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ABSTRACT 

The Effects of Vertical Jump Fatigue and Sprint Fatigue on Total-Body Biomechanics  

Eric M. Mosier 

The University of Kansas, 2018 

Supervising Professor: Andrew C. Fry, Ph.D. 

INTRODUCTION: Motion capture systems (MCS) can be used to assess an 

individual’s upper-and lower-body motions, both explosive and functional in nature. 

Advancements in technology and screening protocols are capable of detecting acute 

biomechanical alterations of the lower-extremities following fatiguing tasks. PURPOSE: This 

study compared the kinetic and kinematic variables measured by a 3-dimesional video MCS to 

identify alterations in lower-extremity performance following VJ and sprint fatiguing tasks. 

METHODS: Eleven healthy, recreationally active women (�̅�±SD; age=20.81.1 yrs., 

hgt.=172.27.4 cm, wgt.=68.07.2 kg) and eleven men (age=23.02.6 yrs., hgt.=180.34.8 cm, 

wgt.=80.47.3 kg) volunteered for this investigation, and were screened using the Performance 

Motion Analysis (PMA) protocol, consisting of 19 motions. These include shoulder ranges of 

motions (i.e., shoulder abduction and adduction, horizonal abduction and adduction, internal and 

external rotation, flexion and extension). Also assessed were trunk rotation, bilateral overhead 

squat, unilateral squats, forward lunges, single leg balance, bilateral counter-movement vertical 

jump (CMVJ), unilateral CMVJs, concentric-only VJ, multiple unilateral CMVJs, and depth VJ. 

A three-dimensional markerless MCS (DARI Motion, Scientific Analytics, Lincoln, NE) was 

used to analyze the kinetic and kinematic data, from which 192 variables were calculated and 
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reported in PMA Scores (i.e. Composite Score, Power Score, Functional Strength Score, 

Dysfunction Score, Vulnerability Score, and Exercise Readiness Score). Each subject completed 

one familiarization session, three experimental sessions consisting of three randomized acute 

fatiguing protocols (i.e. Control Session, Modified jump test, 25-sec Sprint Test). PMA Test, 

accumulated lactate and heart rate (HR) was collected pre-and post-fatigue tests. Statistical 

analyses were conducted for the performance measures using the scores [Composite Score, 

Power Score, Functional Strength Score, Dysfunction Score, Exercise Readiness Score (ERS), 

and Vulnerability Score] x conditions (VJ, Sprint, CON) x time (pre-test, post-test) x within sex 

(females, males) repeated measures MANOVA. RESULTS: The MANOVA indicated a three-

way interaction (score x condition x time). Follow-up analyses indicated significant differences 

between pre-and post-tests for the (𝑋 ̅± SD for pre-test; post-tests) Composite Score 

(1556.43±307.8; 1368.00±264.62), Power Score (813.34±242.39; 687.32±164.83), and ERS 

(18.16±4.75; 16.02±3.54) during the VJ experimental sessions. Significant increases in 

accumulated lactate and HR were indicated for the post-test during the modified VJ and 25-sec 

sprint tests. CONCLUSION: The current investigation demonstrated the viability of a MCS test 

to evaluate changes in performance due to acute fatigue. The investigation determined the MCS 

was capable of detecting acute lower-body biomechanical changes. The PMA Scores suggested 

decrements in performance are first observed in the decreases in power production during high 

velocity movements (i.e. VJs). PRACTICAL APPLICATION: Documentation and tracking of 

changes in performances will give future insights on how fatigue can be rated and evaluated. 

Advancements in technology and screening protocols may be capable of predicting increased 

risk of season ending injuries. This may provide the strength and conditioning professional 
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helpful longitudinal information as an athlete/patient/client progresses through a training 

program and season. 
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I. CHAPTER I - REVIEW OF LITERATURE 

A. ORIGINS / BACKGROUND  

The vertical jump (VJ) is a well-recognized essential component of successful athletic 

performance. More specifically, strength and conditioning specialists, coaches, and health 

professionals commonly administer the VJ test to determine an athlete’s or client’s jumping 

ability and/or to determine lower-body power (16, 50, 141, 201, 215). It was originally 

developed by Dudley Sargent in 1921 as “the physical test of man (201).” VJ height (VJH) was 

assessed as the difference between standing reach and jump height. VJH may be a good predictor 

of changes in lower-body power in weightlifting, football, and track and field events (20, 95, 

146, 202). In addition, the VJ has been shown to correlate with speed, agility, and lower body 

power performances in soccer players (141). Furthermore, strength and conditioning 

professionals use a variety of devices to compare pre- and post-tests of VJH to determine the 

effectiveness of a prescribed training program (40, 220). 

 

B. USAGE OF VERTICAL JUMP TESTING  

 

Numerous methods and testing equipment have been used to measure VJH. Traditionally, 

the most commonly used testing methods is the Sargent’s test (9, 41, 84, 156, 224), also known 

as the jump and reach test (9, 41, 84, 156, 217, 224). This method is simple and effective with 

the reported reliability of (r = 0.93) (9, 75, 156). Subjects would either have a tape or chalk on 

their fingers, and in a counter-movement vertical jump (CMVJ) with an arm swing, the subjects 

would slap their fingers or tape against the wall or board. The VJH height is obtained by 

subtracting the standing reach by the highest VJ reach of the individual (9, 14, 84, 156, 217). 

Other devices measure VJH using basic kinematic equation to calculate jump height by flight 
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time (41, 83-85, 140). Comparison of flight times for a VJ mat was not consistent with flight 

times from a force plate, however, correlations between them were very strong (r = 0.995) (224). 

Vertical jump mat has been shown to be effective at measuring VJ reach height for many 

individuals when compared with a Vertec (83, 84, 125, 224), despite the fact the timed VJ mat 

device reported 100 milliseconds longer flight times than those measured by a force plate (224).  

Video analysis can also determine the vertical displacement of the center of mass (COM) 

from the standing position to the apex of the jump (15, 34, 83-85, 110, 156). Some studies 

suggest this method could be considered the criterion reference, or “gold standard” method, for 

VJH measurement (15, 83-85). Many studies have examined the kinematic characteristics of the 

human body during a VJ.  Improvements in motion capture systems (MCS) have led to analytical 

tools that allow detailed analyses of the CMVJ, and to determine the vertical displacement of the 

center of mass (COM) (72, 73, 97, 136).  A MCS allows derivation of the individual joint 

torques and the net ground reaction forces produced.  Additionally, a MCS quantifies movement 

of body segments and joints which influence the forces generated. This method requires 

expensive motion analysis equipment and the placement of reflective markers on the subject’s 

body that are recorded during the jumping movement and then analyzed by computer software. 

However, this method is cost prohibitive for many sport or gym settings (3, 15, 41, 85).  

As previously discussed there are variety of different approaches used for measuring 

VJH, with force platforms being considered as the gold standard (85, 192). Force platforms can 

measure VJH both time in the air and take-off velocity methods (122, 164). While take-off 

velocity is considered the most accurate method for measuring VJH, time in the air method have 

been proven to be highly valid and reliable. Most instrumental calculation of VJH by measuring 

flight time (85, 164). Force platforms, accelerometers, contact platforms, infrared platforms, and 
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high-speed cameras (42, 85, 192). An inexpensive approach is using a low-cost high-speed 

camera, license-free computer software, and download applications to evaluate VJH (17, 18). 

Recently, companies are releasing smartphones with high-speed cameras. One such company is 

Apple Inc. (USA), which released a smartphone with a high-speed camera capable of recording 

120 Hz (17). Balsalobre-Fernandez and colleagues examined the validity and reliability of the 

smartphone application for measuring VJH (17). The investigation concluded that the application 

and force platform displayed almost perfect agreement for the CMVJ (17). Software and 

application development can provide alternatives for CJVH analysis more specifically of VJH.  

 

C. VERTICAL JUMP THEORIES 

The counter-movement vertical jump (CMVJ) is a complex multi-joint action where 

muscles of both the lower and upper extremities collectively summate forces to produce a 

movement. In the standard vertical jump test, as well as in many sports events, the upper limb 

(i.e., arms) swing vigorously upward during takeoff to enhance the VJH and performance at 

takeoff (45, 72, 73, 97, 98, 136, 137, 186, 204). Several theories have been proposed for the 

positive effect of the arm swing (AS) swing on enhanced CMVJ performances. One of the 

earliest was the ‘transmission of force’ theory which suggested the arms are accelerated upward, 

exerting a downward force through the body and increasing the ground reaction force (GRF), 

thus positively influencing the vertical velocity of the center of mass (COM) (186). A second 

theory, the ‘joint torque augmentation’ theory, suggested the reaction force exerted onto the 

trunk is due to the upward acceleration of the arm swing causing the lower limb joints (hips, 

knees, and ankles) to slow their rate of extension, thus enabling them to collectively produce 

greater muscle forces (73). A third theory, the ‘pull’ theory, proposed that towards the end of the 
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concentric phase as the arms begin to decelerate, the high vertical velocity of the upper limbs 

relative to the trunk enables the upper limbs to ‘pull’ on the trunk, transferring energy from the 

arms to the rest of the body (98).  

 

D. TRAINING COMPARISION  

 

An examination on VJ performance was performed based on training styles, such as 

powerlifting, Olympic lifting, and sprinting, on strength and power characteristics in the squat 

movement (147). Olympic lifters and sprinters require explosive strength or maximal power. 

Powerlifters are known to focus on maximal force production during heavy load and slow 

velocity lifts. Sprinters, however, would primary focus on specific events, characterized by low 

resistance, explosive, and high-velocity movements. Olympic lifts incorporate exercises similar 

to sprinters and powerlifters, but include both heavy loads and explosive types of lifts. Over one 

year of training, Olympic lifters demonstrated a significant improvement in both rate of force 

development and maximal force production (94). This type of training is very effective for 

increasing muscle strength and power (95). The training style used by sprinters results in smaller 

strength gains, but greater rates of force development due to the explosiveness (147). CMVJ 

peak forces and peak velocity were significantly higher in the Olympic lifting group and the 

sprinters group. Thus, peak power was significantly higher in the Olympic lifters when compared 

to the powerlifters. Furthermore, VJH was significantly higher VJH in the Olympic lifters and 

the sprinters. As a result, the Olympic lifters outperformed the sprinter group, by jumping higher, 

producing higher force, and generating the highest power outputs.  
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E. PERFORMANCE COMPARISON  

 When Olympic lifters are compared to a plyometric training group, the Olympic lifting 

training group consistently resulted in the greatest VJ performance. Through an eight week 

training program the plyometric group produced higher improvements in maximum strength but 

failed to increase performance in the squat jump test (214). However, strong correlation were 

reported between maximum strength and power performance (214). The differences observed 

between the Olympic lifting group and the plyometric group could be due to the development of 

a greater rate of force development with external resistance applied to the center of mass. 

 

F. RELATIONSHIP TO LOWER BODY POWER  

The program design or training status of the athlete can influence the VJ performance. An 

athlete’s development of strength and power can be very crucial in sport specific performances. 

One recent study analyzed the relationship between lower body muscular power and linear sprint 

speed in soccer players based upon vertical jump and full squat power outputs (141). The authors 

proposed a new method to analyze them to improve soccer specific acceleration. Thus, it is 

argued that squats and jumps are two exercises that can improve lower body strength, power, and 

speed. Training programs of full squats, CMVJ and sprinting exercises indicate significant 

increases in CMVJ loading and mean and peak squat power. Significant correlation were 

reported between the sprint times and peak power in the 20 kg, loaded CMJ, and between the 

loaded CMJs and split times from the 10 to 30 meter sprint (141). The average power with the 

full squat with a load of 70 kg showed a significant positive correlation with sprint times (141). 

These results suggest that power produced either with vertical jump or full squat exercises could 

explain much of the sprint performances in those soccer players.  
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G. PREDICTOR OF LIFTING PERFORMANCE  

 

Heavy-resistance training uses high loads and slower velocities of concentric muscle 

actions that may lead to improvement in maximal strength, that is the high force and low velocity 

portion of the force velocity curve (220). Power training incorporates lighter resistances and high 

velocities of muscle action, which this may result in increases in force output at higher velocities 

and increased rate of force development (220). The United States Olympic Committee and USA-

Weightlifting correlated estimates of average power and peak power, derived from the vertical 

jump, with performance in weightlifting movements among national-level men and women, and 

junior squads (39). Estimated VJ was correlated with lifting ability among 64 USA National-

level weightlifters. As one would expect, the National-level men had higher absolute power 

outputs and VJH. Furthermore, correlations indicated maximum strength from 1 RM squat and 

peak power derived from vertical jumps are strongly related to weightlifting performance (39). A 

strong correlation was also reported between peak power during vertical jump and weightlifting 

performance. Since lifting typically begins from a static position, a static vertical jump may 

correlate with lifting performance (40).   

 

H. WEIGHLIFTING INJURY RATES 

 As weightlifting is becoming increasingly popular, safety is a growing concern (96, 209). 

The lifts in the sport of weightlifting emphasize explosive muscular power (128, 209) and 

essential property of many sports (127). As a result, weightlifting related exercises are often a 

training tool used to enhance performance for numerous of other sports (127, 193). Injuries 

always concern athletics, and weightlifting is no exception. Injuries mechanics, prevalence, and 

rates provide critical information for the coach, athlete, and athletic trainer. Such information 
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may help provide a safe environment for athletes (37, 113, 209, 211). Three anatomical areas 

though to be at high risk of injury for weightlifting are also common injury sites in many sports 

(60, 88, 143) the knee, low back, and the shoulder. Data on powerlifting and body building 

indicate that most injuries occur in the shoulder region, followed by the low back, and the knee 

(86). Injuries in weightlifting have been reported to include not only soft tissue muscle injuries, 

but also conditions such as spondylolysis and meniscal injuries (1, 128, 193). In weightlifting, 

previous literature has indicated that most injuries occur at the knee, followed by the shoulder 

and back (21, 113, 128, 209). Kulund et al. has indicated the highest percentage occurs during 

the clean and jerk lift in weightlifting (128). Knee injuries are a high concern not only for 

weightlifting but for all sports (37). Knee tendinitis especially patellar tendinitis is a problem for 

many athletes (60).  

 

 Calhoon and Fry indicated the most commonly injured sites to include the back, knee, 

and shoulder, and most of the injuries can be described either as acute or chronic rather than 

recurring or due to complications and consisted primarily of trains tendinitis and sprains among 

elite weightlifters over a 6-year period (37). Most of the injuries were relatively minor resulting 

in missed training time recommendations of less than 1 day (37). The injuries typical of elite 

weightlifters are primarily overuse injuries, not traumatic injuries comprising joint integrity. 

Overall the injury rates for weightlifters are similar to rates for many other sports (7, 21, 37, 113, 

128). Lower back, knees, and shoulders constitute the most commonly injured anatomical areas 

in the sport of weightlifting (37).  
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I. VERTICAL JUMP PHASES 

I-1. COUNTER-MOVEMENT VERTICAL JUMP ECCENTRIC PHASE  

 

An eccentric muscle action occurs when the muscle cannot develop sufficient force and is 

overcome by an external load, resulting in a lengthening of the muscle (69). An eccentric phase 

is commonly found during the deceleration of joint motion, or the downward phase of the 

CMVJ. The thin filaments are pulled further away from the center of the sarcomere, stretching 

the muscle (120). The preparation phase, or eccentric phase, of a vertical jump is defined as the 

period when the body is being lowered to a desirable position for an upward acceleration (174). 

During the preparatory phase, “the ankles dorsiflex, the knees, and hips flex, and the shoulders 

hyperextend (148).”  

 

I-2. COUNTER-MOVEMENT VERTICAL JUMP CONCENTRIC PHASE  

 

A concentric muscle action occurs when a muscle overcomes a load and shortens, 

resulting in an upward phase during the vertical jump (69). The thin filaments are pulled toward 

the center of the sarcomere (120). The concentric phase, or propulsion phase, is defined by the 

period when the body is in an upward acceleration motion acting against gravity (24). During the 

concentric phase, “ankles plantar flex, the knees, and hips extend, and the shoulders flex (148).” 

Whether the contraction of the muscle is concentric or eccentric, “force is generated dependent 

on the number and type of motor units activated, the frequency of stimulation of each motor unit, 

the size of the muscle, the muscle fiber and sarcomere length, and muscle’s speed of contraction” 

(120). The ability to develop force depends on the speed of the muscle contraction during the 

eccentric and concentric phases. However, if the downward motion is not included in the vertical 

jump, the jump is considered a squat jump, therefore only the concentric phase is performed.   
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I-3. COMBINATION OF ECCENTRIC & CONCENTRIC PHASES FOR THE 

COUNTERMOVEMENT VERTICAL JUMP 

 

When the duration of the eccentric, concentric, and amortization phases  combined are 

minimized, it can result in the greatest improvement in performance (213). It has been suggested 

that the neuromuscular adaptation of “increased inhibition of antagonist muscles after training 

causes an increased activation of synergistic muscles, an inhibition of neural protection 

mechanisms, and/or increased in motor neuron excitability can all contribute to the increased 

work (213).” For example, the energy that is stored in a rubber band when it is stretched 

(eccentric phase), is released once it is released (concentric phase). Therefore, a greater amount 

of work can be used if there is a right amount of time duration between the two phases that 

allows the synergistic muscles to activate and to deactivate the antagonist muscles. Training 

programs that combine both phases involve the union between strength and speed, commonly 

referred as the stretch shortening cycle (SSC) (213). Many studies have analyzed training certain 

phases or training the combination of phases to cause the maximum performance in the vertical 

jump.  Training these phases allows for a rapid switch from the eccentric phase to the concentric 

phase during a vertical jump. Furthermore, this type of training allows for a decrease in the 

duration of the amortization phase resulting in the jumper reaching the propulsion phase quicker, 

and in turn increasing power production and vertical displacement of the center of mass.  

Increasing force and power during the SSC are necessary to increase the vertical jump 

performance. If the period between the two phases is delayed, the potential energy (PE) stored 

during the eccentric phase will be lost and dissipated as heat. The stretch reflex will not be able 

to increase muscle activity during the concentric phase (69).   
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J. INDIVIDUAL STRATEGIES FOR THE VERTICAL JUMP  

Previous research has identified discrete biomechanical variables as discriminators of 

“good” or “bad” jumpers, indicating a skill component which can be collected from kinematic 

and kinetic data (8, 217). A feature of the skill component of the VJ has been identified as the 

sequencing of joint and segment actions (98, 216). Bobbert and colleagues originally found the 

proximal-to-distal strategy generated net joint movement-time curves where the hips reached 

maximum torque early in the jump, followed by the extensions of the knees and ankles  (28, 45, 

216). Allowing for large hip, knee and ankle extensor net joint movements resulted in 

maximizing vertical accelerations of the pelvis (45). The sequencing consists of two principles; 

(a) optimal timing of segment motions to maximize vertical velocity of the body’s COM, and (b) 

an energy efficient transfer of force from proximal to distal segments (28, 45, 216). However, 

there is disagreement as to whether this strategy, or simultaneous joint extensions, is ideal for 

vertical jump performance (111).  

 

Comparison of VJ with arm swing and without indicated a longer relative time between 

the initiation of the hip extension and knee extensions resulting in higher vertical jumps with the 

usage of the upper limbs (45). The highest jumps displayed a longer relative time delay between 

joint extension of the hips and knees compared to lower jumps (45). It was hypothesized that the 

proximal-to-distal strategy allows maximal force of the hamstring muscles to occur before 

maximal force of the quadriceps, minimizing the antagonism between the muscle groups (45). 

The simultaneous strategy resulted in maximum force of both muscle groups concurrently, 

resulting in decreased knee extension torque (45). Sequential extension increased the GRF 

towards the end of the lower extremity extension, but reduces force earlier in the movement (6).   
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Van Igen Schenau  and colleagues (1989) suggested that the sequential extension 

movement pattern would improve jumping performance if rates of extension were limited by 

muscle properties (i.e., fiber types) (216). Furthermore, it may be beneficial if the joint extension 

is driven by the elastic recoil of tendons and the stretch-shortening cycle (6, 27, 29). Regardless, 

both jumping patterns are observed among individuals with diverse training statuses and 

backgrounds (217). Chiu and colleagues (2014) stated that in untrained individuals, the muscles 

contributing to the sequential strategy may have insufficient levels of fitness, such as strength 

and flexibility (45). The proximal-to-distal and simultaneous strategies display the influences of 

the net joint movements during a CMVJ, thus suggesting that coordination must also be 

considered when evaluating vertical jump performance.  

 

K. KINETIC JUMP PERFORMANCE VARIABLES  

 Direct measurement of kinetic and kinematic variables can provide an insight pertaining 

to (a) neuromuscular strategies used to achieve maximal jump performance, reflecting the 

movement efficiency of the athlete, (b) neuromuscular status of an athlete in response to training 

and competition, intimating the presence of adaptation (48, 49, 107, 145, 149, 210); and (c) 

lower-body explosive qualities of an athlete (56, 203, 233), thus highlighting areas of deficiency 

for a more efficient training program (149). Therefore, assessment of VJ kinetic and kinematic 

variables is a useful tool in the routine monitoring of athletes. The degree of precision associated 

with VJ performance and associated kinetic and kinematic variables has shown an implication 

for the interpretation of true lower-body explosive capacity and changes in VJ performance. 

Furthermore, several studies have shown that the shape of the force-time curve is dependent on 

expertise (51, 52, 54, 130). Coaches and practitioners must be aware of typical variations and or 
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reliability associated with VJ performance (68). The reliability of the individual performance 

may encompass biological (i.e. within subjects) and nonsystematic measurement error (i.e. 

equipment, tester) (68, 130). The variability and measurement of the performer is critical for the 

interpretation of the VJ data.  

 

 Cormack et al. (2008) calculated the intraday and interday reliability of CMVJ variables 

in elite Australian Rules Football players, reporting coefficient of variations (CV values) of 1.1-

1.7% (intraday), and 1.0-5.7% (interday) (48). Sheppard et al. (2008) assessed unloaded (body 

mass) and loaded (body mass + 25%) CMVJs in elite and developmental athletes, and observed 

CVs of 3.5% (peak force) to 36.3% [concentric and peak rate of force development (RFD)] in 

unloaded jumps, and 3.0% (mean power) to 47.4% (concentric peak RFD) in loaded jumps 

(203). Further RFD seems to play a role in activities involving plyometr ic muscular contractions 

such as sprinting or jumping (93, 119, 130, 138, 152, 226). 

 

Laffaye and colleagues (2014) have shown football and baseball players exhibit VJ 

“signature” or profiles scores ranging from (r = -1.5 to 2.8), with higher values of eccentric RFD 

than volleyball and basketball players (Figure 1) (130).  Football and baseball players tend to 

display explosive profiles, with high values of eccentric RFD, average concentric force, and VJH 

(130). Although RFD and impulse provide valuable insight pertaining to the jumping strategy, 

researchers report higher variability for these variables compared to peak power and jump height 

(47, 129, 144, 152, 163, 210). Moir et al. (2005) report CVs for peak and average eccentric RFD 

ranging from 17 to 21% in physically active men and women (165). The reliability statistics for 

eccentric RFD, more specifically, average eccentric RFD is limited. 
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The intention of the performance test is to assess the specific qualities of an athlete or to 

monitor the changes in performance in response to the intervention or training (108). Moir et al, 

examined the influence of a familiarization session on squat jumps performance of physically 

active individuals (165). No systematic changes in the means was reported for the kinetic and 

kinematic variables with the exception of CMVJs concentric peak RFD (165, 176). Similarity the 

learning effect was not observed in the performance of 30 consecutive loading jump squats in 

male soldiers (5).    
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The evaluation of repetitive trials revealed trivial or small non-systematic changes in the 

mean for average eccentric RFD, concentric mean force, concentric impulse, and VJH. Nibali et 

al. (2013) suggests no evidence of systematic error in any of the 3 variables, nor for the 

combined pool encompassing all levels of athletes (175). It was reported that the familiarization 

trials before VJ assessment are not necessary in athletes, irrespective of the competitive level or 

sport, suggesting adequate proficiency of the athlete with VJ performance (5, 163, 165, 176). 

Average eccentric RFD has been reported to be highly correlated with VJH of elite athletes (118, 

129), and potentially could be sued as a key variable when it is examined in the relation to 

average concentric force (129, 176).  

 

 Nibali and colleagues (2015) stated that the average eccentric RFD can be a sensitive 

measure in training adaptations despite the variability, owning the to the magnitude eccentric 

RFD changes (176).  Cormie et al. (2010) reports significant improvements in eccentric RFD in 

stronger power, weak power, and weaker strength groups. A significant improvement was 

reported; however, the magnitude of change was not present (53). Average concentric force and 

concentric impulse were reported to be the most reliable variables, however, were less effective 

in detecting small changes in performance (176). Average eccentric RFD has been reported to be 

unreliable and is incapable of detecting small changes (176). The assessment of VJ kinetics and 

kinematic variables are a useful tool in the routinely monitoring of athletes.  
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L. MOTION CAPTURE SYSTEMS  

 Many studies analyze the development of the vertical jump and use discrete measures to 

analyze the performances such as mean or peak values. This can disregard the important 

measurements needed to analyze motion and forces. The evaluation of variations in force, 

velocity, and displacement-time curves can provide one of the best ways to assess the changes in 

the kinematic and kinetic properties thus resulting in improved jump performance. Force 

platforms have been used to measure the kinetic data to measure the reaction forces. Kinetics is 

the understanding of the forces that cause the changes in motion. Kinematics examine the 

description of the body in motion based upon motion capture system (MCS). These systems are 

used to capture in digital form the three-dimensional (3D) movements of the whole body. A 

muscle can contribute to the energy of a segment in two ways. The muscle can change the 

segments of velocity, and there by its kinetic energy (KE) (67). The muscle can induce an 

upward movement of the segment, increasing the PE (67). A typical system is comprised of six 

or more video cameras, marker system, and specialized software to organize the date to produce 

a digital representation of the movement (148). Typically, full-body marker sets consist of more 

than 50 markers. Recently the advancements in technology have allowed the development of 

markerless MCS. Dynamic Athletes Research Institute’s (DARI Motion) 3-D motion capture 

markerless system has been in the fore front of advancements in analysis of performance.  

 

L-1. MARKERLESS MOTION CAPTURE SYSTEM  

 Dynamic Athletics Research Institute (Overland Park, Kansas) MCS is comprised of a 

3D markerless MCS which access and analyze kinetic and kinematic data (57, 80, 100, 166-168, 

187, 218, 222). The OpenStage and BioStage systems designed by Organic Motion (New York, 
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New York) and DARI Motion (Overland Park, KS) provide accurate tracking and MCS data 

without markers or special suits. Eighteen vision cameras positioned at different orientations 

sampling at 120 Hz or 120 frames per second. From these different 2D coordinates and 

orientations a 3D spatial coordinates are generated by establishing a linear relationship between 

the 2D cameras coordinates of each body landmark and represent these in a 3D space (194). The 

direct linear transformation method is used to calculate the 3D coordinates from a series of 

control points (2). The visual hull technology model records and subtracts the visional signal 

minus the background which converts to pixels and thus the visual and pixel signals generate a 

pixilated person. The algorithm searches for 5 appendages during the consistent “scarecrow 

pose” figure, which estimates the lengths, COM, joints, height, and etc. Either DXA scans or 

anthropometric estimates (227, 228) used to calculate and analyze 3D kinetic and kinematic data 

from vector masses. The 3D MCS kinematics and kinetics are accurately measured 

simultaneously without a force platform to provide performance data. The DARI markerless 

system has been validated and has the ability to collect kinetic and kinematic data and relay the 

information to the specific athlete (79, 187). The 3D motion capture system can be used to 

improve performance to a degree that allows the viewer to know exactly where the athlete is 

from an objective standpoint.  

 

L-2. COMPARISON OF MARKERLESS MOTION CAPTURE SYSTEM AND FORCE 

PLATE  

Study conducted by the Biomechanics Laboratory at the University of Kansas, compared 

the GRF derived from a force plate and MCS during body weight squats. Subjects wore form 

fitting full body suite on which 43 markers were placed (i.e., ankles, knees, hips, etc.) to from 

rigid bodies to track joint positions (100). Subjects were instructed to squat with a controlled 
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velocity to parallel depth and back to the starting position. The results of the study indicated that 

the GRF can be successfully calculated with the MCS. Fourteen different cameras result in 

calculation of position, velocity, and force acting on each part of the body over 100 Hz, or 100 

times per second (100). The full body motion capture system records and tracks a stick figure 

moving in real time.  

 

 

 

A similar study was conducted in 1996 by Department of Sport, Leisure, and Exercise 

Science from the University of Connecticut, which analyzed the relationship of the kinetic and 

kinematic data between squatting vertical jump and the Olympic hang snatched. The kinematic 

data was analyzed through a Peak 3D system and the kinetic data was analyzed through a force 

plate system. The multi-joint Olympic lift is very similar to the quick and explosive mechanics of 

a squat vertical jump. Thus a significant relationship between all kinetic comparisons, maximal 

power, time to maximal power, relative power, maximal force, and time to maximal force, 

during the propulsive phase (38). Angular displacement of the left hip, knee, and ankle joints, 

Figure 2. The composite mean force values (N) for the ground reaction forces 

calculated from the force plate and motion captures system (100). 
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were statistically dissimilar between both exercises during the propulsion phase. This could have 

been due to the backward movement of the COM in order for the barbell to pass the subject’s 

face during the second pull (38). The researchers did notice that the force-time curves displayed 

different scales per subject, meaning that each curve is unique to the individual. The relationship 

between the kinetic and kinematic data provides an advanced analysis during any type of 

athlete’s performance.  

 

M. VERTICAL JUMPS WITH AND WITHOUT ARM SWING 

M-1. ARMS SWING VRSUS NO-ARM SWING  

 

Comparison of the squat jump with and without arms, the push-off or propulsion phase 

was quicker during the squat jump without arms, or 1.49 to 1.54 times quicker (25). Shoulder 

work was calculated to be estimated of 6.6% of the total work during the vertical jump (25). The 

greater VJH during the squat jump with arm swing corresponds to a greater effective energy 

during the propulsion phase. Forty-two percent difference between then squat jump with and 

without arm swing relative to 58% difference in CMJ (25). Athletes achieve 20% higher in 

height, 44% VJH difference, and 56% by the COM height at take-off (25). The squat jump VJH 

increased with arm swing resembling an increase of 0.86J/kg of total work (25). In addition the 

subjects jumped 23% higher with arm swing, which can be explained by a greater vertical 

position of COM at take-off (25). Slower contractile element slows velocity in the early and later 

stages of the propulsive phase thus affecting the squat jump with arm swing resulting in 

generating greater contractile element force. Furthermore, greater force production was 

generated during the arm swing and slower contractile element shortening velocity. Not only had 

the hip extensor muscles produced more work with the arm swing, but also the erector spine, and 



30 
 

gluteus maximus muscles (25). It is anticipated that the mechanisms underlying the increase are 

different for each muscle in the lower extremities. The shortening velocity provides an 

explanation in the force production and the force-velocity relationship.  The vertical velocity of 

the COM at take-off was recorded to be 12.7% larger in the arm swing compared to the no-arm 

swing jumps, resulting in 8.2 centimeter in the vertical displacement between take-off and apex 

of the jump (73).  

 

M-2. CONTRIBUTION OF UPPER LIMBS USING MARKERLESS MOTION 

CAPTURE SYSTEM  

 The DARI markerless motion capture system was used to access the contribution of the 

upper extremities during CMVJ while using arm swing (AS) or no-arm swing (NAS). The usage 

of the upper extremities increased the VJH by an average of three inches (171). Dual-energy X-

ray absorptiometry scans determined that the upper limbs were 12.0% of the total body mass. 

Movement of the upper limbs during the AS CMVJ produced 32.2% of the total GRF and 11.3% 

during the NAS CMVJ (171). The enhancement performance when jumping using an AS 

resulted in a 13.6% increase in VJH (171). The contribution of the upper limbs during the AS 

CMVJ averaged 31.5% of the peak GRF, which occurred immediately before takeoff (171). The 

upper extremities can influence the vertical jump performances and the accompanying kinetics. 

It was purposed that when analyzing jump GRFS, one must be aware of how much the upper 

limbs contribute to these forces. In addition, proper AS mechanics must be emphasized when 

instructing correct jump technique.  
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N. JOINT TORQUES  

Stimulation of joint torques listed in the order of joint extension: knee, hip, and ankle for 

the NAS, however, during AS the CMVJ begins: hip, shoulder, knee, and ankle.  Incorporating 

the upper limbs cause an early hip activation in order to effectively swing the arms upward. Knee 

joint torque is decreased in the arm swing due to the decreased duration of torque generation. 

Arm motion can increase the jump performance and vertical velocity contributes to nearly 2/3 of 

the increased height (44). In addition, arm swing influences an onset of early hip torque and 

lengthens the duration on the ground. A jump with arm swing slows the hip extension allowing 

for more force production. The slowing of hip extension allows longer muscle activation to 

escalate therefore allows for greater force production and more work generation (67). Larger the 

torque value at the hip and knee result in larger mean downward vertical forces applied at the 

joints. The no-arm swing jumps produce greater hip and knee extension torques during the 

propulsive phase. Once the arms pass the vertical, the shoulder load torque acting on the trunk 

become negative, thus affecting the slowing of the angular velocity of the hip and a reduction in 

the power output. Arm swing jumps have a reduction in the muscle shorting velocities for the hip 

extensors, thus allowing for greater force productions (67). “Jump height can be increased by 

arm swing specifically by slowing leg extension permitted muscles to work on favorable region 

of the force-velocity curve, thereby allowing them to produce  higher forces and to generate 

greater work (joint torque augmentation mechanism), and energy contributions from the arm 

swing (pull mechanisms) (67)”. 
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O. GENDER DIFFERENCES 

O-1. ANTERIOR CRUCIATE LIGAMENT INJURY DURING JUMPS  

 Anterior cruciate ligament (ACL) injuries are among the most common knee injuries 

observed in athletes (4, 11, 66, 158). The ACL is considered an important ligament that limits 

anterior movement and rotation of the tibia during activity (62, 177). Seventy percent of all ACL 

tears happen in a noncontact mechanism when an athlete rapidly deaccelerates and pivots with a 

large amount of torsion while the foot is planted (35, 92, 180, 191, 199, 205). Noncontact ACL 

injuries are common in sports such as soccer, basketball, field hockey, and volleyball (4, 11, 66, 

158). These sports required a high amount of energy and fatiguing muscular performance. When 

fatigue occurs, reaction times to external stimuli are delayed and injuries are more likely to occur 

(43). Fatigue is an extrinsic factor affecting the musculoskeletal and neurological systems (22, 

43). The system of fatigue seems to create an environment that increases the risk of noncontact 

ACL injuries by altering the lower extremity landing strategies. Fatigue has been reported to 

result in decreased motor control performance (117, 230), increased knee joint laxity (199, 207, 

230) decreased balance skill (117), and decreased proprioception (105, 134, 135, 160, 199). 

Muscle fibers have a decreased capacity to absorb energy when fatigued, and altered 

neuromuscular function with fatigue which has been shown to increase anterior tibial transition 

(200, 206). These effects indicate a decreased capacity for controlling body movement after 

fatigue and may indicate fatigue as a contributor to noncontact ACL injuries (22, 105, 178, 195).  

 

ACL tear is a debilitating sports injury with an estimated 80,000 ACL occurrences in the 

United States annually (91, 161, 185). The literature unanimously suggests that females are 

substantially more susceptible than males in suffering acute noncontact injury of the ACL (10, 
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61, 89, 185). American Orthopaedic Society for Sports Medicine in 1999 issued a consensus 

statement suggesting that biomechanical and neuromuscular factors appear to be the most 

important factors associated with ACL injury and higher incidents in injury with female athletes 

(90, 185). Although ACL tears can occur during bilateral and unilateral landings (30), unilateral 

landings are considered more dangerous due to the decreased base of support and the increased 

demand required by absorption of the impact of landing. Boden et al. have suggested that ACL 

tears occur more commonly during unilateral than bilateral landings (30). 

 

O-2. THEORIES OF GENDER BIOMECHANICAL DIFFERENCES  

Although the ACL gender bias is likely multifactorial, three main theories have been 

proposed to explain the higher incidence of female ACL injury: the ligament dominance theory 

(101), the quadriceps dominance theory (101), and the straight knee landing theory (114). The 

ligament dominance theory suggests that the lower extremity muscles do not adequately absorb 

the impact of landing, resulting in knee valgus which causes increased loading of the ACL (76, 

185). The quadriceps dominance theory suggests that females tend to rely on their quadriceps 

more than their hamstrings creating excessive anterior translation of the tibia (76, 104, 115, 185). 

The straight knee landing theory suggests that females exhibit less knee flexion at the time of 

impact that may lead to ACL injury either by hyperextension or by anterior tibial translation (59, 

114, 185). 

 

O-3. GENDER BIOMECHANICAL DIFFERENCES  

Several epidemiological studies support the notion that fatigue is a predisposing factor 

responsible for increased number of injuries (33, 81, 82, 99, 121, 185). According to Rozzi and 
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colleagues, males and females athletes were fatigued to 25% of original torque with the use of a 

isokinetic dynamometer, the researchers found decreased knee proprioception and increased 

onset of contraction time for hamstrings and gastrocnemius as subjects preformed a landing task 

(199). Chappell et al. suggested that a fatigue protocol of vertical jumps and sprints caused 

subjects to land with increased proximal tibia peak anterior shear force and decreased kneed 

flexion at the time that peak anterior sheer force occur (43, 185). Muscle fatigue has been shown 

to alter the lower extremity biomechanics of healthy individuals (178, 188). Madigan and Pidcoe, 

accessed the effects of lower extremity muscle fatigue on drop-landing biomechanics and 

documented an increase in performance at the hip to compensate for the weakness created in the 

thigh muscles (142).  

 

These biomechanical changes are believed to decrease shock absorption and knee 

stabilization during landing. Following quadriceps targeted fatiguing protocol, Augustsson et al. 

determined reduction in negative power at the knee and hip during single-leg hop landings (12). 

During drop landings, the lower extremity acts to absorb impact and to deceleration the COM 

primarily in the vertical direction (181). It appears that the hip extensors are mostly responsible 

for controlling the vertical position of the COM and preventing collapse of the knee flexion 

when comprised by fatigue of the thigh muscles (59, 155). During cross-cutting tasks, quadriceps 

fatigue resulted in increased ankle dorsiflexion movements, and displaced peak knee flexion 

angles (43, 178). Hamstring fatigue resulted in decreased peak impact knee flexion moment, 

increased internal tibial rotation, and decreased peak ankle dorsiflexion (43, 178).  Madigan and 

Pidcoe observed that the motor patterns shift proximally and the performance at the hip increases 

to compensate for the loss in order to show the downward momentum (142). However high 
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demand is placed on the knees and hips to maintain stability during a single-leg hop landing. 

After creating weakness in the quadriceps and other muscles surrounding the knee, a 

compensatory adaptation in landing strategy can be observed at the ankle. Peak extension 

moment and power to the knee decrease, however, the total amount of knee flexion increases 

following fatigue (181).  

 

Moreover, females landed with an external knee valgus moment that was increased in the 

post-fatigue condition while males exhibited an external vargus moment. Females also exhibited 

a greater external knee flexion moment that the authors suggested may be due to increased 

quadriceps contraction, decreased hamstring contraction or a combination of both conditions (43, 

185). Fatigue of the hamstrings have resulted in decreased peak impact knee flexion moments, 

and increased internal tibial rotation at peak knee flexion and decreased peak ankle dorsiflexion 

(22). However, quadricep fatigue results increased peak ankle dorsiflexion moments, decreased 

peak knee extension moments, delayed peak knee flexion and delayed peak knee extension 

moments, delayed knee flexion and delayed subtalar peak inversion moments (178). More 

recently, others found that fatigue results in increased initial and peak knee abduction and 

internal rotation motions and peak knee internal rotation, adduction, and abduction moments 

with the latter being more pronounced in females (151).  

 

Furthermore, increased knee valgus may produce excessive stress on the inert structures 

and lead to traumatic injury, consistent with the ligament dominance theory (76, 102, 185). 

Females exhibited greater peak knee valgus than males in variety of athletic activities (74, 109, 

124). Females athletes subsequently suffered ACL injury were found to have increased peak 
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knee valgus compared to female athletes who did not injury ACL. Pappas et al. stated that 

females land with increased peak knee valgus and VGRF suggested that the stress on the inert 

structures can become excessive and lead to traumatic injury (185). Fatigue elicit a similar 

response in males and females, resulting in significantly increased peak VGRF, peak foot 

abduction, and peak rectus femoris normalized EMG activity (185). Fatigue has been defined as 

‘any reduction in the force generating capacity of the total neuromuscular system regardless of 

the force required in any given situation’ (23). Recreational athletes preforming unilateral 

landings, compared to bilateral landings, exhibit increases in knee valgus and normalized EMG 

activity, and decreased knee flexion at initial contact and decreased peak knee flexion(184). 

Localized quadriceps and hamstring fatigue also have been found to induce significant changes 

in female lower-limb control during crossover cutting tasks (178). Clark et al. analyzed the 

fatigability differences between men and women by accessing muscle activity of the thigh 

musculature during a knee extension (46). Women appeared to have longer time-to-task failure 

during a normal submaximal knee extension (46). Suggesting different fatigue induced muscle 

activation patterns between sexes, especially in the rectus femoris (46). Generalized 

neuromuscular fatigue has been suggested to increased ACL injury risk during stop jump tasks, 

primarily via promotion of potentially hazardous anterior tibial shear loading, particularly in 

females (43). Females have executed jump landing movements with more initial-contact ankle 

plantar flexion, peak stance-phase ankle supination, peak knee abduction, and peak knee internal 

rotation compared with men (151). In addition, women also executed jump landing movements 

with larger peak stance-phase external knee adduction, knee abduction, and knee internal rotation 

movements and smaller peak external ankle-dorsiflexion moments compared with men (151). 

Fatigue causes large increases in initial-contact and peak stance-phase knee abduction and knee 
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internal rotation motions and in peak external knee-adduction, abduction, and internal rotation 

moment (151). Lastly, fatigue-induced increases in external knee-abduction moments occur 

noticeably earlier and are more pronounced in females than in males, suggestion a potential link 

with the increased risk of noncontact ACL injuries observed in women (151).  

 

 

P. BIOMECHANICS OF JUMP LANDINGS  

 Microfractures, medial tibial stress syndrome, spinal injuries and other degenerative 

changes in joint and articular cartilage in humans also have been suggested to be significantly 

increased by the body’s ability to attenuate the associated shock from continual impacts (55, 139, 

153). These have been associated to propagate in humans whose lower extremities are subjected 

to continual sub-maximal loading. The shock experienced by the body due jump landings must 

be attenuated by several structures and mechanisms in the body in joint kinematics and muscular 

activity (55, 131, 179). Several studies have reported significant decreases in shock attenuation 

with fatigue during running (64, 157, 219). These studies have concluded that there is a 

relationship between fatigue and increased heel strike-induced shock waves. It is thought that the 

fatigue muscles will be less able to protect the body effectively from impact forces and 

predispose the body to impact-related injuries (55). This loss in protection may be due to a 

variety of changes that occur with fatigue, including both central and peripheral mechanisms 

(55). The greater peak anterior shear force on the proximal tibia due to fatigue is associated with 

decreased knee flexion ankle and increased valgus moment (43). The hip generally has the 

greatest joint moment and power during two-legged landings, the knee has the greatest joint 

excursion and preforms the greatest amount of work (59, 65). The landing strategy changes as 
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fatigue progresses in a way that maintained the same level of shock attenuation (55). During 

single leg-landings, shock parameters did not change, however, altered body positions and use of 

the hip and ankle may shift the locations of peak stresses (55). The energy absorption in the 

lower extremity indicates from the ankle to the hip, but knee dynamics remained the same 

despite the fatiguing exercise focusing on the muscle group (55). This may indicate that an 

overriding goal of the neuromuscular system is to maintain the functionality of the knee joint in 

order to maintain shock attenuation (55).  

 

Q. BIOMECHANICS OF SINGLE LEG JUMPS  

 Biomechanical analysis of the landing portion of the single-leg hop may provide 

insightful information about the lower extremity function in dynamic situations. Single-legged 

jump landings have resulted in an increase valgus movement (angle from frontal plane) at the 

knee joint, decreased knee flexion, and increase in rectus femoris muscle activity compared to 

bilateral landings (35, 184) Increased valgus movement (increased frontal knee angle) and knee 

extension are believed to contribute to increased stress on the ACL which may predispose an 

individual to sustaining an ACL specific injury (35, 103, 229). The human body absorbs the 

GRFs during movements, and if the musculature surrounding the joints are not properly 

developed, maintained, or fatigued, it may lead to ligament susceptibility (35, 173). After 

fatigue, individuals land with more knee flexion and ankle plantar flexion, display greater 

VGRF, and require longer times to stabilize the body after landing (35). Bejaminse et al. 

determined that both males and females used a stiff landing strategy following fatigue by landing 

with less maximal knee valgus and less knee flexion at initial contact of the single-leg stop-jump, 

without changing the hip joint angles (22). The decrease in knee flexion at the initial contact may 
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be an attempt to increase knee stability while relying on the static structures of the knee more 

than the  dynamic structures following fatigue (22).  

 

 Time to stabilization (TTS) is a common measure when researching postural stability and 

the function of the ankle and knee (35, 36, 198, 225). Time to stabilization is defined as the 

amount of time it takes for an individual to return to baseline, or static state, calculated from the 

GRF. TTS is measured across the 3 axes, medial to lateral, anterior to postural, and vertical. 

These are reported as individual measures (35). 

 

R. BIOMECHANICS OF DEPTH (DROP) JUMP  

 A few of exercise for the lower body that have been previously discussed have suggested 

that plyometric training could take place under fatigued conditions to maximize task-specific 

adaptations. However, there may be an increased impact loads and accelerations when the body 

impacts the ground in a fatigued state, as evidence in running (64, 162, 221), increased the risk 

of injury (139, 142, 162, 221). Furthermore, when a foot contacts the ground during landings, a 

GRF causes a transient acceleration (shock wave), which travels up the musculoskeletal system 

from the foot to the head (63, 132, 162). When excessive shock wave is applied from 

movements, impact accelerations can cause a number of musculoskeletal overuse injuries. Such 

injuries include stress fractures, (159, 232), articular cartilage and joint degeneration (71, 190, 

212), and osteoarthritis (190, 223, 231). Moran et al. indicated the relationship between high-

impact accelerations and various injuries (stress fractures, articular cartilage and joint 

degeneration, and osteoarthritis), indicated that there an increased risk of injury in performing 

plyometric drop jumps (30 and 50 cm) when fatigued through running (170). It is advice to 
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preform drop jumps at 30 cm when fatigued and higher drop jumps (50 cm) when non-fatigued 

(170).  

 

S. BIOMECHANICS DURING FATIGUE PROTOCOLS  

 Quammen et al. compared two fatigue protocols [slow linear oxidative fatigue protocol 

(SLO-FP), and functional agility short-term fatigue protocol (FAST-FP)] to determine 

biomechanical differences (189). Following fatiguing tasks, individuals appeared to be more 

erect or extended position. Landing with the knee in a more extended position is thought to 

increase an anterior shear force on the proximal end of the tibia via an increased patellar tendon-

tibia shaft angle (112). Blackburn and Padua have shown that landing with more erect posture 

results in increased GRF and subsequent quadriceps activation (26). These participants might 

have increased the strain placed on the ACL and increased loading. Decreased joint angles (i.e. 

knee flexion) is thought to produce a mechanical disadvantage for the hamstring muscles by 

decreasing their angles of pull and reducing the amount of posterior force that can be applied on 

the tibia (183, 189). The decreased posterior force allows for an increased anterior translation, 

which could increase the load placed on the ACL (183, 189). Quammen found that the FAST-FP 

induced changes in frontal-plane hip and knee biomechanics when compared to the SLO-FP. Hip 

abduction at peak knee flexion was greater during FAST-FP than during SLO-FP. FAST-FP may 

induce greater amount of fatigue to the hip musculature resulting in greater hip abduction (189). 

Furthermore FAST-FP produced increased in hip abduction, internal knee adduction moment, 

and knee internal rotation, which results in increased valgus loading on the knee joint (35). 

Fatigue-induced has been shown to decrease in hip and knee flexion, resulting in more extended 

landing posture. Further increasing anterior tibial translation and increasing strain. 



41 
 

T. BIOMECHANICS COORDINATION FOLLOWING FATIGUE  

 Fostier and Nougier described different segment coordination patterns in response to 

fatiguing upper limb multi-segment movements during throwing (77). Participants appeared to 

increase the rigidity of the system and the proximal-distal segment motion order. Activation 

amplitude of the knee extensor and flexor muscle increased at the end of fatiguing exercises, the 

pattern of the electromyographic traces remained similar to the observed before fatigue (196). 

Bonnard et al. reported that multi-segment movements under fatigue showed that hopping could 

be maintained for long periods of time by using two difference strategies (earlier preactivation 

and trade-offs between muscles across different joint levels) (31). Stiffness regulation under 

fatigue conditions may have an effect on the motion of segments and different coordination 

patterns may emerge (87, 195). Under fatigue, the inability of the neuromuscular system to 

sustain the required power output around the joint, the segmental coordination of the vertical 

jump many be rearrange (70, 195). It is disputed if a of the segmental movement and/or muscle 

activation pattern would occur when muscle strength decreases due to fatigue. Following a 

vertical jump fatiguing protocol a decline in vertical jump height was observed, however, no 

modifications were observed in the proximal-distal sequence (195). Vertical jump performance is 

affected by fatigue of the knee extensor muscle, but not by fatigue of knee flexors (196). Despite 

the decrease in VJH, the subjects appeared to use a robust pattern which ensured consistent 

responses to generate maximal performance. The same strategy was followed before and after a 

fatigue protocol. 
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U. LANDING ERROR SCORING SYSTEM  

The Landing Error Scoring System (LESS) is a clinical assessment tool that was 

developed to provide a standardized instrument to identify subjects displaying jump-landing 

biomechanics that potentially place them at risk for noncontact ACL injury (182). The LESS 

may be used as a clinical assessment tool to use during large-scale screening to identify those at 

risk for noncontact ACL injury and other lower extremity injury (182). It is comprised of two 

standard video cameras for identifying potentially high-risk movement patterns (“errors”) during 

a jump-landing maneuver (182). Furthermore, to determine and detecting an individual for the 

high risk for an ACL injury by the presence of multiple high-risk movement patterns. Individuals 

with poor (high) LESS scores demonstrate different lower extremity kinematics and kinetics 

across multiple biomechanical factors and in multiple planes of motion. The individuals with 

poor jump-landing technique demonstrated less knee and hip flexion motion, more knee valgus 

and hip internal rotation, greater knee joint loading (anterior tibial shear force, knee extension 

motion, and knee valgus), and greater vertical GRF (182).  

 

V. REPEATED ANAEROBIC JUMP TEST 

 Repeated jumps protocols are becoming more prevalent for assessing athlete’s anaerobic 

power and capacity. The Bosco test is a repeated-jump protocol in which an athlete performance 

continuous vertical jumps for a specific duration (typically 60 sec) (32, 154). The jump test was 

reported to be suitable to evaluate the power output of leg extensor muscle during natural motion 

(32). The test evaluates an athlete’s anaerobic power utilizing SSC actions of the lower 

extremity. Bosco test has shown to be strongly related to performance on the Wingate test, the 

most commonly used measure of anaerobic power capacity (32, 123, 154). However, the 



43 
 

Wingate test is limited to concentric muscle actions, any may not reflect anaerobic processes 

utilizing the SSC (106, 154). The SSC activities under fatigue conditions tend to reduce muscle 

activation preceding contact and during the concentric phase of the movement, (13, 87, 126). 

Angular displacements and velocities are reduced (87, 196), and force production deceases 

(208). Reduction in muscular preactivation magnitude may indicate that fatigue in jumping task 

impairs stiffness and other lower extremity, which in turn impairs the transfer of elastic energy 

for eccentric phase to the concentric phase movement (154). According to Mclean et al. the flight 

time was affect early in the jump series (20 sec) than was ground contact time, which was 

significantly increased until 50 sec (154). As contact time increases it was assumed that the 

coupling between the eccentric and concentric phases of the amortization phase is increased, 

which reduces the efficiency of potentiation in performance the task (87, 154). The repeated 

jump tests results in decrements in muscle activation, force production, and jumping technique 

(154). Furthermore reductions in muscle activation and fight time appeared early in the jumping 

protocol, whereas decrements in the force production appeared towards the end of the jump task 

(154). When participants appeared to minimize the lower extremity involvement and began to 

favor increasing contribution from truck motion (154). McNeal reported that repeated jump 

protocols assessing fatigue during SSC activities should last a minimum of 20 sec; however, 40 

sec was necessary to observe significant changes to all measured parameters (154).   

 

W. ANAEROBIC SPRINT RUNNING TEST  

 There are wide variety of anaerobic tests that incorporate different modes of exercise or 

movement patterns, which also varying in duration. Currently, the Wingate anaerobic test on a 

cycle ergometer is the most used and most reported anaerobic performance test (19, 116, 150). 
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The non-motorized treadmill (NMT) offers a suitable tool for the assessment of all-out sprint 

running performance in a controlled setting (133). The NMT offers measurement performance 

such as time to peak running speed, distance covered, mean and peak power, mean and peak 

velocity, and peak and peak force. A number of sports incorporate running, the NMT is more of 

a sport specific anaerobic test. McLain et al. indicated that the 25 sec tethered maximal sprint 

using an NMT represents an acceptable and reliable assessment of anaerobic power and capacity 

(150). Zemkova and Hamar found that analysis of power during short-term bouts of cycling and 

tethered running showed that sprinters performed significantly better and higher power on the 

treadmill than cycle ergometer (234). Anerobic performance testing using a 25 sec with a load of 

18% on an NMT has been reported to be a suitable method (150). The protocol has been shown 

to provide the ability to exert peak anaerobic power and anaerobic capacity, mainly for athletes 

whom train and preform weight-bearing activities that include running/sprinting.  

 

X. CONCLUSION  

 Many studies have been conducted to comprehend the mechanical movements of the 

human body during a vertical jump. The biomechanical motion research has observed that a 

vertical jump is a complex ballistic multi-joint actions, where the musculature around the lower 

extremity joints collectively operate to produce patterned movements (197). The analysis of 

muscular function during a vertical jump is complicated due to the interactions of the position of 

the body, angle of take-off, muscle involved, eccentric and concentric contractions of antagonist 

muscle patterns, and the use of arm movements. The MCS which records the kinetic and 

kinematic data provides the leading analysis tool that allows individual analysis of athlete’s 

vertical jump signature in retrospect to the force-time curve. Furthermore, the relationship of the 
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kinetic and kinematic data provides the best representation of the forces generated by the body; 

thus, allowing the researcher to quantify results.  Segments and joints can further alter the forces 

generated, particularly the upper limbs, which can influence the overall force-time curve.  

 

 Several studies support the notion that fatigue is a predisposing factor that is responsible 

for the increased number of injuries Musculoskeletal injuries are common in sports which 

require a high amount of energy and fatiguing muscular performance. The system of fatigue 

increases the risk of noncontact injuries by altering the lower extremity landing strategies. 

Biomechanical changes are believed to decrease shock absorption and knee stabilization during 

landing. Furthermore, the shock experiences by the human body absorbs the GRFs during the 

movements, and if the musculature surrounding the joints are not properly developed, 

maintained, or fatigued, it may lead to ligament susceptibility. Understanding of the body 

segments in motion during a vertical jump and following fatiguing tasks allows for improvement 

in performance. 
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II. CHAPTER II – INTRODUCTION 

Improvements in motion capture systems (MCS) have led to analytical tools that allow 

detailed analyses of the counter-movement vertical jumps (CMVJ), and to determine the vertical 

displacement of the center of mass (COM) (72, 73, 97, 136). MCS has been used to assess an 

individual’s upper-and lower-body motions, both explosive and functional in nature. A MCS 

allows derivation of the individual joint torques and the net ground reaction force (GRFs) 

produced.  Additionally, a markerless MCS quantifies the kinetic and kinematic movement of 

body segments and joints which influence the forces generated, and the enhancement of 

performance during a CMVJ with an arm swing (79, 171, 187). Advancements in MCS and 

screening protocols is capable of identified American football athletes at high-risk for non-

contact season-ending injuries (172).  

 

Vertical jumps (VJ) are commonly performed in many sports skills and athletic events 

resulting in the incorporation of jump variations or sport specific motions into the training of 

athletes. The VJ is well-recognized essential component of successful athletic performance. The 

VJ relies upon the ability of involved muscles to actively synchronize to raise the COM of the 

body. The VJ test was originally designed by Dr. D.A. Sargent in 1921 to test the physical 

health status of an individual by examining the relationship of bodily movements and vital 

functions (201). The CMVJ has been extensively used as a measurement of lower-body power 

to label the increased performance among athletes. Typically, in the athletic performance 

settings, coaches and teachers use a variety of devices to measure lower-body power and VJH, 

however, evaluation of biomechanical of lower-muscular fatigue during CMVJ testing has not 

been evaluated.  
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There are wide variety of anaerobic tests that incorporate different modes of exercise or 

movement patterns, which also varying in duration. Repeated jumps and sprinting protocols are 

becoming more prevalent for assessing athlete’s anaerobic power and capacity. The Bosco test is 

a repeated-jump protocol in which an athlete performance continuous vertical jumps for a 

specific duration (typically 60 sec) (32, 154). The jump test was reported to be suitable to 

evaluate the power output of leg extensor muscle during natural motion (32). Currently, the 

Wingate anaerobic test on a cycle ergometer is the most used and most reported anaerobic 

performance test (19, 116, 150). However, a number of sports incorporate running. McLain et al. 

indicated the non-motorized treadmill (NMT) (typically 25 sec with resistance of 18% body 

weight) offers a suitable tool for the assessment of all-out sprint running performance to provide 

the ability to exert peak anaerobic power and anaerobic capacity, mainly for athletes whom train 

and preform weight-bearing activities that include running/sprinting in a controlled setting (150).  

 

 Anterior cruciate ligament (ACL) injuries are among the most common knee injuries 

observed in athletes (4, 11, 66, 158). The ACL is considered an important ligament that limits 

anterior movement and rotation of the tibia during activity (62, 177). Seventy percent of all ACL 

tears happen in a non-contact mechanism when an athlete rapidly deaccelerates and pivots with a 

large amount of torsion while the foot is planted (35, 92, 180, 191, 199, 205). Non-contact ACL 

injuries are common in sports such as soccer, basketball, field hockey, and volleyball (4, 11, 66, 

158). These sports required a high amount of energy and fatiguing muscular performance. When 

fatigue occurs, reaction times to external stimuli are delayed and injuries are more likely to occur 

(43). Fatigue is an extrinsic factor affecting the musculoskeletal and neurological systems (22, 

43). The system of fatigue seems to create an environment that increases the risk of non-contact 
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ACL injuries by altering the lower extremity landing strategies. Fatigue has been reported to 

result in decreased motor control performance (117, 230), increased knee joint laxity (199, 207, 

230) decreased balance skill (117), and decreased proprioception (105, 134, 135, 160, 199). 

Muscle fibers have a decreased capacity to absorb energy when fatigued, and altered 

neuromuscular function with fatigue which has been shown to increase anterior tibial transition 

(200, 206). These effects indicate a decreased capacity for controlling body movement after 

fatigue and may indicate fatigue as a contributor to noncontact ACL injuries (22, 105, 178, 195). 

Chappell et al. suggested that a fatigue protocol of vertical jumps and sprints caused subjects to 

land with increased proximal tibia peak anterior shear force and decreased kneed flexion at the 

time that peak anterior sheer force occur (43, 185). Muscle fatigue has been shown to alter the 

lower extremity biomechanics of healthy individuals (178, 188). Madigan and Pidcoe, accessed 

the effects of lower extremity muscle fatigue on drop-landing biomechanics and documented an 

increase in performance at the hip to compensate for the weakness created in the thigh muscles 

(142). Further evaluation and understanding the biomechanical changes in performance will give 

future insight into how fatigue can be rated and prevent fatigue related injuries.   

 

A. Problem Statement 

The notion that fatigue is a predisposing factor responsible for the increased number of 

musculoskeletal injuries is common in sports. The system of fatigue increases the risk of non-

contact injuries by altering the lower extremity takeoff and landing strategies. Biomechanical 

changes are believed to decrease shock absorption and knee stabilization during landing. 

Furthermore, the shock experiences by human body absorbs the GRFs during movements, and 

if the musculature surrounding the joints are not properly developed, maintained, or fatigued, it 
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may lead to ligament susceptibility. Furthermore, evaluation of acute biomechanical fatigue 

rates may determine when an athlete is able to return to sport following rehabilitation.  

 

B. Purposes  

 The purposal of the present study is to determine the acute biomechanical alterations on 

total-body following VJ fatiguing and sprint fatiguing tasks. Understanding acute total-body 

biomechanical fatigue may further provide information for understanding when an athlete begins 

altering mechanics to sustain performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

III. CHAPTER III - METHODS 

 

A. Experimental Approach to the Problem 

 To determine the acute biomechanical performance alterations of the lower extremities 

following acute fatiguing protocols. Specifically, a markerless three-dimensional (3-D) video 

motion capture system (MCS) and force place will be used to compare the kinetic and kinematic 

changes in performance following a variety of fatiguing protocols. An experimental with-in 

subjects design will be used to compare performance decrements.  

 

B. Subjects  

 Eleven healthy, recreationally active women (�̅�±SD; age=20.81.1 yrs., hgt.=172.27.4 

cm, wgt=68.07.2 kg) and eleven men (age=23.02.6 yrs., hgt.=180.34.8 cm, wgt.=80.47.3 

kg) volunteered for this investigation (Table 1). 

 

 

 

All subjects were physically active a minimum of one hour for three days a week for at 

least the preceding three months. None of the participants reported a history of current or prior 

neuromuscular diseases or musculoskeletal injuries specific to the ankle, knee, or hip joints. 

Subjects demonstrated functional range of motion in hip, knee, ankle, and shoulder joints without 

Table 1. Descriptives Characteristics

Mean ± SD Subjects (#) Age (yrs) Height (cm) Weight (kg)

Females 11 20.8 ± 1.1 172.2 ± 7.4 68.0 ± 7.2

Males 11 23.0 ± 2.6 180.3 ± 4.8 80.4 ± 7.3
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limiting mechanical motion and performance during a VJ and running. This study was approved 

by the University’s institutional review board for human subjects’ research. Each subject read 

and signed an informed consent form and completed a health history questionnaire prior to 

participating. 

 

C. Procedures 

 Each subject visited the laboratory for four visits, one familiarization session, one control 

session, and two experimental sessions. The familiarization consisted of subjects signing 

informed consents, vertical jump and sprint screening, a warm-up protocol, practice of light 

fatiguing protocols, and completion of the performance movement analysis (PMA). During the 

experimental session, subjects completed a 10-min standardized warm-up protocol followed by 

performing the pre-test PMA, starting with the jump motions, followed by the squat motions, and 

then the remaining motions. The subjects preformed one of the three randomized acute fatiguing 

protocols (i.e. control session, modified jump test, 25-second sprint test) followed by the post-

test PMA (Figure 1). Each subject completed 1 session per week at the same time of day. The 

laboratory temperature (75-82°F) and humidity (38-42%) remained in a consistent range.  

 

Figure 1. 
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D. Performance Motion Analysis 

 The Performance Motion Analysis (PMA) is a collection of nineteen different motions to 

assess an individual’s upper extremity and lower extremity. The motions include shoulder ranges 

of motion (ROM) (i.e. shoulder abduction and adduction, shoulder horizonal abduction, shoulder 

internal and external rotation, shoulder flexion and extension), trunk rotation, bilateral overhead 

squat, right and left unilateral squat, right and left leg lunge, right and left balance test, bilateral 

CMVJ, right and left unilateral CMVJ, concentric VJ, 5 right leg and 5 left leg VJs, and depth 

jump. All nineteen motions are incorporated into the PMA report. 

 

 The motions believed to be most affected by the acute fatigue were tested first. During 

the experimental sessions the PMA began with the jump motions followed by the squat motions. 

The order of the PMA during the experimental sessions is the following: bilateral CMVJ, right 

and left unilateral CMVJ, concentric VJ, 5 right leg and 5 left leg VJs, and depth jump, bilateral 

overhead squat, right and left unilateral squat, right and left leg lunge, right and left 20-sec 

balance test, shoulder abduction and adduction, shoulder horizonal abduction, shoulder internal 

and external rotation, shoulder flexion and extension, trunk rotation.  

 

E. Performance Motion Analysis Scores  

 The 192 variables collected from the kinetic and kinematic variables during the 19 

motions of the PMA were used to calculated six different analysis scores focusing on certain 

movement variables. These scores consist of the Composite Score, Power, Score, Strength, 

Score, Dysfunction Score, Exercise Readiness Score, and Vulnerability Score (Figure 2). The 
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Composite Score is a cumulative score based on the overall performance, (Power Score + 

Functional Strength Score – Dysfunction Score). The Power Score consists of data from jump 

heights and is an aggregate of all the jump performances. The Functional Strength Score is the 

accumulation of squat depths and is an aggregate of all the squat performances. The Dysfunction 

Score consists of asymmetries (upper limb, lower limb, and trunk), knee valgus, lower limb 

kinetic chaining, and balance performances. The Exercise Readiness Score (ERS) is a scale that 

the depicts the level of training and readiness. The score consists of three factors: rebalance, 

development, and optimize. The rebalance (level 1) is to remove compensations and find 

symmetry between right and left upper and lower extremities consisting of unilateral forces, joint 

flexions and joint torques. Which the individual is depicted in the structuring phase and to focus 

on basic mechanics. The development (level 2) is that the individual is on the right path and 

needs to continue to the development, which the displays kinetic and kinematic symmetry and 

the individual is in developmental performance phase. The optimize (level 3) is that the 

individual needs to maintain, which the individual is displaying mechanics of peak performance. 

The Vulnerability Score is the aggregate of the overall performances, stresses (consisting of 

unilateral high forces, joint flexions and joint torques), and compensation patterns (overuse of 

dominant side or limited usage due to history of an injury). This score is presented as a 

percentage of 0-100%.  

 

Mosier et al. has previously indicated from a k-means cluster analysis that vulnerability 

score >60, MCS composite score <1800, functional strength and power score difference of ≥350 

points, and joint torque differences greater than 30%, has indicated American collegiate football 

athletes as a high risk for non-contact season-ending injuries (172). Of the 5 athletes indicated as 
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a high risk for injury, three suffered a non-contact season-ending injury to the lower-extremities. 

Although two individuals were reported as false positives, there were no false negatives (i.e., 

suffered a season-ending non-contact injury but not identified by the MCS testing). 

 

 

 

 

Shoulder abduction and Adduction

Combination of power score, strength score, and dysfunction score. Shoulder Horizontal Abduction

(power + strength - dysfunction) Shoulder Internal and External Rotation

Shoulder Flexion and Extension

Trunk Rotation

Bilateral (Overhead) Squats

Right Unilateral Squat

Left Unilateral Squat

Right Leg Lunge

Left Leg Lunge

Asymmetry, valgus, kinetic chaining, balance performances. Right Leg (20 sec) Balance Test

Left Leg (20 sec) Balance Test

Bilateral CMVJ 

Right Unilateral Vertical Jump

Legft Unilateral Vertical Jump

Concentric Vertical Jump

5 Right Leg Vertical Jumps

5 Left Leg Vertical Jumps

Depth Jump

Scale of 0-100%. 

if score >60% has been shown as high risk for injury.

Develop: (level 2) is the individual is on the right path and needs to 

continue to the development, which the individual displays kinetic 

and kinematic symmetry and is in developmental performance phase. 

Optimize: (level 3) is the individual needs to maintain, which the 

individual is displaying peak performance mechanics. 

Aggregate of the overall performances, stresses (consisting of 

unilateral high forces, joint flexions and joint torques), and 

compensation patterns (overuse of dominant side or limited usage due 

to history of an injury). 

Scale of three levels consisting of rebalance, development, and 

optimize. 

Vulnerability Score

Figure 2. Functional/Performance Motion Analysis

Accumulation of jump heights, and aggregate of all of jump 

performance metrics.

Functional Strength Score

Accumulation of squat depths, and aggregate of all squat performance 

metrics.

Dysfunction Score

Exercise Readiness Score

Score Definitions Motions

Composite Score

Power Score

Rebalance: (level 1) is to remove compensations and find symmetry 

between right and left upper and lower extremities consisting of 

unilateral forces, joint flexions and joint torques. Which the 

individual is in the structuring phase and focus on basic mechanics.
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F. Acute Fatigue Protocols 

 F-1. Warm-up Protocol. Each subject was instructed through a 10-min dynamic warm-up 

at the beginning of each experimental session. The warm-up consisted in the order of 10 

quadricep pull to romanian deadlift reach, 10 tin soldiers, 10 figure 4, 10 walking lunges with a 

T-spine, 5 inchworms, forward skip with forward arm circles, backward skip with backward arm 

circles, forward skip with hip internal rotation, backward skip with hip external rotation, A-skip, 

A-skip to squat, and 10 body weight squats.  

 

F-2. Control Session. Each subject was instructed to sit for 15 min. The PMA was 

completed before the rest period in order of the jump motions, followed by squat motions, and 

remaining PMA motions. The PMA was completed following the blood samples which was 

collected for lactate determination pre- and 2.5 min post-control period. In addition, heart rate 

was collected throughout the entire session. 

 

F-3. Modified Jump Test. Each subject was instructed to bend the knee to about 90 

degrees and jump explosively, and repeat immediately on landing for one set (15 sec jumping, 15 

sec rest, 15 sec jumping, 15 sec rest). Each subject completed 5 sets. The PMA was completed 

before the jump test. The PMA was again completed following the blood samples which was 

collected for lactate determination pre- and 2.5 min post-jump test. In addition, heart rate was 

collected throughout the entire session. This fatigue test was used based on accumulated lactate 

responses during pilot investigations the modified jump test was determined to be more fatiguing 

than the Bosco 60 sec jump test. 
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F-4. 25-Second Sprint Test. Each subject was attached to the resistive harness of a non-

motorized treadmill (NMT) (Woodway Force 3.0 treadmill, Waukesha, WI), which was set to a 

resistance equal to 18% of the subject’s body weight. Subjects carried out a 25-sec maximal 

sprint on the Woodway treadmill (150). The PMA was completed before the sprint test in the 

order of jump motions, followed by squat motions, and remaining motions. The PMA was again 

completed following the blood samples which were collected for lactate determination pre- and 

2.5 min post-sprint test. In addition, heart rate was collected throughout the entire session. 

 

G. Blood Samples 

Each subject gave three minimal blood samples (approximately one drop) at each testing 

session (baseline, pre, and post) by way of a lancet finger stick. Fingertip samples were collected 

into a lactate testing strip for analysis via a Lactate Plus handheld blood lactate analyzer. 

Samples were collected immediately prior to the PMA, before the randomized experimental test, 

and 2.5-min post jump or sprint tests.  

 

H. Performance Tests  

H-1. Motion Capture Device. During each PMA motion the kinetic and kinematic 

variables were collected, and analyzed using the DARI (DARI Motion, Scientific Analytics, 

Lincoln NE) 3D markerless MCS system (169). Anthropometric estimates (58) were used to 

estimate the segmental COMs. In addition, full body GRFs and extremity joint kinematics were 

assessed. This 3D MCS has been shown to validly measure full body and segmental kinetics and 

kinematics without a force plate or video, thus providing accurate performance measures (79, 
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187). In addition, this system has been used to determine the contribution of the upper 

extremities during a CMVJ (171).  

 

 H-2. Force Plate Device. During each squat and jump motions the kinetic variables was 

collected and analyzed using a uni-axial force plate (Rice Lake Weighing Systems, Rice Lake, 

WI) through a data acquisition system (Biopac MP 150 System, Goleta, CA) sampling at 1000 

Hz was used to monitor the ground reaction force (GRF).  In addition, the modified jump test 

was collected and analyzed to determine flight time and positive impulse with a sampling rate at 

1000 Hz.  

 

 H-3. Non-motorized Treadmill. During the 25-sec sprint test the kinetic variables was 

collected on the non-motorized treadmill (NMT) (Woodway Force 3.0 treadmill, Waukesha, 

WI), which was set to a resistance equal to 18% of the subject’s body weight. 

 

I. Statistical Analyses 

 Statistical analyses were conducted for the performance measures using the scores 

(Composite Score, Power Score, Functional Strength Score, Dysfunction Score, Exercise 

Readiness Score, and Vulnerability Score) x conditions (VJ, Sprint, CON) x time (pre-test, post-

test) x between sex (females, males) repeated measures MANOVA. A Pearson correlation matrix 

was used to compare the relationship between each of the PMA Scores during the familiarization 

session. Two-way ANOVAs were used to examine the differences in HR [condition (VJ, Sprint, 

CON) x time (pre-test, post-test)]. In addition, 2-way ANOVAs were used to examine the 
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differences in accumulated lactate [condition (VJ, Sprint, CON) x time (pre-test, 2.5 min post-

test)]. Paired samples t-tests were used to examine the differences in flight times and positive 

impulses of the second jump of set 1 and last jump of set 10 during the modified jump test. These 

VJs were selected to include the VJ rebound and the next CMVJ. Post hoc comparisons were 

conducted when needed using the Bonferroni correction. The level of significant was set to P ≤ 

0.05 for the statistical tests. Statistical analyses were performed using SPSS 24 (IBM 

Corporation, Amonk, New York USA) and Microsoft Excel 2016 (Microsoft Corporation, 

Redmond WA, USA).   
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IV. CHAPTER IV - RESULTS 

Table 2 lists the X̅ ± SD and pre- and post-test significance levels for the PMA Scores for 

each pre-test and post-test during each condition. The Pearson correlations matrix (table 3) 

indicated moderate to strong correlations between the PMA Scores, indicating that the PMA 

Scores should be analyzed via a MANOVA (score x condition x time x sex).  The MANOVA 

indicated a three-way interaction (score x condition x time). Follow-up analyses indicated 

significant differences between pre-and post-tests for the Composite Score, Power Score, and 

ERS during the VJ experimental sessions.  

 

Table 4 lists the HR during the pre- and post-tests, and accumulated lactate during the 

pre- and 2.5 min post-tests. Two-way ANOVAs indicated a significant interaction (condition x 

HR). Follow-up analysis indicated the post-test HR was significantly greater than the pre-tests. 

Furthermore, the VJ and Sprint conditions were significantly greater compared to the CON 

during the post-tests. In addition, 2-way ANOVA indicated a significant interaction (condition x 

time for lactate) (table 4). Follow-up analysis indicated the post-test lactate were significantly 

greater compared to the pre-tests, and the VJ and Sprint conditions were significantly greater 

than the CON.  

 

Table 5 lists the number of jumps, flight time, and positive impulse X̅ ± SD of set 1 and set 10 

during the modified jump test. The paired samples t-tests indicated the flight time and positive 

impulse during the last vertical jump during set 10 were significantly less than the second jump 

of set 1 (table 5).   
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Table 6 lists the force, velocity and power during the 25-sec non-motorized sprint tests. 

Females and males exhibited a reduction in power (Females, -47.36 ± 12.15) (Males, -66.24 ± 

11.04) and velocity (-24.32 ± 6.77) (-33.86 ± 10.80). Table 7 lists the fatigue rates for each PMA 

score per condition. The fatigue scores indicated the greatest reduction in the Composite Score, 

Power Score, and ERS, during the VJ session.   
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Condition Sex Pre Post Pre 2.5 min Post

VJ F 80.9 ± 15.5 183.9 ± 12.8*† 2.6 ± 1.7 11.2 ± 2.4*†

M 69.9 ± 10.5 171.2 ± 23.9*† 2.1 ± 1.2 13.6 ± 1.8*†

Sprint F 79.3 ± 18.9 168.5 ± 30.8*† 2.5 ± 1.6 10.7 ± 2.0*†

M 75.1 ± 10.0 176.6 ± 8.8*† 3.3 ± 3.0 14.8 ± 3.0*†

CON F 75.4 ± 18.9 74.7 ± 6.4 1.7 ± 0.5 3.1 ± 2.9

M 81.6 ± 17.0 86.7 ± 11.9 3.2 ± 2.5 2.3 ± 2.2

Heart rate and change in accumulated lactate for females (F) and males (M). * indicates 

significant differences between pre to post, † indicates significant differences from the control 

(p<0.05).

Heart Rate (bpm)

Table 4. Heart rate and accumulated lactate changes during multiple time points throughout the 

vertical jump (VJ), sprint, and control (CON) sessions

Accumulated Lactate (mmol/L)



64 
 

 

S
ex

#
 o

f Jum
p
s

F
light T

im
e (sec)

P
o
sitiv

e Im
p
ulse (N

·sec)
#
 o

f Jum
p
s

F
light T

im
e (sec)

P
o
sitiv

e Im
p
ulse (N

·sec)

F
1
3
.0

 ±
 1

.0
0
.4

 ±
 0

.1
2
5
0
.0

 ±
 4

8
.5

1
3
.0

 ±
 1

.0
0
.3

 ±
 0

.0
*

1
6
1
.5

 ±
 5

2
.8

*
 -3

3
.7

 ±
 1

2
.7

 -3
3
.8

 ±
 2

0
.4

M
1
4
.0

 ±
 1

.0
0
.5

 ±
 0

.0
3
8
1
.4

 ±
 4

6
.5

1
3
.0

 ±
 1

.0
0
.3

 ±
 0

.1
*

2
0
4
.1

 ±
 8

0
.5

*
 -4

1
.8

 ±
 9

.7
 -4

6
.2

 ±
 2

0
.6

F
em

ales (F
), M

ales (M
).  * ind

icates significant d
ifferences b

etw
een set 1

 and
 set 1

0
, (p

<
0
.0

5
), C

hange in flight tim
e and

 p
o
sitiv

e im
p
ulse d

uring the selected
 v

ertical jum
p

S
et 1

S
et 1

0

L
ast Jum

p
 o

f S
et 1

0
Jum

p
 2

 o
f S

et 1
C

hange in F
light 

T
im

e (%
)

C
hange in P

o
sitiv

e 

Im
p
ulse (%

)

T
ab

le 5
. V

ertical jum
p
 p

erfo
rm

ances     ±
 S

D
 fo

r fem
ales (F

) and
 m

ales (M
) d

uring the m
o
d
ifed

 v
ertical jum

p
 test d

uring the first and
 last set



65 
 

 

F
7
0
.2

 ±
 7

.5
1
5
5
.4

 ±
 1

5
.9

4
0
0
.4

 ±
 7

6
.2

1
5
7
7
.1

 ±
 3

1
6
.4

 -4
7
.4

 ±
 1

2
.2

2
.8

 ±
 0

.3
3
.5

 ±
 0

.5
 -2

4
.3

 ±
 6

.8

M
9
4
.7

 ±
 8

.0
1
9
0
.2

 ±
 1

7
.1

7
1
6
.3

 ±
 1

1
4
.7

2
8
2
5
.2

 ±
 4

3
9
.9

 -6
6
.2

 ±
 1

1
.0

3
.8

 ±
 0

.3
5
.1

 ±
 0

.6
 -3

3
.9

 ±
 1

0
.8

M
ean sum

 fo
rce is the sum

 o
f ho

rizo
ntal and

 v
ertical fo

rces; m
ean p

o
w

er and
 m

ean v
elo

city is the av
erage acro

ss the 2
5
 sec sp

rint; p
eak p

o
w

er and
 p

eak v
elo

city is the 

m
axim

um
 v

alue acro
ss the 2

5
 sec sp

rint; change in p
o
w

er and
 change in v

elo
city is the d

ifference b
etw

een the m
axim

um
 p

eak to
 the last p

eak rep
resented

 as a p
ercent

T
ab

le 6
. S

p
rint p

erfo
rm

ance     ±
 S

D
 o

f fem
ales (F

) and
 m

ales (M
) d

uring the 2
5
 sec no

n-m
o
to

rized
 resisted

 sp
rint test

D
istance (m

)
S

ex
C

hange in V
elo

city 

(%
)

P
eak V

elo
city 

(m
/s)

M
ean V

elo
city 

(m
/s)

C
hange in P

o
w

er 

(%
)

P
eak P

o
w

er (W
)

M
ean P

o
w

er (W
)

M
ean S

um
 F

o
rce 

(N
)



66 
 

 

V
J

F
 -1

1
.9

 ±
 8

.1
 -1

1
.4

0
±

 9
.2

 -6
.2

 ±
 8

.3
5
7
.9

 ±
 9

6
.7

1
7
.2

 ±
 2

3
.4

 -1
2
.6

 ±
 8

.9

M
 -1

7
.7

 ±
 1

0
.1

 -2
2
.7

 ±
 1

1
.1

 -7
.0

 ±
 5

.6
4
6
.0

 ±
 9

4
.4

2
1
.4

 ±
 4

7
.4

 -1
6
.2

 ±
 1

1
.8

S
p
rint

F
 -3

.0
 ±

 5
.2

  -8
.0

 ±
 7

.2
 -0

.1
 ±

 6
.8

4
8
.7

 ±
 1

7
0
.4

5
.3

 ±
 1

8
.3

 -6
.0

 ±
 6

.3

M
 -7

.7
 ±

 1
0
.9

 -1
0
.6

 ±
 1

3
.5

 -1
.9

 ±
 9

.6
2
0
.7

 ±
 5

2
.0

2
.7

 ±
 2

3
.9

 -3
.6

 ±
 1

2
.6

C
o
ntro

l
F

 - 2
.3

 ±
 1

0
.0

 -1
.0

 ±
 1

7
.7

 -1
.3

 ±
 5

.5
2
6
.6

 ±
 8

0
.5

4
.0

 ±
 2

3
.4

 -2
.1

 ±
 1

3
.5

M
 -7

.1
 ±

 1
1
.3

 -5
.2

 ±
 3

.9
 -1

5
.1

 ±
 3

1
.6

2
5
.4

 ±
 6

2
.7

3
.6

 ±
 1

5
.5

 -6
.1

 ±
 1

0
.0

F
atigue rate is the d

ifference b
etw

een the p
re sco

re and
 p

o
st sco

re as a p
ercent o

f m
ean change acro

ss sub
jects

C
o
nd

itio
n

T
ab

le 7
. R

ep
o
rted

 the fatigue rates     ±
 S

D
 fo

r the M
C

S
 co

m
p
o
site, p

o
w

er, functio
nal strength, d

ysfunctio
n, v

ulnerab
ility, and

 

exercise read
iness sco

res d
uring the v

ertical jum
p
 (V

J), sp
rint, and

 co
ntro

l (C
O

N
) exp

erim
ental sessio

n

E
xercise 

R
ead

iness S
co

re

V
ulnerab

ility 

S
co

re

D
ysfunctio

n 

S
co

re
S

trength S
co

re
P

o
w

er S
co

re
M

C
S

 C
o
m

p
o
site 

S
co

re
S

ex



67 
 

V. CHAPTER V - DISCUSSION 

The notion that fatigue is a predisposing factor responsible for the increased number of 

musculoskeletal injuries is common in sports. The currently investigation determined the MCS 

was capable of detecting acute lower-body biomechanical changes due to acute fatigue. The 

PMA Scores indicate the alterations of performance following the modified jump test. The 

decrease in the Power Score can explain and account for the reduction in the Composite Score 

since the Power Score is one of the three other scores that accounts for the Composite Score and 

is based on the calculation of the Power Score which is an aggregate of VJ measurements. The 

decrease in the score can be explained by a reduction in power and velocity due to fatigue onset 

following the modified jump test. Although significant changes were not observed for the 

Functional Strength Scores, this can be explained by the measurements of the score which is an 

aggregate of all squat performances. Although there was an onset of muscle fatigue, the squat 

motion mechanics were not affected by the fatiguing tasks. The differences in the Power and 

Functional Strength Scores further indicates that high power and velocity movements are the first 

to falter and are most susceptible to fatigue. Typically, the strength is maintained unless the 

fatigue stimulus is extended for a longer duration (78). The significant decrease in the ERS 

following the modified jump test indicates a change in one of the three categories (rebalance, 

develop, optimize) used in determining ERS. It is speculated the decrease in ERS is resulted in a 

decrease in the optimize score due to the acute decrease in the velocity and power performance. 

There were no changes for either the Vulnerability Score and the Dysfunction Score suggesting 

that these are more stable scores. Furthermore, the acute VJ fatigue did not significantly affect 

the asymmetry, kinetic chaining, compensation, and balance performances. Differences were 
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observed between males and females performance scores, however, both sexes responded in a 

similar manner during each fatiguing test.  

 

The PMA fatigue rates indicate the greatest differences in the PMA Score from pre-to 

post-test for each condition (Table 7). The fatigue protocols showed significant physiological 

changes to confirm that fatigue occurred, further highlighting significant drops in all 

performance scores. The greatest decrease in performance was indicated by the Composite 

Score, Power Score, and ERS. Furthermore, the greatest decrease in PMA Scores were observed 

during the modified jump test. No changes were observed by the Dysfunction Score and 

Vulnerability Score, further indicating these are stable scores. Similar fatigue rates in PMA 

Scores were indicated for both males and females, indicating biomechanical changes due to 

fatigue for both sexes.  

 

The significant increases for HR pre- to post-test and accumulated lactate from pre- to 2.5 

min post-test indicates that the modified jump test and resisted sprint tests involved glycolytic 

fatigue. In addition, both acute fatiguing tests were significantly different from the CON session. 

Similar pre- to post-tests were observed for both fatiguing sessions. Previous research has 

indicated blood lactate reaching 15.4 mmol·L following a Wingate test and 8.1 mmol·L 

following the Bosco 60 sec jump test (32). Both of these measurements were collected 5 mins 

post fatigue exercise. In comparison the modified jump test was more fatiguing than what was 

previously reported for the Bosco 60 sec jump test. McLain et al. reported accumulated lactate of 

15.8 mmol·L 5 min post following the 25 sec resistance sprint (150). The current investigation 

measured accumulated lactate levels 2.5 min post fatigue test to prevent excessive recovery from 
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affecting biomechanical assessment during the post-PMA test. Furthermore, accumulated lactate 

indicated that these fatigue tests still indicated significant fatigue responses. Suggested that these 

performances were maximal efforts. 

 

There were similar decreases in performance comparing the flight times and the positive 

impulse during the modified jump test. Both the flight time and the positive impulse of the 2nd VJ 

of set 1 to the last VJ indicated a significant decrease in performance. Equal numbers of VJs per 

set were performed by both males and females. Previous literature has reported both a longer 

flight time or great positive impulse have indicated a higher VJH (164). Therefore, individuals 

spent more time on the ground than time spent in the air. There were similar decreases in 

performance following the 25-sec non-motorized resisted sprint test. Previous literature has 

reported similar decreases in velocity and power during the 25-sec sprint test (150). A greater 

fatigue rate/index (% change) among males was indicated for the modified jump test (i.e. flight 

times, positive impulses) and for the 25-sec resisted sprint test (power, velocity).  

 

A. Conclusion 

MCS have been used to assess individuals’ upper- and lower-body motions both 

explosive and functional in nature. The current investigation demonstrated the viability of the 

MCS test to evaluate changes in performance due to the acute fatigue. Differences in PMA 

Scores and performances following acute fatigue protocols indicate biomechanical alterations on 

the lower-extremities following modified jump test. Similar fatigue indexes and physiological 

responses were reported for the modified jump test and the 25-sec non-motorized sprint test. The 

PMA Scores indicated decrements in performance are first observed in the decreases in power 
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production during high velocity movements (i.e. VJs). Further research is needed with difference 

populations, other fatiguing methods, and impact on performance.  

 

 

B. Practical Application  

Documentation and tracking of changes in performances will give future insights on how 

fatigue can be rated and understand the PMA and modified jump test could be applied in 

situations related to determine if an individual is ready for exercise. Advancements in technology 

and screening protocols may be capable of predicting increased risk of season ending injuries. 

This may provide the strength and conditioning professional helpful longitudinal information as 

an athlete/patient/client progresses through a training program and season.  
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The Effects of Vertical Jump Fatigue and Sprint Fatigue on Lower-Body 

Biomechanics 

 

INTRODUCTION 

 

The Department of Health, Sport, and Exercise Sciences, at the University of Kansas supports the 

practice of protection for human subjects participating in research. The following information is 

provided for you to decide whether you wish to participate in the present study. This study will be 

conducted in the Jayhawk Athletic Performance Laboratory (Robinson Center 207). Sports 

performance monitoring equipment and video recording will be used to analyze lower-body 

biomechanics. The following information is provided to help you make an informed decision on 

whether or not to participate in the present study. You may refuse to sign this form and not 

participate in this study. You should be aware that even if you agree to participate, you are free to 

withdraw at any time. If you do withdraw from this study, it will not affect your relationship with 

this unit, the services to you, or the University of Kansas. 

 

PURPOSE OF THE STUDY 

 

The purposal of the present study is to determine the acute biomechanical alterations on the 

lower-body following VJ fatiguing and sprint fatiguing tasks. Specifically, a markerless motion 

capture system will be used to determine biomechanical differences following fatiguing tasks. It is 

hypothesized that the performance motion analysis protocol can be used to determine 

biomechanical alterations immediately following fatiguing tasks. 

 

PROCEDURES 

 

A time-line of the testing procedures and an overview of the testing sequence are below. You will 

be asked to visit the Jayhawk Athletic Performance Laboratory (Robinson Center, Rm 207) for 4 

sessions, in a randomized order. These sessions include one familiarization session, one control 

session, and two experimental sessions. The first visit will be a familiarization session and will 

last approximately 30 minutes, and the control and experimental sessions will last about 30 

minutes. You will complete session 2-4 in a randomized order. 

Session 1: (Familiarization visit, 30 minutes): You will be informed of the details of the study. 

You will be asked to complete the consent form, health exercise status questionnaire, and 

audio/video authorization form. Anthropometric data will be collected (age, height, weight, etc.) 

You will be familiarized with the markerless motion capture system, audio/video recording 

procedure, testing protocol, and the vertical jump and sprint technique. You will then practice 

the performance motion analysis, the vertical jump fatigue task, and the sprint task. 

Session 2: (Control visit, 30 minutes): You will complete a 10-minute standardized warm-up. 

You will be asked to perform the performance motion analysis before and after a rest period of 

15 minutes. Small blood samples will be collected from a finger prick for lactate determination 

2.5 min pre- and post-rest period. In addition, heart rate will be collected throughout the entire 

session. 
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Session 3: (Experimental visit, 30 minutes): You will complete a 10-minute standardized warm- 

up. You will be asked to perform the performance motion analysis before and after a vertical 

jump fatigue task. You will be instructed to place your hands on your hips, bend the knee to 

about 90 degrees and jump explosively, and repeat immediately on landing for a total of 5 sets. 

Each set consists of 15 seconds of jumping followed by 15 seconds of rest and repeat for a 

duration of a min. Small blood samples will be collected from a finger prick for lactate 

determination 2.5 min pre- and post-rest period. In addition, heart rate will be collected 

throughout the entire session. 

Session 4: (Experimental visit, 30 minutes): You will complete a 10-minute standardized warm- 

up. You will be asked to perform the performance motion analysis before and after a sprint task 

on a non-motorized treadmill against a resistance of 18% of your body weight. Small blood 

samples will be collected from a finger prick for lactate determination 2.5 min pre- and post-rest 

period. In addition, heart rate will be collected throughout the entire session. 

 

Motion capture system – Dynamic Athletics Research Institute (DARI) 3D motion capture marker 

less system will be used to access and analyze kinetic and kinematic data. Eight separate cameras 

film and record the human body segmental movements to calculated position, velocity, and force 

acting on each part of the body 50 times per second (50 Hz). Participants will step into the center 

of the 8 cameras and assume a standardized pose; standing upright and raising the arms until 

abducted and perpendicular to the torso, and 90 degrees flexion at the elbows. The system quickly 

converts the pose into a stick figure. The full body motion capture system tracks and records the 

human body as a stick figure moving in real time. Human body kinematics and kinetics are 

accurately measured simultaneously without a force platform to provide performance data. 

 

Performance Motion Analysis - The Performance Motion Analysis (PMA) is a collection of 

nineteen different motions to assess individual upper extremities and lower extremities mechanics 

that is tailored to the individual. The motions include flexibility measures, body weight strength 

and jumping movements. In all, nineteen motions are incorporated into the PMA report. 

 

Blood Samples - Each subject will give two small blood samples (approximately one drop) at 

each testing session by way of a lancet finger stick. Samples will be collected into a lactate testing 

strip for analysis via a Lactate Plus handheld blood lactate analyzer. Sampling will take place 

immediately prior to the PMA, as well as 2.5-min post jump or sprint tests. 

 

Force Plate – The jumps during the jump fatiguing task will be performed on a force plate. 

Ground reaction forces will be collected, and analyzed using a uni-axial force plate (Rice Lake 

Weighing Systems, Rice Lake, WI) through a data acquisition system (Biopac MP 150 System, 

Goleta, CA) sampling at 1000 Hz from which velocities and powers will be derived. 

 

Non-motorized Treadmill – During the 25-second sprint task performance variables will be 

collected on a non-motorized treadmill (NMT) [Woodway Force, Woodway Force 3.0 treadmill 

(Waukesha, WI)], You will sprint against a resistance equal to 18% of the subject’s body weight. 
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RISKS 

 

As with all types of physical activity, the vertical jump and sprint protocols in this study carry a 

low risk of injury or harm to the musculoskeletal system. A medical history record will also be 

required prior to participation, which will include personal and private information. You may 

experience muscle soreness during the 48-72 hours following your testing sessions. There is also 

the possibility of injury to your shoulder, hips, knees, ankles, and skeletal muscles when 

performing the activities in this study. You may also experience some bruising or discomfort at 

the site of the blood sampling. You will be given a 24-hour contact number for study personnel to 

convey any type of unusual discomfort or injury. 

 

BENEFITS 

 

You will be given a chance to learn about Dynamic Athletic Research Institute (DARI) 3-D 

motion capture system. You will be able to observe your body’s biomechanics following fatiguing 

tasks, and receive Performance Motion Analysis results based on your performance. In addition, 

you will receive a chance to learn about your body’s lactate production following different 

fatiguing exercise tasks. 

 

PAYMENT TO PARTICIPATIONS 

There will be no compensation for participation in this study. 

PARTICIPANT CONFIDENTIALITY 

Confidentiality will be maintained by coding all information with your identification numbers. 

The master list will be kept in a locked file cabinet in the Jayhawk Athletic Performance 

laboratory. By signing this form and audio/video authorization forms you give permission for the 

use and disclosure of your information for the disclosure of this study. Only qualified research 

personnel at the Jayhawk Athletic Performance Laboratory and University of Kansas 

Institutional Review Board (IRB) will have access to the database containing study information. 

Your identifiable information will be shared unless (a) it is required by law or university policy, 

or (b) you give written permission. All study data entered into statistical analyses and 

publications reports will refer to group mean data. No individual or group other than the research 

team will be given information, unless specifically requested by the IRB. Jayhawk Athletic 

Performance Laboratory employees will only be granted access to the audio/video recordings 

and performance data collected. All electronic data will be kept on password protected 

computers. All data will be stored for a minimum of three years or until papers and abstracts can 

no longer be published off the data, and then these recordings will then be destroyed. Only 

abstracts and papers without identifying information will be transmitted through email with the 

study participation and research personnel that are involved with the project. 

Permission granted on this date to use and disclose your information remains in effect 

indefinitely. By signing this form, you give permission for the use and disclosure of your 

information for purposes of this study at any time in the future. 
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DISCLAIMER STATEMENT 

In the event of injury, the Kansas Tort Claims Act provides for compensation if it can be 

demonstrated that the injury was caused by the negligent or wrongful act or omission of the state 

employee acting within the scope of his/her employment. 

 

INFORMATION TO BE COLLECTED 

 

To perform in this study, researchers will collect information about you. This information will be 

obtained from the medical history form. Your name and personal information will not be 

associated in any way with the information collected about you or with the research findings from 

this study. The researchers will use a numbering system in which you will be randomly assigned 

to any number between in which you will be randomly assigned to any number between 01 

through 20 as your study identification. All screen forms will only contain the subject number that 

is assigned to you. The audio/video recording is required to participate in the study. All the data 

collected will be stored on a password protected computer in a locked office of the Jayhawk 

Athletic Performance Laboratory (Robinson Center 207). 

 

REFUSAL TO SIGN CONSENT AND AUTHORIZATION 

 

You are not required to sign this Consent and Audio/Video Authorization forms and you may 

refuse to do so without affecting your right to any services you are receiving or may receive from 

the University of Kansas or to participate in any programs or events of the University of Kansas. 

However, if you refuse to sign the informed consent and audio/video authorization form, you 

cannot participate in this study. You have the option to cancel your authorization and/or stop the 

recording at any time. 

 

DISQUALIFICATION 

 

You will be excluded from the study if you report any on the following information on the health 

history questionnaire. If you report any cardiovascular disease or metabolic, renal, hepatic 

disorders, and/or any history of severe ankle, knee, and/or hip injury, and other pathological 

conditions that could impair your jumping, or running. 

 

CANCELLING THIS CONSENT AND AUTHORIZATION 

 

You may withdraw your consent to participate in this study at any time. You also have the right to 

cancel your permission to use and disclose further information collected about you, in writing, at 

any time, by sending your written request to: Andrew C. Fry, 1301 Sunnyside Avenue 146C, 

Robinson Center, Lawrence, KS 66045. 

If you cancel permission to use your information, the researchers will stop collecting additional 

information about you. However, the research team may use the disclosure information that was 

gathered before they receive your cancellation, as described above. 
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QUESTIONS ABOUT PARTICIPATION 

 

Questions about procedures should be directed to the researcher(s) listed at the end of this consent 

form. 

 

PARTICIPANT CERTIFICATION: 

I have read this Consent and Authorization form. I have had the opportunity to ask, and I have 

received answers to, any questions I have regarding the study. I understand that if I have any 

additional questions about my rights as a research participant, I may call (785) 864-7429 or (785) 

864-7385, write the Human Research Protection Program (HRPP), University of Kansas, 2385 

Irving Hill Road, Lawrence Kansas 66045-7568, or email irb@ku.edu. 

I agree to take in this study as a research participant. By my signature I affirm that I am at least 

18 years old and I have received a copy of this Consent and Authorization form. 
 

 

 

Print Participant’s Name Date 
 

 

 
 

Participant’s Signature 
 

 

 

Print Person Name Obtaining Consent Date 

 

Signature of Person Obtaining Consent 

Research Contact Information 

 

Eric Mosier, M.S.E. Andrew C. Fry, Ph.D. 

Principle Investigator Faculty Supervisor 

Health, Sport, and Exercise Sciences Health, Sport, and Exercise Sciences 

208 Robinson Center 

University of Kansas 

Lawrence, KS 66045 

101A Robinson Center 

University of Kansas 

Lawrence, KS 66045 
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VII. APPENDIX B 

Authorization for Release of Photography and/or Video 

 

 

 

 

 

 

 

 

 

  

 

 



 

AUTHORIZATION FOR RELEASE OF PHOTOGRAPH AND/OR VIDEO 
 

 

I,  (name of individual), by signing this release, authorize 

the University of Kansas, the Department of Health, Sport and Exercise Science, and their staff 

to use photographs, and video images, or other likenesses of myself, for the following purposes: 

1. Use in University and Department of Health, Sport and Exercise Science education and 

training activities and materials (including print and on line or electronic instructional 

materials); and 

 

2. Use in print or electronic form in University or Department of Health, Sport and 

Exercise Science publications, presentations, brochures, newsletters/bulletins, and 

websites for educational, public relations or promotional purposes which may result in 

the rising of funds for Department of Health, Sport and Exercise Science. 

I understand that the images and written testimonials described above may be included in, copied 

and distributed by means of various print or electronic media. I understand that my name will not 

be included with the images or testimonials. 

I understand that the study involves audio and/or visual recordings. I am not required to sign 

Authorization form and I may refuse to do so without affecting my right to any services I am 

receiving or may receive from the University of Kansas or to participate in any programs or 

events of the University of Kansas. However, these recordings are required to participate so if I 

refuse to sign the Authorization form, I cannot participate in the study. I have the option to 

cancel my authorization or stop the recordings at any time. 

 

I understand that this Authorization can be revoked at any time to the extent that the use or 

disclosure has not already occurred prior to my request for revocation. In order to revoke the 

authorization, I must notify Department of Health, Sport and Exercise Science in writing at the 

following address: 

Department of Health, Sport and Exercise Science 

University of Kansas 

Lawrence, KS 66045 

(785) 864-4656 

acfry@ku.edu 

 

If I cancel this Authorization after publication of the materials outlined above, I understand that 

my cancellation may not be able to be honored. If I revoke this Authorization, the University and 

Department of Health, Sport and Exercise Science shall not engage in any new uses or 

disclosures of the images or testimonials. 

 

All of the data collected from this project will be stored on a password protected computer in a 

locked office of the Jayhawk Athletic Performance Laboratory. Jayhawk Athletic Performance 

Laboratory employees only will be granted access to the data collected. The recordings will be 

stored on a password protected computer from a minimum of three years or until papers can no 

longer be published off the data, and then these recordings will then be destroyed. 
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The University and Department of Health, Sport and Exercise Science will not condition 

treatment, payment, enrollment or eligibility for services or benefits on the execution of this 

Authorization. I understand that the images and recordings may be subject to disclosure by the 

person or entity receiving such information and thus will no longer be protected by federal 

privacy regulations. 

 

This Authorization is given without promise of compensation. The photos and video images 

specified above become the property of the University of Kansas and I release to the University 

any right, title and/or interest of any kind that I may have in the information or images produced. 

 
 

I have read this document and understand its contents. 
 

 

 

Type/Print Participant’s Name Date 
 

 

 

Participant’s Signature 

 
 

The Authorization must be signed, dated, and a copy, provided to the individual completing the 

form. 
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IX. APPENDIX C 

Medical History Form 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

PRE-EXERCISE 

TESTING HEALTH & 

EXERCISE STATUS 

QUESTIONNAIRE 
 

 

Name   Date   
 

Home Address   
 

Phone Number       

Birthday (mm/dd/yy)  /  /   

Email     

Person to contact in case of emergency    

Emergency Contact Phone    

Personal Physician  Physician’s Phone   
 

Gender   Age  (yrs) Height  (ft)  (in) Weight  (lbs) 
 

Does the above weight indicate:  a gain   a loss   no change   in the past year? 

If a change, how many pounds?  (lbs) 

A. JOINT-MUSCLE STATUS (Check areas where you currently have problems) 

Joint Areas Muscle Areas 

( ) Wrists ( ) Arms 

( ) Elbows ( ) Shoulders 

( ) Shoulders ( ) Chest 

( )  Upper Spine & Neck ( )  Upper Back & Neck 

( ) Lower Spine ( )  Abdominal Regions 

( ) Hips ( )  Lower Back 

( ) Knees ( ) Buttocks 

( ) Ankles ( ) Thighs 

( ) Feet ( )  Lower Leg 

( ) Other   ( ) Feet 

( ) Other   

B. HEALTH STATUS (Check if you currently have any of the following conditions) 

( )  High Blood Pressure ( )  Acute Infection 

( )  Heart Disease or Dysfunction ( )  Diabetes or Blood Sugar Level Abnormality 

( )  Peripheral Circulatory Disorder ( ) Anemia 

( )  Lung Disease or Dysfunction ( ) Hernias 

( )  Arthritis or Gout ( )  Thyroid Dysfunction 

( ) Edema ( )  Pancreas Dysfunction 

( ) Epilepsy ( )  Liver Dysfunction 

( ) Multiple Sclerosis ( )  Kidney Dysfunction 

( )  High Blood Cholesterol or ( )  Phenylketonuria (PKU) 

Triglyceride Levels ( )  Loss of Consciousness 

( )  Allergic reactions to rubbing alcohol 

* NOTE: If any of these conditions are checked, then a physician’s health clearance will required. 



 

 

C. PHYSICAL EXAMINATION HISTORY 

Approximate date of your last physical examination   
 

Physical problems noted at that time   
 

Has a physician ever made any recommendations relative to limiting your level of 

physical exertion?   YES   NO 

If YES, what limitations were recommended?   
 

 

D. CURRENT MEDICATION USAGE (List the drug name, the condition being managed, and 

the length of time used) 

MEDICATION CONDITION LENGTH OF USAGE 
 
 

 

 
 

E. PHYSICAL PERCEPTIONS (Indicate any unusual sensations or perceptions. Check if you 

have recently experienced any of the following during or soon after physical activity (PA); or 

during sedentary periods (SED)) 
PA SED PA SED 

( ) ( ) Chest Pain ( ) ( ) Nausea 

( ) ( ) Heart Palpitations ( ) ( )  Light Headedness 

( ) ( )  Unusually Rapid Breathing ( ) ( )  Loss of Consciousness 

( ) ( ) Overheating ( ) ( )  Loss of Balance 

( ) ( ) Muscle Cramping ( ) ( )  Loss of Coordination 

( ) ( ) Muscle Pain ( ) ( )  Extreme Weakness 

( ) ( ) Joint Pain ( ) ( ) Numbness 

( ) ( ) Other   ( ) ( )  Mental Confusion 

F. FAMILY HISTORY (Check if any of your blood relatives . . . parents, brothers, sisters, 

aunts, uncles, and/or grandparents . . . have or had any of the following) 
( )  Heart Disease 

( )  Heart Attacks or Strokes (prior to age 50) 

( )  Elevated Blood Cholesterol or Triglyceride Levels 

( )  High Blood Pressure 

( ) Diabetes 

( )  Sudden Death (other than accidental) 

G. EXERCISE STATUS 
Do you regularly engage in aerobic forms of exercise (i.e., jogging, cycling, walking, etc.)? YES NO 

How long have you engaged in this form of exercise?  years  months 

How many hours per week do you spend for this type of exercise?  hours 

What is your fastest 5 km time?    

What is your fasted 10 km time?    

What is your fasted mile time?     

What is your fasted times at other distances not listed?   



 

 

 

Do you regularly lift weights? YES NO 

How long have you engaged in this form of exercise?  years   months 

How many hours per week do you spend for this type of exercise?   hours 

What is your back squat 1 repetition maximum (RM)?     

What is your deadlift 1 RM?    

What is your power clean 1 RM?     

What are your other 1 RMs that are not listed?    
 

 

Do you regularly play recreational sports (i.e., basketball, racquetball, volleyball, etc.)? YES NO 

How long have you engaged in this form of exercise?  years  months 

How many hours per week do you spend for this type of exercise?  hours 


	Eric M. Mosier - Dissertation 7-27-18 Final
	APPENDIX A
	Informed Consent Final
	APPENDIX B
	Authorization of Photo and-or-Video Final
	APPENDIX C
	KU Health Exercise Status Questionnaire Final

