
 

 

 

 

Landslide Hazard Assessment for Fayzabad District, Badakhshan Province, Afghanistan 

 

By 

 

Nathan Schlagel 

B.S., University of Nebraska – Omaha, 2015 

 

 

Submitted to the graduate degree program in Department of Geology and the Graduate Faculty of the 

University of Kansas in partial fulfillment of the requirements  

for the degree of Master of Arts. 

 

 

 

 

 
Chair: William C. Johnson 

 
Mike Taylor 

 
Mike Blum 

 

 

 

 

Date Defended: 6/8/2018 

  



ii 
 

 

 

 

 

The thesis committee for Nathan Schlagel certifies that this is the 

approved version of the following thesis: 

 

 

 

Landslide Hazard Assessment for Fayzabad District, Badakhshan Province, Afghanistan 

 

 

 

 

 
Chair: William C. Johnson 

 

 

 

 

 

 

 

 

Date Approved: 6/11/2018 

 

 

  



iii 
 

Abstract: 

Fayzabad District is one of those most impacted by landslide hazards in Afghanistan, accounting 

for 71% of all national landslide fatalities reported between 2012 and 2017. Necessary elevation data 

did not cover the very south of Fayzabad District; consequently, this study focuses on the northern two 

thirds of the district, where data were available. A landslide inventory was developed by mapping 

landslides using DEMs and high-resolution satellite imagery to aid in development and assessment of 

both Heuristic and bivariate statistical models of landslide susceptibility. Landslide statistics, including 

length, area, width, and pertinent relationships to geology, elevation, aspect, slope, and proximity to 

faults and streams were quantitatively calculated using geoprocessing tools. Hazard maps were 

produced using landslide susceptibility and proximity of villages to mapped landslides.  

Mapped susceptibility results indicate that in this part of Afghanistan landslides occur primarily 

on north to northwest aspects in loess or soil media over gneiss bedrock. Landslides are concentrated 

between 1500 m and 2000 m elevation and on 18° to 45° slopes within 60 m of a stream channel and or 

within 1 km of a fault. Landslide dimensions plot linearly on log-log scales, simplifying the development 

of predictive associations. 

Model results encapsulate a high proportion of landslide pixels within areas of high 

susceptibility, although there were significant variations between Heuristic and bivariate methods. 

Bivariate methods performed better universally, but may be over trained when the entire dataset is 

used to produce statistical weights. Use of subset of data to develop weights results in a more even 

distribution of landslides between low- to high-susceptibility zones. Findings in both the landslide 

inventory and susceptibility models are supported by prior studies of landslide behavior in Afghanistan.  

Programmatic workflows allowed for rapid production of many model components after initial 

reclassification and will facilitate further research in Afghanistan, and application of the methodology 

elsewhere. Map products potentially provide a new tool for hazard planners and aid groups in 
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northeastern Afghanistan, and supplemental code will allow for rapid incorporation of new datasets as 

they are developed. 
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1 Introduction 

1.1 Landslide Hazard 

The people of Afghanistan are subject to an array of natural hazards, including floods, 

earthquakes, landslides, avalanches, and extreme seasonal temperatures (Boyd et al.,2007; Shroder, 

1989; Shroder et al., 2011; OCHA, 2017). Floods and earthquakes have the greatest national impact in 

terms of frequency, extent, affected individuals and property damage (Table 1; OCHA, 2017). Landslide 

hazards, though typically localized, are complicated in that they have a propensity to be triggered and 

amplified by floods, heavy rains, and earthquakes (Schuster & Krizek, 1978; Shroder et al., 2011; 

Shroder, 2014; Turner & Schuster, 1996).  

Landslides can be disproportionately devastating relative to their relatively low frequency of 

occurrence (Schuster & Krizek, 1978; Turner & Schuster, 1996). This is the case in Afghanistan, where 

landslides account for only 3.6% of reported natural disasters affecting the populace as recorded by the 

United Nations Office for the Coordination of Humanitarian Affairs (OCHA) from 2012 to 2017, but they 

account for 16.8% of natural disaster related deaths. Landslides contribute more proportionally, relative 

to number of occurrences, to injuries, deaths, displacement of inhabitants, and damage to infrastructure 

and personal property. 

Nearly 90 landslides were documented in Afghanistan between 2012 and 2017 (OCHA, 2017), 

though the impact of these landslides varied by event. Many small landslides may have little or no 

impact on even proximal inhabitants or structures. Landslides can occur very slowly, harming only 

infrastructure over months or years, or be devastatingly quick, resulting in massive harm. This trend 

extends globally, with individual historic landslides resulting in tens, to tens-of-thousands killed by single 

landslides or sequence of multiple failures triggered by a common event (Schuster & Krizek, 1978; 

Turner & Schuster, 1996; Zhang et al., 2015). However, landslides pose the greatest risk, in terms of lives 

lost, in developing countries where there is a paucity of research and few mitigation efforts have been 
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weighed against landslide issues (Nadim et al., 2006; Petley, 2012). In Afghanistan, the mudslide at Aab 

Barik village, Badakhshan, on May 2nd, 2014 (Vergano, 2014; Zhang et al., 2015) alone resulted in 71% of 

all casualties reported by OCHA between 2012 and 2017. OCHA estimates differ, however, from other 

reports for the Aab Barik slide, suggesting inconsistent reporting between organizations, and, in general, 

tracking any population related statistic in Afghanistan is difficult due to incomplete and outdated 

census data (Thompson, 2013). 

1.2 Landslide literature overview  

This paper will focus on modeling landslide susceptibility at lower elevations in the northern 

portion of the Hindu Kush where loess mantles gneiss and granite bedrock, although Afghanistan 

experiences all types of mass wasting due to the high relief, varying geology, and harsh climate. In the 

highest elevations of the Hindu Kush mountains, rock and snow avalanches are the primary forms of 

slope failure, with rock falls and slides occurring at median elevations. Earth falls, slides, and flows in 

loess or soil dominate lower elevations such as those examined in this study (Shroder et al., 2011a/b). 

‘Landslide’ is used henceforth to refer to all forms of slope failure, including flows, falls, slides, slumps, 

and avalanches.  

Mechanisms of slope failure in the region are primarily ground shaking during earthquakes and 

increases in soil moisture or ground water pressure during the rainy season. Surface run off, increase in 

ground water pressure, dissolution of cement, and subsurface piping can cause debris flows or slumps 

along shear planes. These often occur where water acts at the soil-bedrock contact, i.e., where the 

bedrock surface serves as a plane of failure. Moisture-related failures typically occur on higher-angle 

slopes, whereas liquefaction and flows in earthquake shaking are more commonly triggered on low-

angle slopes (Naseri & Kang, 2016; Schuster & Krizek, 1978; Shroder et al., 2011a; Turner & Schuster, 

1996; Zhang et al., 2015).  
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Landslide inventory maps are a key component in assessing susceptibility and risk. Conventional 

mapping techniques involve on-site field investigations and examination of aerial photographs or 

satellite imagery. Landslides can be identified in imagery by discolorations over areas of failure where a 

landslide has removed vegetation, dips in elevation where material has been removed, or formation of 

mounds where mobilized material comes to rest (Galli et al., 2008; Guzzetti et al., 2000, 2012; Schulz, 

2004, 2005, 2007; Schuster & Krizek, 1978; Turner & Schuster, 1996). Incorporation of digital elevation 

models (DEMs) allows for specific examination of change in elevation and slope where landslides have 

occurred. With high-resolution DEMs (~1 m) it is possible to achieve a semi-automated scheme for 

identifying landslides (Booth et al., 2008; McKean and Roering, 2004).  

With an event inventory it is easier to assess susceptibility and risk via modeling or statistical 

analysis. Temporal data from successive mapping or dating of landslides combined with calculations or 

estimates of material volume for landslides allows estimation of recurrence intervals for given slide sizes 

by frequency-magnitude relationships (Shroder, 2014). Multi-temporal data also allow assessment of 

specific triggering mechanisms, such as storms, floods, or earthquakes (Kamp et al., 2010), and can help 

determine relationships between trigger and landslide magnitudes. Regardless of temporality in 

inventory maps, they primarily enable the validation of susceptibility or predictive models by comparing 

results to actual occurrences.  

Statistical assessment of landslide susceptibility makes use of inventories to develop statistical 

weights of variables, where susceptibility of a given pixel equals the sum of all input layers at that pixel’s 

location (Kayastha et al., 2013; Pardeshi et al., 2013). Susceptibility can be modeled without an 

inventory by means of multi-criteria analysis. In this approach, variable weights are assigned based on 

researcher knowledge of landslide principles and local conditions. Each variable is ranked by significance 

of contribution as a percentile, and layers are combined in a GIS to produce a susceptibility map (Effat & 

Hegazy, 2014; Kayastha et al., 2013; Pardeshi et al., 2013; Pradhan & Kim, 2016). Reichenbach et al. 
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(2018) provide further, comprehensive presentation of peer reviewed, statistical landslide susceptibility 

studies including a variety of modeling and assessment methods, and scale of study area. 

Previous landslide modeling in Afghanistan has been done at the national scale (Schlagel, 2015), 

and provincial scale for Badakhshan Province (Zhang et al., 2015) and Takhar Province (Naseri & Kang, 

2016). Schlagel (2015) and Zhang et al. (2015) both used 90 m SRTM elevation data and DEM 

derivatives, but both lacked a landslide inventory; low-resolution data and lack of inventory are 

significant limitations in landslide studies. Naseri and Kang (2016) developed a landslide susceptibility 

map for Takhar Province using higher-resolution DEMs (30 m) and a landslide inventory map created 

using Google Earth Imagery. These were significant improvements, but considering the scale of many 

landslides this does not represent small magnitude events well, which are the majority of landslide 

occurrences. 

For this study in Fayzabad District, higher-resolution DEMs from the Department of Defense 

(DOD; HRTE, 2008) were available than SRTM derived DEMs used in prior studies (Naseri & Kang, 2016; 

Schlagel, 2016; Zhang et al., 2015). At 5 m horizontal resolution, the DOD DEMs provided a significant 

improvement in ability to discern and attribute landslide characteristics, but they were still insufficient 

to see smaller landslides for mapping purposes, which would require resolution on the order of 1 m, or 

even sub-meter (Booth et al., 2009; McKean and Roering, 2004; Schulz, 2004, 2005, 2007). Satellite 

images at 2 m resolution or higher were also available through ESRI’s ArcGIS basemaps, which were an 

improvement over Google Earth imagery of Afghanistan and greatly aided development of a landslide 

inventory. Use of higher-resolution DEMs and imagery allows for inclusion of smaller, more frequent 

landslides that often go overlooked even though they pose risk of damage to proximal roads or buildings 

(Shroder, 2014). The goal of this project is to take advantage of access to high-resolution DOD DEMs to 

develop a landslide hazard package for Fayzabad District for use in aid organizations, hazard mitigation, 
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and development planning to be accessible through the Afghan Spatial Data Center (ASDC), an affiliate 

of the USAID iMMAP agency, and establish a foundation for future work. 

2 Study Area 

Fayzabad, in northeast Afghanistan, is one of the country’s most landslide-affected districts. For 

the purposes of this study, the newly organized districts of Arghanj Khaw, Argo, Darayim, and Taftal-e-

Sufla are considered as part of Fayzabad. During the period of 2012 to 2017, 88 landslides were reported 

by OCHA, and, of the reported landslide events, 35 (39.7%) occurred in Badakhshan Province; 16 of the 

landslides in Badakhshan (18.2% of national landslides, and 45.7% of those in Badakhshan) were within 

Fayzabad District. Of national landslides, those in Fayzabad account for over one third of affected 

individuals and damaged or destroyed structures, and 71.3% of fatalities (Figure 1; OCHA, 2017).  

Coverage of DEM data was available for the northern two thirds of Fayzabad District, limited in 

the south either by incomplete flight paths or exclusion from the dataset. Developed susceptibility 

models were applied to three areas in the district. First, to two watersheds totaling an area of 167 km2 

in which model variations were developed and tested. Second, on half of the district for which detailed 

surface mapping identified not only landslides, but likely landslide terrains and unfailed terrain that was 

used to determine material critical acceleration; total area for this second model was 1,263 km2. Finally, 

the full district was modeled, with a total area of 2,168 km2 (Figure 2).  

Elevation and slope in the district range from 813 m to 3,580 m and from flat to 81°, 

respectively. Geology in the district is primarily gneiss overlain by loess deposits and associated soils on 

northwest aspects. Intense faulting occurs throughout Badakhshan province, including the study area, as 

well as intense seismicity, which can initiate landslides and increase the frequency and magnitude of 

landslide occurrences (Boyd et al., 2007; Ruleman et al., 2007). Landslides in this region typically occur in 

soils or loess and are initiated by heavy rainfall or earthquakes (Shroder et al., 2011a). Exposed bedrock 

in Fayzabad appears to be the result of primarily successive reactivation of past landslides that stripped 
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away overlying soils; the remaining rock exhibits characteristics of debris flows in satellite images and is 

later identified as ‘landslide terrains’ in mapped surface classification. 

3 Methods 

3.1 Data 

High-resolution Terrain Elevation data (HRTE) from airborne Interferometric Synthetic Aperture 

Radar (IFSAR) are used to produce digital elevation derivatives. DEM tiles are 15 minute by 15 minute at 

5 m horizontal and 0.01 m vertical resolution. Horizontal accuracy is 2.5 m Root Mean Square Error 

(RMSE) for slopes under 20°. Vertical accuracy varies by slope angle, with ± 3 m RMSE for slopes under 

20°, ± 5 m for slopes 20° to 30°, ± 9 m for slopes greater than 30° (HRTE, 2008). ESRI streamed basemap 

satellite imagery was used extensively for mapping and visual assessment. Basemap imagery includes 

2.5 m SPOT, 1 m GeoEye IKONOS, and AeroGRID where coverage available for Afghanistan. Specific 

image metadata were not available. LandSAT8 data for November 7, 2016 was used to calculate 

Normalized Difference Vegetation Index (NDVI). 

Fault maps (Ruleman et al., 2007) and critical acceleration for common lithologies (MRl, 2003) 

were used as tectonic components in this study. Geologic maps compiled by the USGS from mid- to late- 

20th century Soviet-sourced material, refined during United States presence in Afghanistan following 

2001 were used herein for modeling (Steinshouer et al., 2006), and, though the resolution and quality 

are low for the scale of this project, this was the only geologic mapping available for the entire study 

area.  

3.2 DEM Processing 

All processing and modeling were done in ESRI’s ArcMap (ver 10.4.1), with exception of some 

workflows being implemented in Python (ver 2.7) using the ArcPy library, and some data being exported 

to Excel for calculation and then re-imported to ArcMap. Reference hereafter to a tool, function, 

process, or creation of a map or layer refers to an ESRI ArcMap tool unless specified otherwise. DEMs 
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were used to produce slope, aspect, curvature, topographic wetness index (TWI) (Equation 1), drainage 

basin, and drainage channel maps (Cooley, 2016; Sorensen et al., 2006). Drainage density and buffer 

maps were created from the produced channel map using line density and Euclidean distance, 

respectively. Fault density and buffer maps were similarly produced from source feature class (Ruleman 

et al., 2007). LandSAT8 bands for red and near infrared (NIR), originally 30 m resolution, were 

pansharpened using the 15 m panchromatic band. NDVI was calculated by at both 30 m and 15 m cell 

sizes using Equation 2 (Johnson, 2014). 

𝑇𝑊𝐼 = 𝐿𝑛[(𝐹𝑙𝑜𝑤𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 1) ∗ 𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒 / tan (𝑆𝑙𝑜𝑝𝑒 ∗ (
𝑝𝑖

2
) / 90] Equation 1 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷)    Equation 2 

Critical Acceleration (Ac) was determined by adapting procedures in FEMA’s Multi-hazard Loss 

Estimation Methodology: Earthquake Model Hazus - MH 2.1 Technical Manual (MRl, 2003). Linear 

equations were developed to describe lines from Figure 4.12 in the Hazus manual (Figure 3 herein; MRl, 

2003), which depicts the relationship between the Ac of a given material and its topographic slope 

following the format of Equation 3, where m is the slope of the line defining the relationship between Ac 

and topographic slope for a lithology (M), Slope is a surface slope raster in degrees for the study area, 

and b is the y-intercept for the line describing lithology (M) (Figure 3). Lithologies were reclassified 

according to three requisite classes: crystalline and strongly cemented rock; weakly cemented rock and 

sandy soil; and shale, clayey soil and existing landslides. Equation 3 was applied as raster algebra. The y-

intercept used for Ac is theoretical, and minimum bounding slope angles should be used (Table 4.16 in 

MRl, 2003) when compared to peak ground acceleration (PGA) to determine coseismic landslide 

susceptibility or for implementation in the Hazus - MH 2.1 software. In this study spatial differences in 

Ac are used to represent relative susceptibility using weighted values, rather than comparing Ac to PGA. 
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Weights ascribed to given Ac values in this manner make adherence to minima and maxima less 

important in this context. 

 𝐴𝑐 = 𝑚𝑀 ∗ 𝑆𝑙𝑜𝑝𝑒 + 𝑏𝑀    Equation 3 

3.3 Mapping  

Landslides were mapped by heads-up digitizing in ArcMap using ESRI streamed base maps with 

elevation, slope, and hillshade DEMs. Because the satellite images were of higher resolution (2.5 m or 

better) than available DEMs (5 m), they proved most useful of available data for mapping. Methods for 

identifying and mapping landslides were followed as detailed in existing literature, i.e., looking for bare 

earth stripped of vegetation, headscarps, extension cracks, hummocks, internal drainage development, 

and flow or lobate deposits (Figure 4; e.g. Galli et al., 2008; Guzzetti et al., 2000; Schulz 2004, 2005, 

2007; Schuster & Krizek, 1978; Turner & Schuster, 1996). Land surface was mapped in four categories: 1) 

high-confidence landslides distinguishable by removed vegetation cover and character clearly depicting 

flow of material with definite scarps; 2) lower confidence landslides distinguished from highly confident 

landslides by post event erosion of the landslide area, return of vegetation cover, or complexing of 

multiple landslides together with poor boundaries defining each; 3) eroded or stripped terrain not 

clearly discernable as a landslide, but possibly formed by repeated landslides or mass wasting; and 4) 

unfailed loess or soil cover (Schulz, 2004, 2005; Schuster & Krizek, 1978). The fourth category was 

appended to the lithology map, as no loess was on the original geologic map, but this region of the N-

NW Hindu Kush is characterized by a loess cover (Shroder et al., 2011). Distinction between landslides in 

category 1 and 2 are subjective, and in statistical analyses these groups are merged into one. 

Landslide attributes, e.g. length, area, and DEM related statistics, were calculated with 

geoprocessing workflows applied to the watershed subset of data containing 837 landslides to save time 

over manual measurement or processing time to run on the entire dataset. Length was calculated using 

a landslide region group raster to mask elevation for specific landslides or landslide complexes and 
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produce a flow length map using hydrology tools. The maximum length value for each landslide was 

extracted using zonal statistics and considered the length of the landslide. Landslide width was 

geometrically estimated in Excel using the area of respective polygons and calculated length.  

3.4 LSI Modeling: Heuristic model 

Heuristic, or multi-criteria models engage researcher knowledge qualitatively to assign weights 

to environmental variables expected to contribute to landslide susceptibility (Effat & Hegazy, 2014; 

Kayastha et al., 2013). Methods used were primarily those of Effat and Hegazy (2014), and as was done 

in Schlagel (2015). Data layers were classified into 9 bins using the Natural Breaks Jenks method and 

reassigned standard weights between 0 and 9 based on author knowledge and information gleaned 

from the literature (Shroder et al., 2011a) for use in the weighted overlay tool to create a landslide 

susceptibility index (LSI). Fewer bins were used where appropriate or necessary for categorical data with 

fewer than 9 types or for data with fewer desired classes, such as curvature being concave, convex, or 

straight (Buckley, 2010), or compass directions with similar empirical susceptibility to landsliding. Some 

lithologies with expected similar behavior were merged to reduce the class count to 9 in accordance 

with limitations in the weighted overlay tool. Weight assignments were informed by observations in 

Shroder et al. (2011a). 

3.5 LSI Modeling: Bivariate statistical analysis 

Previously reclassified layers were compared to the landslide inventory using the tabulate area 

tool. Results were in table format with each bin in the layer classification ascribed the landslide area in 

square meters corresponding to those elevation ranges. Table values from tabulate area results were 

used to calculate statistical weights following methods by Kayastha et al. (2013) (Equation 4), where LS 

refers to landslide area. Respective layers were reclassified from class values ranging 0-9 to respective 

statistical weights using conditional operators in raster algebra; values were reassigned in this manner 

because the statistical weights have decimals and the reclassify tool forces an integer output. The sum 
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of all statistical layers represents relative susceptibility to land sliding for a given pixel. This bivariate 

method is not limited to 9 classes like the weighted overlay, so lithology was expanded to allow all 

classes as originally mapped by Steinshouer et al. (2006). Lithologies in the study area that lacked 

distinct, mapped landslides were still excluded from the calculation and assigned a weight of 0 to not 

influence the outcome of the summation. 

 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 =  ln(
𝐿𝑆 𝐴𝑟𝑒𝑎 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠

𝐶𝑙𝑎𝑠𝑠 𝐴𝑟𝑒𝑎
∗

𝑀𝑎𝑝 𝐴𝑟𝑒𝑎

𝐿𝑆 𝐴𝑟𝑒𝑎 𝑖𝑛 𝑚𝑎𝑝
)  Equation 4 

3.6 LSI Modeling: Informed Heuristic model 

After calculating statistical weights in the bivariate method resulting values were used to inform 

and reassign weights in the Heuristic method. As the weighted overlay is limited to integers between 0 

and 9, statistical values were sorted low to high and class bin weights reassigned according to that 

order. For example, with 1 being low and 9 being high, if bin 7 is shown to be more strongly correlated 

to mapped landslides through a higher statistical weight than bin 8, the weight of those bins is switched 

in the model. Percentages of each layer in the weighted overlay are still calculated using the straight 

rank sum method of the normal Heuristic method, but significance or order of each layer is changed 

based on the sorted absolute value of the sum of weights in each layer. This was done using two 

methods, both utilizing the sum of all statistical weights in a layer. The variation was calculating the 

absolute value of the sum for one method to force a positive sign that represented the magnitude of 

influence that layer would exert relative to other layers. The importance of this is that the sum of 

weights alone allowed negative values and would change how the weights were sorted. For example, a 

weight sum of 3 would be ranked higher than a sum of -4, even though the latter had a stronger total 

impact on the model output. The method used and uncommon inputs for all models are listed in Table 

2. 
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3.7 Hazard Modeling  

Villages were mapped by heads up digitizing following edges of the outermost buildings or 

apparent associated outdoor space. Focus was placed on structure groupings rather than lone or 

isolated buildings, which were not mapped. Buffer and density maps were produced for both villages 

and landslides. Buffers were calculated by Euclidean distance up to 5000 m and classified into bins 0-10 

using Natural Breaks Jenks, with 0 being greater than 5000 m. To calculate densities, polygons were 

converted to points, restricted to within polygons where centroid points fell outside of irregular shapes. 

The point density tool was used with a search radius of 307 cells, output units in km2, and a cell size of 5 

m to match DEM resolution. 

Landslide and village buffer layers in combination with landslide density and results of 

susceptibility models were used to describe hazard. The intention was for assessed pixels to scale hazard 

output up for villages near landslides, and scale down for villages removed from landslide events, or 

landslide areas with no proximal villages. Input layers were classified with low numbers reflecting high 

distance, or low hazard, and high numbers reflecting close distances, or high hazard. The final district 

scale hazard calculation followed Equation 5, where LSI is landslide susceptibility index, and LS refers to 

landslide features. 

𝐻𝑎𝑧𝑎𝑟𝑑 = 𝐿𝑆𝐼 + 𝑉𝑖𝑙𝑙𝑎𝑔𝑒𝐵𝑢𝑓𝑓𝑒𝑟 + (
𝐿𝑆𝐵𝑢𝑓𝑓𝑒𝑟

2
) + (

𝐿𝑆𝐷𝑒𝑛𝑠𝑖𝑡𝑦

2
)  Equation 5 

3.8 Analysis 

Models were quantitatively assessed by two measures: 1) percent distribution of landslides 

within each susceptibility class, where greater proportion of landslide pixels falling in high susceptibility 

values is considered most accurate; and 2) percent shared area, or agreement, between models 

(Kayastha et al., 2013). The distributions of landslides by LSI was calculated for all models, but shared 

area was only determined for all combinations of test models at watershed scale, and for one pair of 

larger models, between the full district and the half district. Distributions of landslides within each LSI 
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zone were calculated using the tabulate area tool between model output and the rasterized landslide 

inventory. Shared area was calculated by subtraction of model layers, where a result of 0 reflects cells of 

equal value and area shared between the two models; a result of 1 reflects a difference of one class 

between the models, for example, a pixel of “medium” LSI (value 3) minus a pixel of “low-medium” 

(value 2) or “medium-high” (value 4) LSI would result in a deviation of ± 1. Results were in pixel count for 

each value and converted to area using cell size. Percent shared area between models was calculated for 

both perfect shared area (0 deviation), and for a deviation of ± 1 LSI class as in the preceding example.  

4 Results 

4.1 Mapping 

Mapping results included 3486 landslides in the district (Figure 5). The half of the district with 

completed surface classification, including landslides, eroded or landslide terrains, and unfailed soil and 

loess had 2419 landslides, and 903 landslides were in the watershed areas used to develop 

methodologies (Figure 6). Approximately 1.7% of the district surface area is a distinct landslide, not 

considering the mapped ‘eroded or landslide terrain’ class, which comprises significantly more area.  

Mapped landslides show association with specific environmental factors. Of all lithologies, 36% 

of landslide pixels occur over gneiss bedrock, and 23.8% in conglomerate and sandstone presumably of 

weak cementation (MRl, 2003). This follows the approximate proportion of rock types in the area (Figure 

7) and follows landslide trends in the literature (Schuster & Krizek, 1978; Shroder et al., 2011a, b). 

Notably, no distinct landslides were mapped in shale units, which is contrary to that expected (Schuster 

& Krizek, 1978; Shroder, 1968; Turner & Schuster, 1996). This is perhaps because shale makes up a 

minute portion of outcrops in the study area and consists primarily of eroded or landslide terrains 

without distinct observable landslides in imagery. 

North and northwest aspects host a combined 42% of landslide pixels, and 57.8% occur between 

1494 m and 1937 m elevation. Concentration of landslides at similar elevations in Kashmir were noted 
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by Kamp et al. (2010). Slopes show an increasing proportion of landslides from low- to high-angle with 

25.8% between 27° and 36°, 25.6% from 36° to 45° followed by a sharp drop to 8.6% at 45° presumably 

due to angle of repose in local media (Figure 8). Faults and stream channels also seem to exert a strong 

control on landslide location, with 40% of landslides occurring within 1 km of a fault, 35.8% within 30 m 

of a stream channel, and 54.8% on low (dry) TWI values. That landslide pixels occur primarily with low 

TWI values, yet also in close proximity to streams suggests association with drainage slopes near 

channels, and perhaps runoff as a more significant initiation factor than channel erosion (Figure 9). Such 

association may be more related to shallow debris flows, whereas deeper-seated slumps and earthflows 

would likely be initiated by erosion and undercutting or over-steepening at channel cut-banks.  

Maximum dimensions calculated for landslides show lengths up to 824 m, widths up to 360 m, 

relief from top of scar to bottom of deposit up to 446 m, and maximum area of 212,359 m2 (Table 3), all 

of which are positively correlated. Plots of landslide length and width versus area, length-to-width 

ratios, and height plot linearly with area on log-log scales and may allow for discovery of predictive 

relationships (Figure 10). 

The completed village map has 720 villages in the entire district, of which 440 are in the 

southern region represented by the mapped extent in Figure 6, and 68 are in the watersheds used to 

develop methods; to note, no distinction was made between villages, towns, or cities. Of village pixels, 

including individual pixels within the same village, 58% are within 601 m, and 27% are within 275 m of a 

landslide pixel. Most villages are relatively small, with mean area of 41,216 m2, and median area of 

11,923 m2. The smallest village mapped was 230 m2, and largest 3,591,935 m2. 

4.2 LSI model results 

Statistical models of this study performed universally better than Heuristic variants (Figure 11). 

Model performance increases with addition of critical acceleration data (per Table 2), but decreases 

with addition of NDVI, which is likely due to resolutions being reduced from 5 m to 30 m, and 15 m for 
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the pansharpened NDVI. The initial Heuristic model did not perform well, placing only 9% of landslide 

pixels in the highly susceptible category. Figure 12 shows the best statistical model at watershed scale, 

with 83% of landslides portioned in the high susceptibility zone. FayzMod1, the first model applied to 

the full district, is the poorest of all statistically-based models in terms of capturing landslides in the 

highest susceptibility category, but had the most linear landslide-to-LSI distribution of all models (Figure 

7), which occurred by inadvertently using the weights from FayzMod_1/2 (Figure 13), the half district 

area, for the model of the entire district. This is significant because the weights are dependent on the 

total area and landslide area in the specific region being examined. However, the linear distribution may 

indicate that the statistical models with a more exponential distribution are over trained. This oversite 

was corrected in FayzMod2, and dedicated weights were calculated for the full district, which increased 

landslide inclusion in the high susceptibility zone from 48% to 66% (Figure 14). This is still 17% lower 

than the highest test model at watershed scale, which may be explained in part by exclusion of critical 

acceleration due to an incomplete component for calculating Ac at the district scale. Based on the 

change from StatMod1 to StatMod2, however, it would not likely improve more than a few percent. An 

increase in performance from the first to second Heuristic model is due to both improved weighting and 

inclusion of Ac with input data. 

Using statistical calculations to reorder integer weights of the Heuristic model increased 

Heuristic accuracy (Figure 11). Shared area, and distribution of landslides in high susceptibility zones 

were highest in bivariate models. StatMod1 and StatMod2, both 5 m resolution, with critical 

acceleration added in the second model, had 82% perfect agreement, i.e., 82% of pixels in each have the 

same value. StatMod2 and StatMod3, with addition of NDVI at 15 m resolution shared 81% area; outside 

of this pairing, adding NDVI to other model variations or changing from 15 m NDVI to 30 m resolution 

reduced performance by at least 6%. All bivariate models and Heuristic_2 share over 95% area, when 

allowing for a deviation of ± 1 LSI class, thereby showing that models herein do not in principle 
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contradict each other.  Deviation may be explained in part by different ranges of values in model output 

being grouped in different final bins by the chosen classification scheme, i.e., bin ranges, and Natural 

Breaks Jenks, etc. Expanding area analysis to allow for ± 1 susceptibility class between models shows 

high agreement between all models, suggesting agreement of trend, i.e., no model drastically disagrees 

with any other. All statistical variations have shared area between 62% and 82%; Heuristic to statistical 

model shared area ranges 37.2-38.9%, and informed-Heuristic to statistical range 51.2-57%. Allowing for 

± 1 deviation in LSI all models exceed 88.5% agreement, with a maximum agreement of 99.48% with ± 1 

deviation (Table 4). 

4.3 Hazard results 

As noted in mapping results, 58% of village pixels are within 601 m of an existing landslide, and 

as a result, most villages show relatively high hazard potential in conducted models. Model methods 

effectively reduce LSI representation in unpopulated areas and accentuate populated areas, but may 

over-estimate risk relative to comparing village locations to LSI models. Using the final susceptibility 

model for the district, 15.35% of village pixels are in the high landslide susceptibility zone with 34.44% 

being medium-high. The final hazard model followed Equation 5, with output classified to 5 categories 

by Natural Breaks Jenks (Figure 15). No village pixels were in the low hazard classification, and less than 

1% were in the low-medium hazard zone, as distance to villages was heavily weighted; 15% were in 

medium hazard, 36% in medium-high, and 48% in high hazard. 

5 Discussion 

Mapping of landslides and villages in the study area was facilitated by high-resolution images, 

but landslide mapping by image interpretation is extremely time consuming and took several months to 

develop a landslide inventory for use in this study. Similar mapping periods are reported in literature, 

with average mapping rate of 788 in km2 per month per mapper, but individual rates varied drastically 

depending on the scale of production (Guzzetti et al., 2000, 2012). In the future automated mapping 
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techniques utilizing DEMs may be applicable in Afghanistan, but new datasets are required. Some 

automated methods (e.g. Booth et al., 2009; McKean & Roering 2004) were attempted for the study 

area, but DEM resolutions were too low for detecting many of the mapped features, and in places the 

terrain was rugged enough to limit accuracy of wavelet techniques. Image analysis on satellite photos or 

LandSAT8 may be viable alternative. However, high-resolution multi-temporal satellite catalogs may be 

limited by proprietary access or leases. LandSAT8, while having the advantage of an ongoing collection 

of multi-temporal, freely accessible images in an analysis-friendly format lacks resolution to see many 

but the largest landslides. LandSAT8 is limited due to its recency, having launched in 2013, and 

LandSAT7, although having a longer catalog, has data gaps over Afghanistan. 

Expanding on temporality of data, datasets herein are several years removed from each other. 

Geologic mapping (lithology, faults, etc.), while modified in the early 2000’s, is based heavily on mid-late 

20th century sources. DEMs were developed from data created in 2006 and do not reflect some of the 

larger landslides visible in newer satellite photos, such as the 2014 Aab Barik mudslide (Vergano, 2014; 

Zhang et al., 2015). Although it is clear from apparent freshness of some landslides in high-resolution 

imagery that much of the imagery is relatively new, the respective dates, tile boundaries, and specific 

image sensor metadata were not available for streamed high-resolution satellite imagery in ArcMap. 

ESRI’s source sensors, satellite projects, and companies that supplied imagery for the basemaps were 

included together in a single citation in both ArcMap and on their website. 

Issues between differing dates in data may impact map results because of a known, mapped 

feature being associated with pre-failure elevation data in GIS analyses. Mapping bias resulting from 

differing resolutions, cloud cover, and shadows in basemap imagery, as well as varied time-labor spent 

mapping each area used in modeling may bias susceptibility and hazard results. This is particularly so for 

the watershed areas, where greater time was spent during development and may have influenced 

quantity and quality of identified landslides relative to the rest of the district. The north and northeast 
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portions of the district were particularly problematic for mapping, relative to the center and south, due 

to the many shadows that made identifying landslides difficult. In addition, some imagery tiles had 

lower-resolution images than the 5m DEMs. In cases of obscuring shadow or low-resolution imagery, 

DEMs did not greatly aid mapping except for large landslides because of insufficient resolution. This 

likely resulted in underrepresentation of landslides, particularly smaller, more frequent failures, in areas 

of poor image quality, which would influence concentration of modeled hazard using landslide buffers 

and density inputs. 

Other issues were found in the methods used to automatically extract landslide lengths, 

however, manual measurements for so many landslides would have been far too time-consuming. The 

flow length tool allowed rapid measurement of all landslides and increased accuracy over other 

automatic options such as default polygon lengths, polygon perimeters, bounding polygons, or polygon 

axis lengths, and avoided misapplication of “length” for landslide complexes along-slope with combined 

width-to-length ratios greater than one, or length-to-width less than one. Potential error exists in cases 

of flow path diversion within the slide mass, flow alteration due to post-slide erosion, or attribution of a 

maximum length to an entire connected complex comprised of multiple landslides with varying lengths. 

Inaccuracies were observed in calculated lengths and widths, each being lower than true dimensions 

due to the nature of the flow length tool, and to losing area where empty space between pixels did not 

completely align with polygon edges after conversion of features to raster format. However, this 

methodology should allow relatively high precision as each step is based on DEM computations or 

feature class measurements, provided consistent projection, classification, and tool parameters are 

used. 

The maximum calculated length of landslides is 824 m, and, in one example of a landslide 

exceeding automated measured length, the runout distance from the most down-dip portion of the 

excavated face alone was 1 km long (see Figure 4). It presumably went farther, but was at that point 
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eroded by a river in the valley into which the deposits flowed. Lengths and widths are typically 

underestimated by automated geoprocessing methods. In the case of length, this occurs where the flow 

path of the measured flow length exits the landslide boundaries before reaching its lowest point due to 

flow paths resulting from deformation as the slide mass moved, or was subsequently eroded (Figure 16). 

Performance of models also changed when varying included data layers or changing means of 

calculating weights. The Heuristic_2 model, using absolute value of the sum of weights, increased 

performance relative to the original Heuristic model, whereas performance of Heuristic_3 decreased 

using only the sum of weights. In the bivariate model, sign of the weight allows for a relative increase or 

decrease in susceptibility depending on a pixel in a layer, where a relative decrease indicates a 

stabilizing factor. Allowing negatives to influence order of bin weights in a layer for informed Heuristic 

models serves this purpose. However, allowing negative values in determining significance of layers 

relative to each other decreased performance, suggesting the magnitude of each layer’s contribution is 

most important irrespective of sign in assigning a layer’s percent contribution relative to other layers. 

Ultimately, improving the Heuristic method with statistical weights still underperformed the bivariate 

methods; being that this improvement to Heuristic models requires use of the bivariate method, it is 

better to use the bivariate method alone for assessment if a landslide inventory is available for 

calculating the statistical weights. 

Plots were constructed using landslide dimensions calculated in ArcMap and may at present 

facilitate development of predictive length or runout scaling relationships relative to area in lieu of 

frequency-magnitude curves that require multi-temporal landslide data. In the future, scaling 

relationships combined with depth-to-volume calculations and frequency-magnitude curves derived 

from multi-temporal inventories (inventories that do not now exist) may further assist modeling and 

prediction of landslide hazard. If magnitudes of triggering events such as rainstorms and earthquakes 

can be similarly related, it may be possible to provide first responders with valuable real-time estimates 
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of risk. This may also be achieved despite the current affairs in Afghanistan preventing much by way of 

field work if high-resolution image catalogs can be obtained. These would likely need to be purchased, 

licensed, or donated for specific areas by commercial imaging companies, as those currently available 

for streaming in ESRI’s basemaps lack temporal control. If available though, such images would allow for 

mapping landslides over time and for estimating recurrence intervals, and could help associate newly 

detected landslides with likely triggering events, such as rainfall or earthquakes. This association could 

help develop respective, predictive relationship curves between trigger and landslide magnitudes, or the 

number of landslides expected to be caused by a trigger of a given magnitude. Inventory products could 

be published with association to developing database projects, such as the LAND-deFeND database by 

Napolitano et al. (2018), or otherwise follow similar formatting. 

A research thrust not implemented in this study would be to assess landslide risk to villages with 

respect to flow direction, flow path, or flow length projections from landslide sources rather than by 

using overlapping buffers for distances between landslides and villages. That is, a landslide will not flow 

backwards or uphill and threaten a village in the opposite direction except where inertia allows deposits 

to run up a slope, if a new landslide occurs underneath a structure, or the headscarp of an existing 

landslide reactivates and excavates further into the slope such that it compromises structure 

foundations previously uninfluenced. Accounting for landslide flow could be achieved by following 

similar methods as used to calculate landslide length in this study, but instead of masking the DEM by 

landslide boundaries, do so with a desired maximum runout length, and then assigning single pixels at 

the minimum and maximum elevations as starting spill or pour points for the hydrology tools. Smaller 

buffers could then be used around the resulting flow areas to approximate threat from individual slides 

to their immediate surroundings. The flow tools, however, function by following the lowest or easiest 

flow paths and would not directly reflect the rheology or inertial behavior of landslides that rigorous 

numerical models may represent. Hazard model adherence to approximate flow limitations may provide 
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a better assessment of landslide risk to villages and take less processing time than physical or numerical 

models that may also require material property analysis. Such on-site material analyses would be 

difficult or impossible to acquire for Afghan landslides in the current geopolitical environment. 

6 Conclusion 

Over 3400 landslides were used to model landslide susceptibility in Fayzabad District, 

Afghanistan. Further, extracted environmental characteristics show that landslides are primarily 

associated with elevations ranging between 1500 m and 2000 m, slopes of 27° to 45° and/or north to 

northwest aspects, or are within 60 m of a stream or river. Additionally, log-linear relationships of 

landslide dimensions suggest it is possible to develop predictive scaling relationships useful in estimating 

an area at risk for a landslide of a given magnitude. Susceptibility results show models can accurately 

depict areas around landslides as highly susceptible to failure, with the highest proportion identified as 

such being 83%. Many of the district’s 720 settlements are at high risk to landslide hazards, with 58% of 

villages within 600 m of an existing landslide.  

Model results by Kayastha et al. (2013), which utilized the bivariate statistical method, identified 

53% of landslide pixels as being in high susceptibility zones, and the distribution of landslides across all 

susceptibility zones was nearly linear. This contrasts to results herein, where landslide identification 

within high susceptibility zones exceeded 80% in some trials, with an exponential distribution of 

landslides across susceptibility zones (Figure 11). The difference in model results between this study and 

those by Kayastha et al. (2013) may suggest models in this study are effectively over-trained and require 

application of smaller training datasets. However, the comprehensive study of peer reviewed landslide 

susceptibility modeling literature by Reichenbach et al. (2018) states that the bivariate method 

significantly increases in performance with larger datasets. That this study uses a much larger landslide 

inventory may explain differences in resulting model patterns. Further, statistical model results herein 
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widely agree with inventory analysis and observations by other researchers regarding landslides in 

northeastern Afghanistan (Naseri & Kang, 2016, Shroder et al., 2011; Zhang et al., 2015).  

Several models were constructed, with varied distribution of landslides in respective 

susceptibility zones. Models can be chosen for different purposes based on these landslide-index 

distributions, depending on levels of acceptable risk set by policy makers in disaster avoidance, 

mitigation, and planning efforts. Further, a methodological and programmatic framework has been 

setup to facilitate both reproduction of data and results, as well as easily produce new model variations. 

Additionally, a programmatic framework of the methodology aids in applying the bivariate model to 

other areas, where location-specific statistical weights are calculated with respect to location-specific 

input data. Although existing models for Afghanistan (Naseri et al., 2016; Schlagel, 2015; Zhang et al., 

2015) are pushing the limits of freely accessible data, more data exist in the form of commercial imagery 

that could be applied. Doing so would allow further development without requiring expensive repeat 

LiDAR flights to acquire high-resolution, multi-temporal data over large areas.   
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Tables 
 

Table 1 Casualties and damages for disasters in Afghanistan by type. Numbers are in percent of total for 
each column. 

     
 DEAD INJURED AFF_IND AFF_FAM HOUSE_DAMAGE HOUSE_DESTROY 
Avalanche 20.97 14.26 1.64 1.74 1.13 1.22 
Earthquake 9.36 36.21 20.01 18.84 23.43 19.52 
Extreme Weather 2.57 1.56 3.53 3.45 0.95 0.59 
Flood/Flash Flood 45.51 42.01 67.59 68.42 68.19 71.71 
Heavy Rainfall 2.39 2.06 2.58 2.57 2.44 1.98 
Heavy Snowfall 2.39 2.67 2.34 2.31 2.90 1.70 
Landslide/Mudflow 16.81 1.23 2.32 2.68 0.96 3.28 

 

Table 2 Model parameters. Inputs only display variables not common to all models: Elevation, Aspect, 
Slope, TWI, curvature, plan curvature, profile curvature, densities and buffers of streams and faults. 

ModelID ModType Method inputs 

Heuristic_1 Heuristic   
StatMod_1 Bivariate   
StatMod_2 Bivariate  critical acceleration 

StatMod_3 Bivariate  critical acceleration, ndvi15 

StatMod_4 Bivariate  critical acceleration, ndvi30 

Heuristic_2 i-Heuristic Abs(Sum()) critical acceleration 

Heuristic_3 i-Heuristic Sum() critical acceleration 

FayzStatMod_1/2 Bivariate  critical acceleration 

FayzMod1 Bivariate   
FayzMod2 Bivariate   

 

Table 3 Basic statistics of landslides in the watershed areas of the district. 

 min max mean median 

L:W ratio 0.36 57.39 6.09 4.15 

Length 5.71 824.23 133.46 91.49 

Area 58.68 212359.25 6573.71 1643.34 

Width 2.54 360.13 30.36 19.30 

Relief 1.79 446.85 71.27 51.54 
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Table 4 Agreed area between models. The bottom values in Green represent perfect agreement, or cells 
with the same value; the top, Blue values represent an allowance of +/- 1 LSI value in model outputs. 
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Figures 
 

 

 

Figure 1 Landslide casualties (top), number of affected (middle), and damage to residence 
(bottom). At top, labels are to respective underlying columns, at middle labels are for both 
columns in the top two districts, at bottom labels are to destroyed homes (orange) in top two 
districts. 
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Figure 2 Fayzabad study area with regional map inset. Watershed areas used to develop model 
outlined in red. Note, the southern third or so of the district is cut off due to an absence of DEM 
data and is not modeled herein. 
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Figure 3 Critical Acceleration data used to determine material specific Ac for given ground slope angles in the study area. 
Material A is crystalline and strongly cemented rock; b is weakly cemented rock and sandy soil; c is shale, clayey soil, and 
existing landslides (MSl, 2003). 
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Figure 5 Landslide inventory map for Fayzabad District, Afghanistan. Watershed area where model 
was developed outlined in black for reference. 

Figure 6 Surface classification map with three categories. Mapping was completed for the 
southern portion of the study area only. Landslides falling outside of this area have been 
removed from this map. 
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Figure 7 Distribution of landslide by lithology in terms of percent (top), and proportion of lithologies 
relative to overall geology (bottom). Landslide distributions roughly follow trend in dominant lithology. A 
few lithologies break trend and have far fewer landslides (%) than their total area, namely limestone, 
and volcanic/sedimentary rock. Blue arrows show changes in order of lithologies between percent of 
contained landslides and percent of lithology relative to regional geologic units. 
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Figure 8 Distribution of landslides by key DEM derived data; aspect (top), elevation (middle), and slope 
(bottom). Dominant slope face directions correspond with observations by Shroder et al. (2011a), and 
elevation ranges are similar to those noted by Kamp et al. (2010). Sharp drop in landslides over 45 
degree slopes is likely reflects common angle of repose. 
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Figure 9 Landslide pixel proximity to faults (top), streams (middle), and distribution by TWI (bottom). 
Landslides occur primarily near faults or streams. Association with dry TWI values, however, seems to 
contradict this, but suggests that landslides occur near streams, but not within channels, or areas water 
accumulates, but rather on drainage slopes above streams. Comparison to topographic position indices 
(TPI) was not done quantitatively, but qualitatively observed to support this assertion. 
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Figure 10 Landslide characteristics. Length was estimated by calculations in Flow length tools, area determined by polygon 
attributes, width estimated by A/L, and height by the difference of maximum and minimum elevation within landslide 
boundaries. Each plot is on Log-log scale, with a Power fit and R2. 
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Figure 11 Distribution of landslide pixels by percent among susceptibility classes for each model. 
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   StatMod_2 

Figure 12 Watershed-scale landslide susceptibility model. StatMod_2, shown above, was 
the test version with greatest proportion of landslides falling in the high susceptibility 
category, and thus deemed to have the best performance. The parameters of this model 
were then chosen to scale up to cover larger portions of the district (see Figures 13 and 
14). 
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Figure 13 Landslide susceptibility model for the half of the district where surface class 
mapping was completed. The significance of this being the inclusion of critical acceleration 
data dependent on that surface class map. Of landslides in this area 73% are in areas 
modeled at high susceptibility, and 19% in med-high. 

FayzMod_1/2 
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Figure 14 Final susceptibility model for Fayzabad District. The high susceptibility category 
contains 66% of landslide pixels, and the medium-high contains 29%. Critical acceleration 
data was excluded from this model at the full district scale as the requisite surface class map 
did not cover the northern portion (see colored extent in Figure 13). 

FayzMod_2 
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Figure 15 Hazard Index for Fayzabad District utilizing the final tested method. 
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Figure 16 Length issues. Black circles show potential issues in flow length calculations, where hydrologic calculations show 
termination of flow within a slide mass (top circle), branches that diverge from the central axis of the landslide (middle circle), or 
where flow follows the bottom of valleys where deliniation extends (bottom circle). These issues are suspected to in general 
result in underestimation of landslide lengths. 
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Python Code 
#Purpose of code to automate TabulateArea function, and calculation of associated 

percent area of landslides in 

#bins of an input raster (i.e. percent of mapwide landslide pixels in elevation bins 1 

through 9), and 

#calculation of associated statistical weights for each bin for reclassification for 

use in stats wgt LSI model 

 

import arcpy 

from arcpy.sa import * 

import numpy as np 

 

arcpy.env.overwriteOutput=True 

arcpy.env.workspace = 

r"D:\Users\n913s392\Desktop\MasterFolder_desktop\reclass_tables.gdb" 

arcpy.env.scratchWorkspace = r"D:\Users\n913s392\Desktop\MasterFolder_desktop\scratch" 

 

arcpy.CheckOutExtension("Spatial") 

 

######################################################################################

################################# 

#Inputs and Variables 

######################################################################################

################################# 

#eventually make inputs get as text parameters 

table_tag = "tabA_stFayz" #for naming output dynamically, tagging this to front of 

source file name 

 

in_rasters = ["rc_aspect2", 

              #"rc_ac4_test",    #wip, natural breaks class with 1-9 rc vals 

              "rc_curvature2", 

              "rc_d2fault_2", 

              "rc_d2stream", 

              "rc_elevation", 

              "rc_flt_lden2", 

              "rc_geoFayz",     #wip, lithologies not merged, used Steinshouer's map 

in area as is, rc vals in excel 

              #"rc_ndvi15m", 

              #"rc_ndvi30m", 

              "rc_plan_2", 

              "rc_profile_2", 

              "rc_slope", 

              "rc_strm_lden2", 

              "rc_twi"] 

 

landslide_map = "LSmap_boolean" 

mask_rast = r"Mod_area_mask" 

#for landslide_map, use map with SRC1 (landslides), src3 (eroded), and 

src4(loess/soil) 

#   landslide inventory in raster form required for running. Indexing assumes three 

surfaces classes in the map; 

#   landslides, erroded/stripped/landslide terrains, and unfailed/loess/soil. 

 

out_raster_tag = "stF_" #for naming output dynamically, tagging this to front of 

source file name 

#out_raster = "test_RCstatwt" #has an overwrite below for full file name 

"stat_rc_....." 

 

 

in_fields = ["VALUE", "VALUE_0", "VALUE_1"] #VALUE_1 (index 1), VALUE_3 (index 2), and 

VALUE_4 (index 3) 

new_fields = ["classA_m2", "mapPerc_0", "mapPerc_1", 
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              "classPerc_0", "classPerc_1", "StatWgt"] # is indexable; new_fields[n] 

statwt_field = "StatWgt" 

LS_field = "VALUE_1" 

Area_field = "classA_m2" 

 

model_output = r"FayzMod2" 

 

######################################################################################

################################# 

"""Functions""" 

######################################################################################

################################# 

 

#split file patch and concatinate table name 

def getLayerName(layer): 

    desc = arcpy.Describe(layer) 

    layer_name = desc.baseName; del desc 

    return layer_name 

 

#tabulate area table for layer 

def myTabulateArea (in_zone_data, in_class_data, out_table): 

    TabulateArea(in_zone_data, "VALUE", in_class_data, "VALUE", out_table) 

 

#calc_ClassArea function needs converted to MODULAR follow str() convertion and 

concatenation from calc_PercentSRC() 

def calc_ClassArea(table,field_name):# ...(table, field, expression) 

    expression = '!VALUE_0!+!VALUE_1!' #hard code, needs to be made modular 

    arcpy.CalculateField_management(table, field_name, expression, "PYTHON") 

    #now works 

 

#sum area of a "Value_n" column in table - used within calc_percent() 

def sum_area(table, in_field): 

    np = arcpy.da.TableToNumPyArray(table, in_field) 

    area = np[in_field].sum() 

    del np 

    return area 

    #now works 

 

#ex: calc %area of LS in each class of the variable (i.e. elevation) 

def calc_PercentSrcTypesInMap(table, in_fields, f, new_fields, n): 

    totalarea = sum_area(table, in_fields[f]) 

    expression = str("!"+in_fields[f]+"!/"+ str(totalarea) +"*100") 

    arcpy.CalculateField_management(table, new_fields[n],expression, "PYTHON") 

    #now works 

 

######################################################################################

################################## 

def calc_PercentSrcByVariableClass(table, in_fields, f, new_fields,n): 

    expression = str("!"+ str(in_fields[f])+"!/!"+str(new_fields[0])+"!*100") 

    arcpy.CalculateField_management(table, new_fields[n], expression, "PYTHON") 

    # still wip, one field not calculating 

######################################################################################

################################## 

 

#calculate statwt column of table 

def calc_StatWeight(table, in_fields, ls_field, class_area_field, new_fields, n): 

    codeblock = "import numpy as np" 

    total_area = sum_area(table, new_fields[class_area_field]) 

    ls_area = sum_area(table, in_fields[ls_field]) 

    expression = str("np.log((!"+ str(in_fields[ls_field])+"!/"+ 

"!"+str(new_fields[class_area_field])+"!)"+ \ 

                 "*"+  str(total_area/ls_area) + ")") 

    arcpy.CalculateField_management(table, 
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new_fields[n],expression,"PYTHON",codeblock) 

    #now works 

 

def remove_infinity(in_array, field): 

    n = 0 

    for i in in_array[field]: 

        if i > 1000000: 

            in_array[field][n] = 0 

        elif i < -1000000: 

            in_array[field][n] = 0 

        n += 1 

    return np 

 

#apply reclass for statwt raster to use in model 

def doRc_statwt(in_raster, varclass, statwt, out_raster): 

    n=0 

    for x in varclass: 

        if n==0: 

            out_temp = Con(in_raster == x, statwt[n], in_raster) 

        else: 

            out_temp = Con(in_raster == x, statwt[n], out_temp) 

        n+=1 

    arcpy.env.overwriteOutput = True 

    out_temp.save(out_raster) 

 

#place function for adding reclassed StatWt layers together (the statwt model) 

def StatWtModel (in_stat_wt_rasters, file_output): #in_stat_wt_rasters, mask_rast, 

file_output    mask_rast removed 

    #model = mask_rast 

    counter = 0 

    for i in in_stat_wt_rasters: 

        i_rast = Raster(i) 

        if counter == 0: 

            model = i_rast 

        if counter >0: 

            model += i_rast 

        counter+=1 

    model.save(file_output) 

 

######################################################################################

################################# 

#Run Code 

"""Call functions to perform opperations""" 

######################################################################################

################################# 

in_stat_wt_rasters = [] 

for layer in in_rasters: #layer as path 

    layer_name = getLayerName(layer) 

    out_raster = str(out_raster_tag + layer_name) 

    table = str(table_tag + layer_name[2:]) # if following convention "rc_...." where 

.... is the data name (ex: elev, slope) 

    in_raster = Raster(layer) 

    myTabulateArea(in_raster, landslide_map, table) 

    print layer_name 

 

    n=0 #for tracking position in new_fields list during loops 

    f=0 #for tracking position in source src fields VALUE_1 (index 1), VALUE_3 (index 

2), and VALUE_4 (index 3) 

    #Run add fields and tabulate areas 

    for name in new_fields: 

        arcpy.AddField_management(table, name, field_type = "DOUBLE") 

        if n==0:#Calculate total area in variable class 

            calc_ClassArea(table,name) 
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        if n>0 and n<3:#calculate percent of single Src type throughout map (i.e. all 

variable classes) 

            calc_PercentSrcTypesInMap(table, in_fields, f, new_fields,n) 

 

        if n>2 and n<5: #calculate percent of each SRC within a single variable class 

            calc_PercentSrcByVariableClass(table, in_fields, f, new_fields,n) 

 

        if n==5: #calc stat weight - table, in_fields, ls_field (as index), 

class_area_field (as index), new_fields, n 

            ls_field = 2 

            class_area_field = 0 

            calc_StatWeight(table, in_fields, ls_field, class_area_field, 

new_fields,n) 

 

        n += 1 

        f += 1 

        if f == 3:  # reset f to index beginning of in_fields list to calculate n>4 

and n<7 next. 

            f = 1 

        #print "n = "+str(n)+", f = "+str(f) 

 

    

######################################################################################

############# 

    # Get stat wt values, and variable classes to lists and reclass via RasterCalc con 

statements 

    del table; table = str(table_tag + layer_name[2:]); input = in_fields+new_fields 

 

    np = arcpy.da.TableToNumPyArray(table, input) 

    np = remove_infinity(np,statwt_field) 

    print np[statwt_field] 

 

    varclass = [] 

    statwt = [] 

 

    for i in np: 

        varclass.append(i[0])  # can also index as i["VALUE"] and i["StatWgt"] 

respectively, would not depend on getting 

        statwt.append(i[8])   # the number or order correct if using number indeces 

    print varclass;print statwt 

 

    doRc_statwt(in_raster, varclass, statwt, out_raster) 

    #error in above, cannot save as FGDB file due to already existing (even with 

overwrite output enabled), delete first file seems to fix, rest overwrite correctly... 

    in_stat_wt_rasters.append(out_raster)  #rasterList = arcpy.ListRasters("*", 

"GRID") 

 

    del varclass, statwt, np, table, in_raster, out_raster 

 

arcpy.env.overwriteOutput=True 

#Call stat weight model function 

print "Model Output: " + str(model_output) + "\nModel Inputs: 

"+"\n"+str(in_stat_wt_rasters) 

StatWtModel(in_stat_wt_rasters, model_output) 

 

 

#Add function for tabA mod output to LS inventory to see accuracy; including new 

fields and calculations 

 

arcpy.CheckInExtension("Spatial") 

print "Done." 

######################################################################################
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################################# 

 

 

""" 

#Snippet for running just the model again after the rest has run 

import arcpy; 

from arcpy.sa import *; 

import numpy as np 

 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = 

r"D:\Users\n913s392\Desktop\MasterFolder_desktop\reclass_tables.gdb" 

arcpy.env.scratchWorkspace = r"D:\Users\n913s392\Desktop\MasterFolder_desktop\scratch" 

arcpy.CheckOutExtension("Spatial") 

 

#Snippet for running just the model again after the rest has run 

def StatWtModel(in_stat_wt_rasters, file_output):  # in_stat_wt_rasters, mask_rast, 

file_output    mask_rast removed 

    # model = mask_rast 

    counter = 0 

    for i in in_stat_wt_rasters: 

        i_rast = Raster(i) 

        if counter == 0: 

            model = i_rast 

        if counter > 0: 

            model += i_rast 

        counter += 1 

    model.save(file_output) 

 

 

model_output = r"FayzMod2" 

zmodelInputs = ['stF_rc_aspect2', 'stF_rc_curvature2', 'stF_rc_d2fault_2', 

                'stF_rc_d2stream', 'stF_rc_elevation', 'stF_rc_flt_lden2', 

                'stF_rc_geoFayz', 'stF_rc_plan_2', 'stF_rc_profile_2', 

                'stF_rc_slope', 'stF_rc_strm_lden2', 'stF_rc_twi'] 

StatWtModel(zmodelInputs, model_output) 

arcpy.CheckInExtension("Spatial") 

""" 

 


