. 4.29 (c) shows, the communication
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is lost two times at 25 and 75 seconds. When the communication is lost, each aircraft waits

for 2 seconds to check if the communication is recovered. Then, each agent changes the

flight mode from swarm to solo and follow the desired race track. After the communication

is recovered, two agents reinitialize the swarm flight mode and the path planning changes

from solo to swarm mode. This shows the robustness of the communication loss for the

navigation algorithm. In addition, the ROS integration of communication link is also robust

since the communication algorithm starts automatically after the radio port is detected by

the Tegra. Fig. 4.29 (a) shows the position of the moving point and aircraft. Fig. 4.29

(d) shows the distance between agents in respect to north and east component. Due to

reinitialization of swarm navigation algorithm, the tracking of formation shape fluctuates.

The reason why it fluctuates is that the moving points are planned to follow the race track

starting from the current aircraft position, when the navigation algorithm is reinitialized.

Then, the agents starts to follow the race track and tries to form the formation shape again

when the communication link is recovered.

The third scenario is a HiTL simulation with the wind of NE wind at 13 knots. Figure 4.30

(left) shows the position of agents and moving points. Due to the wind, the agents have

drifted (122.5 meters maximum at the switching distance area) to the east direction. The

distance between agents is also impacted by the wind. Figure 4.30 (right) shows that the

distance between agents has average 32 m error when the desired distance is 70m. However,

the vehicle did not collide with one another since the minimum distance between agents is

20 m, which is five times larger than the wingspan of DG-808 (4m).

The final simulation is the collision avoidance verification by using the morphing potential

field in HiTL testbed. One of the agents is assumed to be stationary on the ground while it

communicates and sends its GPS position and velocity to the other flying aircraft. Figure 4.31

shows the position of agents and moving point. The red triangle indicates the static agent

on the ground (The east coordinate is 0m and the north coordinate is -133.5m). The circle

around this agent presents the size of the obstacle which is 24.4m. As Fig. 4.31 shows,
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Figure 4.29: Case 2 Blue Solid: Aircraft 1, Red Solid: Aircraft 2, Blue Triangles: Moving
Points for aircraft 1, Red Triangles: Moving Points for aircraft 2 and Black Dashed: Desired
waypoint Trajectory

Figure 4.30: Case 3 - LEFT - Blue Solid: Aircraft 1, Red Solid: the aircraft 2, Blue Triangles:
Moving Points for the aircraft 1, Red Triangles: Moving Points for aircraft 2 and Black
Dashed: Desired waypoint Trajectory. Right: Distance between agents

the moving points are planned to avoid the obstacle. Consequently, the other agent could

avoid the obstacle. For avoiding the obstacle, the result is considered to be acceptable if the
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farthest distance from the obstacle is between σ and 2σ where σ is the radius of the obstacle.

In this simulation, the result is satisfactory since the farthest distance from the aircraft to

the obstacle is 37.8m which is larger than 24.4m(σ) and smaller than 48.78m (2σ).

Figure 4.31: Case 4 - Blue Solid: Aircraft 1, Red Solid: Aircraft 2, Blue Triangles: Moving
Points for aircraft 1, Red Triangles: Moving Points for aircraft 2 and Black Dashed: Desired
waypoint Trajectory

In conclusion, the implementation of two agents in avionics has been validated since the

system could generate states and control correctly (the aircraft followed the moving point)

and visualized in the ground station. The performance of keeping the formation is not

satisfactory since average of 29% distance error from the desired formation distance (70m).

The communication delay for 2 and 4 seconds is applied and the mechanism of changing

the flight mode between solo and swarm flight is validated by observing the moving point

position, see Fig. 4.29(b). In addition, the wind field (NE wind 13 knots) has been applied

to conduct more practical hardware-in-the-loop test and maximum 30% tracking error is

occurred with incapability of holding the formation.

4.5 Flight Test Validation

In this section, the simulation and the flight test results are compared to validate the proposed

GNC algorithms discussed in Chapter 2. The flight plan is outlined to incrementally validate

the system from the solo flight to the swarm flight.
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Figure 4.32: Flight Test Scenarios

Each scenario has been designed sequentially in order to conduct the multi-agent flight

test. DG-808 flight test starts with the solo mode to validate the guidance and control for

each agent. In addition, the collision avoidance algorithm is validated before the multi-agent

flight tests are performed. Then, two of DG-808 are used for the formation flight test. In

order to validate GNC for different platform, Skyhunter is used for the solo flight test and
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two of Skyhunter are used for the swarm flight test. In order to validate developed GNC for

various platform, the flight test has been conducted for Yak-54 40%.

The following table provides the criteria for assessing the validation. All performance is

assessed except the turning maneuver.

Table 4.9: Performance assessment criteria

Items Acceptable Range Items Acceptable range
P ±25 deg/sec φcmd 10% Overshoot or ±3 degree
Q ±15 deg/sec θcmd 10% Overshoot or ±3 degree
R ±15 deg/sec VTcmd 10% Overshoot
φ ±60 deg Lateral TE 10% Overshoot
θ ±10 deg Longitudinal TE 10% Overshoot
δ̇T ±8 %/sec δ̇A ±20 deg/sec
δ̇E ±10 deg/sec δ̇R ±10 deg/sec

Collision avoidance σ ≤ distance ≤ 2σ

where TE is the tracking error. The 5% more overshoot is considered as the satisfied

performance comparing to Table 4.1 by considering the flight tests conducted in unstructured

environment.

4.5.1 Solo flight: DG-808, March 9th 2017

• DG-808 Solo Flight, March 9th 2017

In this flight test, one of DG-808 flew in the autonomous mode and the results are compared

with the simulation. Figure 4.33 presents the aircraft trajectory and the rate of altitude.

Figure 4.34 presents the guidance output and moving point position. Figure 4.35 and

4.36 shows the longitudinal and lateral-directional states and control surfaces deflection,

respectively.

– Navigation performance

As Fig. 4.33 shows, the aircraft follows the race track pattern well based on Table 4.9.

The lateral tracking quality is assessed at only relatively small roll angle (±5 deg).

The average error is 29.6 ft (6.4% overshoot < 10% criteria) in the lateral tracking after
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Figure 4.33: DG808 Solo Flight test and simulation comparison, Trajectory and rate of
altitude changes

aircraft converges to the longer legs of the race track (line made of waypoint 4 and 5 and

waypoint 6 and 3). In addition, Ref. [2] shows the average lateral tracking error 185.9 ft

which is larger than this flight lateral tracking error (29.6 ft). The waypoint modification

worked efficiently when the autopilot is engaged at waypoint 1 in Fig. 4.33 (top left).

The intersection point is found at waypoint 2 and provide the smooth transition to the

race track pattern meaning the pitch and roll angle commands are relatively smaller

(e.g., maximum roll angle command on the intersection line is 15 degree) comparing to

the turning maneuver (up to -34 degrees). In addition, the altitude tracking fluctuates

from 253 to 373.7 ft (average 17.39% overshoot) from the desired altitude (345 ft AGL) in

the flight test while the simulation shows better altitude tracking (maximum 32 ft error

which is 9.3% overshoot) because it does not have any wind information. The altitude

tracking is worse than Ref. [2] (13.12 ft overshoot in the altitude tracking). This is also

shown well in Fig. 4.33 (bottom left) that the altitude rate changes between -10 and

10 ft/sec in the flight test while the simulation has smaller altitude rate (±0.4ft/sec
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after the altitude is settled at the desired altitude). Since the overshoot of longitudinal

tracking error is larger 10% criteria, the longitudinal control needs more improvement to

reduce the overshoot. Figure 4.34 (right) presents the moving point position comparison

and the simulation and flight test results are matched very well (overshoot at the right

north corner is 9.6% error which is less than 10%). The intelligent waypoint modification

and index decision algorithm is validated since the intersection point and index are

generated as same as the simulation does. The LQ guidance path planning are validated

since the moving point followed the race track as simulation does. The lateral tracking

quality met the criteria (6.4% overshoot < 10% criteria) but the longitudinal tracking

is not met the criteria.

– Guidance and control performance

Figure 4.34 (left) presents the guidance outputs. The velocity command is identical

between the simulation and the flight test. Both has 59.07 ft/sec as the speed com-

mand. The roll angle commands matches during the turns but the magnitude of the

roll angle command from the flight test is larger than simulation (maximum 16 degree)

due to the wind field. The pitch angle command has the relatively large discrepancy

(maximum 7 degrees) comparing to the simulation command values that are between

0 and 3 degrees. The possible reasons of the discrepancy are the uncertainty of the

dynamic model and the external disturbances. Since the magnitude of the pitch angle

command difference (maximum 7 degrees) is fairly significant comparing to the simula-

tion (average 1 degree), the discrepancy can be explained by the lack of gust modeling

in the simulation environment. Similarly, the longitudinal controller has a more loose

tracking (maximum 7 degree error in the flight test) than the simulation (average 2

degree after the controller settled the pitch angle), shown in Figure 4.35. In case of

the throttle, we can observe that 15% less throttle deflection is applied in the flight

test. This discrepancy comes from the uncertainty in the longitudinal dynamic model

(e.g., engine model and drag estimation). The drag model might be over-estimated or
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the engine model might be under-estimated to generate the thrust force. On the other

hand, the roll angle is tracked undesirably since the maximum overshoot is 18% which

is larger than 10% criteria from Table 4.9, although the roll rate data was noisy (The

signal oscillates 5Hz in the roll rate while the simulation does not have any oscillation).

In general, DG-808 could follow the race track autonomously. The lateral-directional track-

ing quality is acceptable and the longitudinal tracking quality is not satisfied. All avionics

worked correctly so all information could be retrieved from the aircraft and communicate

to the ground station during the flight. The controller performance is not met the criteria

defined in Table 4.9 due to the impact of external disturbances. In the next section, the

collision avoidance algorithm is validated before the swarm flight is performed.
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• DG-808 Flight Collision Avoidance, March 9th 2017

This flight test is conducted to validate the collision avoidance path planning using the

morphing potential field. In this flight test, one of the agents was placed on the ground

along the southern side of the racetrack pattern while the other aircraft flies around the

race track. Figure 4.37 shows the trajectory and the altitude rate. Figure 4.39 presents

the guidance output and the moving point position comparison. Figure 4.40 and 4.41

present the longitudinal and lateral-directional states and control surface deflections.

Figure 4.37: DG808 Collision Avoidance Flight test and simulation comparison, Trajectory
and rate of altitude changes. The morphing potential radius is set to 200 ft.

– Navigation performance

Figure 4.38 shows the closer look of the trajectory and the agent on the ground.

The moving points are planned to avoid the obstacle which has the radius of 200 ft. In

the flight test, the moving point position is acceptable since the farthest distance from

the obstacle (the agent on the ground) is 243.13 ft (200 ≤ 243.13 ≤ 400 ft) which meets

the criteria defined in Table 4.9. Figure 4.38 shows the aircraft trajectory closer around

the agent. The aircraft passes the obstacle two times and the farthest distances from

the obstacle are 168.4 and 190.5 ft which does not meet the criteria. This phenomena
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Figure 4.38: DG808 Collision Avoidance Flight test and simulation comparison, Close look
around the agent on the ground

is caused due to the feature of the moving point guidance. The reference point is

always ahead of the agent by the length of ddRLat which is 360 ft in this flight test.

Therefore, the moving point avoids the obstacle sooner than the agent. More precise

lateral tracking quality is required to meet the criteria. The waypoint modification and

index decision algorithm is able to find the intersection point between the waypoint 3

and 6. In addition, the presence of the wind is clearly observed since the aircraft is

drifted 154 ft to the east direction when it flies the northeast corner comparing to the

simulation result. Regarding the altitude tracking, the same behavior is observed from

the previous flight test result. The altitude fluctuates between 252.6 and 386 ft which is

corresponding to 28.3% overshoot. The longitudinal tracking does not meet the defined

criteria in Table 4.9.

– Guidance and Control performance

As the result discussed in the previous flight test, the guidance and control performance

is similar. The pitch angle tracking is loose (the maximum error is 5 degrees ≥ 3 deg) for

the longitudinal control performance (Figure 4.40). Besides the longitudinal tracking

quality, the pitch angle commands has the large discrepancy (maximum 10 degress)

due to the external disturbances. The On top of the aforementioned reasons from the

previous flight test, the remedy of this phenomena would be two folds: the adjustment
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of longitudinal guidance parameters and the longitudinal LQR weighting matrices (QLon

andRLon). As the impact of guidance and control parameters are discussed in Chapter 2,

shorter LLat (e.g., from 360 to 300 ft) and larger KpLon (e.g., from 0.001 to 0.05) and

KILon (e.g., from 0.03 to 0.05) can help improve the longitudinal tracking. In this flight

test, average 15% less throttle is used as well. In addition, the roll angle tracking has

the maximum error 5 degrees which is 2 degrees larger than the acceptable range.

The purpose of this flight test is satisfied to validate the collision avoidance path planning.

Specifically, the moving points are planned correctly to avoid the obstacle comparing to

the simulation (the defined criteria for avoiding the obstacle is met). Also, the avoidance

criteria is met for the generated moving point position. But the controller and guidance

performance should be improved to meet the defined criteria.
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4.5.2 Swarm flight: DG808 March 26th 2017

The purpose of this flight test is to validate the virtual formation algorithm with LQ guidance

path planning for two DG-808. The virtual leader is planned by LQ guidance path planning

algorithm and the virtual point formation algorithm provides the formation position for

each agent. The guidance and control scheme is identical from the previous flight tests. The

average wind speed was 4.6 mph from the west.

• 1st Attempt

In this flight test, the swarm flight is tested to validate the aforementioned GNC in Chap-

ter 2. The details of information are presented: the agents’ trajectory (Fig. 4.44 and 4.48),

the comparison of the position of the moving points (Fig. 4.45), the longitudinal states

and controls for each aircraft (Fig. 4.46 and 4.49) and the lateral states and controls for

each aircraft (Fig. 4.47 and 4.50).

Figure 4.42: Swarm flight using two of DG-808, 1st Attempt

– Navigation performance

Figure. 4.42 shows the aircraft position in the north-east (left) and the east-height view

(right). Two agents are engaged the autonomous mode the south east corner of the race

track. The desired relative distances are presented in Table 4.10. Based on Fig. 4.45,

aircraft 1 is assigned to the left side of the formation and aircraft 2 is assigned to the
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Table 4.10: The desired relative distance from the virtual leader

Agent North [ft] East [ft]
1st agent 100 -50
2nd agent -100 50

right side of the formation. In unstructured environment, it is observed that the aircraft

is affected by the wind (the overshoot is occurred around northwest corner as 212 ft). As

Figure 4.44 shows, the aircraft 1 which should follow a smaller race track pattern (the

desired relative distance is -50 ft meaning that aircraft 1 should always stay inside of

the defined race track) and the simulation result did not have any oscillation comparing

to the flight test. In addition, Fig. 4.43 shows that the distance between two aircraft

is average of 306 ft larger than the desired distance (223.6 ft). This results show how

challenging the formation flight at the unstructured environment. In Figure 4.45, the

moving point positions are compared and the overshoot between the simulation and

flight test is 3.4% which meets the defined criteria in Table 4.9. The reason why the

discrepancy exist in the moving point generation between the simulation and flight test

is that the agents’ inertial position (the morphing potential algorithm uses the agents’

position and velocity) does not match between them due to the uncertainty of the

dynamic model and the lack of external disturbances in the simulation environment.

Figure 4.43: Distance between agents in the swarm flight using two of DG-808, 1st Attempt

– Guidance and Control performance
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Two aircraft start the autonomous flight at the different altitude. The aircraft 1 has

significant oscillations in the pitch angle comparing to the aircraft 2. The possible

reasons are the gust at the different altitude and the tighter and more frequent turning

maneuvers required for aircraft 1. Turning maneuvers cause the descending altitude

since the lift is reduced due to the reduced surface area to generate the lift. Specifically,

the aircraft is tilted and the wing area becomes the projection of itself to the horizon

by the roll angle. This phenomena keep the aircraft in descent and the controller

tries to correct slowly. However, the aircraft should turn again before the controller

sends the aircraft to the desired altitude, shown in Fig. 4.42 (right). Comparing to

aircraft 1 (maximum 22 degree magnitude), aircraft 2 (maximum 10 degree) has less

oscillations in the pitch angle tracking (Fig. 4.46 and 4.49). The roll angle tracking

for both aircraft is very close to the defined range (maximum 3 and 4 degree error (3

degree is the threshold), respectively) though the little oscillations are induced by the

wind (Fig. 4.47 and 4.50).

Figure 4.44: DG808 Swarm Flight test and simulation comparison, Trajectory and rate of
altitude changes, 1st attempt - The 1st agent
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• 2nd Attempt

In this swarm flight test, more challenging initial conditions are tested to validate the

robustness of the random initial conditions. The 1st attempt of the swarm flight has

relatively similar heading angles (41.6 and 56.6 degree for aircraft 1 and 2, respectively)

when the autopilot is engaged. In this flight test, the heading angles of two aircraft (ψU1

and ψU2) are oriented differently: -80.2 and 54.8 degrees, respectively. The details of

flight test graphs are presented: the aircraft position (Figure 4.53 and 4.57), the moving

point position comparison (Fig. 4.54), the longitudinal states and control for both aircraft

(Fig. 4.55 and 4.58) and the lateral-directional states and control (Fig. 4.56 and 4.59).

Figure 4.51: Swarm flight using two of DG-808, 2nd Attempt

– Navigation performance

The moving point is planned successfully by proposed navigation algorithms to keep

the formation coherency. The following table shows the desired relative distance from

the virtual leader.

Table 4.11: The desired relative distances from the virtual leader

Agent North [ft] East [ft]
1st agent 100 50
2nd agent -100 -50

The waypoint modification and index decision algorithm finds the intersection by using

the averaged position and velocity vectors from two agents. Then, the virtual leader
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follows the race track by LQ guidance path planning. As Fig. 4.51 shows, aircraft 1 stays

right of aircraft 2. Again, the presence of the wind in the unstructured environment

caused the shifting in the moving point tracking towards the west by 117 and 130 ft

for aircraft 1 and 2, respectively, shown in Fig. 4.53 and 4.57. Figure 4.52 presents the

distance between two agents and the RMS is 129 ft, which is closer than the 1st attempt

(306 ft). The different initial conditions, external disturbances and the confined area

cause difficulty in keeping a formation throughout the flight.

Figure 4.52: Distance between agents in the swarm flight using two of DG-808, 2nd Attempt

– Guidance and Control performance

Guidance and control performance is similar to the previous flight test. The pitch angle

tracking is not satisfactory since the maximum error is 4 and 6 degrees for aircraft 1

and 2, respectively (the error assessment is considered after the aircraft follows first

segment to exclude the impact of initial condition). In addition, the roll angle is mostly

well tracked meaning within 3 degrees error by the defined criteria in Table 4.9 except

one or two spots (exceed 3 degrees error, maximum 13 and 6 degree error for aircraft

1 and 2, respectively) due to the external disturbances. The speed tracking does not

meet the criteria since the maximum overshoot is 15% and 13.3% for aircraft 1 and

2, respectively, which is larger than 10%. The different initial condition and the wind

field causes the tracking error (the average 123.5 ft drifting is occurred) as LQR is very

prone to the un-modeled dynamics.
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Two attempts of the swarm flight tests show the difficulties of keeping the formation shape

in the unstructured environment. The discrepancies of the agents’ position and moving

positions are observed between the simulation and flight test due to the uncertainty and

error of the dynamic modeling and the presence of the external disturbances. Next, the

flight test is conducted by using Skyhunter in order to validate the proposed GNC for the

different platform.

Figure 4.53: DG808 Swarm Flight test and simulation comparison, Trajectory and rate of
altitude changes, 2nd attempt - The 1st agent

Figure 4.54: DG808 Swarm Flight test and simulation comparison, Moving Point Position
Comparison, 2nd attempt
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4.5.3 Solo flight: Skyhunter, August 14th 2017

This flight test is to validate the solo flight by using Skyhunter with the aforementioned GNC

algorithms. Since the dynamic models of DG-808 and Skyhunter are different, the guidance

parameters and controller gains are tuned for Skyhunter. The following figures describe the

result of this flight test: the position of the aircraft (Figure 4.60), the guidance outputs

with lateral-directional and longitudinal error angles (Figure 4.61) and the longitudinal, and

lateral-directional states and controls (Figure 4.62 and 4.63, respectively).

Figure 4.60: Skyhunter Flight test and simulation comparison, Trajectory and rate of altitude
changes

• Navigation performance

This flight test is a good example to show the impact on the tracking due to the external

disturbance. Fig. 4.60 (top left) shows that the lateral-directional tracking has very large

overshoot (594.5 ft error, 113% overshoot � 10% criteria). This behavior is caused due

to the speed difference between the moving point and the aircraft. This can be explained
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by two performance parameters: the aircraft speed and the moving point traveling speed.

When the aircraft proceeds from the waypoint 1 to 2, the aircraft flies faster than the

moving point due to the wind field. Once the aircraft arrives at waypoint 2, the moving

point is still lying on the line segment made by the waypoint 1 and 2. This is the reason

why the aircraft cross the next line segment made by the waypoint 2 and 3. Fig. 4.61 (top

right) shows that the aircraft speed command is set to the initial condition which is 48

ft/sec. When the autopilot is engaged, the speed command and the moving point speed is

defined by the initial aircraft speed. Supposedly, they should travel along each other but

the aircraft can fly faster or slower depending on the wind direction. This is also shown

in Fig. 4.60 (top left). The two corners of the race track at the waypoint 4 and 5 do not

have large overshoot unlike the waypoint 2, 3, and 6. On the other hand, the altitude

tracking is not acceptable for both flight test and simulation since the overshoot is 43.7

and 29.33%, respectively (Figure 4.60 (top right)).

• Guidance and Control performance

The roll angle command has maximum 19 degree larger magnitude than the simulation

due to the external disturbances as it is discussed above. On the other hand, the roll

angle tracking is acceptable since the maximum roll angle error is 3.4 degree (≈ 3). The

speed and pitch angle commands are tracked well (the maximum overshoot is 8.9% and 2

degrees, respectively, see Table 4.9) when the aircraft tracks the straight legs (longer lines

of the race track made by waypoint 6 & 3 and 4 & 5). Regarding the discrepancy of the

throttle behavior (16% less usage during the flight test), the modeling error exists in the

thrust model or the drag model as it is mentioned in the previous flight test (DG-808 solo

flight test). Even though the pitch rate initial condition was around -70 deg/sec, the LQR

controller could overcome with the fast pitch rate and returned zero after 3.8 seconds.

Throughout these flight tests, the proposed GNC algorithms are applied for two different

platforms: DG-808 and Skyhunter. The flight test data shows the impact of the external

disturbances comparing to the simulation (the aforementioned drifting in the tracking). De-
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pending on the initial conditions, the multi-agent formation distance is affected. The 1st

attempt swarm flight has 306 ft RMS of the distance between agents but the 2nd attempt

swarm flight has 129 ft RMS in the distance between agents which is 58% lower than the 1st

attempt swarm flight.
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4.5.4 Solo flight: Skyhunter, April 26th 2018

This flight test is to validate the improvement of the tracking by the adaptive ddRLat men-

tioned in Chapter 2. In addition, the longitudinal guidance parameters are adjusted to

improve the altitude tracking as well to meet the defined criteria in Table 4.9 and the impact

of varying these parameters has been discussed in Chapter 2.1.2. Mainly, ddRLat is reduced

from 2500 to 700 ft. Figure 4.64 shows the comparison of the position of the aircraft be-

tween the flight test and simulation. The length of ddRLat varies from 320 to 420 ft. These

parameters are adjusted in the real time during the flight test with observing the aircraft be-

havior. Figure 4.66 and 4.67 shows the longitudinal and lateral-direction states and control,

Figure 4.64: Skyhunter solo flight test and simulation comparison, Position

respectively. In order to quantify the tracking performance, RMS of the tracking error is

calculated when the roll angle is small for both flight tests in August, 2017 and April, 2018,

see Figure 4.65. The red portions are the selected data for calculating RMS of tracking error.

The lateral-directional and longitudinal tracking is improved 99.7% and 99.4%, respectively.

This is a significant improvement and essential for the swarm flight to keep the formation

shape. Regarding the controller performance, the pitch angle tracking is loose (maximum
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8.6 degrees between 70 and 85 seconds (the time when small roll angle)) while the speed

command is tracked very well (the maximum overshoot 6.25% ≤ 10% criteria in Table 4.9).

Despite the initial condition of the states (the roll rate is 36 deg/s and the pitch rate is 26.5

deg/s, there are out of bound from the defined assessment criteria), the controller is able to

stabilize the aircraft and operate the flight for 150 seconds. In addition, this flight test result

surpasses the existing work (the lateral tracking error is 185.9 ft and the altitude overshoot

is 13.3 ft from Ref. [2]).

Figure 4.65: Tracking RMS comparison between August, 2017 and April, 2018
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4.6 Swarm flight: Skyhunter, April, 28, 2018

In this flight test, the swarm of two Skyhunters is tested. This flight uses the identical

scenario as the aforementioned DG-808 swarm flight. The virtual leader is initiated by the

average position and velocity of two agents and planned to follow the race track pattern.

The desired relative distance from the virtual leader is presented in the following table.

Table 4.12: Desired relative distance from virtual leader

Agent North [ft] East [ft]
1st agent 0 0
2nd agent -50 50

The altitude of the higher agent is set to stay at 475 ft AGL while the lower is set to stay

at 377 ft AGL and the assessment criteria is defined in Table 4.9. Improved tracking shown

in the previous flight test helped improve swarm flight performance as well. Two agents are

engaged at different position and heading angles as presented in Figure 4.73 and Figure 4.76.

The first and second agents heading angles are 154 and 75 degree, respectively.

Figure 4.68: Skyhunter formation flight results, Position and the altitude rate
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Then, two agents are aggregated to the formation. Figure 4.69 shows the RMS of 2D

and the altitude tracking. Due to the confined flight area, the actual formation holding is

considered only on the straight line segment in the race track pattern. This is because the

aircraft needs time to change its heading. While the aircraft turns, the altitude and the

formation holding is not accurate due to the reduced lift by the roll angle. The RMS of this

flight test is significantly lower 70.2% and 30% than the DG-808 1st and 2nd attempt in the

swarm flight test, even though the race track is smaller than DG-808 flight test (West-east

lag is 469 ft shorter than the DG-808 race track), see Figure 4.71. The average of the tracking

quality is improved by 50%. Besides of the smaller race track, the wind speed is also higher

than the day when DG-808 flight tests was conducted (the average wind speed was 4.6 mph).

In this flight test, the average wind speed was 10.4 mph and gusting up to 12.7 mph. The

wind direction was east and northeast. However, the formation distance (average RMS is 91

ft) could not keep at the desired formation distance (70.71 ft). The controller can hold the

aircraft speed fairly well (the overshoot is 7.73% (≤ 10%) for aircraft 2, see Figure 4.70) and

the altitude hold quality (the overshoot is 2.4 (aircraft 1) and 3.16% (aircraft 2) ≤ 10% by

the defined criteria, see Table 4.9)is also excellent consequently. For aircraft 1, the overshoot

of the speed command tracking is 12.3% so it is not acceptable result.

The detail of the comparison between the flight test and simulation for each agents is

presented as follows. Figure 4.72 and Figure 4.75 shows the position comparison of the

aircraft between the flight test and the simulation. Figure 4.73 and Figure 4.76 show the

longitudinal states and controls for each agent. Figure 4.74 and Figure 4.77 show the lateral-

directional states and controls for each agent. As these figures show, there is discrepancy

between the simulation and flight test due to the external disturbances (e.g., wind). The

lateral tracking is drifted 248.8 ft (northwest corner for aircraft 1) and 200 ft (southeast

corner for aircraft 2) comparing to the simulation results. In addition, the speed command

is chosen by the average of two agents’ GPS velocity. For aircraft 2, the speed command

is set to 56.9 ft/sec. However, the speed command for aircraft 1 changed several times due
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Figure 4.69: Formation distance comparison between flight test and simulation with RMS

Figure 4.70: Skyhunter swarm flight speed tracking RMS

Figure 4.71: Given waypoints for Skyhunter swarm flight and DG-808 swarm flight

to the intermittent communication link. Aircraft 1 initialized the swarm flight mode several

times and recalculate the speed command. In the simulation, the lack of wind results in
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lower speed commands. Regarding aircraft 2, the pitch angle tracking is not acceptable

(the maximum error is 7 degrees≥ 3 degrees). The roll angle tracking is required further

improvement for the confined area. The maximum roll angle error is 6 degree for aircraft

2 even only small roll angle section is considered. Aircraft 1 has unacceptable pitch angle

tracking since it has the steady state error about 7 degrees. For the roll angle tracking of

aircraft 1, maximum roll angle error is 8 degrees which also does not meet the criteria.
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4.7 Yak-54 40% solo flight test, December 20th 2017

This flight test is to validate the solo flight by using Yak-54 40% with the aforementioned

GNC algorithms. The guidance parameters and controller gains are tuned for Yak-54 40%

due to the changed dynamic model from DG-808 and Skyhunter. The following figures

describe the result of this flight test: the position of the aircraft (Figure 4.78), the lateral-

directional, and longitudinal states and controls (Figure 4.79 and 4.80, respectively).

Figure 4.78: G1X Position and the altitude rate

Figure 4.79 and 4.80 shows the lateral-directional and longitudinal states and control,

respectively. In order to quantify the tracking performance, RMS of the tracking error is

calculated when the roll angle is small. The overshoot in the lateral-tracking when the aircraft

flies the straight line is 1.8% (≤ 10%) which meets the criteria defined in Table 4.9. Regarding

the controller performance, the roll angle tracking is not met the criteria (maximum 7 degrees

(≥ 3 degrees) between 99 and 101 seconds). The speed command is tracked loosely (the

maximum overshoot 17.55% ≥ 10% criteria in Table 4.9). In addition, the pitch angle
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tracking is not met the requirement since the maximum pitch angle error is 4 degrees (≥ 3

degrees). Pitch rate is not also acceptable since it exceed 15 degrees in magnitude when the

aircraft turns. Overall, the controller performance is required to be improved to meet the

defined criteria.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

In this research, intelligent guidance, navigation, and control algorithms are developed in

order to utilize the multi-agent UASs for complex missions. The phasic navigation has been

proposed to overcome challenges in the multi-agent autonomous flight (e.g., random initial

conditions). The navigation algorithm for the multi-agent systems must contain the signifi-

cant elements such as scalability, collision avoidance, and dynamic constraints, see Eq. 2.115.

In order to achieve all these required features, curvature control, the Hungarian algorithm,

and the moving mesh methods are proposed as phasic navigation. The curvature control

algorithm is able to deal with random heading angles to converge to the desired direction.

This implies that it possesses scalability, as convergence is not affected by the number of

agents. By limiting curvature with the minimum turning radius, the planned path does not

violate any dynamic constraints. After all heading angles have converged, the Hungarian

algorithm provides the optimal solution based on the proposed cost function to assign each

aircraft to the formation position. A new feature of the Hungarian algorithm is the moving

virtual terminal to assign the position sequentially until all agents are assigned. The new

cost function is suggested to consider the agents’ dynamics by adding the rotation angle and
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heading angle errors. The moving mesh algorithms showed that the inner agents’ position

always stayed inside of the formation even though the desired trajectory is challenging to

complete (e.g., 180 degree turn). In order to utilize the moving mesh methods, the outer

agents are distinguished by Delaunay Triangulation to define the mesh boundary. The pha-

sic navigation algorithm has been implemented with the 6 DoF aircraft dynamics simulator.

With the given random initial conditions of multiple agents, the navigation algorithm is

able to guide the agents to the desired formation shape, see Sec. 4.2. The flight testbed is

designed by using the DG-808 and Skyhunter to validate the fundamental blocks of devel-

oped GNC architecture. Mainly, the waypoint modification and index decision algorithm,

LQ guidance path planning, virtual point formation, multi-scale moving point guidance and

LQR controllers are assessed by the criteria defined in Table 4.1 and 4.9. The multi-scale

moving point has been developed since the identical reference point in the lateral-directional

and longitudinal plane causes oscillation in the trajectory tracking. In order to reflect the

aircraft dynamics and improve tracking, the reference points are calculated separately in the

lateral-directional and longitudinal plane. The tracking quality is improved by 80% on the

lateral-directional plane comparing to the moving point guidance. Though the RMS of the

longitudinal tracking error is increased by 45%, the maneuvers performed by the aircraft

become significantly smoother (the original algorithm fluctuates from 340 ft to 440 ft but

the multi-scale guidance slowly increase the altitude from 350 ft to 400 ft in 200 seconds.)

comparing to the moving point guidance. However, the difference between the aircraft speed

command and the moving point traveling speed causes 113% overshoot in the tracking, see

Sec. 4.5.3. The sigmoid function is implemented to improve the lateral tracking by adjusting

the length to the reference point (ddRLat). As a result, the RMS of tracking error is reduced

by 99% in both lateral-directional and longitudinal plane comparing to the Skyhunter flight

test conducted in August, 2017. In addition, the swarm flight tracking in the flight test is

improved by 50% in the tracking quality comparing to the DG-808 flight test conducted in

March, 2017. Monte Carlo simulations are conducted to increase the credibility of the algo-
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rithm implementation. The random initial conditions are drawn during the simulation and

the algorithms are tested exhaustively and the implementation error (e.g., generating NaN

values) can be identified. In addition to the multi-scale moving point guidance algorithm, the

LQR controller is designed with the observation of the control surface rate. The smoothing

algorithms and the trim control surface update algorithm are implemented to prevent the

abrupt changes when the autopilot is engaged. For example, this solution can reduce the

controller surface rate by 7 %/s for the throttle and 26 deg/s for the elevator. As a result, the

DG-808 and the Skyhunter do not have abrupt behavior during the flight test. Overall, the

pitch angle tracking is not satisfied for the defined criteria in the flight tests. The controller

design should be performed to enhance the pitch angle tracking. Also, the 3 degrees criteria

for the roll and pitch angle tracking might be too narrow since the unstructured environment

introduces the external disturbances (e.g., the wind field and gust).

5.2 Conclusion

This research solves existing problems of multi-agent systems, specifically robustness to-

wards random initial conditions of each agent in 3D space. The combination of seemingly

heterogeneous algorithms from different engineering disciplines are modified to evolve a new

generation of guidance, navigation and control algorithms for scalable numbers of fixed wing

multi-agent UASs. Uniquely, fundamental blocks of guidance, navigation, and control were

validated through numerous simulations, hardware-in-the-loop tests, and actual UAS flight

tests. In order to deal with the complexity of multi-agent systems, intelligent and robust

guidance, navigation, and control systems were designed and validated by flight tests. Pha-

sic navigation was developed for multi-agent systems to aggregate, assemble a formation,

and maintain the formation shape during flight. Furthermore, the multi-scale moving point

guidance helps reduce oscillation and improves the tracking of the formation. An LQR con-

troller was designed practically by taking into consideration control surface rates in order
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to limit abrupt effects on the aircraft. Testbeds for the hardware-in-the-loop were designed

to verify communication links and the implementation of algorithms of the on-board avion-

ics. Lastly, flight tests were conducted to thoroughly validate the developed platforms and

algorithms. In conclusion, this research shows that the complexity of multi-agent systems

can be overcome by phasic navigation and multi-scale guidance. Flight tests expand the

boundary of this research by validating the fundamental building blocks of the multi-agent

system architecture. Although the RMS of distance between agents was reduced from 306 ft

to 91 ft but for the purpose of science missions, the distance between agents must be several

folds smaller than validation and verification flight test (e.g., 15 ft for 35 MHz radar). In

addition, the scalability of UASs has the practical bottleneck which is a mesh network.

5.3 Recommendations

• The focus of this research was on advancing guidance and navigation of multi-agent UASs

and improvements were mainly achieved by pushing the boundaries on the performance

and functionality of guidance and navigation algorithms. Future work should include

replacing existing control algorithms with more advanced controllers featuring robustness

and adaptivity capabilities.

• In this work, the connectivity of mesh network telemetry has been investigated in the

laboratory setting only using three systems. The connectivity tests should be expanded

to incorporate more agents and should include actual flight testing. The robustness of

guidance and navigation algorithms should be tested and investigated with respect to loss

of communication between agents. The robustness of guidance and navigation algorithms

must be also tested as a function of latency and periodic communication loss.

• The guidance, navigation and control of multi agent UASs in urban areas are fundamen-

tally different from Earth science missions. Morphing, splitting and random scalability

should be investigated in dynamically changing environments.
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• This work investigated the stability of proposed guidance, navigation and control of multi-

agent systems using limited number of agents and exhaustive search (Monte Carlo anal-

ysis). It is recommended to use mathematical methods to prove stability of nonlinear

guidance, navigation and control for a random number of UASs.

• Validation and verification section of this work focused on important blocks of guidance,

navigation, and control of multi-agent systems. However, more advanced hardware-in-the-

loop simulations involving several agents must be conducted to identify potential flaws in

proposed guidance, navigation and control algorithms.

• Validation and verification flight test must be conducted for larger number of agents

(minimum four agents due to the moving mesh constraints) to evaluate performance to

phasic guidance, navigation methods in actual scenarios.

• Quantification of performance goals for further enhancement by flight tests with an ad-

vanced controller to meet the criteria defined in Table 4.9.

• It is recommended the implementation of proper extended Kalman filter to estimate the

wind and the airflow angles (α and β) Currently, the airflow angles does not included for

calculating the control commands. If the airflow angles can be estimated properly, it will

help enhancing the controller performance.
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Appendix A

Aircraft Flight Dynamics

The fundamental theory to design Unmanned Aerial Systems (UASs) starts from Flight

dynamics because it provides mathematical tools for analyzing dynamic modes, simulating

an aircraft in software environment, and designing controllers. The procedure of quantifying

aircraft characteristics (e.g., stability and control derivatives) is called a dynamic modeling.

This chapter will provide the mathematical derivation of the dynamic modeling: six Degrees

of Freedom (DoF) nonlinear equations of motion and Linear Time Invariant (LTI) state space.

Mathematical models begin with Newton’s second law and Euler’s law for translational and

rotational motion, respectively. These laws lead to nonlinear 6 DoF equations of motion. A

perturbation method is applied to describe various motions at off-trim conditions during the

steady state flight. Using these linearized perturbed equations of motion, LTI state space

model can be developed to design controllers and perform modal analysis.

A.1 Nonlinear 6 Degrees of Freedom Equations of motion

A.1.1 Frames and Coordinate System

Frame has a very important role in Flight Dynamics since it provides the reference of the

motion. In order to construct the frame, the following properties should be met.
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• At least 3 non-colinear points are needed and they have to be orthonormal with respect

to the origin.

• Frame is a continuous and unbounded set of points that are time invariant.

In this work, Earth frame is chosen as the inertial frame: North, East, and Down axes.

It is the reference frame that does not accelerate with time. Inertial frame is important

since it provides the reference of the motion. In addition, the available information or

measured states for the controllers are in the inertial coordinate system from sensors such as

Global Positioning System (GPS) and Inertial Measurement Unit (IMU). There are various

coordinate systems used in this work: body coordinate, and stability coordinate. Body

coordinate system originates at the center of gravity and moves with the body. xB axis is

along with the nose of the body, and yB axis aligned with the right wing. zB axis is the down

direction and the result of cross product of xB and yB. The body coordinate is significant

since forces and moments are acting on the body of a vehicle not on the inertial frame.

The stability coordinate system is a modified version of the body frame. The x axis of the

stability axis (xS) is aligned with the projection of the velocity vector onto the xz plane. yS

is aligned with yB. zS is perpendicular to xS. All aforementioned coordinate systems in this

section are orthonormal. Figure A.1 shows the details of the coordinate axes and the inertial

frame.

Figure A.1: Coordinate systems with inertial frame
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A.1.2 Tensors and Transformation of Coordinate Systems

Coordinate systems are very useful for describing the motion of the aircraft. However, it

cannot be utilized without the transformation between the coordinate systems because the

forces and moments act on the body coordinate but measured information (e.g., position,

velocity etc.) is in the inertial coordinate system. Tensor is a useful tool for transforming the

coordinate system. It is a generalized set of vectors and describes the coordinate elements

of physical properties such as position, velocity, and acceleration. The order of tensors (n)

is determined by the dimensions (m) of the vector. In flight dynamics, zero, first, and

second order tensors are interested since the motion of the aircraft acts in three dimensional

space. The number of element in the tensor can be determined as mn. The attitude angle

information is required to transform the coordinate system by using tensors. (e.g., Euler

Angles, ΘI = [φ, θ, ψ]T ). The transformation rule and the number of elements in tensors are

introduced as follows:

• Zero order tensor: 30 = 1, there is only 1 element in zero order tensor. Scalar or

magnitudes are zero order tensor (e.g. mass, speed). There is no transformation rule

for the zero order tensor. Mass or speed is identical in any coordinate system under

the inertial frame.

• First order tensor: 31 = 3, there are three elements in the first order tensor. Position,

velocity, and acceleration are typical first order tensors. In order to transform the

coordinate system of the first order tensor ([x]A) from A to C, the following equation

is used: [x]C = HC
A [x]A. For the rate of the first order tensor, the following equation

can be used for the transformation.

[
dx
dt

]
A

=

[[
dx
dt

]
C

]
A

+ ωA × [x]A (A.1)

• Second order tensor: 32 = 9, there are nine elements in the second order tensor (e.g.
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moment of inertia, stress, strain). For second order tensors, the following equation is

used for transforming the coordinate system from A to C:

[x]C = HC
A [x]AH

A
C (A.2)

H is the rotation or cosine matrix. The subscript of H means the current coordinate and

superscript indicates the desired coordinate. ωA is the angular velocity in the A coordinate

system. Then, the rotation matrix should be derived. Rotation direction has the convention,

which rotates from the Z axis, Y axis and X axis.

Figure A.2: Coordinate Rotation Convention and Each rotation with Euler angles

Therefore, the transformation matrix can be found as the following equation.

HB
I = HB

2 (φ)H2
1 (θ)H1

I (ψ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1


(A.3)

Since the inertial frame and body coordinate system are orthonormal, the inverse of the

rotation matrix (HB
I ) is identical as the transpose of HB

I .

HI
B =

(
HB
I

)−1
=
(
HB
I

)T (A.4)
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A.1.3 Derivation of Nonlinear 6 Dof Nonlinear Equations of Motion

and Kinematic Equations

The derivation of aircraft translational and rotational motion begins with Newton’s second

law (Eq. A.5) and Euler’s law (Eq. A.6).[∑
FA+P+G

]
I

=

[
dP

dt

]
I

(A.5)[∑
MA+P

]
I

=

[
dh

dt

]
I

(A.6)

Subscript I indicates the inertial coordinate system. The sum of aerodynamic forces,

propulsion force, and the gravity force are equal to the derivative of momentum in translation

and rotation directions. The velocity in the body frame can be integrated and transferred to

the inertial frame to obtain a trajectory of the vehicle using the tensors. Now, Eq. A.5 and

Eq. A.6 can be expanded using the transformation rule in the rate of the first order tensor,

Eq. A.1.

[
dP

dt

]
I

=

[[
dP

dt

]
B

]
I

+ ωI × PI = HI
B

[
dP

dt

]
B

+ ωI × PI (A.7)[
dh

dt

]
I

=

[[
dh

dt

]
B

]
I

+ ωI × hI = HI
B

[
dh

dt

]
B

+ ωI × hI (A.8)

With a cross product equivalent matrix which is a skew symmetric, the computation can

be convenient. The following equation is the cross product equivalent.

ω̃I , ωI× =


0 −ωz +ωy

+ωz 0 −ωx

−ωy +ωx 0

 (A.9)

Eq. A.9 is applied to Eq. A.7 and Eq. A.8.

HI
B

[
dP

dt

]
B

= [FA+P+G]I − ω̃IPI (A.10)

202



HI
B

[
dh

dt

]
B

= [MA+P ]I − ω̃IhI (A.11)

Multiply HB
I on both hand sides.

HB
I

{
HI
B

[
dP

dt

]
B

= [FA+P+G]I − ω̃IPI
}

(A.12)

HB
I

{
HI
B

[
dh

dt

]
B

= [MA+P ]I − ω̃IhI
}

(A.13)

Expand the equations.

[
dP

dt

]
B

= HB
I [FA+P+G]I −H

B
I ω̃IPI = [FA+P+G]B −H

B
I ω̃IH

I
BPB (A.14)[

dh

dt

]
B

= HB
I [MA+P ]I −H

B
I ω̃IhI = [MA+P ]B −H

B
I ω̃IH

I
BhI (A.15)

Using second order tensor transformation (Eq. A.1), the cross product equivalent can be

transformed to the body coordinate system.

[
dP

dt

]
B

= [FA+P+G]B − ω̃BPB (A.16)[
dh

dt

]
B

= [MA+P ]B − ω̃BhI (A.17)

Then, the chain rule is applied to expand the left hand side.

[
dm

dt

]
B

−→
V B +m

[
d
−→
V

dt

]
B

= [FA+P+G]B − ω̃BPB (A.18)[
dI

dt

]
B

ωB + I

[
dω

dt

]
B

= [MA+P ]B − ω̃BhI (A.19)

where P = mV , and h = Iω. The rate of mass change is assumed to be less than 3% to
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5% in 60 seconds, so the change of mass (ṁ) and moment of inertia (İ) are negligible.

m

[
d
−→
V

dt

]
B

=
[∑

FA+P

]
B

+
[∑

FG

]
B
−mω̃B

−→
V B (A.20)

I

[
dω

dt

]
B

=
[∑

MA+P

]
B
− ω̃BIBωB (A.21)

The gravity vector is also transformed from the inertial coordinate to the body coordinate

system.

[∑
FG

]
B

= HB
I


0

0

mg


I

=


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1




0

0

mg


I

(A.22)

Expand the equation and it is simplified as the following:

[∑
FG

]
B

= mg


− sin θ

cos θ sinφ

cos θ cosφ

 (A.23)

Therefore, the 6 DoF nonlinear Equations of motion can be found by substituting Eq. A.9

and Eq. A.23.


U̇

V̇

Ẇ


B

=
1

m


FxA+P

FyA+P

FzA+P


B

+


−g sin θ

g cos θ sinφ

g cos θ cosφ


B

−


0 −R Q

R 0 −P

−Q P 0


B


U

V

W


B

(A.24)


Ixx 0 −Izz

0 Iyy 0

−Izx 0 Izz


B


Ṗ

Q̇

Ṙ


B

=


LA+P

MA+P

NA+P


B

−


0 −R Q

R 0 −P

−Q P 0


B


Ixx 0 −Izz

0 Iyy 0

−Izx 0 Izz


B


P

Q

R


B

(A.25)

In this work, the aircraft was assumed to be fixed-wing vehicle, and to have symmetry

configurations on xz plane, so Iyz and Ixy are zero. The moment of inertia can be estimated
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using Advanced Aircraft Analysis (AAA) or the Bifilar pendulum experiment, see Ref. [49].

If this matrix is expanded, nonlinear six DoF equations of motion can be obtained as the

form of differential equations.

dU

dt
=

FxA+P

m
− g sin θ + V R−WQ (A.26)

dV

dt
=

FyA+P

m
− g cos θ sinφ− UR−WP (A.27)

dW

dt
=

FzA+P

m
− g cos θ cosφ+ UQ− V P (A.28)

Ixx
dP

dt
− Ixz

dR

dt
= LA+P + IxzPQ+ (Iyy − Izz)RQ (A.29)

Iyy
dQ

dt
= MA+P +

(
R2 − P 2

)
Ixz + (Izz − Ixx)PR (A.30)

Ixx
dR

dt
− Ixz

dP

dt
= NA+P + (Ixx − Iyy)PQ− IxzQR (A.31)

The important aspect of equations of motion is non-linearity from the trigonometry

function and coupled terms (e.g. V R, WQ, UR ). For example, the nonlinear terms in

Eq. A.29 show the coupled motion. If the pitch rate changes in longitudinal motion, it also

affects the lateral motion which is roll and yaw. Moreover, the left hand side of Eq. A.29

and Eq. A.31 describes the coupled motion between roll and yaw. They have two differential

terms, which are the rate of roll and yaw. Since six DoF equations indicates the dynamic

constraints in different direction of the aircraft motion, they allow to describe the dynamics

of the aircraft more accurately than the point mass model discussed in Section 1.2.

Using translational three DoF equations of motion from Eq. A.26 to Eq. A.28, the tra-

jectory of the aircraft can be found by transforming the velocity vector in body coordinates

to the inertial frame and integrating it. Obviously, the initial condition of position should

be given in order to integrate them.

205




dpN/dt

dpE/dt

dpD/dt


I

= HI
B


U

V

W


B

(A.32)

=


cosψ sinψ 0

− sinψ cosψ 0

0 0 1


T 

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


T 

1 0 0

0 cosφ sinφ

0 − sinφ cosφ


T 

U

V

W


B

In order to transform from the body coordinates frame to the inertial frame, Euler an-

gles are required. However, Euler angles changes with time, which means there is a time

derivative. The rate of the Euler angles in the inertial frame can be presented by the angu-

lar rates in the body coordinate system. The following equation describes the relationship

between the rate of Euler angles and the angular rates. These equations are called kinematic

equations.


P

Q

R


B

= LBI


φ̇

θ̇

ψ̇


I

=


1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ



φ̇

θ̇

ψ̇


I

(A.33)

where LBI is the transformation matrix for the Euler angles rate to the angular rates in

the body coordinate system. Unlike the transformation matrices (HB
I or HI

B), LBI is not the

orthonormal.

A.2 Forces and Moments

To complete equations of motion in the previous section, the computation of the forces and

moments should be discussed. The gravity force is already discussed in Section A.1.3. The

remaining elements are the aerodynamic and propulsive forces and moments.
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A.2.1 Linear Aerodynamic Forces and Moments

The forces and moments acting on the body coordinate system can be presented as follows:

∑
FA =


FxA

FyA

FzA


B

=


q̄SCX

q̄SCY

q̄SCZ

 ,
∑

MA =


LA

MA

NA


B

=


q̄SbCl

q̄Sc̄Cm

q̄SbCn


B

(A.34)

where CX , CY , CZ , Cl, Cm, Cn are non-dimensional coefficients. These coefficients are

described in detail below.

Figure A.3: Body and Stability Coordinate
Systems

S is the reference or wing area; c̄ is

the mean geometric chord of the wing; b

is the wing span; q̄ is the dynamic pres-

sure that is 0.5ρ|
−→
V |2 where ρ is the air den-

sity and
−→
V is the velocity vector. Since

all aerodynamic forces and moments are

in the stability coordinate system (see Fig-

ure A.3), non-dimensional coefficients men-

tioned above can be presented as follows:


CX

CY

CZ


B

=


−[CD]S cosα1 + [CL]S sinα1

[CY ]S

−[CD]S sinα1 − [CL]S cosα1


B

,


Cl

Cm

Cn


B

=


[Cl]S cosα1 − [Cn]S sinα1

[Cm]S

[Cl]S sinα1 + [Cn]S cosα1


B

(A.35)

where subscript 1 means the steady state, subscript S means the stability coordinate

system, CL is the lift coefficient, CD is the drag coefficient, CY is the side force coefficient,

Cl is the rolling moment coefficient, and Cm is the pitching moment coefficient, and Cn is

the yawing moment coefficient. The coordinate of Eq. A.35 is transformed in accordance

with α1 from the stability to the body coordinate system. The side force and the pitching
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moment coefficients (CY = [CY ]S, Cm = [Cm]S) are identical in the stability and the body

coordinate system since the Y axes are aligned. The non-dimensional coefficients are modeled

by the component build-up method using perturbed states, see Ref. [85]. Perturbed states

are the small deviation from the steady state, x = X − X1 where X is the state (e.g.,

U,V,W,P,Q,R). Total forces and moment coefficients in the stability coordinate systems are

presented as follows:

CL = CL1
+ CLα (α− α1) + CLq

c̄ (Q−Q1)

2U1
+ CLα̇

α̇c̄

2U1
+ CLu

(U − U1)

U1
+ CLδE (δE − δE1

) (A.36)

CY = CYβ (β − β1) + CYp
(P − P1) b

2U1
+ CYr

(R−R1) b

2U1
+ CYδA (δA − δA1

) + CYδR (δR − δR1
) (A.37)

CD = CD0 +
C2
L

πARe
(A.38)

Cl = Clβ (β − β1) + Clp
(P − P1) b

2U1
+ Clr

(R−R1) b

2U1
+ ClδA (δA − δA1) + ClδR (δR − δR1) (A.39)

Cm = Cm1 + Cmα (α− α1) + Cmq
(Q−Q1) c̄

2U1
+ Cmα̇

α̇c̄

2U1
+ (Cmu + 2Cm1)

(U − U1)

U1

+ CmδE (δE − δE1) +
(
CmTu + 2CmT1

) (U − U1)

U1
+ CmTα (α− α1) (A.40)

Cn = Cmβ (β − β1) + Cnp
(P − P1) b

2U1
+ Cnr

(R−R1) b

2U1
+ CnδA (δA − δA1

) + CnδR (δR − δR1
) (A.41)

where AR is the aspect ratio of the wing, and e is the Oswald efficiency factor, which is

assumed to be 0.88 in this work. In the steady state level wing flight, the following can

be considered: P1 = Q1 = R1 = β1 = α̇1 = 0. The stability and control derivatives

used from Eq. A.36 to Eq. A.41 can be estimated using two kinds of software: Advanced

Aircraft Analysis (AAA) and Athena Vortex Lattice (AVL). AAA has advantages by using

vast databases of existing aircraft and airfoils. AVL is a software developed by MIT, and

AVL uses an extended vortex lattice method. AVL cannot analyze the geometry with the

fuselage unlike AAA. AAA and AVL are used in order to compare stability and control

derivatives, so this comparison provides an interpretation of uncertainty. Figure. A.4 shows

both geometric models.
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Figure A.4: AAA(left) and AVL(right) software

A.2.2 Propulsive Forces and Moments

Thrust force is considered only in the X axis of the body coordinates. Regarding to the

moments, the thrust can affect the pitch moment depending on the location of the engine.

Thrust forces in the body coordinate system are presented as follows:

∑
FP =


XT

YT

ZT

 =


XT0

+XT1
δT +XT2

δ2T

0

0

 ,
∑

MP =


LT

MT

NT

 =


0

T · dT

0

 (A.42)

where XT0 , XT1 and XT2 are the nonlinear thrust model polynomial coefficients; T is the

amount of thrust generated by the engine; dT is the distance from the engine to the center

of gravity of the aircraft in zB. The sign of MT can vary depending on the location of the

engine.

A.3 Linear Time Invariant State Space using Perturbed

Equations of Motion

Linear Time Invariant (LTI) state space model is the mathematical way to describe the

aircraft dynamics by the linearization of nonlinear equations of motion with state and control
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vectors. Since LTI state space model represents the aircraft dynamics, it can be used for

modal analysis by eigenvalues and eigenvectors. Handling qualities are also identified by the

dynamic characteristics (e.g., natural frequency, damping ratio, time to double amplitude).

In order to obtain the LTI model of the aircraft, the perturbed equations of motion are

derived. Then, the dimensional stability and control derivatives are introduced to present

the perturbed equations of motion as LTI state space model.

A.3.1 Perturbed Equations of Motion

In this section, perturbed equations of motion are discussed. Perturbation methods are

applied to describe the motion of the aircraft by considering the small changes from the

steady state. The sum of perturbed and steady states are called total states. Total states

can be presented as follows:

U = U1 + u V = V1 + v W = W1 + w P = P1 + p
Q = Q1 + q R = R1 + r Ψ = Ψ1 + ψ Θ = Θ1 + θ
Φ = Φ1 + φ FAx = FAx1 + fAx FAy = FAy1 + fAy FAz = FAz1 + fAz
FPx = FPx1 + fPx FPy = FPy1 + fPy FPz = FPz1 + fPz LA = LAx1 + lAx
MA = MAx1

+mAx NA = NAx1
+ nAx LP = LPx1 + lPx MP = MPx1

+mPx

NP = NPx1
+ nPx

The steady states indicate zero acceleration, so all left hand sides from Eq. A.26 to

Eq. A.31 become zero. Three typical steady states are recti-linear, symmetrical pull-up, and

level turn cases. Perturbed Euler angles are assumed to be very small to begin perturbing

equations. The following relationships are used for perturbations:

cosφ ∼= 1, sinφ ∼= φ (A.43)

cos θ ∼= 1, sin θ ∼= θ (A.44)

cosψ ∼= 1, sinψ ∼= ψ (A.45)

Due to the small angle assumption and the definition of perturbation, products of perturbed

values are negligible. In addition, the rate of change of the Euler angles (φ̇, θ̇, and ψ̇) is
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assumed to be zero as well. Once all states are perturbed and assumptions are applied,

perturbed equations of motion can be obtained as follows: (Details of the derivation are

presented in Appendix B.)

du

dt
=
fxA+P

m
− gθ cos θ1 + (V1r + vR1)− (W1q + wQ1) (A.46)

dv

dt
=
fyA+P

m
+ g (−θ sinφ1 sin θ1 + φ cos θ1 cosφ1)− (uR1 + U1r) (A.47)

+ (wP1 +W1p)

dw

dt
=
fzA+P

m
+ g (−θ cosφ1 sin θ1 − φ cos θ1 sinφ1) + (uQ1 + U1q) (A.48)

− (vP1 + V1p)

Ixx
dp

dt
− Ixz

dr

dt
= lA+P + (pQ1 + P1q) Ixz + (Iyy − Izz) (R1q + rQ1) (A.49)

Iyy
dq

dt
= mA+P + (2R1r − 2P1p) Ixz + (P1r + pR1) (Ixz − Ixx) (A.50)

Ixx
dr

dt
− Ixz

dp

dt
= nA+P + (P1q + pQ1) (Ixx − Iyy)− (Q1r + qR1) Ixz (A.51)

A.3.2 Perturbed Forces and Moments

To compute the perturbed forces and moments, dimensionless stability and control deriva-

tives are required to utilize the component build-up method, see Ref. [85]. Stability and

control derivatives are partial derivatives of forces and moments coefficients with respect to

states and controls. Because forces and moments are aligned with the stability coordinate

system, they are developed in stability axes. Stability and control derivatives are dimen-

sionless values, and this feature enables fair comparisons between various vehicles regardless

of the size of aircraft. Stability and control derivatives can obtained from AAA or AVL as

mentioned in Section A.2.1. However, one more hurdle still exists: units of partial deriva-

tives are different depending on the states. For example, when an aerodynamic force in xS

direction (FAx) is taken the partial derivative with respect to u, its unit is ft/sec. If we

take the partial derivative of FAx respect to the time derivative of angle of attack (α̇), the
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units of α̇ is rad/sec. In order to make the partial derivative respect to u, trim speed, U1

was multiplied and divided. Examples follows:

∂FAx
∂u

u =
∂FAx
∂u

u
U1

U1

=
∂FAx
∂ u
U1

u

U1

(A.52)

Similarly, the partial derivatives respect to the rate of angle of attack can be treated as

follows:

∂FAx
∂α̇

α̇ =
∂FAx
∂α̇

α̇
c̄

2U1

c̄
2U1

=
∂FAx
∂ α̇c̄

2U1

α̇c̄

2U1

(A.53)

Regarding to the partial derivative respect to the pitch rate (q), the same approach can

be applied in Eq. A.53. For the lateral states (β̇, p, and r), b/(2U1) is multiplied and

divided to make the partial derivatives non-dimensional. The reason that longitudinal and

lateral-directional equations use different reference length (c̄ and b) is because a moment

arm is different due to the axis of the rotating motion. Taylor series of the partial derivative

provides the model of perturbed forces and moments:

fAx =
∂FAx
∂ u
U1

u

U1

+
∂FAx
∂α

α +
∂FAx
∂ α̇c̄

2U1

α̇c̄

2U1

+
∂FAx
∂ qc̄

2U1

qc̄

2U1

+
∂FAx
∂δE

δE (A.54)

fAy =
∂FAy
∂β

β +
∂FAy

∂ β̇b
2U1

+
∂FAy

∂ pb
2U1

pb

2U1

+
∂FAy
∂ rb

2U1

rb

2U1

+
∂FAy
∂δA

δA +
∂FAy
∂δR

δR (A.55)

fAz =
∂FAz
∂ u
U1

u

U1

+
∂FAz
∂α

α +
∂FAz
∂ α̇c̄

2U1

α̇

2U1

+
∂FAz
∂ qc̄

2U1

qc̄

2U1

+
∂FAz
∂δE

δE (A.56)

lA =
∂LA
∂β

β +
∂LA

∂ β̇b
2U1

β̇b

2U1

+
∂LA

∂ pb
2U1

pb

2U1

+
∂LA

∂ rb
2U1

rb

2U1

+
∂LA
∂δA

δA +
∂LA
∂δR

δR (A.57)

mA =
∂MA

∂ u
U1

u

U1

+
∂MA

∂α
α +

∂MA

∂ α̇c̄
2U1

α̇c̄

2U1

+
∂MA

∂ qc̄
2U1

qc̄

2U1

+
∂MA

∂δE
δE (A.58)

nA =
∂NA

∂β
β +

∂NA

∂ β̇b
2U1

β̇b

2U1

+
∂NA

∂ pb
2U1

pb

2U1

+
∂NA

∂ rb
2U1

rb

2U1

+
∂NA

∂δA
δA +

∂NA

∂δR
δR (A.59)

fPx =
∂FPx
∂ u
U1

+
∂FPx
∂α

α (A.60)
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fPy =
∂FPy
∂ u
U1

+
∂FPy
∂α

α (A.61)

fPz =
∂FPz
∂ u
U1

u

U1

+
∂FPz
∂α

α (A.62)

lP =
∂LP
∂β

β (A.63)

mP =
∂MP

∂ u
U1

u

U1

+
∂MP

∂α
α (A.64)

nP =
∂NP

∂β
β (A.65)

Note that all states are in perturbations from the steady state. Using Eq. A.35 and the

chain rule of derivatives, the following equations show perturbed forces and moments using

stability and control derivatives developed above:

fA+Px

q̄1S
= −

(
CDu + 2CD1 − CTxu − 2CTx1

) u

U1
+ (−CDα + CL1)α− CDα̇

α̇c̄

2U1
− CDq

qc̄

2U1

− CDδe δe (A.66)

fA+Py

q̄1S
= Cyββ + Cyβ̇

β̇b

2U1
+ Cyp

pb

2U1
+ Cyr

rb

2U1
+ Cyδa δa + Cyδr δr (A.67)

fA+P z

q̄1S
= − (CLu + 2CL1

)
u

U1
+ (−CLα − CD1

)α− CLα̇
α̇c̄

2U1
− CLq

qc̄

2U1
− CLδe δe (A.68)

lA+P

q̄1Sb
= Clββ + Clβ̇

β̇b

2U1
+ Clp

pb

2U1
+ Clr

rb

2U1
+ Clδa δa + Clδr δr (A.69)

mA+P

q̄1Sc̄
=
(
Cmu + 2Cm1

+ CmTu + 2CmT1
) u

U1
+
(
Cmα + CmTα

)
α+ Cmα̇

α̇c̄

2U1
+ Cmq

qc̄

2U1

+ Cmδe δe (A.70)

nA+P

q̄1Sb
=
(
Cnβ + CnTβ

)
β + Cnβ̇

β̇b

2U1
+ Cnp

pb

2U1
+ Cnr

rb

2U1
+ Cnδa δa + Cnδr δr (A.71)

CDq and CDα̇ are assumed to be negligible.

A.3.3 Linear Time Invariant Model

The Linear Time Invariant (LTI) model is essential to analyze dynamics of the aircraft and

design controllers. To obtain linearized equations of motion, perturbed equations should be

recalled again. In addition, assumptions for the linearization are presented as follows for the
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longitudinal and lateral-directional equations of motion:

p = φ̇, q = θ̇, r = ψ̇ (A.72)

v = U1β, w = U1α (A.73)

Because perturbed equations of motion are developed in stability axes, the moment of

inertia should be transformed into stability axes from the body frame using the following

equation. 
IxxS

IzzS

IxzS

 =


cos2 α1 sin2 α1 − sin 2α1

sin2 α1 cos2 α1 sin 2α1

0.5 sin 2α1 −0.5 sin 2α1 cos 2α1



IxxB

IzzB

IxzB

 (A.74)

IyyB and IyyS are identical since the rotation axis is about the y axis. For a detailed expla-

nation, the x direction translational equation is considered for an example. Using Eq. A.46

and Eq. A.66, the following equation is presented:

du

dt
=
q̄1S

m

(
−
(
CDu + 2CD1 − CTxu − 2CTx1

) u
U1

+ (−CDα + CL1)α− CDδeδe

)
− gθ cos θ1 + (V1r + vR1)− (W1q + wQ1)

(A.75)

V1, W1, Q1, and R1 are zero at a steady state because the recti-linear steady state is

assumed. Therefore, Eq. A.75 can be simplified as follows:

du

dt
=
q̄1S

m

(
−
(
CDu + 2CD1 − CTxu − 2CTx1

) u
U1

+ (−CDα + CL1)α− CDδe δe
)
− gθ cos θ1 (A.76)

Terms in right hand side are then expanded to define newly dimensional stability and control

derivatives:

du

dt
=

(
−q̄1S (CDu + 2CD1

)

mU1
u+

q̄1S
(
CTxu + 2CTx1

)
mU1

u+
−q̄1S (CDα − CL1

)

m
α+
−q̄1SCDδe

m
δe

)
− gθ cos θ1

(A.77)
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Eq. A.77 can be rewritten again using dimensional stability and control derivatives. For

example:

Xu =
−q̄1S (CDu + 2CD1)

mU1

(A.78)

Finally, the following equation can be obtained:

u̇ = (Xu +XTu)u+Xαα +Xδeδe − g cos θ1θ (A.79)

Similarly, other equations can be rewritten by using dimensional stability and control deriva-

tives. The resulting perturbed equations of motion using dimensional stability and control

derivatives are shown below:

θ̇ = q (A.80)

u̇ = −g cos θ1θ + (Xu +XTu)u+Xαα +Xδeδe +Xδtδt (A.81)

(U1 − Zα̇)α̇ = −g sin θ1θ + Zuu+ Zαα + (U1 + Zq)q + Zδeδe + Zδtδt (A.82)

q̇ −Mα̇α̇ = (Mu +MTu)u+ (Mα +MTα)α +Mqq +Mδeδe +Mδtδt (A.83)

φ̇ = p (A.84)

ψ̇ = r (A.85)

U1β̇ = g cos θ1 + Yββ + Ypp+ (Yr − U1)r + Yδaδa + Yδrδr (A.86)

ṗ− Ā1ṙ = Lββ + Lpp+ Lrr + Lδaδa + Lδrδr (A.87)

ṙ − B̄1ṗ = (Nβ +NTβ)β +Npp+Nrr +Nδaδa +Nδrδr (A.88)

where Ā1 = Ixz
Ixx

and B̄1 = Ixz
Izz

. In addition, Xδt , Zδt , and Mδt are added for the throt-

tle control. CDδt , CLδt , and Cmδt are computed from AAA software. Then, the following

dimensional control derivatives are applied:

Xδt = −
q̄1SCDδt

m
, Zδt = −

q̄1SCLδt
m

, Mδt = −
q̄1Sc̄Cmδt

m
(A.89)

Eq. A.80 through Eq. A.83 are in longitudinal axes, while Eq. A.84 through Eq. A.88 are
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in the lateral-directional axis. With these equations, the linear state space can be formed,

see Eq. A.90:
−̇→x = A−→x +Bu (A.90)

Before the state space is formed, states and controls for each axis should be defined using

the following equation:

−→x long =



θ

u

α

q


, −→u long =

δe
δt

 , −→x lat =



φ

ψ

β

p

r


, −→u lat =

δa
δr

 (A.91)

For the longitudinal axis, the following equations are expressed in a matrix form:



1 0 0 0

0 1 0 0

0 0 U1 − Zα̇ 0

0 0 −Mα̇ 1





θ̇

u̇

α̇

q̇


=



0 0 0 1

−g cos θ1 Xu +XTu Xα 0

−g sin θ1 Zu Zα U1 + Zq

0 Mu +MTu Mα +MTα Mq





θ

u

α

q


+



0 0

Xδe Xδt

Zδe Zδt

Mδe Mδt


δe
δt



(A.92)

The following equation is always valid under the assumption that the determinant of K

exists, so that the inverse is possible:

K−̇→x = A′−→x +B′u (A.93)

Finally, Along and Blong are obtained:

Along =



1 0 0 0

0 1 0 0

0 0 U1 − Zα̇ 0

0 0 −Mα̇ 1



−1 

0 0 0 1

−g cos θ1 Xu +XTu Xα 0

−g sin θ1 Zu Zα U1 + Zq

0 Mu +MTu Mα +MTα Mq


(A.94)
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Blong =



1 0 0 0

0 1 0 0

0 0 U1 − Zα̇ 0

0 0 −Mα̇ 1



−1 

0 0

Xδe Xδt

Zδe Zδt

Mδe Mδt


(A.95)

For the lateral-directional axis, more algebra was required since derivatives of roll and

yaw moments are coupled. Eq. A.87 and Eq. A.88 can be combined as follows:

(1− Ā1B̄1)ṗ =
(
Ā1(Nβ +NTβ ) + Lβ

)
β

+ (Ā1Np + Lp)p+ (Ā1Nr + Lr)r + (Ā1Nδa + Lδa)δa + (Ā1Nδr + Lδr )δr

(A.96)

(1− Ā1B̄1)ṙ = (B̄1Lβ +Nβ +NTβ )β

+ (B̄1Lp +Np)p+ (B̄1Lr +Nr)r + (B̄1Lδa +Nδa)δa + (B̄1Lδr +Nδr )δr

(A.97)

Now, the equations can be expressed in matrix form as follows:



1 0 0 0 0

0 1 0 0 0

0 0 U1 0 0

0 0 0 1− Ā1B̄1 0

0 0 0 0 1− Ā1B̄1





φ̇

ψ̇

β̇

ṗ

ṙ


=



0 0 0 1 0

0 0 0 0 1

g cos θ1 0 Yβ Yp Yr − U1

0 0 Ā1(Nβ +NTβ ) + Lβ Ā1Np + Lp Ā1Nr + Lr

0 0 B̄1Lβ +Nβ +NTβ B̄1Lp +Np B̄1Lr +Nr





φ

ψ

β

p

r


+



0 0

0 0

Yδa Yδr

Ā1Nδa + Lδa Ā1Nδr + Lδr

B̄1Lδa +Nδa B̄1Lδr +Nδr



δa
δr

 (A.98)

Using identical assumptions in the longitudinal axis (Eq. A.93), Alat and Blat can be

computed as the following equation:

Alat =



1 0 0 0 0

0 1 0 0 0

0 0 U1 0 0

0 0 0 1− Ā1B̄1 0

0 0 0 0 1− Ā1B̄1



−1 

0 0 0 1 0

0 0 0 0 1

g cos θ1 0 Yβ Yp Yr − U1

0 0 Ā1(Nβ +NTβ ) + Lβ Ā1Np + Lp Ā1Nr + Lr

0 0 B̄1Lβ +Nβ +NTβ B̄1Lp +Np B̄1Lr +Nr


(A.99)
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Blat =



1 0 0 0 0

0 1 0 0 0

0 0 U1 0 0

0 0 0 1− Ā1B̄1 0

0 0 0 0 1− Ā1B̄1



−1 

0 0

0 0

Yδa Yδr

Ā1Nδa + Lδa Ā1Nδr + Lδr

B̄1Lδa +Nδa B̄1Lδr +Nδr


(A.100)

Finally, the linear dynamics of the system for longitudinal and lateral-directional motion

are completed. With these models, the modal analysis can be performed and the handling

qualities can be observed. The eigenvalues of these models provides the dynamic modes

of the system: short period, phugoid, spiral, roll, and dutch roll modes. Moreover, the

eigenvectors indicate the impact against each state. Lastly, these models are the foundation

for the control design. All numerical results are presented in Appendix D.
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Appendix B

Derivation of the Perturbed equations of

motion

Assumptions

• Perturbed angles are small.

• The results of multiplication of perturbed values are small enough to be negligible.

** Nonlinear terms were highlighted in yellow.

Translational Equations of Motion

Acceleration in xB direction.

dU

dt
=
FA+Px

m
− g sin θ + V R−WQ (B.1)

@Steady state,

dU1

dt
=
FA+Px1

m
− g sin θ1 + V1R1 −W1Q1 = 0 (B.2)
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Substitute the total values as the addition of steady state value and perturbed value.

d (U1 + u)

dt
=
FA+Px1

m
+
fA+Px

m
− g sin (θ1 + θ) + {(V1 + v) (R1 +R)− (W1 + w) (Q1 + q)}

(B.3)

Expand the equation.

dU1

dt
+
du

dt
=
FA+Px1

m
+
fA+Px

m
− g (sin θ1 cos θ + cos θ1 sin θ)

+ {V1R1 + V1r + vR1 + vr − (W1Q1 +W1q + wQ1 + wq)}

(B.4)

Apply the small angle assumption. ( cos θ ; 1, sin θ ; θ)

dU1

dt
+
du

dt
=
FA+Px1

m
+
fA+Px

m
− g (sin θ1 · 1 + cos θ1 · θ)

+ {V1R1 + V1r + vR1 + vr − (W1Q1 +W1q + wQ1 + wq)}

(B.5)

dU1

dt
+
du

dt
=
FA+Px1

m
+
fA+Px

m
− g sin θ1 − gθ cos θ1

+ {V1R1 + V1r + vR1 + vr − (W1Q1 +W1q + wQ1 + wq)}

(B.6)

Substitute the steady state.

FA+Px1

m
− g sin θ1 + V1R1 −W1Q1 +

du

dt
=
FA+Px1

m
+
fA+Px

m
− g sin θ1 − gθ cos θ1

+ {V1R1 + V1r + vR1 + vr − (W1Q1 +W1q + wQ1 + wq)}

(B.7)
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Cancel out the identical terms on the left hand side and right hand side.

du

dt
=
fA+Px

m
− gθ cos θ1 +

{
V1r + vR1 + vr −

(
W1q + wQ1 + wq

)}
(B.8)

Apply the assumption regarding to multiplication of perturbed values.

du

dt
=
fA+Px

m
− gθ cos θ1 + (V1r + vR1 −W1q − wQ1) (B.9)

Acceleration in yB direction.

dV

dt
=
FA+P y

m
+ g cos θ sinφ− UR +WP (B.10)

@Steady state

dV1

dt
=
FA+P y1

m
+ g cos θ1 sinφ1 − U1R1 +W1P1 (B.11)

Substitute the total values as the addition of steady state value and perturbed value.

d (V1 + v)

dt
=
FA+P y1

m
+
fA+P

m
+ g cos (θ1 + θ) sin (φ1 + φ)− (U1 + u) (R1 + r) + (W1 + w) (P1 + p)

(B.12)

Expand the equation.

dV1

dt
+
dv

dt
=
FA+P y1

m
+
fA+P

m
+ g (cos θ1 cos θ − sin θ1 sin θ) (sinφ1 cosφ+ cosφ1 sinφ)

− (U1R1 + U1r + uR1 + ur) + (W1P1 +W1p+ P1w + wp) (B.13)
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Apply the small angle assumption. ( cos θ ; 1, sin θ ; θ)

dV1

dt
+
dv

dt
=
FA+P y1

m
+
fA+P

m
+ g (cos θ1 · 1− sin θ1 · θ) (sinφ1 · 1 + cosφ1 · φ)

− (U1R1 + U1r + uR1 + ur) + (W1P1 +W1p+ P1w + wp) (B.14)

dV1

dt
+
dv

dt
=
FA+P y1

m
+
fA+P

m
+ g (cos θ1 − θ sin θ1) (sinφ1 + φ cosφ1)

− (U1R1 + U1r + uR1 + ur) + (W1P1 +W1p+ P1w + wp) (B.15)

dV1

dt
+
dv

dt
=
FA+P y1

m
+
fA+P

m
+ g (cos θ1 sinφ1 + φ cos θ1 cosφ1 − θ sin θ1 sinφ1 − θφ sin θ1 cosφ1)

− (U1R1 + U1r + uR1 + ur) + (W1P1 +W1p+ P1w + wp) (B.16)

Substitute the steady state.

FA+P y1

m
+ g cos θ1 sinφ1 − U1R1 +W1P1 +

dv

dt
=
FA+P y1

m
+
fA+P

m

+ g (cos θ1 sinφ1 + φ cos θ1 cosφ1 − θ sin θ1 sinφ1 − θφ sin θ1 cosφ1)

− (U1R1 + U1r + uR1 + ur) + (W1P1 +W1p+ P1w + wp) (B.17)

Cancel out the identical terms on the left hand side and right hand side.

dv

dt
=
fA+P

m
+ g

(
φ cos θ1 cosφ1 − θ sin θ1 sinφ1 − θφ sin θ1 cosφ1

)
− (U1r + uR1 + ur ) +

(
W1p+ P1w + wp

)
(B.18)

Apply the assumption regarding to multiplication of perturbed values.

dv

dt
=
fA+P

m
+ g (φ cos θ1 cosφ1 − θ sin θ1 sinφ1)− U1r − uR1 +W1p+ P1w (B.19)
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Acceleration in zB direction.

dW

dt
=
FA+P z

m
+ g cos θ cosφ+ UQ− V P (B.20)

@Steady state

dW1

dt
=
FA+P z1

m
+ g cos θ1 cosφ1 + U1Q1 − V1P1 (B.21)

Substitute the total values as the addition of steady state value and perturbed value.

d (W1 + w)

dt
=
FA+P z1

m
+
fA+P z

m
+ g cos (θ1 + θ) cos (φ1 + φ) + (U1 + u) (Q1 + q)− (V1 + v) (P1 + p)

(B.22)

Expand the equation.

dW1

dt
+
dw

dt
=
FA+P z1

m
+
fA+P z

m
+ g cos (cos θ1 cos θ − sin θ1 sin θ) (cosφ1 cosφ− sinφ1 sinφ)

+ (U1Q1 + U1q + uQ1 + uq)− (V1P1 + V1p+ vP1 + vp)

(B.23)

Apply the small angle assumption. ( cos θ ; 1, sin θ ; θ)

dW1

dt
+
dw

dt
=
FA+P z1

m
+
fA+P z

m
+ g cos (cos θ1 · 1− sin θ1 · θ) (cosφ1 · 1− sinφ1 · φ)

+ (U1Q1 + U1q + uQ1 + uq)− (V1P1 + V1p+ vP1 + vp)

(B.24)

dW1

dt
+
dw

dt
=
FA+P z1

m
+
fA+P z

m
+ g cos (cos θ1 − θ sin θ1) (cosφ1 − φ sinφ1)
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+ (U1Q1 + U1q + uQ1 + uq)− (V1P1 + V1p+ vP1 + vp)

(B.25)

dW1

dt
+
dw

dt
=
FA+P z1

m
+
fA+P z

m
+ g cos (cos θ1 cosφ1 − φ cos θ1 sinφ1 − θ sin θ1 cosφ1 + θφ sin θ1 sinφ1)

+ (U1Q1 + U1q + uQ1 + uq)− (V1P1 + V1p+ vP1 + vp)

(B.26)

Cancel out the steady state terms.

dw

dt
=
fA+P z

m
+ g cos

(
−φ cos θ1 sinφ1 − θ sin θ1 cosφ1 + θφ sin θ1 sinφ1

)
+
(
U1q + uQ1 + uq

)
−
(
V1p+ vP1 + vp

)
(B.27)

Apply the assumption regarding to multiplication of perturbed values.

dw

dt
=
fA+P z

m
+ g cos (−φ cos θ1 sinφ1 − θ sin θ1 cosφ1) + (U1q + uQ1)− (V1p+ vP1)

(B.28)

Rotational Equations of Motion

Moment in xB direction.

Ixx
dP

dt
− Ixz

dR

dt
= LA+P + PQIxz + (Iyy − Izz)RQ (B.29)

@Steady state,

Ixx
dP1

dt
− Ixz

dR1

dt
= LA+P 1

+ P1Q1Ixz + (Iyy − Izz)R1Q1 (B.30)
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Substitute the total values as the addition of steady state value and perturbed value.

Ixx
d (P1 + p)

dt
− Ixz

d (R1 + r)

dt
= LA+P 1

+ lA+P + (P1 + p) (Q1 + q) Ixz + (Iyy − Izz) (R1 + r) (Q1 + q)

(B.31)

Expand the equations.

Ixx
dP1

dt
+ Ixx

dp

dt
− Ixz

dR1

dt
− Ixz

dr

dt
= LA+P 1

+ lA+P + (P1Q1 + P1q + pQ1 + pq) Ixz

+ (Iyy − Izz) (R1Q1 +R1q +Q1r + rq) (B.32)

Cancel out the steady state terms.

Ixx
dp

dt
− Ixz

dr

dt
= lA+P + (P1q + pQ1 + pq) Ixz + (Iyy − Izz) (R1q +Q1r + rq) (B.33)

Apply the assumption regarding to multiplication of perturbed values.

Ixx
dp

dt
− Ixz

dr

dt
= lA+P + (P1q + pQ1) Ixz + (Iyy − Izz) (R1q +Q1r) (B.34)

Moment in yB direction.

Iyy
dQ

dt
= MA+P + (R2 − P 2)Ixz + PR (Izz − Ixx) (B.35)

@Steady state

Iyy
dQ1

dt
= MA+P 1

+ (R2
1 − P 2

1 )Ixz + P1R1 (Izz − Ixx) (B.36)
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Substitute the total values as the addition of steady state value and perturbed value.

Iyy
d (Q1 + q)

dt
= MA+P 1

+mA+P + ((R1 + r)2 − (P1 + p)2)Ixz + (P1 + p)(R1 + r) (Izz − Ixx)

(B.37)

Expand the equation.

Iyy
dQ1

dt
+ Iyy

dq

dt
= MA+P 1

+mA+P + ((R2
1 + 2R1r + r2)− (P 2

1 + 2P1p+ p2))Ixz

+ (P1R1 + P1r + pR1 + pr) (Izz − Ixx) (B.38)

Cancel out the steady state terms.

Iyy
dq

dt
= mA+P + ((2R1r + r2)− (2P1p+ p2))Ixz + (P1r + pR1 + pr) (Izz − Ixx) (B.39)

Apply the assumption regarding to multiplication of perturbed values.

Iyy
dq

dt
= mA+P + ((2R1r)− (2P1p))Ixz + (P1r + pR1) (Izz − Ixx) (B.40)

Moment in zB direction.

Ixx
dR

dt
− Ixz

dP

dt
= NA+P + PQ(Ixx − Iyy)−QRIxz (B.41)

@Steady state

Ixx
dR1

dt
− Ixz

dP1

dt
= NA+P 1

+ P1Q1(Ixx − Iyy)−Q1R1Ixz (B.42)
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Substitute the total values as the addition of steady state value and perturbed value.

Ixx
d(R1 + r)

dt
− Ixz

d(P1 + p)

dt
= NA+P 1

+ nA+P + (P1 + p)(Q1 + q)(Ixx − Iyy)− (Q1 + q)(R1 + r)Ixz

(B.43)

Expand the equation.

Ixx
dR1

dt
+ Ixx

dr

dt
− Ixz

dP1

dt
− Ixz

dp

dt
= NA+P 1

+ nA+P + (P1Q1 + P1q + pQ1 + pq)(Ixx − Iyy)

− (Q1R1 +Q1r + qR1 + qr)Ixz (B.44)

Cancel out the steady state terms.

Ixx
dr

dt
− Ixz

dp

dt
= nA+P + (P1q + pQ1 + pq)(Ixx − Iyy)− (Q1r + qR1 + qr)Ixz (B.45)

Apply the assumption regarding to multiplication of perturbed values.

Ixx
dr

dt
− Ixz

dp

dt
= nA+P + (P1q + pQ1)(Ixx − Iyy)− (Q1r + qR1)Ixz (B.46)
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Appendix C

Flight Test Results

C.0.1 Impact of Servo Dynamics, Skyhunter November 26th 2017

flight test

Figure C.1: Impact of Servo Dynamics due to the lack of robustness in un-modeled dynamics
of LQR controller

In this flight test, all servo dynamics were assumed to be 10/(s+10). The servo dynamics
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for recent flight tests are adjusted as follows:

δT (s)

δTcmd
=

40

s+ 40
,

δE(s)

δEcmd(s)
=

35

s+ 35
,

δA(s)

δAcmd(s)
=

30

s+ 30
,

δR(s)

δRcmd(s)
=

50

s+ 50
(C.1)
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C.0.1.1 Greenland G1X flight test tracking RMS

Figure C.2: Greenland flight test result: position and selected portions for calculating RMS

Figure C.3: Greenland flight test result: RMS for selected portion
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Appendix D

Dynamic model of three UASs

In this section, dynamics information of three fixed wing vehicles is presented: DG 808,

Skyhunter, and Yak-54 40%.

D.0.1 Geometric information

The following table presents major geometric information for three vehicles.

Table D.1: Geometric information for Skyhunter, DG 808, and Yak-54 40%

Skyhunter DG 808 Yak-54 40%
S 4.82 ft2 6.96 ft2 20.71 ft2

c̄ 0.731 ft 0.6 ft 1.9995 ft
b 6.875 ft 13.08 ft 11.03 ft
AR 9.81 - 25.98 - 5.87 -
Weight 8.27 lb 9.53 lb 64.84 lb
IxxB 0.44 slug-ft2 1.1 slug-ft2 4.2 slug-ft2
IyyB 0.54 slug-ft2 0.3 slug-ft2 9.9 slug-ft2
IzzB 0.35 slug-ft2 1.43 slug-ft2 11.5 slug-ft2
α1 0.7 deg 1.5 deg 3.4 deg
δE1 8.27 deg -1.7 deg -1.27 deg
VT1 50.6 ft/sec 59.3 ft/sec 98 ft/sec
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D.0.2 DG 808

Using the LTI model derivation presented in the previous section, following numerical results

are achieved at a 35 knots trim speed, 1.6 degree of angle of attack, and 9.6 lbs weight at

the trim.

Table D.2: Stability and Control derivatives for DG 808

CL1 0.3879 CD1 0.02312 Cm1 0 Cyβ -0.3266 Clβ -0.0376 Cnβ 0.0454
CL0 0.2087 CD0 0.00229 CmT1 -0.035 Cyp -0.0491 Clp -0.6637 Cnp -0.0582
CLα 7.1481 CDu 0 Cm0 0.0267 Cyr 0.1017 Clr 0.0926 Cnr -0.0263
CLq 5.1439 CDα 0.4844 Cmα -0.25 Cyδa 0 Clδa 0.496 Cnδa -0.0268
CLα̇ 0.7327 CDq 0 Cmq -25 Cyδr 0.1197 Clδr 0.00201 Cnδr -0.0297
CLu 0.001 CDα̇ 0 Cmα̇ -3.9521
CLδe 0.2281 CDδe 0.0106 Cmu 0.00016

Cmδe -1.2306
CmTu 0.4057
CmTα -3.5711

Along =



0 0 0 1.0000

−32.1874 −0.1970 −7.7004 0

−0.0151 −0.0177 −9.6386 0.9632

0.0093 0.0858 −121.3584 −5.4821


, Blong =



0

−0.8475

−0.3067

−40.8156


(D.1)

Alat =



0 0 0 1.0000 0

0 0 0 0 1.0000

0.5449 0 −0.4412 −0.0074 −0.9847

0 0 −10.7386 −20.9688 2.9327

0 0 10.0800 −1.2881 −0.6602


, Blong =



0 0

0 0

0 0.1616

140.5772 0.6242

−6.7747 −6.4997


(D.2)

Matrices of both axes represent the dynamics of the vehicle. These are very useful to

perform modal analysis. The following table shows the modal analysis of DG 808.

τ is the time constant, ωn and ωd are the natural and damping frequency, respectively. ζ
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Table D.3: Modal Analysis of DG 808

Mode Poles Dynamic Mode τ ωn ωd ζ
[s] [rad/s] [rad/s] [-]

Longitudinal −0.0076± 0.75i Phugoid Mode 13.2 0.75 0.7462 0.1
−7.6± 10.6i Short Period 0.13 13.03 10.5715 0.582

Lateral-Diretional

0 - ∞ 0 0 -1
0.0052 Spiral 19.4 - - -1
−20.8 Roll 0.005 - - 1

−0.64± 3.31i Dutch Roll 1.56 3.38 3.3184 0.19

is the damping ratio. As the result, longitudinal modes are stable since all poles are at left

hand side of S-plane. For the lateral-directional mode, the spiral mode is unstable, which is

typical for most aircraft.

D.1 Skyhunter

As identical principles are applied in the previous section, the following table shows the

stability and control derivatives for Skyhunter.

Table D.4: Stability and Control derivatives for Skyhunter

CL1 0.5867 CD1 0.0499 Cm1 0.0069 Cyβ -0.5557 Clβ -0.1616 Cnβ 0.1235
CL0 0.5099 CD0 0.0384 CmT1 -0.0069 Cyp -0.2067 Clp -0.5470 Cnp -0.0686
CLα 5.8307 CDu 0 Cm0 0.0497 Cyr 0.2749 Clr 0.1650 Cnr -0.1144
CLq 6.4797 CDα 0.2404 Cmα -0.9208 Cyδa 0 Clδa 0.3349 Cnδa 0
CLα̇ 1.3634 CDq 0 Cmq -15.6737 Cyδr 0.2282 Clδr 0.0176 Cnδr -0.0948
CLu 0.0012 CDα̇ 0 Cmα̇ -4.7723
CLδe 0.2643 CDδe 0.0142 Cmu 1.898

Cmδe -1.0283
CmTu 0.0222
CmTα -0.1134

The following matrices are obtained at 29 knots trim speed, 0.67 degree of angle of attack

and 8.27 lbs weight at the trim.

Along =



−0.1240 19.0662 −32.1974 0

−0.0250 −6.2646 −0.0080 0.9405

0 0 0 1.0000

0.0224 −14.6920 0.0051 −2.7085


, Blong =



5.9203 −0.7755

−0.0544 −0.3158

0 0

0.2737 −19.4782


(D.3)
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Alat =



−0.6048 0.6359 −0.0153 −0.9797

0 0 1 0

−35.6645 0 −8.2161 2.4729

34.3765 0 −1.3188 −2.1512


, Blong =



0 0.2484

0 0

74.0763 3.8384

0.2236 −26.3674


(D.4)

Modal analysis is shown in the following table.

Table D.5: Modal Analysis of Skyhunter

Mode Poles Dynamic Mode τ ωn ωd ζ
[s] [rad/s] [rad/s] [-]

Longitudinal −0.095± 0.72i Phugoid Mode 106 0.718 0.6691 0.013
−4.54± 3.33i Short Period 0.22 5.63 3.33 0.81

Lateral-Diretional

0 - ∞ 0 0 -1
0.015 Spiral 68.1 - - -1
−8.76 Roll 0.0114 - - 1

−1.11± 6.31i Dutch Roll 0.89 6.4 6.3024 0.174

As the result, longitudinal modes are stable since all poles are at left hand side of S-plane.

For the lateral-directional mode, the spiral mode is unstable typically as most of the airplane

are as well.

D.2 Yak-54 40%

Table D.6: Stability and Control derivatives for Yak-54 40%

CL1 0.2806 CD1 0.0356 Cm1 -0.0035 Cyβ -0.4141 Clβ -0.0567 Cnβ 0.1147
CL0 -0.0062 CD0 0.0311 CmT1 0.0036 Cyp -0.0766 Clp -0.4089 Cnp -0.0358
CLα 5.0248 CDu 0 Cm0 0.0101 Cyr 0.3192 Clr 0.0637 Cnr -0.1634
CLq 6.3457 CDα 0.1555 Cmα -0.7370 Cyδa 0 Clδa 0.2878 Cnδa -0.0126
CLα̇ 1.8707 CDq 0 Cmq -10.7547 Cyδr 0.2285 Clδr 0.0034 Cnδr -0.1213
CLu 0.0022 CDα̇ 0 Cmα̇ -4.9971
CLδe 0.4935 CDδe -0.0004 Cmu 0.0003

Cmδe -1.3182
CmTu -0.0064
CmTα 0.07962

LTI model results are obtained at a 65 knots trim speed, 2.67 degree of angle of attack
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and 65 lbs weight at the trim.

Along =



−0.1238 14.1920 −32.1434 0

−0.0065 −5.7329 −0.0191 0.9050

0 0 01

0.0124 −16.8495 0.0448 −7.1927


, Blong =



11.1087 0.0472

−0.0282 −0.5591

0 0

−0.1367 −59.5192


(D.5)

Alat =


−0.4795 0.3280 −0.0050 −0.9792; 0 0 1.0000 0

−36.4634 0 −13.7393 2.3576

25.8252 0 0.0732 −2.1212

 , Blong =



0 0.2646

0 0

172.6516 4.7791

−9.2658 −26.8321


(D.6)

The following table shows modal analysis of Yak-54 40%.

Table D.7: Modal Analysis of Yak-54 40%

Mode Poles Dynamic Mode τ ωn ωd ζ
[s] [rad/s] [rad/s] [-]

Longitudinal −0.053± 0.314i Phugoid Mode 18.9 0.35 0.32 0.017
−6.47± 3.84i Short Period 0.156 7.53 3.84 0.86

Lateral-Diretional

0 - ∞ 0 0 -1
−0.0146 Spiral 68.5 - - 1
−13.8 Roll 0.0724 - - 1

−1.26± 5.02i Dutch Roll 0.797 5.17 5.019 0.243

As the result, longitudinal modes are stable since all poles are at left hand side of S-plane.

For the lateral-directional mode, all modes are stable since all poles are located at left hand

side of S-plane.
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Appendix E

Simulation Parameters

E.1 Solo Flight & Swarm Collision Avoidance, DG-808:

March 9th 2017

Table E.1: Guidance Parameters for DG-808 Solo flight

Parameter Value Unit
Time for smoothing of guidance commands 0.1 sec
Time for smoothing of control outputs 0.5 sec
KpLon 0.001 -
KiLon 0.03 -
KaLon 4 -
ddRLon 5500 -
ddRLat 260 -
Elevator trim correction on -
K for elevator correction -0.5 -
q22 for LQ guidance 0.3 -
db for LQ guidance 0.1 ft
σ for morphing potential 200 ft
shifting factor for morphing potential 0.3 -
gyro effect for morphing potential 0.1 -
nformation, desried relative distance (north) for Agent 1 100 ft
eformation, desried relative distance (east) for Agent 1 -100 ft
nformation, desried relative distance (north) for Agent 2 -100 ft
eformation, desried relative distance (east) for Agent 2 100 ft
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• Longitudinal Control weighting matrix

Q = diag

([
0.00012 3e− 06 0.098484 0.003 0.003 15

])
(E.1)

R = diag

([
300 300

])
(E.2)

• Longitudinal Controller gain

KLQR =

 0.0065 0.0057 −0.011 −0.00094 −0.0015 −0.198

4.2889e− 05 0.22 −0.31 −0.018 −0.0028 0.103


• Lateral Control weighting matrix

Q = diag

([
131.31 0.91189 2.0518 2.0518 11.459 11.459

])
(E.3)

R = diag

([
50 300

])
(E.4)

• Lateral Controller gain

KLQR =

 1.0164 0.82324 0.12751 −0.22901 −0.15218 −0.4539

0.084184 −0.08266 −0.0012406 −0.06836 −0.1853 0.062127



237



E.2 Swarm flight, DG-808: March 26th 2017

Table E.2: Guidance Parameters for DG-808 Swarm flight

Parameter Value Unit
Time for smoothing of guidance commands 0.1 sec
Time for smoothing of control outputs 2 sec
KpLon 0.001 -
KiLon 0.03 -
KaLon 4 -
ddRLon 5500 -
ddRLat 350 -
Elevator trim correction on -
K for elevator correction -0.5 -
q22 for LQ guidance 0.3 -
db for LQ guidance 0.1 ft
σ for morphing potential 50 ft
shifting factor for morphing potential 0.3 -
gyro effect for morphing potential 0.1 -
nformation, desried relative distance (north) for Agent 1 100 ft
eformation, desried relative distance (east) for Agent 1 -50 ft
nformation, desried relative distance (north) for Agent 2 -100 ft
eformation, desried relative distance (east) for Agent 2 50 ft

• Longitudinal Control weighting matrix

Q = diag

([
0.00012 3e− 06 0.098484 0.003 0.003 15

])
(E.5)

R = diag

([
300 300

])
(E.6)

• Longitudinal Controller gain

KLQR =

 0.0065 0.0057 −0.011 −0.00094 −0.0015 −0.198

4.2889e− 05 0.22 −0.31 −0.018 −0.0028 0.103


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• Lateral Control weighting matrix

Q = diag

([
131.31 0.91189 2.0518 2.0518 11.459 11.459

])
(E.7)

R = diag

([
50 300

])
(E.8)

• Lateral Controller gain

KLQR =

 1.0164 0.82324 0.12751 −0.22901 −0.15218 −0.4539

0.084184 −0.08266 −0.0012406 −0.06836 −0.1853 0.062127


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E.3 Solo Flight, Skyhunter: August 14th 2017

Table E.3: Guidance Parameters for Skyhunter

Parameter Value Unit
Time for smoothing of guidance commands 10 sec
Time for smoothing of control outputs 3 sec
KpLon 0.001 -
KiLon 0.03 -
KaLon 4 -
ddRLon 5500 -
ddRLat 360 -
Elevator trim correction off -
K for elevator correction -0.25 -
q22 for LQ guidance 0.3 -
db for LQ guidance 2 ft

• Longitudinal Control weighting matrix

Q = diag

([
0.00012 3e− 06 0.098484 0.075 0.003 15

])
(E.9)

R = diag

([
300 400

])
(E.10)

• Longitudinal Controller gain

KLQR =

 0.0062822 0.017652 −0.018508 −6.6562e− 05 −0.0016927 −0.18888

0.00089597 0.18907 −0.34441 −0.049962 −0.0023133 0.10365


• Lateral Control weighting matrix

Q = diag

([
131.31 0.91189 8.1225 2.0518 11.459 11.459

])
(E.11)

R = diag

([
300 80

])
(E.12)
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• Lateral Controller gain

KLQR =

−0.15819 0.2989 0.10577 0.01562 −0.050486 −0.18881

0.62265 −0.015633 −0.0024902 −0.19247 −0.36562 0.097766



E.4 Solo & Swarm Flight, Skyhunter: April 26th and

28th 2018

Table E.4: Guidance Parameters for Skyhunter

Parameter Value Unit
Time for smoothing of guidance commands 4 sec
Time for smoothing of control outputs 1 sec
KpLon 0.5 -
KiLon 0.05 -
KaLon 3 -
ddRLon 700 -
ddRLat 360 -
Elevator trim correction off -
K for elevator correction -0.25 -
q22 for LQ guidance 2.5 -
db for LQ guidance 1 ft

• Longitudinal Control weighting matrix

Q = diag

([
0.0001 3e− 06 0.0985 50 0.003 15

])
(E.13)

R = diag

([
300 400

])
(E.14)

• Longitudinal Controller gain

KLQR =

0.0066 0.0144 −0.0262 0.0042 −0.0015 −0.1950

0.0037 0.3075 −0.5044 −0.2680 −0.0024 0.0948


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• Lateral Control weighting matrix

Q = diag

([
131.31 0.91189 8.1225 2.0518 11.459 11.459

])
(E.15)

R = diag

([
300 80

])
(E.16)

• Lateral Controller gain

KLQR =

−0.15819 0.2989 0.10577 0.01562 −0.050486 −0.18881

0.62265 −0.015633 −0.0024902 −0.19247 −0.36562 0.097766



E.5 Solo Flight, G1X: December 20th 2017

Table E.5: Guidance Parameters for G1X Solo flight

Parameter Value Unit
Time for smoothing of guidance commands 6 sec
Time for smoothing of control outputs 2 sec
KpLon 0.001 -
KiLon 0.03 -
KaLon 4 -
ddRLon 4500 -
ddRLat 650 -
Elevator trim correction off -
q22 for LQ guidance 5 -
db for LQ guidance 5 ft

• Longitudinal Control weighting matrix

Q = diag

([
0.2 0.0001 3.2828 500 0.1 8500

])
(E.17)

R = diag

([
1600 5500

])
(E.18)
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• Longitudinal Controller gain

KLQR =

0.0296 0.0726 −0.1211 −0.0030 −0.0074 −0.7928

0.0034 0.2462 −0.9837 −0.2288 −0.0015 1.1673


• Lateral Control weighting matrix

Q = diag

([
0.01 0.1 30 300 0.01 700

])
(E.19)

R = diag

([
5000 6500

])
(E.20)

• Lateral Controller gain

KLQR =

 0.1152 0.3286 0.0337 −0.0391 −0.0002 −0.3687

−0.0412 −0.0044 −0.0011 −0.1520 −0.0012 0.0558


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