
Domain Specific Languages for Small Embedded Systems

By

Mark Grebe

Submitted to the graduate degree program in Electrical Engineering and Computer Science and
the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Committee members

Dr. Andy Gill, Chairperson

Dr. Perry Alexander

Dr. Prasad Kulkarni

Dr. Suzanne Shontz

Dr. Kyle Camarda

Date defended:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213427584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Mark Grebe certifies
that this is the approved version of the following dissertation :

Domain Specific Languages for Small Embedded Systems

Dr. Andy Gill, Chairperson

Date approved:

ii

Abstract

Resource limited embedded systems provide a great challenge to programming using

functional languages. Although these embedded systems cannot be programmed di-

rectly with Haskell, I show that an embedded domain specific language is able to be

used to program them, and provides a user friendly environment for both prototyping

and full development. The Arduino line of microcontroller boards provide a versatile,

low cost and popular platform for development of these resource limited systems, and

I use these boards as the platform for my DSL research.

First, I provide a shallowly embedded domain specific language, and a firmware in-

terpreter, allowing the user to program the Arduino while tethered to a host computer.

Shallow EDSLs allow a programmer to program using many of the features of a host

language and its syntax, but sacrifice performance. Next, I add a deeply embedded

version, allowing the interpreter to run standalone from the host computer, as well as

allowing the code to be compiled to C and then machine code for efficient operation.

Deep EDSLs provide better performance and flexibility, through the ability to manip-

ulate the abstract syntax tree of the DSL program, but sacrifice syntactical similarity to

the host language. Using Haskino, my EDSL designed for Arduino microcontrollers,

and a compiler plugin for the Haskell GHC compiler, I show a method for combin-

ing the best aspects of shallow and deep EDSLs. The programmer is able to write in

the shallow EDSL, and have it automatically transformed into the deep EDSL. This

allows the EDSL user to benefit from powerful aspects of the host language, Haskell,

while meeting the demanding resource constraints of the small embedded processing

environment.

iii

Acknowledgements

I am indebted to a great number of people for helping me during my graduate school

journey of the last 8 years. This document is the result of support and guidance that I

have received from many along the way.

First and foremost, I would like to thank my advisor, Andy Gill, for providing excel-

lent guidance, support and mentoring. I learned an enormous amount from him, and

appreciate all of his help introducing me to aspects of the academic world.

To all of my mentors and peers at the ITTC lab, I have enjoyed working with everyone,

and learned a lot from all of you as well. Thanks Perry, Prasad, Suzanne, Garrett, Ed,

Andrew, Justin, Jason, Mike, Adam, Paul, David, Forrest, and Tyler.

Many thanks also go to my Master’s advisor, Kenneth Anderson, at the University of

Colorado, as well as to John Boye and Khalid Sayood at the University of Nebraska,

who’s advice and mentorship have been invaluable throughout my career.

I would like to thank the two managers I worked for during my time in graduate school,

Seth Cramer and Ted Mabie. Without their support, encouragement, and flexibility, it

would have been a challenging task to get to this point.

And finally to the two people who have inspired me the most, and who deserve all the

thanks in the world for enduring the many trials and stresses of supporting me while

I worked full time and attended grad school, my wife Kim, and my daughter Tara.

There are not enough words in the world to thank you properly, so these few here will

have to do, but I love you both more than I can say.

iv

This material is based upon work supported by the National Science Foundation under

Grant No. 1350901. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

v

Contents

1 Introduction 1

1.1 Embedded Domain Specific Languages . 2

1.2 Haskino . 4

1.3 Contributions . 7

1.4 Organization . 8

2 Technical Background 10

2.1 Arduino Background . 10

2.1.1 Arduino General Purpose IO . 12

2.1.2 Arduino Time . 12

2.1.3 Some Arduino Examples . 13

2.1.4 Arduino Analog I/O . 14

2.1.5 Higher Level Arduino Interfaces . 15

2.1.6 Building and Running Arduino Programs 16

2.2 Remote Monad . 17

2.3 Haskell and GHC . 18

2.3.1 GHC Core . 20

2.3.2 Core Dictionaries . 21

2.3.3 GHC Compiler Plugins . 22

2.3.4 GHC Rules . 23

2.4 The Worker/Wrapper Transformation . 23

3 Remote Monads and Interpreters 26

vi

3.1 The Arduino Remote Monad . 26

3.2 Bytecode Interpreter and Protocol . 30

4 Remote Binding of Computations 33

4.1 The Deep Extensions . 33

4.1.1 The Expr Type . 33

4.1.2 Deep Allocations . 37

4.1.3 Deep Conditionals . 37

4.1.4 Shallow in Terms of Deep . 38

4.2 DSL Iteration Design Choices . 38

4.3 The Unit Dichotomy . 40

4.4 Deep Protocol and Firmware . 41

4.5 Deep Example . 43

4.6 Debugging . 44

5 Scheduler 46

5.1 Scheduling the Interpreter . 48

5.2 Inter-thread Communication . 49

5.3 Firmware Scheduler Details . 51

5.4 Examples . 53

5.4.1 Multiple LED Example . 53

5.4.2 LCD Counter Example . 55

5.5 Comparing Shallow to Deep . 57

5.6 Cutting the Cord . 58

6 Compiler 60

6.1 Compiler Structure . 60

6.2 Initialization Code Generation . 62

6.3 Task Code Generation . 63

vii

6.4 Storage Allocations . 63

6.5 Scheduling the Generated Code . 65

6.6 Runtime Structure Detail . 66

6.7 Dynamic Memory Management . 66

6.8 Comparing Interpreted and Compiled Size . 67

7 Shallow to Deep Translation 69

7.1 Basic Transformation . 70

7.2 Transformation of Conditionals . 74

8 Iteration and Recursion Transformation 78

8.1 First Recursion Example . 78

8.2 Translating to Haskino Iteration . 81

8.3 Second Recursion Example . 83

8.4 Third Recursion Example . 85

8.5 Mutual Recursion . 86

8.6 Mutual Recursion State Machine . 88

8.7 Recursion Translation with Multiple Arguments 92

9 Plugin Architecture and Implementation 94

9.1 Simplifier Pass . 95

9.2 Ap Removal Pass . 97

9.3 Conditionals Pass . 99

9.4 EDSL Primitives Pass . 101

9.5 Return Translation Pass . 102

9.6 Local Functions Pass . 102

9.7 Rep Case Push Pass . 105

9.8 Rep Push Pass . 108

9.9 Abs Lambda Pass . 111

viii

9.10 Rep Abs Fusion Pass . 111

9.11 Recursion Pass . 112

9.12 Abs Then Pass . 114

9.13 Debugging the Plugin . 115

9.14 Plugin Translation Limitations . 116

10 Case Studies 119

10.1 Case Study: LCD Driver and Applications . 119

10.1.1 Simple LCD Application . 121

10.1.2 Resource Usage Comparison . 123

10.1.3 Processing Time Comparison . 124

10.1.4 Duplicated Code . 125

10.2 Case Study: Bootstrapping Haskino . 126

10.2.1 Checksum Calculation . 127

10.2.2 Resource Usage Comparison . 128

10.2.3 Processing Time Comparison . 130

10.2.4 List Processing Optimization . 131

10.2.5 Duplicated Code . 133

11 Sharing in the Generated Code 135

11.1 Plugin Transformation for Sharing . 135

11.2 Compiler Support . 138

11.3 Designating Functions for Sharing . 139

11.4 Haskino Foreign Function Interface . 140

12 Related Work 141

12.1 Functional Languages and Embedded Systems . 141

12.2 Blending Shallow and Deep EDSLs . 142

ix

13 Conclusion 144

13.1 Reflections . 145

13.2 Future Work . 147

x

List of Figures

1.1 Haskino Overview . 5

2.1 Arduino Uno Board . 11

2.2 GHC Architecture . 19

2.3 Definition of the Core Intermediate Language . 20

2.4 Worker-Wrapper Transformation . 24

2.5 Expression Transformation . 24

2.6 Monadic Transformation . 25

3.1 Haskino Framing . 31

3.2 AddToTask Framing . 32

4.1 Example of Expression Encoding . 42

4.2 Protocol Packing of Conditionals . 43

8.1 Example State Machine . 89

9.1 Structure of Transformation Plugin Passes . 96

xi

List of Tables

1.1 EDSL Options . 2

5.1 Comparison of Shallow and Deep Embedding using Interpeter 58

6.1 Interpreter and Runtime Storage Sizing with no user program 68

6.2 Interpreter and Runtime Storage Sizing for Example Programs 68

10.1 Summary Sizing of Hello Lawrence Application Written in C and Haskino 123

10.2 Detail of Static RAM Usage in Hello Lawrence Application 123

10.3 Detail of Flash Usage in Hello Lawrence Application 124

10.4 Processing Time in Hello Lawrence . 124

10.5 Detail of Optimized Flash Usage in Hello Lawrence Application 125

10.6 Summary Sizing of Haskino Interpreter Written in C and Haskino 129

10.7 Detail of Static RAM Usage in Haskino Interpreter 129

10.8 Detail of Flash Usage in Haskino Interpreter . 130

10.9 Processing Time in Haskino Interpreter . 130

10.10Detail of Optimized Flash Usage in Haskino Interpreter 134

xii

Chapter 1

Introduction

Small, resource constrained embedded systems provide a challenge to programming with high

level functional languages. Their small RAM and permanent storage resources make it impossible

to run languages like Haskell directly on them. An alternative to using a high level language

directly on such systems, is to use an Embedded Domain Specific Language (EDSL). Using an

EDSL allows the user to write code using a subset of the look, feel, and semantics of the host

language.

To be specific, the most popular Arduino, the Arduino Uno, has a 16MHz clock rate, 2 KB of

RAM, 32 KB of Flash, and 1 KB of EEPROM. This is cripplingly small by modern standards, but

at a few dollars per unit, and with built-in A-to-D convertors and PWM support, many projects

can be prototyped quickly and cheaply with careful programming. Using the Arduino itself as a

testbed, I am interested in investigating how Haskell can contribute towards programming such

small devices.

Programming the Arduino is, for the most part, straightforward imperative programming.

There are side-effecting functions for reading and writing pins, supporting both analog voltages

and digital logic. Furthermore, there are libraries for protocols like I2C, and controlling peripher-

als, such as LCD displays. I want to retain these APIs by providing an Arduino monad, which sup-

ports the low-level Arduino API, and allows programming in Haskell. Ideally, cross-compilation

of arbitrary Haskell code would be allowed; the reality is we can get close using deeply embedded

domain specific languages.

1

1.1 Embedded Domain Specific Languages

Embedded domain specific languages come in two flavors, shallowly embedded and deeply em-

bedded. Shallowly embedded DSLs compute values directly, while deeply embedded DSLs build

an abstract syntax tree of computations. With shallow EDSLs, values are computed directly, and

chaining together computations requires the involvement of the host language. The syntax and

semantics of a shallow EDSL are much closer to the syntax and semantics of a host language.

The result of a computation in a deep EDSL is a structure, which may be used to cross-compile

the computation before being evaluated. This ability does come at a cost, as deep EDSL’s often

require special syntactic notations for language features such as control structures.

Table 1.1: EDSL Options

Native Execution/
Interpretation

Code Generation/
Compilation

Shallow
EDSL

Examples
hArduino
Blank Canvas
Haxl

Advantages
Ease of development
Quick turnaround

Examples
Haskino

Advantages
Ease of development
Performance
Resource Optimization

Deep
EDSL

Advantages
Deep Debugging

Examples
Kansas Lava
Feldspar
Ivory

Advantages
Performance
Resource Optimization

Table 1.1 illustrates a subset of the EDSLs hosted by Haskell, my EDSL’s host language. The

vertical axes is divided into shallowly and deeply embedded EDSL’s. The horizontal axis describes

the method of executing the computation on the target system. EDSL’s in the first column either

2

execute the computation natively in the host language, or package the computation for execution

in another form, such as a bytecode, for interpretation either locally or remotely. The systems

in the second column use the host representation of the computation to generate code in another

language, and compile that language for execution on the target system. One way of packaging the

computation for remote interpretation, as is done by systems in the first column, and which is used

in much of our research, is to use the Remote Monad (Gill et al., 2015) design pattern. This design

pattern allows for bundling of computations to be sent to a remote target.

Shown in the upper left quadrant of the table are EDSLs which share the attributes of be-

ing shallowly embedded DSL’s, implemented using the Remote Monad design pattern. hArduino

(Erkok, 2014) is an EDSL used to program small embedded systems based on the Arduino series

of boards. It is shallowly embedded, and may only be used while tethered to a host with a USB

cable. It is the predecessor to the Haskell Arduino system I have developed. Blank Canvas (Gill &

Scott, 2015) is a shallowly embedded EDSL which allows users to program interactive images in a

web browser using the HTML5 Canvas API in Haskell. Haxl (Marlow et al., 2014) is a Haskell li-

brary and EDSL for efficient access of remote data sources, and is also shallowly embedded. These

EDSLs share the characteristic of ease of development, since given their shallow embedding, their

syntax is close to idiomatic Haskell. They also allow quick turnaround, as intermediate results of

computations can be observed on the host, allowing ease of debugging.

The lower right quadrant of the table lists examples of EDSL’s which are deeply embedded and

include code generation. Kansas Lava (Gill et al., 2013) is an EDSL for hardware entities, and is

able to generate VHDL. Felsdspar (Axelsson et al., 2010)(Axelsson et al., 2011) is an EDSL for

describing digital signal processing algorithms, and is able to generate C language code from the

EDSL. Ivory (Elliott et al., 2015) is an EDSL that is designed as a language for safe systems level

programming, and also generates C language code. All of these EDSL’s have the characteristics

of better performance and better resource utilization than shallow EDSL’s, due to the ability to

generate code in a low level language.

3

The lower left quadrant in the table is the worst of both worlds. With EDSLs in this quadrant,

the user must write in a harder to use deep language, and live with lower performance and subop-

timal resource utilization, since code is not generated in a lower level language. One use we have

found for languages in this quadrant is debugging the development of a Deep EDSL prior to code

generation.

The upper right quadrant is where systems that combine ease of use and optimized performance

may be found. EDSLs in this quadrant are able to be written in the easier to use shallow embed-

ding, and have the better performance and resource utilization characteristics of code generation.

Also, if the same shallow code can be used with native execution/interpretation, as well as code

generation, the user can first prototype with native execution or interpretation, and then deploy

with code generation. It is a solution that enables programming in this quadrant that I present in

this dissertation.

1.2 Haskino

Figure 1.1 illustrates the system I have developed to advance the use of functional languages on

the Arduino, known as Haskino (Grebe, 2017a) (Grebe, 2017b). The figure shows the capabilities

that have been developed in each of three steps of research.

In step 1, I developed a shallow EDSL, as well as a deep EDSL, both written in Haskell (Grebe

& Gill, 2016). They allow the end user to write a program on the host, while the computations

specified by the program are executed on the Arduino using a firmware interpreter. The shallow

EDSL allows the user to interactively program the Arduino, with intermediate results being re-

turned to the host computer connected by USB cable. This interactive setup makes debugging and

prototyping of new code and hardware much easier. The deep EDSL provides a way of outsourcing

entire groups of commands and control-flow idioms to the Arduino. This allows a user’s Haskell

program to store a bytecode program on the board, then step back and let it run. Both of these

EDSL methods use the remote monad design pattern to provide the key capabilities.

4

Remote
Monad
Send

Trans-
compiler

Plugin
Translation

Firmware
Interpreter

Step 1

Step 2

Step 3

Legend

Haskell GHC
Core

Library ArduinoCompiler

Runtime

+

Shallow
DSL

Deep
DSL

Deep
AST

Shallow AST

C Code

Figure 1.1: Haskino Overview

For step 2 of the research, Haskino was modified to use the same monadic code that is executed

with the interpreter, but instead compile it into C code (Grebe & Gill, 2017). That C code may

then be compiled and linked with a small runtime, to allow standalone operation of an executable

with a smaller size than the interpreted code. This smaller size allows more complex programs to

be developed and executed within the limited resources of the Arduino. In addition, the second

stage of Haskino research added the concept of multi-threaded operation to the system. Program-

ming embedded microcontrollers often requires the scheduling of independent threads of execu-

tion, specifying the interaction and sequencing of actions in the multiple threads. I added thread

scheduling and inter-thread communication concepts to the EDSLs. In addition, I added schedul-

5

ing and communication capabilities enabling those concepts to both the firmware interpreter and

the small run time.

In step 3 of the research, I explored enabling the user to write programs once in the shallow

EDSL, and then have the code automatically translated to the deep EDSL by the Haskino system.

The syntax of the shallow EDSL is much closer to standard Haskell than the syntax of the deep

EDSL, using Haskell operators and control flow mechanisms. In addition, I wanted the user to

be able to use the recursive style of iteration that is normally used in functional programming, as

opposed to imperative programming’s traditional for and while structures. To enable this style,

the program translation must be able to translate tail recursive functions written in the shallow

DSL into the iterateE structure used in the deep EDSL. To enable these translations, I have

developed a plugin for the GHC compiler which is able to perform the translations using principled

methods. With the translation system, the user is able to write the code once and use it with both

the interpreted, interactive system, as well as the compiled, efficient system.

While many small to medium sized example programs have been developed during the course

of performing the research, to better validate the results of the research, a larger, more complicated

example was developed. This example is a version of the Haskino interpreter written in the shallow

EDSL, which is then transformed to the deep EDSL by the compiler plugin, and then compiled

to C and machine code with the Haskino system. This allowed the Haskino interpreter to be

"bootstrapped" with Haskino itself.

Step 4 of the research examines a method to optimize the C code generated by the Haskino

system. Most EDSLs which represent the target code as data structures inline the function calls

in the language. For small embedded systems, this can be problematic, once again limiting the

size of the programs that may be developed on the system. Haskino could be extended to generate

non-inlined C code, once again through the GHC compiler plugin. Functions in the shallow EDSL

may be marked by the programmer to enable or disable inlining. The compiler plugin translator

will handle the translation of the non-inlined functions into deep DSL expressions which may then

be compiled to separate C functions by the compiler.

6

1.3 Contributions

This dissertation makes the following contributions:

• It explores the design and implementation of Haskino, an embedded domain specific lan-

guage (EDSL) for programming Arduino microcontrollers with Haskell. Haskino consists

of a shallow EDSL with an interpreter, and a deep EDSL which is compiled, providng a gen-

tler way of programming Arduino systems than the method used by the tools provided with

the Arduino. Haskino also supports programming using multi-tasking and synchronization

concepts normally required in small embedded systems. This dissertation presents details

and rationale of many of the design choices that were made during the implementation.

• It demonstrates a method for performing translation of a shallow EDSL in Haskell to a

deep EDSL (assuming the EDSL is based upon the Remote Monad library), using a set of

principled transformation rules. This allows the user to write in a shallow EDSL which is

automatically translated to the deep EDSL, providing syntax much closer to native Haskell.

• It demonstrates a method for performing translation of tail recursive function calls to an

iterative structure in a Haskell EDSL (assuming a Remote Monad based EDSL), also using

a set of principled transformation rules. This further enhances the capability to write in a

native Haskell syntax, using recursive calls familiar to functional programmers.

• It investigates the design and implementation of a GHC compiler plugin that mechanizes the

shallow to deep and recursive EDSL transformations. This automatic translation using the

GHC compiler allows for an easy transition between interpreted debugging and compiled

deployment by simply flipping a command line flag. The plugin is designed to be reusable

with many monadic EDSLs through configuration based on the EDSL primitives, operators,

and types. With the plugin, first the programer can prototype an idea using the interpreter,

but with near the full power of Haskell, then use the automated translation mechanism to

produce compiled code which is efficient in resources and performance.

7

• It examines resource utilization issues related to the compilation to C code from the Deep

EDSL. The case study in Chapter 10 details the resource utilization issues with the code

generated from transformed Haskino EDSL programs. To address these issues, a method for

making significant reductions in resource usage through sharing is demonstrated.

1.4 Organization

The remaining portions of this dissertation are organized as follows.

Background

• Chapter 2 provides background material such that this dissertation is able to standalone. It

provides an introduction to Arduino programming using traditional imperative methods, an

introduction to the Remote Monad design pattern, details about the GHC compiler and it’s

plugin architecture, and introduction to the Worker-Wrapper transformation.

Haskino Design and Implementation

• Chapter 3 covers the design and implementation of the initial version of the Haskino system,

implemented as a shallow EDSL with the Remote Monad design pattern.

• Chapter 4 deals with the conversion of Haskino to use a deep embedding in addition to a

shallow embedding, enabling the addition of remote binding of computations.

• Chapter 5 describes the addition of scheduling to the Haskino DSLs and firmware, enabling

the use of mutli-threaded programming commonly used in embedded systems.

• Chapter 6 details the trans-compiler developed for the Haskino system, which is able to

transform the deep EDSL into C code to allow for efficient standalone operation of Haskino

programs.

8

Transformations: Theory and Implementation

• Chapter 7 describes the theory behind the first of the two major transformations in Haskino,

transforming a shallow EDSL into a deep EDSL.

• Chapter 8 covers the theory of the second of the Haskino transformations, transforming tail

recursive code in the deep DSL into iterative structures.

• Chapter 9 details the implementation of the theory described in Chapters 7 and 8 as a GHC

compiler plugin.

Case Studies

• Chapter 10 describes case studies built with Haskino, the main one being an implementation

of a version of the Haskino firmware interpreter in Haskino itself. The chapter compares the

performance and utilization statistics this bootstrapped interpreter with an implementation

in native imperative Arduino C.

• Chapter 11 presents a third transformation, designed to deal with an issue highlighted in the

interpreter case study, by eliminating duplicate generated code.

Closing

• Chapter 12 provides context of my research, detailing other systems which have dealt with

functional programming on the Arduino, or with the mixture of shallow and deep EDSLs.

• Chapter 13 concludes the dissertation, and reflects on the development, as well as details

future work to be done in this area.

9

Chapter 2

Technical Background

This chapter summarizes the supporting technologies which are relevant to the design and im-

plementation of Haskino, so that this dissertation is able to be self-contained. First, background

material on traditional software development for Arduino boards is discussed. Then, the concept of

a Remote Monad is introduced, followed by a discussion of GHC, it’s itermediate language Core,

and it’s plugin system which is used to implement Haskino’s transformations. Finally, Worker-

Wrapper transformations are discussed, which form the basis for the Haskino plugin transforma-

tions.

2.1 Arduino Background

Arduino microcontrollers vary in size from the Uno, which has a 16MHz clock rate, 2 KB of

RAM, 32 KB of Flash, and 1 KB of EEPROM, to the Due which has a 84MHz clock rate, 96 KB

of RAM, and 512 KB of Flash. The processors used on the Arduino boards are also not all of the

same architecture, and include those from the AVR family on lower end boards such as the Uno, as

well as lower end ARM processors on the higher end Arduino boards such as the Due. What these

boards have in common, however, is a single API for programming them than spans the line of

boards, and provides users a standardized interface for accessing the hardware. The Arduino series

of microcontrollers are traditionally programmed using imperative C language programming with

this standardized API. This API provide a set of programming primitives which are used to control

the various hardware interfaces present in the Arduino microcontrollers.

10

Programming an Arduino board is all about controlling external hardware and responding to

inputs from external hardware through pins of the microcontroller that are connected to internal

peripherals. The Arduino boards provide easy to use connectors to these pins, allowing quick

connection of the external hardware. The API for the Arduino is split into groups that handle the

various types of pins on the microcontroller. The pins numbers that are in each group vary by the

Arduino board type, however, there is some commonality between the boards. For example most

boards have a build in LED on the board which is connected to pin 13.

Figure 2.1: Arduino Uno Board

(arduino.cc, 2017)

Figure 2.1 shows the layout of an Arduino Uno board, the entry level board in the Arduino fam-

ily, taken from the arduino.cc website (where it is licensed under a Creative Commons Attribution-

ShareAlike 3.0 License). Pins used for digital I/O, analog output, and special purpose functions

are shown in green on the top of the board. On the bottom of the board in blue, are pins used for

analog input, as well as pins providing power (5V and ground). The USB connection is used to

provide a serial port emulation, which is used to transfer programs to the board’s flash memory, as

well as for serial communication with a running program on the Arduino. The red connector at the

11

lower left of the board is used to provide external power, although the board may be powered via

the USB connection as well.

2.1.1 Arduino General Purpose IO

The first basic type of pin on Arduino boards is a digital general purpose input/output (GPIO) pin.

These pins are able to be set to either an input or an output, and this mode is controlled by calling

the following API function:

void pinMode(uint8_t pin, uint8_t mode)

The pin parameter, which is used in many of the API functions, specifies the number of the

pin to set the input/output mode of. The mode parameter of the function is set to INPUT or OUTPUT

to specify if the pin is an input or output. There is also a third option, INPUT_PULLUP, which adds

a pull-up resistor in addition to making a pin an input.

To read the value of a digital input pin, the user calls the following function:

int digitalRead(uint8_t pin);

It returns a value of HIGH (1) if the input pin has a digital high voltage (5V or 3.3V depending

on the board), and a value of LOW (0) if the input pin has a digital low voltage (0V). Similar to

the programming the digital input, to output a value on a digital output pin, the user can call the

following function:

void digitalWrite(uint8_t pin, uint8_t val);

Like with the digital input function, the val parameter specifies if the output voltage driven on

the output pin is HIGH (5V or 3.3V) or LOW (0V).

2.1.2 Arduino Time

The Arduino API also provides functions dealing with time. The user may read the amount of time

since the board has been powered on, in either microseconds or milliseconds using:

12

unsigned long micros();
unsigned long millis();

In addition to reading the current time, the user may delay program execution for a specified

duration, once again either in microseconds or milliseconds:

void delayMicroseconds(unsigned int us);
void delay(unsigned long);

2.1.3 Some Arduino Examples

Arduino C programs, also known as sketches, consist of two main functions. The first of these,

setup(), is run by the Arduino kernel once to allow the program to initialize the hardware and

software state. Then, the second function, loop(), is called repeatedly in an infinite loop.

The following example combines the digital output functions and the time functions into a

program which blinks a LED once a second:

int ledPin = 13; // LED connected to digital pin 13

void setup() {
pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output
}

void loop() {
digitalWrite(ledPin, HIGH); // sets the LED to on
delay(500); // delay for 0.5 seconds
digitalWrite(ledPin, LOW); // sets the LED to off
delay(500); // delay for 0.5 seconds
}

This second example demonstrates using a push button as a digital input to decide which of

two LEDs to light.

13

int button = 7; // Button connected to digital pin 7
int ledPin1 = 11; // LED1 connected to digital pin 11
int ledPin2 = 12; // LED2 connected to digital pin 12

void setup() {
pinMode(button, INPUT); // sets the digital pin 7 as input
pinMode(ledPin1, OUTPUT); // sets the digital pin 11 as output
pinMode(ledPin2, OUTPUT); // sets the digital pin 12 as output
}

void loop() {
int buttonVal; // variable for button state
buttonVal = digitalRead(ledPin, HIGH); // reads the button state
digitalWrite(ledPin1, buttonVal); // set LED1 to button state
digitalWrite(ledPin2, !buttonVal); // set LED2 to not button state
delay(100); // delay for 0.1 seconds
}

2.1.4 Arduino Analog I/O

The Arduino boards are also capable of dealing with analog inputs and outputs as well. Analog

input signals are converted by an analog-to-digital (A/D) converter in the Arduino processor to a

10 bit digital value, or a value from 0-1023. To read the value of a analog input pin, the user calls

the following function:

int analogRead(uint8_t pin);

Certain of the pins on the Arduino are also able to output an analog value, not thru a digital-

to-analog converter, but thru a technique known as Pulse Width Modulation, or PWM. With pulse

width modulation, the hardware produces a square wave on the pin at a relatively high frequency,

and varies the pulse width, or the on time, of the square wave. Changing the pulse width changes

the average value of the signal, and is used to simulate a constant analog voltage. This may be

used, for example, to vary the brightness of a LED connected to the analog output pin. To output

a value on a analog output pin, the user can call the following function:

void analogWrite(uint8_t pin, int val);

The following example demonstrates the use of both analog input and analog output, allowing

the user to control the brightness of an LED using a potentiometer.

14

int ledPin = 9; // LED connected to digital pin 13
int aInPin = 3; // potentiometer connected to analog pin 0

void setup() {
pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop() {
int a; // place to store the read value
a = analogRead(aInPin); // read the analog input
analogWrite(ledPin, a / 4); // write the analog output, scaled 0-255

}

2.1.5 Higher Level Arduino Interfaces

Besides the low level interfaces of digital and analog inputs and outputs, the Arduino micropro-

cessors also contain controllers which allow the control of higher level interfaces to transfer com-

mands and data between the Adruino and external hardware. For example, the Arduino boards

are capable of communicating on several serial data interfaces, including RS-232 serial, I2C, and

SPI. The I2C and SPI interfaces are busses, and allow the Arduino controller to talk to multiple

devices connected to the serial bus. The following example demonstrates writing to an EEPROM

connected to a I2C bus.

int eeAddr = 44; // Address of EEPROM on I2C bus

void eepromWrite(int addr, int count, uint8_t *data) {
int i; // Loop counter for write
Wire.beginTransmission(eeAddr); // transmit to device at I2C eeAddr
Wire.write((addr >> 8) & 0x7F); // Write high byte of addr to EEPROM
Wire.write(addr & 0xFF); // Write low byte of addr to EEPROM
for (i=0; i<count; i++) {

Wire.write(data[i]); // Write data byte to EEPROM
}

}

The Wire.beginTransmission function is used to start transmitting data to a specific device

on the I2C bus, and the Wire.write function is used to acutally write the data to the I2C bus. In

this example, first two bytes are written which specify the memory address of where to write the

data in the EEPROM, then the actual data is written.

15

In addition to accessing built in serial interface controllers, the Arduino API also provides li-

brary routines which combine basic digital and analog I/O with timers and interrupts to control

such devices a stepper and servo motors. These are useful for the control of cyber-physical sys-

tems, such a small robotics and process control systems. The basic digital and analog I/O may

also be combined to control more sophisticated devices that require multiple inputs and outputs.

A common Arduino library example of such a device is a multi-line LCD display based on the

Hitachi44780 controller. Many of these displays are available with an I2C control interface, but

there are also variants that are controlled by 6-7 digital I/O pins as well. We will show examples of

programming such devices later in this dissertation, in Section 5.4.2, Section 8.4, and Section 8.6.

2.1.6 Building and Running Arduino Programs

Arduino software may be developed with the provided Arduino IDE, or a developer may instead

choose to use the component tools that are used behind the scenes by the IDE. Arduino C code is

compiled and linked with a variant of the GCC compiler toolchain. The C code is compiled using

gcc, then linked with the Arduino libraries using the GNU linker, ld. The object code output of

the linker is then converted to a Intel hex format file. This hex format file is then downloaded to

the Arduino board over the USB serial connection using a tool called AVRDUDE, or the AVR

Download UploaDEr. Running on the Arduino board at the other end of the USB connection

is a bootloader, which listens for program updates over the serial connection, then downloads the

update and programs it to flash memory. Once the programming to flash is complete, the bootloader

starts the execution of the newly downloaded program from flash.

Development on the Arduino boards, using the standard C development toolchain, is a repeated

series of compiling, linking, downloading and flashing to the hardware, and then debugging. This

can cause long development times, especially with new or unfamiliar hardware attached to the

Arduino, so a method of quickly prototyping code would be a welcome addition.

16

2.2 Remote Monad

A remote monad(Gill et al., 2015) is a monad that has its evaluation function in a remote location,

outside the local runtime system. The key idea is to have a natural transformation, often called

send, between Remote effect and Local effect.

send :: ∀ a . Remote a→ Local a

The Remote monad encodes, via its primitives, the functionality of what can be done remotely,

then the send command can be used to execute the remote commands. The send command is

polymorphic, so it can be used to run individual commands, for their result, or to batch commands

together. For example, Blank Canvas, our library for accessing HTML5 web-based graphics, uses

the remote monad to provide a batchable remote service. Specifically, three representative func-

tions from the API are:

send :: Device -> Canvas a -> IO a
lineWidth :: Double -> Canvas ()
isPointInPath :: (Double,Double) -> Canvas Bool

The Canvas type is the remote monad, and there are three remote primitives given here as an

example. To use the remote monad, we use send:

send device $ do
inside <- isPointInPath (0,0)
lineWidth (if inside then 10 else 2)

The remote monad design pattern splits remote primitives into commands, where there is no

interesting result value or temporal consequence, and procedures, which have a result value or

temporal consequence. The design pattern then proposes different bundling strategies, based on

the distinction between commands and procedures.

A remote monad may use a weak packet bundling that sends both commands and procedures

one at a time, to be remotely executed. The design pattern in this case is a way of structuring re-

mote procedure calls, but has no performance advantage. Alternatively, a remote monad may use

17

a strong packet bundling, which bundles together chains of commands, terminated by an optional

procedure, which has the interesting result that is returned by the primitive. This improves per-

formance, by reducing the communication overhead imposed by sending each packet individually.

Further research has shown that there is a third alternative (Dawson et al., 2017). The applica-

tive packet bundling uses the realization that in the use of <*>, the arguments on either side are

independent of each other. This realization allows the bundling of multiple primitives, without re-

strictions, into a single packet, a structure for serialization that is also used by Haxl (Marlow et al.,

2014). In addition to defining this third, more performant, bundling strategy, the further work has

led to a generalized framework (Gill & Dawson, 2016) that encapsulates the design pattern.

We have built a number of libraries using the remote monad design pattern and framework.

Blank Canvas (Gill & Scott, 2015) is our Haskell library that provides the complete HTML5 Can-

vas API, using a remote monad that remotely calls JavaScript, and is fast enough to write small

games. We have also built a general JSON-RPC framework in Haskell. In particular, the JSON-

RPC protocol supports multiple batched calls, as well as individual calls, and our implementa-

tion uses monads and applicative functors to notate batching. We have also reimplemented the

Minecraft API found in mcpi, adding a strong remote monad. Finally, Haskino is an application of

the remote monad concept to programming embedded systems, with the packet bundling allowing

remote execution with a bytecode interpreter.

2.3 Haskell and GHC

Haskell is a general purpose pure functional programming language, and it is widely used for work

in Domain Specific Languages(Elliott & Hudak, 1997; Elliott et al., 2003; Axelsson et al., 2010,

2011; Svenningsson & Axelsson, 2013; Elliott et al., 2015; Hickey et al., 2014; Bracker & Gill,

2014). The principle Haskell compiler used in both research and industry is the Glasgow Haskell

Compiler (GHC)(GHC Team, 2016). It lends itself nicely to my transformation work, providing a

plug-in architecture which allows transformations and optimizations of programs.

18

Code.hs

Frontend
Parse

Rename
Typecheck
Desugar

Backend
Core Prep

STG Conversion
Code Generation

Optimizer

Pass 1

Pass 2

Pass n

Code.o Code.hi

Haskell

Core

Core

Core

Core

Figure 2.2: GHC Architecture

Figure 2.2 shows the architecture of GHC. GHC consists of a frontend, an optimizer, and a

backend. This dissertation focuses on the optimizer, which is used for our transformations. The

frontend parses the Haskell source, typechecks it, and desugars the Haskell into the first of GHC’s

three intermediate languages, Core (Peyton Jones & Santos, 1998). The optimizer consists of a

series of passes which take a Core program as input, and produces an new, optimized version of

Core as output. The compiler’s backend takes the optimized Core, and coverts it to GHC’s two

other intermediate languages, first STG and then C--, in preparation for code generation. The

backend outputs the generated object code, as well as an interface file for use in compiling other

modules dependent upon the one under compilation.

19

2.3.1 GHC Core

GHC Core is an implementation of System FC(Sulzmann et al., 2007), which is itself a extension

of System F(Girard et al., 1989), adding support for non-syntactic type equality. The data types

and constructors that make up GHC Core are shown in Figure 2.3. Core is a relatively compact

language, compared to the large Haskell source language. Being small, and based on the mathe-

matics of System F, it has been able to remain largely unchanged from it’s original definition, even

with large additions to the Haskell source language.

data ModGuts = ModGuts _ :: [Bind], ...

data Bind b
= NonRec b (Expr b)
| Rec [(b, (Expr b))]

data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion

type Arg b = Expr b

type Alt b = (AltCon, [b], Expr b)

data AltCon
= DataAlt DataCon
| LitAlt Literal
| DEFAULT

Figure 2.3: Definition of the Core Intermediate Language

A Core program is made up of a list of bindings, either recursive (Rec), or non-recursive

(NonRec). The bindings bind an identifier (Id) to an expression (Expr). A identifier may be

20

either a value or a type, and are unique. Identifiers may be used as part of an expression by using

the Var constructor. Literals are specified with the Lit constructor.

Lambda application and abstraction are handled by the App and Lam constructors. Arguments

to an application may be either terms or types, allowing for parametric polymorphism. The Type

constructor is used when a type appears in the argument position in an application.

The Let constructor is used for both recursive and non-recursive let bindings. Term level

let-bindings may be either recursive or non-recursive, while type let-bindings may only be non-

recursive.

The Case constructor is used for expression pattern matching in the Core language, using the

Alt and AltCon types to express the pattern alternatives. Case is also used to handle conditionals

in the Core language, and for conditionals is just pattern matching over the boolean True and

False constructors.

The Cast constructor handles wrapping expressions to change their types. The Coercion is

the equality witness of the cast, and is generated by the type checker and manipulated by the the

optimization passes.

Finally, Tick’s are used for expression annotation, usually for debugging and profiling. They

are created by Haskell source level annotations.

2.3.2 Core Dictionaries

Haskell supports ad hoc polymorphism through it’s type class feature (Wadler & Blott, 1989). This

feature is supported in GHC Core through the use of dictionaries. A dictionary can be thought of

as a tuple of length n, containing the n functions of a type class for a specific type instance.

Take as an example the function below, add, which adds two integers.

add :: Int -> Int -> Int
add x y = x + y

The addition function (+) is a function in the Num type class.

class Num a where
(+) :: a -> a -> a

21

The Core for the add function has the form shown below. The Core here is shown in the format

that is normally dumped by the compiler for debug, not in terms of the constructors from the last

section.

add :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
add =
\ (x :: GHC.Types.Int) (y :: GHC.Types.Int) ->
GHC.Num.+ @ GHC.Types.Int GHC.Num.$fNumInt x y

The Core GHC.Num.+ function takes 4 arguments, two of which are the original integer argu-

ments to (+). The other two arguments are the type argument, GHC.Types.Int, and the dictionary

argument, GHC.Num.$fNumInt. This dictionary argument means, select the (+) field from the

GHC.Types.Int dictionary for the GHC.Num type class.

2.3.3 GHC Compiler Plugins

GHC’s compiler plugin architecture (GHC Team, 2016) allows the compiler user to modify or add

to the passes that are performed in the optimizer. A plugin has the following type:

type Plugin = [CommandLineOption] -> [Pass] -> CoreM [Pass]

The plugin is passed any command line options that were specified at the compiler invocation,

as well as the current set of Pass’s currently scheduled to be performed by the optimizer. The

plugin may then add, delete, or modify the order of passes that are performed by the optimizer.

Each pass is defined as the following type:

type Pass = ModGuts -> CoreM ModGuts

An optimizer pass transforms a list of Core Bind’s, which are part of the ModGuts data type

given to the pass as input, into another list of Core Bind’s in the returned ModGus. The ModGuts

data structure is carried throughout all phases of the compiler, including plugin passes, and contains

not only the Core of the module under compilation, but also a global reader environment of all in-

scope symbols, GHC transformation rules, information about other modules imported to the one

under compilation, and other information useful to the compiler pass. This plugin pass architecture

is used to implement the DSL transformations described in Chapters 7 through 9.

22

2.3.4 GHC Rules

GHC also provides another mechanism for transforming programs known as rewrite rules(Jones

et al., 2001). These rewrite rules allow the programmer to state properties that they know are true,

and the compiler can then make use of those rules for optimization.

An example of one of these rewrite rules is shown below. GHC rewrite rules are stated using

a RULES pragma. Following that is a name of the rule, in this case "map/map". The next line

contains forall definitions, which indicate those variables which are universally quantified in the

rule. Following that is the body of the rule, which gives the left hand side of the rule which the

compiler must match, followed by an =, and the right hand side of the rule which should replace

the left hand side if matched.

{-# RULES
"map/map"
forall f g xs.

map f (map g xs) = map (f . g) xs
#-}

I have made use of these rewrite rules in the exploration of the shallow to deep DSL transfor-

mations. One of the restrictions of these rewrite rules is that the left hand side of the rule must be

a function application. This limits the usefulness of using the rewrite rules in some of my trans-

formations, however, I still make use of their syntax as a convenient transformation specification

mechanism.

2.4 The Worker/Wrapper Transformation

The worker/wrapper transformation (Gill & Hutton, 2009; Jones & Launchbury, 1991) is a trans-

formation that converts a computation of one type into a computation of another type (worker)

wrapped by a function that converts between the types of the two computations (wrapper). These

type of transformations are correctness preserving, and have been used in compilers and other

applications for many years.

23

Assuming a function f, which has a the following form:

f = body

The right hand side, body, may have recursive calls to f. We can then replace the body with

the wraper function, wrap applied to the worker function, work. The worker function itself is an

application of the un-wrapper function, unwrap to the body of the original function.

f = wrap work

work = unwrap body

Where the body function is of type B, and the work function is of type A, the types of the

worker/wrapper transformation are illustrated in Figure 2.4.

A B

unwrap

wrap

Figure 2.4: Worker-Wrapper Transformation

Applying this principle to our desired translations of shallow to deep EDSLs, and using the

terminology of data representation (Hoare, 1972), we define the rep function which is the un-

wrapper which moves from our normal Haskell types to the Expr representation, and abs which

converts from the representation back to the abstract type. This is illustrated in Figure 2.5.

a Expr a

rep

abs

Figure 2.5: Expression Transformation

24

These conversions between the abstract type a and the concrete type Expr a depend on the

worker-wrapper assumption that:

wrap ◦ unwrap = idA

Stating this in our DSL terms:

abs ◦ rep = idA

In the context of our expression language, this means that if we take a literal value in a base

Haskell type such as Word8, move it the expression language with the rep function, then evaluate

the resulting expression with the abs function, we will get the original value back.

It should be noted, than in my DSL work, I also use a worker-wrapper transformation in a

monadic form, as shown in Figure2.6.

Monad a Monad (Expr a)

rep

abs

Figure 2.6: Monadic Transformation

25

Chapter 3

Remote Monads and Interpreters

The Arduino series of microcontrollers has previously been the target of of functional programming

with Haskell. The hArduino package, written by Levent Erkök(Erkok, 2014), allows programmers

to control Arduino boards through a serial connection. The serial protocol used between the host

computer and the Arduino, and the firmware which runs on the Arduino, are together known as Fir-

mata. Firmata was originally intended as a generic protocol for controlling microcontrollers from

a host computer. It has become popular in the Arduino community, and programming interfaces

for many programming languages have been developed for it. The hArduino library, using our ter-

minology, uses a weak remote monad, and does not have a polymorphic send. Instead, once send

is called, the function never terminates or returns values. This was the starting point for Haskino.

3.1 The Arduino Remote Monad

The first step in developing Haskino was to extend the hArduino library using the strong remote

monad design pattern. The monad passed in hArduino represents the whole computation to be

executed, which is then executed piecemeal by many individual remote calls. In contrast, Hask-

ino’s strong remote monad send function is able to send one or more commands terminated by a

procedure which may return a value. This bundling of commands increases the efficiency of the

communication, not requiring host interaction until a value is returned from the remote microcon-

troller.

26

With Haskino, to open a connection to an Arduino, openArduino is called passing a boolean

flag for debugging mode, a file path to the serial port, and it returns an ArduinoConnection data

structure:

openArduino :: Bool -> FilePath -> IO ArduinoConnection

Once the connection is open, the send function may be called, passing an Arduino monad

representing the computation to be performed remotely, and possibly returning a result.

send :: ArduinoConnection -> Arduino a -> IO a

The Arduino strong remote monad, like our other remote monad implementations (Section 2.2),

contains two types of monadic primitives, commands and procedures. An example of a command

primitive is writing a digital value to a pin on the Arduino. In the shallow version of Haskino, this

has the following signature:

digitalWrite :: Word8 -> Bool -> Arduino ()

The function takes the pin to write to and the boolean value to write, and returns a monadic

value which returns unit. An example of a procedure primitive is reading the number of millisec-

onds since boot from the Arduino. The type signature of that procedure looks like:

millis :: Arduino Word32

Originally, the monad used in Haskino was defined using the original version of the remote

monad library (Gill et al., 2015), parameterized over the ArduinoCommand and ArduinoProcedure

data types.

newtype Arduino a = Arduino (RemoteMonad ArduinoCommand ArduinoProcedure a)
deriving (Functor, Applicative, Monad)

The data types for ArduinoCommand and ArduinoProcedure were defined as GADTs as shown

below, with only a subset of their actual constructors shown as examples.

27

data ArduinoCommand =
...

DigitalWrite Word8 Bool
| AnalogWrite Word8 Word16

...
data ArduinoProcedure :: * -> * where

DigitalRead :: Word8 -> ArduinoProcedure Bool
DelayMillis :: Word32 -> ArduinoProcedure ()

...

The remote monad library was subsequently updated to not make the distinction between com-

mand and procedures using a different data type. Instead, it uses a separate function over a single

data type for primitives to determine if the primitive in question has a known result, or in other

words, was a command in the old nomenclature. The new monad currently used in Haskino is

defined using the new remote monad library (Dawson et al., 2017), parameterized over the Ar-

duinoPrimitive data type.

newtype Arduino a = Arduino (RemoteMonad ArduinoPrimitive a)
deriving (Functor, Applicative, Monad)

The updated data type for the ArduinoPrimitive is defined as a GADT as shown below, with

only a subset of the actual constructors shown as examples.

data ArduinoPrimitive :: * -> * where
...

DigitalWrite :: PinE -> Bool -> ArduinoPrimitive ()
AnalogWrite :: PinE -> Word16 -> ArduinoPrimitive ()

...
DigitalRead :: Word8 -> ArduinoPrimitive Bool
DelayMillis :: Word32 -> ArduinoPrimitive ()

...

The function knownResult in the remote monad package’s KnownResult typeclass returns a

Maybe type, with a Just a result for primitives with a known result (commands), and a Nothing

for those without (procedures).

28

instance KnownResult ArduinoPrimitive where
...

knownResult (DigitalWrite) = Just ()
knownResult (AnalogWrite) = Just ()

...
knownResult _ = Nothing

Finally, the API functions which are exposed to the programmer are defined in terms of these

constructors, as shown for the example of digitalWrite below:

digitalWrite :: Pin -> Bool -> Arduino ()
digitalWrite p b = Arduino $ primitive $ DigitalWrite p b

To demonstrate the use of the shallow Haskino DSL, we return to the simple example presented

in Section 2.1.3, this time written in the shallow version of the Haskino language.

example :: Arduino ()
example = withArduino False "/dev/cu.usbmodem1421" $ do

let button1 = 2
let button2 = 3
let led = 13
setPinMode button1 INPUT
setPinMode button2 INPUT
setPinMode led OUTPUT
loop $ do

a <- digitalRead button1
b <- digitalRead button2
digitalWrite led (a || b)
delayMillis 100

This example uses the Haskino convenience function, withArduino, which calls openArduino

and then calls send with the passed monad.

withArduino :: Bool -> FilePath -> Arduino () -> IO ()

The setPinMode commands configure the Arduino pins for the proper mode, and will be sent

as one sequence by the underlying send function. The loop primitive is similar to the forever

construct in Control.Monad, and executes the sequence of commands and procedures following it

indefinitely. The digitalRead functions are procedures, so they will be sent individually by the

send function. The digitalWrite command following the two digitalRead’s will be bundled

with the delayMillis procedure, and sent together by the send function.

29

3.2 Bytecode Interpreter and Protocol

I wanted to move from sending bundles of commands to the Arduino, to sending entire control-

flow idioms, even whole programs, as large bundles. This can be done by using deep embedding

technology, embedding both a small expressing language, and deeper Arduino primitives.

First however, to move Haskino from a straightforward use of the strong remote monad to a

deeper embedding, required extending the protocol used for communication with the Arduino to

handle expressions and conditionals. The Firmata protocol, while somewhat expandable, would

have required extensive changes to accommodate expressions. Also, since it was developed to be

compatible with MIDI, it uses a 7 bit encoding which added complexity to the implementation on

both the host and Arduino sides of the protocol. As there was no requirement to maintain MIDI

compatibility, I determined that it would be easier to develop a protocol specifically for Haskino.

Like Firmata, the Haskino protocol sends frames of data between the host and Arduino. Com-

mands are sent to the Arduino from the host, with no response expected. Procedures are sent to

the Arduino as a frame, and then the host waits for a frame from the Arduino in reply to indicated

completion, returning the value from the procedure computation.

Instead of 7 bit encoding, the frames are encoded with a HDLC (High-level Data Link Control)

type framing mechanism. Frames are separated by a hex 0x7E frame flag. If a 0x7E appears in the

frame data itself, it is replaced by an escape character (0x7D) followed by a 0x5E. If the escape

character appears in the frame data, it is replaced by a 0x7D 0x5D sequence. The last byte of the

frame before the frame flag is a checksum byte. Currently, this checksum is an additive checksum,

since the error rate on the USB based serial connection is relatively low, and the cost of a CRC

computation on the resource limited Arduino is relatively high. However, for a noisier, higher

error rate environment, a CRC could easily replace the additive checksum. Figure 3.1 illustrates

the framing structure used.

The new Haskino protocol also makes another departure from the Firmata style of handling pro-

cedures which input data from the Arduino. With the deep embedded language being developed,

results of one computation may be used in another computation on the remote Arduino. Therefore,

30

0xfe Payload (Frame) Check-
sum

1
byte 1 to 255 bytes excluding byte-stuffing

1
byte

Payload and Payload checksum are byte-stuffed for 0x7e
 with 0x7d 0x5e, and byte-stuffed for 0x7d with 0x7d 0x5d,

and checksum is over payload only

0xfe

1
byte

Payload
...

Figure 3.1: Haskino Framing

the continuous, periodic style of receiving digital and analog input data used by Firmata does not

make sense for our application. Instead, digital and analog inputs are requested each time they are

required for a computation. Although, this increases the communication overhead for the strong

remote monad implementation, it enables the deep implementation, and allows a common protocol

to be used by both.

The final design decision required for the protocol was to determine if the frame size should

have a maximum limit. As the memory resources on the Arduino are limited, a maximum frame

size for the protocol of 256 bytes was chosen to minimize the amount of RAM required to store a

partially received frame on the Arduino.

The basic scheduling concept of Firmata was retained in the new protocol as well. The Create-

Task command creates a task structure of a specific size. The AddToTask command adds monadic

commands and procedures to a task. Multiple AddToTask commands may be used for a task, such

that the task size is not limited by the maximum packet size, but only by the amount of free mem-

ory on the Arduino. The ScheduleTask command specifies the future time offset at which to start

running a task. Multiple tasks may be defined, and they run until completion, or until they delay.

A delay as the last action in a task causes it to restart. Commands and procedures within a task

message use the same format as the command sent in a individual frame, however, the command

is proceeded by a byte which specifies the length of the command. This command framing is show

in Figure 3.2.

31

0xa2

Add
To

Task

Cmd
Size
Bytes

Task
Id

Add
Size

Cmd
Size Cmd Cmd

Size Cmd

Cmd
Size
Bytes

Figure 3.2: AddToTask Framing

This primitive scheduling capability is sufficient for the shallow version, which does not have

the ability to chain results together remotely, so in reality these shallow "tasks" only make sense

if they are composed of commands. It does, however, lay the framework for more sophisticated

scheduling and concurrency mechanisms which will be presented in Chapter 5, after the deep

embedding and the ability to chain remote computations are presented in Chapter 4.

The new Haskino communication protocol was implemented in both Arduino firmware and the

shallow version of the Haskell host software, producing the second version of Haskino.

32

Chapter 4

Remote Binding of Computations

To move towards my end goal of writing an Arduino program in Haskell that may be run on the

Arduino without the need of a host computer and serial interface, I needed to move on from the

Haskino shallow DSL used in Chapter 3. A deep embedding of the Haskino language allows a

Haskino program to deal not just with literal values, but with complex expressions, and to define

bindings that are used to retain results of computations remotely.

4.1 The Deep Extensions

To create a deeply embedded version of Haskino, the command and procedure monadic primitives

are extended to take expressions as parameters, as opposed to simple values. This requires a new

expression data type, Expr. For example, the digitalWrite command described earlier now

becomes the digitalWriteE command:

digitalWriteE :: Expr Word8 -> Expr Bool -> Arduino (Expr ())

Procedure primitives now also return Expr values, so the millis procedure described earlier

now becomes the millisE procedure defined as:

millisE :: Arduino (Expr Word32)

4.1.1 The Expr Type

The Expr data type is used to express arithmetic and logical operations on both literal values of

a data type, as well as results of remote computations of the same data type. The Expr data type

33

is defined as a GADT, and a subset of it is shown below to demonstrate the type of constructors

present in it.

data Expr a where
LitUnit :: Expr ()
LitB :: Bool -> Expr Bool
LitW8 :: Word8 -> Expr Word8
...

ShowW16 :: Expr Word16 -> Expr [Word8]
ShowW32 :: Expr Word32 -> Expr [Word8]

...
RefB :: Int -> Expr Bool
RefW8 :: Int -> Expr Word8

...
NegW8 :: Expr Word8 -> Expr Word8
AddW8 :: Expr Word8 -> Expr Word8 -> Expr Word8

...
AndW8 :: Expr Word8 -> Expr Word8 -> Expr Word8
OrW8 :: Expr Word8 -> Expr Word8 -> Expr Word8

...
EqW8 :: Expr Word8 -> Expr Word8 -> Expr Bool
IfW8 :: Expr Bool -> Expr Word8 -> Expr Word8 -> Expr Word8

...

Expr is defined over types which are instances of several different type classes which provide

a convenient API for users of Haskino to program with. The types that are currently part of the

Haskino Expr language include boolean, signed and unsigned integers of length 8, 16 and 32,

floats, as well as unit. Handling reads and writes from I2C devices, as well as displaying text on

LCD and other displays, requires the ability to handle a type for a collection of bytes. As Haskino

is a Haskell DSL, the intuitive choice for the collection is a list of Word8, and it is also an instance

of type classes used with the Haskino Expr type. To support using Word8 lists in expressions,

Haskino’s expression language contains primitives for cons, append, length, and element opera-

tions on expressions of [Word8]. In addition, show primitives have been added to convert other

types into lists of Word8 to support debugging operations, and displaying data on Arduino attached

displays.

34

The first type class that types use with the Haskino Expr type is the standard Haskell Num class,

which provides standard arithmetic operations. The instance of Num for the Expr Word8 type is

show below. It translates the typeclass functions into constructors in the Expr data type.

instance Num (Expr Word8) where
(+) x y = AddW8 x y
(-) x y = SubW8 x y
(*) x y = MultW8 x y
negate x = NegW8 x
abs x = x
signum x = SignW8 x
fromInteger x = LitW8 $ fromInteger x

Several of the other type classes used with Expr are part of the Data.Boolean package (Elliott,

2013), which also provide a standardized interface. The first of these provides boolean operations

for the Expr Bool type. The operations look similar to normal boolean operations, however they

do not have the exact same names. For example, the name of the boolean and function is (&&*),

as opposed to the standard Haskell (&&) function.

instance Data.Boolean.Boolean (Expr Bool) where
true = LitB True
false = LitB False
notB = NotB
(&&*) = AndB
(||*) = OrB

The second Data.Boolean class, Data.Boolean.Number.IntegralB, provides operations analo-

gous to the standard Haskell Integral type. Once again, the instance for Expr Word8 is shown

below.

instance Data.Boolean.Numbers.IntegralB (Expr Word8) where
div = DivW8
rem = RemW8
quot = QuotW8
mod = ModW8
toIntegerB e = ToIntW8 e

Comparison and conditionals of Haskino Expr types are provided by three Data.Boolean classes,

EqB, OrdB, and IfB. As with the boolean operators, these operators are similar to standard Haskell

operators, but have an appended asterisk, such as >* for greater than and ==* for equals.

35

instance Data.Boolean.EqB (Expr Bool) where
(==*) = EqB

instance Data.Boolean.OrdB (Expr Bool) where
(<*) = LessB

instance Data.Boolean.IfB (Expr Bool) where
ifB = IfB

As Haskino deals with hardware register manipulations, it is also convenient to define bit-

wise operations over integers for Haskino Expr types. To this end, Haskino defines a new

Data.Boolean.Bits.BitsB type class to handle those operations, similar to the standard Haskell

Data.Boolean.Bits class. The instance for Expr Word8 is shown below for this class.

instance Data.Boolean.Bits.BitsB (Expr Word8) where
type IntOf (Expr Word8) = Expr Int
(.&.) = AndW8
(.|.) = OrW8
xor = XorW8
complement = CompW8
shiftL = ShfLW8
shiftR = ShfRW8
isSigned = (_ -> lit False)
bitSize = (_ -> lit 8)
bit = ı -> 1 ‘shiftL‘ i
setBit = SetBW8
clearBit = ClrBW8
testBit = TestBW8

Finally, Haskino defines a typeclass for Haskino specific operations, the main Haskino Expr

typeclass, ExprB. The lit operator is used to lift standard Haskell values into the Expr type. The

remBind function is used for remote binds which will be described in the next section, and showE

is the show function mentioned earlier in this section, which translates Haskino Expr types in

displayable lists.

class ExprB a where
lit :: a -> Expr a
remBind :: Int -> Expr a
showE :: Expr a -> Expr [Word8]

instance ExprB Word8 where
lit = LitW8
remBind = RemBindW8
showE = ShowW8

36

The ExprB typeclass and Data.Boolean typeclass implementations were modified somewhat

when the Shallow to Deep plugin transformations were developed. That design tradeoff is explored

in Section 9.8,

4.1.2 Deep Allocations

The second component of the deep embedding is the ability to define remote references and bind-

ings which allow us to use the results of one remote computation in another. For the first type of

remote allocations, remote references, we define a RemoteReference typeclass, with an API that is

similar to Haskell’s IORef. With this API, remote references may be created and easily read and

written to.

class RemoteReference a where
newRemoteRef :: Expr a -> Arduino (RemoteRef a)
readRemoteRef :: RemoteRef a -> Arduino (Expr a)
writeRemoteRef :: RemoteRef a -> Expr a -> Arduino (Expr ())
modifyRemoteRef :: RemoteRef a -> (Expr a -> Expr a) ->

Arduino (Expr ())

The second type of remote allocations present in Haskino’s deep embedding are remote binds.

These terms in the Expr language are used to encode the monadic binds present in the source

language. The send function is responsible for tracking these binds, and encoding them into the

bytecode language which implements them.

4.1.3 Deep Conditionals

The final component required for the deep embedding is adding conditionals to the language. Hask-

ino defines two types of conditional monadic structures, an If-Then-Else structure, and a iteration

structure. The IfThenElse structure takes a Expr Bool expression, and returns a monadic expres-

sion from either the Then or the Else branch, with an Arduino (Expr a) type. The iterateE

structure emulates various types of loops, and it takes an initial value for the loop variable, and a

body function which returns an Either type composed of the loop variable type and the return type.

37

If the body returns a (ExprLeft a) value of the ExprEither type, then the iteration will continue,

and the body will be called again. However, if the body returns a (ExprRight b) value of the

ExprEither type, then the iteration will terminate, and b will be returned.

ifThenElse :: Expr Bool -> Arduino (Expr a) -> Arduino (Expr a) ->
Arduino (Expr a)

data ExprEither a b where
ExprLeft :: (ExprB a, ExprB b) => Expr a -> ExprEither a b
ExprRight :: (ExprB a, ExprB b) => Expr b -> ExprEither a b

iterateE :: Expr a ->
(Expr a -> Arduino (ExprEither a b)) ->
Arduino (Expr b)

4.1.4 Shallow in Terms of Deep

Shallow remote monad commands may be defined in terms of their deep counterparts, allowing

both to coexist in the deep embedded version. For example, after defining a simple Expr ()

evaluation function, we can write the shallow version of digitalWrite in terms of the deep version:

evalExprUnit :: Expr () -> ()
evalExprUnit _ = ()

digitalWrite :: Word8 -> Bool -> Arduino (Expr ())
digitalWrite p b = evalExprUnit <$> (digitalWriteE (lit p) (lit b))

4.2 DSL Iteration Design Choices

As the Haskino DSL’s were designed, the ability to chose what the form of the iteration structure

would look like in the Deep EDSL presented itself. The original version of Haskino (Grebe & Gill,

2016) had a while iteration structure of the form:

while :: ExprB a =>
Expr a -> (Expr a -> Expr Bool) ->
(Expr a -> Expr a) -> Arduino () ->
Arduino ()

38

This structure took an initial value, a function which tested the loop expression, a function

which modified the loop expression each iteration, and a loop body function. This type of iterative

structure worked for simple non-effectful iteration, which does not require a value to be returned.

However, Haskino is a monadic DSL, that deals with input and output from low level hardware,

so it requires the ability to handle effects that occur in the body of an iterative structure. The next

structure that was implemented in Haskino for iteration had the following structure.

whileE :: Expr a -> (Expr a -> Expr Bool) ->
(Expr a -> Arduino (Expr a)) ->
Arduino (Expr a)

In this version, the body function is monadic, allowing effects to be taken into account. How-

ever, it requires the loop variable and the return type to be of the same type. This posed difficulty

in handling many of embedded examples I attempted such as the analogKey example from Chap-

ter 8, and was not a general solution. It was however simpler to implement, since it did not require

adding the concept of an Either type to the expression language.

These factors drove the design to use the form of iteration I have used in the examples in

Chapter 8, which takes an initial value, and a body function which returns an Either type composed

the loop variable type and the return type (Grebe et al., 2017). It has the following form.

iterateE :: Expr a ->
(Expr a -> Arduino (ExprEither a b)) ->
Arduino (Expr b)

This generalized structure allows each iteration of the loop to return either a new value for a

loop variable, or a return value which may be of a different type.

Also, it should be noted that the earlier whileE structure can be implemented in terms of this

new iterateE. It is also possible to implement a loopE structure which provides a deep analog of

the loop structure used in the shallow version, and a replacement for the forInE which was used

in earlier Haskino versions to provide iteration over lists, both written in terms of the iterateE

structure as shown below.

39

whileE :: ArduinoIterate a a => Expr a -> (Expr a -> Expr Bool) ->
(Expr a -> Arduino (Expr a)) -> Arduino (Expr a)

whileE i tf bf = iterateE i ibf
where
ibf i’ = do

ifThenElseEither (tf i’) (do
res <- bf i’
return $ ExprLeft res)

(return $ ExprRight i’)

loopE :: Arduino (Expr ()) -> Arduino (Expr ())
loopE bf = iterateE LitUnit (_ -> bf >> (return $ ExprLeft LitUnit))

forInE :: Expr [Word8] -> (Expr Word8 -> Arduino (Expr ())) ->
Arduino (Expr ())

forInE ws bf = iterateE 0 ibf
where
ibf i = do

_ <- bf (ws !!* i)
ifThenElseEither (i ‘lessE‘ (len ws))
(return $ ExprLeft (i+1))
(return $ ExprRight LitUnit)

This allowed older code to be used with the new version, and also provides convenient shortcuts

for common loop types.

4.3 The Unit Dichotomy

When originally moving from the shallow to the deep DSL, commands were left returning a stan-

dard unit type in the Arduino monad, Arduino (), as they did in the shallow version of the com-

mand, as shown below:

digitalWrite :: Word8 -> Bool -> Arduino ()

digitalWriteE :: Expr Word8 -> Expr Bool -> Arduino ()

Also, in the original deep implementation, the IfThenElse construct did not return a value, but

also returned Arduino (). When an ifThenElse construct was added which was able to return

values, two types of IfThenElse structures were present in the system, to remain consistent with

the types that were returned from deep commands:

40

ifThenElseUnit :: Expr Bool -> Arduino () -> Arduino () ->
Arduino ()

ifThenElse :: Expr Bool -> Arduino (Expr a) -> Arduino (Expr a) ->
Arduino (Expr a)

While this implementation proved functional, and did not require () to be a type in the ex-

pression language, it was not ideal. The handling of () as a special case caused the code used for

shallow to deep transformations in the plugin (Chapter 9), to become overly complicated, requiring

additional code to handle the () type differently than all others.

The solution to this issue was to make () a full fledged instance of the ExprB type class, and

eliminate the special case handling. This allows the shallow to deep transformation of commands

and procedures to be unified, as well as allowing the two types of IfThenElse structures to also be

unified. This did require adding an EXPR_UNIT type to the bytecode langauage for the interpreter

as well, but this required much less code and effort than the special handling for () in the GHC

plugin.

4.4 Deep Protocol and Firmware

Changes to the Haskino protocol and firmware were also required to implement expressions, con-

ditionals and remote allocation. Expressions are transmitted over the wire using a bytecode repre-

sentation. Each operation is encoded as a two byte opcode with two fields. The first byte indicate

the type of expression (currently Bool, Word8, Word16, Word32, Int8, Int16, Int32, [Word8], Float

or Unit) and the second byte indicates the operation (literal, remote reference, addition, etc.). The

ExprEither type is encoded in the type byte as well, with the most significant bit of the type byte

indicating if it is ExprLeft, or ExprRight. Expression operations may take one, two, or three pa-

rameters determined by the operation type, and each of the parameters is again an expression.

Evaluation of the expression occurs recursively, until a terminating expression type of a literal,

remote reference, or remote bind is reached. Figure 4.1 shows an example of encoding the addi-

41

tion of Word8 literal value of 4 with the first remote reference defined on the board, as well as a

diagram of that expression being used in an analogWrite command.

0x41 Check-
sum 0xfe

analog
Write

Comand

analogWrite
Command Frame Parameter

Expression

Addition
Expression

analogWrite
with

Addition
Expression

EXPR_
ADD

EXPR_ADD
takes two

expression
arguments

EXPR_
WORD8

EXPR_
WORD8

EXPR_
WORD8

Remote
Reference
Index of 0

Full Addition
Expression Operand

Subexpression
Operand

Subexpression

0x02 0x0A 0x02 0x00 0x04 0x02 0x01 0x00

EXPR_
LIT

EXPR_
REF

Literal
4

0x02 0x0A 0x02 0x00 0x04 0x02 0x01 0x00

Figure 4.1: Example of Expression Encoding

Conditionals are packaged in a similar manner to the way tasks are packaged, with the com-

mands and procedures packaged into a code block. Two code blocks are used for the IfThenElse

conditional (one block for the then branch, and one for the else branch), and one code block is used

for the iterateE structure. In addition, a byte is used for each code block to indicate the size of the

block. A current limitation of conditionals in the protocol is that the entire conditional and code

block(s) must fit within a single Haskino protocol frame. However, if the conditional is part of a

task, this limitation does not apply, as a task body may span multiple Haskino protocol frames.

The Iterate command also returns an Either type, so the encoding of the command includes

bytes which indicate the type of both the left and right components of the Either. (Iteration and it’s

use of Either types is explored in more detail in Chapter 8). To support our recursive transforma-

tions, the IfThenElse type also has a variant that returns an Either type. Therefore, the encoding

of IfThenElse also includes bytes indicating the type of the left and right components. If the

42

IfThenElse being encoded does not return an either, the left and right type bytes are simply set to

the same value. Figure 4.2 shows the encoding of both conditional types.

Iterate
Loop

Iterate
Command

ifThenElse
Command

0x15 Boolean
Expression Len

Cmd/
ProcLenInitialization

Expression

Then
Branch

Else
Branch

Iterate loop
encoding

If Then Else
encoding

Cmd/
Proc

Cmd/
Proc

Cmd/
Proc

Cmd/
Proc

Cmd/
Proc Len Cmd/

Proc
Cmd/
Proc

Cmd/
Proc

Left
Type

Right
Type

Ret
Bind

0x14 Left
Type

Right
Type

Ret
Bind

Figure 4.2: Protocol Packing of Conditionals

4.5 Deep Example

Now that the components of the deeply embedded version of Haskino have been described, we can

return to a deep version of the simple example used earlier.

exampleE :: Arduino (Expr ())
exampleE = withArduino True "/dev/cu.usbmodem1421" $ do

let button1 = 2
let button2 = 3
let led = 13
setPinModeE button1 INPUT
setPinModeE button2 INPUT
setPinModeE led OUTPUT
loopE $ do

a <- digitalReadE button1
b <- digitalReadE button2
digitalWriteE led (a ||* b)
delayMillis 100

This deep example looks very similar to the shallow example in structure. The bindings a and

b, which were previously stored on the host, are now kept on the Arduino. The Haskino firmware

implements this allocation by storing the result of a procedure computation that would normally

43

be sent across the serial interface to a local buffer associated with that bind instance instead. The

expression bytecode language includes an EXPR_BIND operator, which takes it’s input from this

local buffer.

4.6 Debugging

The original shallow version of the Haskino DSL provided rudimentary debugging capabilities

through a debug primitive.

debug :: String -> Arduino ()

The debug primitive is a special case within the monadic send function, using the host Haskell

show functions and liftIO to display values to the console. However, since the debug parameters

were evaluated locally on the host, not in the Haskino interpreter, it could not be used for debug-

ging intermediate results within deeply embedded conditionals or loops, or for debugging within

tasks. The deep version of the Haskino DSL instead includes a debugE primitive whose expression

parameters are evaluated on the Arduino:

debugE :: Expr [Word8] -> Arduino (Expr ())

The evaluated expression is returned to the host via the Haskino protocol, and the message

displayed on the host console. It can make use of the show primitives added to the expression

language to display the values of remote references or remote binds.

An additional procedure was also added to the DSL language, debugListen, which keeps the

communication channel open listening for debug messages. This was required as the channel is

normally closed after the last command or procedure has been sent. If the last command is a loop

or task scheduling, this procedure may be used to ensure that debug messages are received and

displayed on the host while the loop or task executes on the Arduino.

One of the key features of Haskino is that the same monadic code may be used for both inter-

preted and compiled (Chapter 6) versions. This allows for quick prototyping with the tethered,

interpreted version, and then allows for the compiling of the code for deployment. This duality

44

of environments is supported with the debugging primitives as well. When compiled, the debugE

procedure will output the evaluated byte list to the serial port, allowing the same debug output

displayed by the interpreted version to be used in debugging the compiled version as well.

When the shallow to deep translation was added to Haskino through a compiler plugin (Chap-

ter 7), it was desirable to change the debug primitives to use similar types so that they could be

automatically converted without requiring special cases. This was required as the Haskino lan-

guage does not have Char or String types, but instead uses a [Word8]. Therefore, the shallow

debug primitive was changed to use the following type instead.

debug :: [Word8] -> Arduino ()

As the shallow debug primitive now takes a [Word8] parameter instead of a String, it does

require a modified show function to be used in the shallow version to convert Haskino types into

Word8 lists. The types of the new show routines for the shallow and deep Haskino versions are

shown below.

showB :: Show a => a -> [Word8]

showE :: ExprB a => Expr a -> Expr [Word8]

This extends the commonality of the debugging routines. If the shallow DSL code is written

using the new debug and showB, it may be automatically translated by the plugin, and will work

with all of the Haskino variants, the shallow interpreter, deep interpreter, and deep compiler with

one version.

45

Chapter 5

Scheduler

Programming embedded microcontrollers often requires the scheduling of independent threads of

execution, specifying the interaction and sequencing of actions in the multiple threads. Develop-

ing and debugging such multi-threaded systems can be especially challenging in highly resource

constrained systems such as the Arduino line of microcontroller boards.

To address these requirements, Haskino has been developed to include the capability of multi-

threaded operation. The shallow version of Haskino inherited it’s concept of threads from Firmata

tasks. Tasks in Firmata are sequences of commands which can be executed at a future time. How-

ever, as they had no way to store results from one procedure for use in another command or proce-

dure, the usefulness of these tasks was severely limited. The shallow version of Haskino extended

the ability of tasks, allocating remote references to store the results of a procedure and use that

result in a subsequent command or procedure. The shallow version was, however, still limited to

running a single task to completion.

Haskino was subsequently extended to allow it to handle multiple threads of execution, with

communication between the threads, and cooperative multitasking. To enable scheduling in Hask-

ino, the Haskino firmware interpreter required modification to allow another task to run when the

currently executing task was suspended due to a delay or a wait on a resource.

As an example of multiple threads running in a Haskino program, the following program is

presented.

46

blinkDelay :: Expr Word32
blinkDelay = 125

taskDelay :: Expr Word32
taskDelay = 2000

semId :: Expr Word8
semId = 0

myTask1 :: Expr Word8 -> Arduino ()
myTask1 led = do

setPinModeE led OUTPUT
loopE $ do

takeSemE semId
writeRemoteRef i 0
iterateE 0 (\ x ->

ifThenElseEither (x <* 3)
(do digitalWriteE led true

delayMillisE blinkDelay
digitalWriteE led false
delayMillisE blinkDelay
return $ ExprLeft $ x + 1)

(return $ ExprRight $ lit ()))

myTask2 :: Arduino ()
myTask2 = do

loopCount <- newRemoteRef $ lit (0 :: Word8)
loopE $ do

giveSemE semId
t <- readRemoteRef loopCount
writeRemoteRef loopCount $ t+1
debugE $ showE t
delayMillisE taskDelay

initExample :: Arduino ()
initExample = do

let led = 13
createTaskE 1 $ myTask1 led
createTaskE 2 myTask2
scheduleTaskE 1 1000
scheduleTaskE 2 1050

semExample :: IO ()
semExample = withArduino True "/dev/cu.usbmodem1421" $ do

initExample

47

This example creates two tasks. The first task, myTask1, sets the mode of the LED pin to output,

then goes into an infinite loop. Inside the loop, it takes a semaphore, and when the semaphore is

available it blinks the LED rapidly three times. The second task, myTask2, executes an infinite

loop where it gives the semaphore, then delays for two seconds. The main function, semExample,

creates the two tasks and schedules them to execute, using the Arduino connected to the specified

serial port.

5.1 Scheduling the Interpreter

The Haskino firmware interpreter runs byte code on the Arduino, the byte code having been gen-

erated on the host and transmitted to Arduino using the remote monad function send. To enable

scheduling in Haskino, the Haskino firmware interpreter required modification to allow another

task to run when the currently executing task was suspended due to a delay or a wait on a resource.

The scheduler in the Firmata firmware only ran tasks to completion, so no interruption and re-

sumption of tasks was allowed. The scheduler in the initial version of the Haskino interpreter was

modeled after that scheduler, and therefore was limited to run to completion tasks as well.

Haskino defines two conditional structures, an If-Then-Else structure and a Iterate structure.

Each of these structures contains the concept of execution of basic code blocks within the inter-

preter. To allow the scheduler to interrupt execution of a basic block in a task, and then later restore

execution when the task resumes, a method for saving and restoring the execution state of the task

is required. In an operating system, this is normally done by saving and restoring the processor’s

registers, as well as giving each thread its own stack. In the Haskino interpreter, each task has it’s

own context, which provides the storage for the bound variables. This corresponds to the separate

stack for each thread in a traditional operating system.

In addition, the interpreter must also store information in the context which indicates where

in the basic block execution the task was interrupted, such that it may be restored when the task

resumes. For all of the control structures containing basic blocks, the location (in bytes from

the start of the block) of the command or procedure that was executing when the interruption

48

occurred is stored. For the simplest of the control structures, Iterate, this is all that is required. The

other control structure requires an additional piece of information to be stored. The If-Then-Else

structure requires storing which branch code block was being executed, either the Then branch or

the Else branch.

As the Haskino control structures may be nested, the scheduler is required to keep track of not

just the state of execution in one basic block, but instead must track the state of execution in a stack

of basic blocks leading up to the point that code execution was suspended. When the task is later

resumed, the interpreter must walk that stack in reverse order, restoring the state of the task for

each of the other nested basic blocks.

Currently, there are two procedures which cause the Haskino scheduler to interrupt the exe-

cution of a task, and potentially start execution of another. The first of these procedures is the

delayMillisE command, which will delay a task for specified number of milliseconds. When the

procedure is executed, the state of current task is saved, and the time when the task should resume

execution is stored in the task’s context. The scheduler then checks if another task is ready to run,

based on its next execution time having passed, or a resource it was waiting on having become

available. If a ready to run task is found, it’s state of execution is restored by the method previ-

ously discussed, and it’s execution is resumed. Another delay procedure, delayMicrosE, exists

for those cases where the programmer wishes a task to have a short delay without the possibility

of being interrupted, and executing this procedure will not cause a task reschedule. The second

procedure which may interrupt execution of a task is described in the next section.

5.2 Inter-thread Communication

Running multiple threads of computation is of limited use if the threads do not have a method of

communicating with each other. To enable communication and synchronization between tasks,

Haskino provides several methods. First, the RemoteReference class provides atomic storage

methods that can be used to pass data between Haskino tasks. RemoteReference’s provide an

API analogous to the Haskell IORef, allowing a remote reference to be read, written, or modified.

49

Haskino also provides binary semaphores for synchronization between Haskino tasks. A binary

semaphore may be given by one task by executing the giveSem procedure, while the task that

wants to synchronize with the first task can do so by executing the takeSem procedure. When a

task executes a takeSem procedure, and the binary semaphore that it refers to is not available, the

task will be suspended. When another task later makes the semaphore available through a giveSem

procedure, the scheduler will then make the task taking the semaphore ready to run. If the binary

semaphore is available when takeSem is called, the semaphore is made unavailable. However, the

task is not suspended in this case, but continues operation. In addition, if a task is already waiting

on an unavailable semaphore when another task calls giveSem, the semaphore is left unavailable,

but the task waiting on it is made ready to run.

The inclusion of binary semaphores also enables Haskino to handle another important aspect

of programming embedded systems, the processing of interrupts. In addition to handling multiple

tasks, the Arduino monadic structures may also be attached to handle external Arudino interrupts.

For example, the following example uses a simple interrupt handler which gives a semaphore to

communicate with a task. It is similar to our earlier two task example, but in this case, the interrupt

handling task is attached to the interrupt using the attachIntE command, which specifies the pin

of the interrupt to attach to.

blinkDelay :: Expr Word32
blinkDelay = 125

semId :: Expr Word8
semId = 0

myTask :: Expr Word8 -> Arduino ()
myTask led =

loopE $ do
takeSemE semId
digitalWriteE led true
delayMillisE blinkDelay
digitalWriteE led false
delayMillisE blinkDelay

intTask :: Arduino ()
intTask = giveSemE semId

50

initIntExample :: Arduino ()
initIntExample = do

let led = 13
setPinModeE led OUTPUT
let button = 2
setPinModeE button INPUT
let myTaskId = 1
let intTaskId = 2
createTaskE myTaskId (myTask led)
createTaskE intTaskId intTask
scheduleTaskE myTaskId 50
attachIntE button intTaskId FALLING

intExample :: IO ()
intExample = withArduino True "/dev/cu.usbmodem1421" $ do

initIntExample

5.3 Firmware Scheduler Details

The interpreter tracks the scheduling and state of tasks in the system using several data structures.

The first of these is the task control block as shown below:

typedef struct task_t
{
struct task_t *next;
struct task_t *prev;
struct context_t *context;
byte id;
uint16_t size;
uint16_t currLen;
uint16_t currPos;
uint32_t millis;
bool ready;
bool rescheduled;
byte data[];
} TASK;

The task control blocks are kept in a linked list, and have a pointer to a context structure which

will be described next, and a 8 bit id which is used to reference the task in creation, deletion,

and scheduling commands. When the task is created by the createTask primitive, it’s maximum

bytecode size is calculated by the send function on the Haskell host as it encodes the task EDSL

51

code into bytecode. The bytecode is stored in the data field of the task control block, and the

currLen field is updated as AddToTask firmware protocol commands are received, since the task

bytecode may be too large to fit in one protocol packet.

The remaining fields of the task control block are used by the scheduler to run and schedule the

tasks. The ready boolean is used to indicate if the task is ready to run or not, and the rescheduled

boolean indicates if the task was running but has been rescheduled. The millis field indicates for

a rescheduled task what time it is next scheduled to run, which is used to implement the delay

commands. The currPos is used during task execution to indicate the current position in the byte

code being executed, what would commonly be called the program counter.

The second structure used for task management is the context structure. This is kept in a

separate structure from the task structure due to the fact that there is a default context, which is

used to execute primitives sent from the host individually that are not part of any defined task.

typedef struct context_t
{
TASK *task;
BLOCK_STATUS blockStatus[MAX_BLOCK_LEVELS];
int16_t currBlockLevel;
int16_t recallBlockLevel;
uint16_t bindSize;
byte *bind;
bool left;
} CONTEXT;

The context structure contains a pointer back to it’s owning task, which in the case of the de-

fault context will be NULL. The bindSize field is set at context creation, and indicates the number

of bind variables to be allocated for this context, and those allocated binds are stored in the buffer

pointed to by the bind context element. The number of binds required for the task is calculated

by the send function on the host as the tasks EDSL is translated into bytecode. Three fields of

the context structure are used by the scheduler to track execution within code blocks when a tasks

execution may be interrupted as described in Section 5.1. The final field of the context, left, is

used for processing of ExprEither type values as part of the iterateE structure execution.

52

Finally, binary semaphores are tracked by the scheduler using another simple structure. The

semaphore structure contains a boolean flag which indicates if the semaphore has been given

(full), and a pointer to a task which is waiting on the semaphore.

typedef struct semphore_t
{
bool full;
TASK *waiting;
} SEMAPHORE;

5.4 Examples

To better illustrate the utility of the Haskino system with a multithreading program, we present

two slightly more complex examples. The first example demonstrates using Haskino to program

multiple tasks with asynchronous timing relationships. The second example demonstrates using

tasks to simplify a program which would otherwise require hardware status busy waiting.

5.4.1 Multiple LED Example

In this first example, an Arduino board has multiple LED lights connected to it (in the example

code below, three lights), and each of these lights are required to blink at a different, constant rate.

The basic monadic function for blinking a LED is defined as ledTask, which is parameterized

over the pin number the LED is connected to, and the amount of time in milliseconds the LED

should be on and off for each cycle. This function sets the specified pin to output mode, then

enters an infinite loop turning the LED on, delaying the specified time, turning the LED off, and

then again delaying the specified time.

ledTask :: Expr Word8 -> Expr Word32 -> Arduino ()
ledTask led delay = do

setPinModeE led OUTPUT
loopE $ do

digitalWriteE led true
delayMillisE delay
digitalWriteE led false
delayMillisE delay

53

The main function of the program, initExample, creates three Hakino tasks, each with a

different LED pin number, and a different delay rate. The three created tasks are then scheduled

to start at a time in the future that is twice their delay time. The task with an ID of 1 will be the

first to run, as it is scheduled to start at the nearest time in the future (1000 ms). It will run until

it reaches its first call to delayMillisE. At that point, the scheduler will be called. The scheduler

will reschedule task 1 to start again in 500ms, and as no other tasks will yet be started at that time,

the scheduler then call the Arduino runtime delay() function with the same time delay. When

the delay() function returns, task 1 will be the only task ready to run, so it will run again until it

reaches the second delayMillisE call, when the scheduler will be called and will call delay()

as before. When delay() returns the second time, both task 1 and task 2 will be ready to run.

Since task 1 was the last to run, the scheduler will search the task list starting at the task after task

1, and will find task 2 ready to run, and it will be started. Task 2 will run until it reaches the delay,

at which point the scheduler will be called, and it will restart task 1 since it was also ready to run.

This process will continue, with each task running (turning it’s LED on or off) until it reaches a

delay, at which point it will cooperatively give up its control of the processor and allow another

task to run.

initExample :: Arduino ()
initExample = do

let led1 = 6
let led2 = 7
let led3 = 8
createTaskE 1 $ ledTask led1 500
createTaskE 2 $ ledTask led2 1000
createTaskE 3 $ ledTask led3 2000
scheduleTaskE 1 1000
scheduleTaskE 2 2000
scheduleTaskE 3 4000

The final two functions in the example, ledExample and compile are used to run the initExam-

ple monad with the interpreter and compiler respectively.

54

ledExample :: IO ()
ledExample = withArduino True "/dev/cu.usbmodem1421" $ do

initExample

compile :: IO ()
compile = compileProgram initExample "multiLED.ino"

This example demonstrates the ability to write a program where using multiple threads to

implement concurrency greatly simplifies the task. This code could have been written with straight

inline code, but would require calculating the interleaving of the delays for the various LED’s.

However, in that straight line code, it would be more difficult to expand the number of LEDs, or to

handle staggered start times. Both of those cases are easily handled by the multithreaded code, and

the amount of code is also smaller in the multithreaded case, since the ledTask function is reused.

5.4.2 LCD Counter Example

In the second example, an Arduino board has an LCD display shield attached, which in addition

to the display also has a set of six buttons (up, down, left, right, select, and enter). The buttons

are all connected to one pin, and the analog value read from the pin determines which button is

pressed. The example will display a signed integer counter value on the LCD display, starting with

a counter value of zero. If the user presses the up button, the counter value will be incremented

and displayed. Similarly, if the user presses the down button the counter value will be decremented

and displayed.

The main function of the program, lcdCounterTaskInit, creates two Haskino tasks, one for

reading the button, and another for updating the display. It also creates a remote reference which

will be used for communicating the button press value between the tasks.

55

lcdCounterTaskInit :: Arduino ()
lcdCounterTaskInit = do

let button = 0
setPinModeE button INPUT
taskRef <- newRemoteRef $ lit (0::Word16)
createTaskE 1 $ mainTask taskRef
createTaskE 2 $ keyTask taskRef button
-- Schedule the tasks to start immediately
scheduleTaskE 1 0
scheduleTaskE 2 0

The key task waits for a button press, reading the analog value from the button input pin until

it is less than 760 (A value greater than 760 indicates that no button is pressed). The value read

from the pin, which indicates which button was pressed, is stored in the remote reference used to

communicate between tasks. At this point, the semaphore is given by the task. It then waits for the

button to be released, and repeats the loop.

keyTask :: RemoteRef Word16 -> Expr Word8 -> Arduino ()
keyTask ref button = do

let readButton :: RemoteRef Word16 -> Arduino ()
readButton r = do

val <- analogReadE button
writeRemoteRef r val

releaseRef <- newRemoteRef $ lit (0::Word16)
loopE $ do

writeRemoteRef ref 760
-- wait for key press
while ref (\ x -> x >=* 760) id $ do

readButton ref
delayMillisE 50

giveSemE semId
writeRemoteRef releaseRef 0
-- wait for key release
while releaseRef (\ x -> x <* 760) id $ do

readButton releaseRef
delayMillisE 50

The main task sets up the LCD (with the lcdRegisterE call), and creates a remote reference

which will track the counter value. It thens turns on the LCD backlight, and writes the initial

counter value to the display. At this point it then enters the main loop, waiting for the the key task

to give the semaphore. When it receives the semaphore, it reads the key value from the remote

56

reference. Based on the value, it either increments the counter, decrements the counter, or does

nothing. The counter value is then read from the remote reference and the display is updated with

its value.

This second example has demonstrated using a remote reference in conjunction with a semaphore

to communicate between Haskino tasks.

mainTask :: RemoteRef Word16 -> Arduino ()
mainTask ref = do

lcd <- lcdRegisterE osepp
let zero :: Expr Int32

zero = 0
cref <- newRemoteRef zero
lcdBacklightOnE lcd
lcdWriteE lcd $ showE zero
loopE $ do

takeSemE semId
key <- readRemoteRef ref
debugE $ showE key
ifThenElse (key >=* 30 &&* key <* 150)

(modifyRemoteRef cref (\ x -> x + 1)) (return ())
ifThenElse (key >=* 150 &&* key <* 360)

(modifyRemoteRef cref (\ x -> x - 1)) (return ())
count <- readRemoteRef cref
lcdClearE lcd
lcdHomeE lcd
lcdWriteE lcd $ showE count

5.5 Comparing Shallow to Deep

Table 5.1 summarizes the major differences that were found between the shallow and deep imple-

mentations. In the shallow version, all values are stored on the host, and passing values between

computations requires communication with the host. With the deep version, values may be stored

on the Arduino and passed between computations on the Arduino, eliminating the need for inter-

mediate host communications.

The basic task scheduling mechanism is able to use the full power of the language in the deep

version, where it is limited to only commands with the shallow version. One limiting factor of the

deep version, is that the size of the program that may be written is limited by the available Arduino

57

memory, while the shallow version, due to the host interaction, is only limited by the larger host

memory.

Table 5.1: Comparison of Shallow and Deep Embedding using Interpeter

Runtime-tethered Deeply-embedded
Values Stored On Host Arduino
Binds Occur On Host Arduino
Conditionals on Target No Yes
Tasks Can Use Procedures No Yes

Maximum Program Size
Limited by

Host Memory
Limited by

Arduino Memory
Communication Overhead Higher Lower

5.6 Cutting the Cord

One final addition to the firmware and Haskino language allowed us to reach the goal of executing

a stored Haskino program on the Arduino without requiring a connection to the host, and still using

the bytecode interpreter. The addition of the bootTaskE primitive allows the programer to write

one previously defined task to EEPROM storage on the Haskino. The Haskino firmware checks

for the presence of a boot task during the boot process, and if it is present, copies the task from

EEPROM to RAM, and starts it’s execution.

The following example illustrates how a programmer would create a boot task on the Arduino.

The functionality of the program is the same as our other button and 2 LED examples. In this

case, the createTaskE primitive is used to create the task in RAM on the Arduino, using the

program stored in the example monad. The bootTaskE function is then called to write the task

from RAM to EEPROM. On the next power on, the interpreter will start execution of the task. The

scheduleReset primitive may be used to clear a previously written program from EEPROM.

58

example :: Arduino ()
example = do let button = 2

let led1 = 6
let led2 = 7
x <- newRemoteRef (lit False)
setPinModeE button INPUT
setPinModeE led1 OUTPUT
setPinModeE led2 OUTPUT
loopE $ do

writeRemoteRef x =<< digitalReadE button
ex <- readRemoteRef x
digitalWriteE led1 ex
digitalWriteE led2 (notB ex)
delayMillis 100

exampleProg :: IO ()
exampleProg = withArduino False "/dev/cu.usbmodem1421" $ do

let tid = 1
createTaskE tid example
bootTaskE tid

59

Chapter 6

Compiler

The interpreted version of the Haskino DSL provides a quick turnaround Arduino development

environment, including features for easy debugging. However, it has a major disadvantage. The

interpreter takes up a large percentage of the flash program storage space on the smaller capability

Arduino boards such as the Uno. The only other resource on such boards for storing interpreted

programs to be executed when the Arduino is not tethered to a host computer is EEPROM, as

described in Section 5.6. However, this resource is also relatively small (1K byte) on these boards.

These storage limitations directly limit the complexity of programs which can be developed using

the interpreted version of Haskino when not connected to a host computer.

To overcome these limitations, a compiler was developed that translates the same Haskell DSL

source code used to drive the interpreter, into C code. The C code may then be compiled and linked

with a C based runtime which is much smaller than the interpreter. The compiler takes as input the

same Arduino monad that is used as input to the withArduino function to run the interpreter, and

the file to write the C code to.

compileProgram :: FilePath -> Arduino () -> IO ()

6.1 Compiler Structure

The compiler processes the monadic code in a similar fashion to the way that the remote monad

send function does for the interpreted version. Instead of reifying the GADT structures which

represent the user programs into Haskino interpreter byte code, the compiler instead generates C

code.

60

Each task in the program, including the initial task which consists of the code in the top level

monadic structure, is compiled to C code using the compileTask function. The compileTask

function makes use of the compiler’s core function, compileCodeBlock, to recursively com-

pile the program. The top level code block for the task, may contain sub-blocks for Iterate and

IfThenElse control structures present in the top level block. A State monad is used by the compiler

to track generated task code, tasks which are yet to be compiled as they are discovered in compi-

lation of other task blocks, and statistics such as the number of binds per task, which are used for

storage allocation as described in Section 6.4.

data CompileState = CompileState {
level :: Int

, intTask :: Bool
, ix :: Int
, ib :: Int
, cmds :: String
, binds :: String
, refs :: String
, forwards :: String
, cmdList :: [String]
, bindList :: [String]
, tasksToDo :: [(Arduino (Expr ()), String, Bool)]
, tasksDone :: [String]
, errors :: [String],
, iterBinds :: [(Int, Int)] }

compileTask :: Arduino (Expr ()) -> String -> Bool ->
State CompileState ()

compileCodeBlock :: Bool -> String -> Arduino a -> State CompileState a

Expressions and control structures are compiled into their C equivalents, with calls to Haskino

runtime functions for expression operators that are not present in the standard Arduino runtime

library. ArduinoPrimitive’s are likewise translated into calls to either the Arduino standard library,

or to the Haskino runtime.

In the following sections, we will explain the C code which is generated by executing the

compileProgram function on the initExample program which was shown as the opening example

in Chapter 5.

61

6.2 Initialization Code Generation

Arduino programs consist of two main functions, setup(), which performs the required appli-

cation initialization, and loop(), which is called continuously in a loop for the main application.

For Haskino applications, any iteration is handled inside of the monadic Haskino code, and the

compiled code uses only the setup() function. The loop() function is left empty, and is only

provided to satisfy the link requirement of the Arduino library. The code generated for Haskino

initialization for this semaphore example follows:

void setup() {
haskinoMemInit();
createTask(255, haskinoMainTcb, HASKINOMAIN_STACK_SIZE,

haskinoMain);
scheduleTask(255, 0);
startScheduler();
}

void loop() {
}

void haskinoMain() {
createTask(1, task1Tcb, TASK1_STACK_SIZE, task1);
createTask(2, task2Tcb, TASK2_STACK_SIZE, task2);
scheduleTask(1,1000);
scheduleTask(2,1050);
taskComplete();
}

The setup() function serves three purposes. First, it initializes the memory management of

the Haskino runtime, which is described in Section 6.7. Second, it creates the initial root task of the

application. The compiler generates the code associated with the main monadic function passed

to compileMonad as the C function haskinoMain(). The setup() function creates the initial

task by calling createTask(), passing a pointer haskinoMain(), and schedules the task to start

immediately by calling scheduleTask(). Finally, the runtime scheduler, described in Section 6.5,

is started by calling the startScheduler() function.

62

6.3 Task Code Generation

The monadic code passed in each createTaskE call in the Haskell code is compiled into a C func-

tion, named taskX(), where X is the task ID number which is also passed to createTaskE (not

the name of the monadic function). As an example, the code for the first task from the semaphore

example is shown below:

void task1() {
pinMode(13,1);
while (1) {

int bind0;
takeSem(0);
bind0 = 0;
while(1) {

if (bind0 < 3) {
digitalWrite(13,1);
delayMilliseconds(125);
digitalWrite(13,0);
delayMilliseconds(125);
bind0 = bind0 + 1;

} else {
break;

}
}

taskComplete();
}

6.4 Storage Allocations

Three types of storage are allocated by the compiler. RemoteReference’s are compiled into global

C variables, named refX, where X is the id of the remote reference. In the example, two Word8

remote references are used, and compilation of their newRemoteRef calls cause the following

global allocations in the generated code (prior to any task functions) :

uint8_t ref0;
uint8_t ref1;

Binds in the Haskino DSL are compiled into local variables, and are therefore allocated on

the stack. The number of binds for each code block is tracked by the compiler, and the binds

63

are defined local to the code block in which they are used. They are named similarly to remote

references, with a name of the form bindX, where X is the id number of the bind assigned by the

compiler. In the example, there is one Word8 bind in myTask2, used inside of the while loop:

t <- readRemoteRef loopCount

Its allocation as the local variable bind0 may be seen in the following code:

void task2() {
ref0 = 0;
while (1) {

uint8_t bind0;

giveSem(0);
bind0 = ref0;
ref0 = (bind0 + 1);
debug(showWord8(bind0));
delayMilliseconds(2000);
}

taskComplete();
}

The task2() generated code above also demonstrates the initialization of the RemoteRefer-

ence ref0 to its initial value, 0, in the first statement of the generated task. The remote reference

ref0 is then incremented in each iteration, making use of the bind0 bind variable. This code also

demonstrates the use of the debugging features of Haskino (discussed in Section 4.6), by out-

putting the loop count contained in bind0, with the debug() call.

Like the tasks in the interpreter, each task in the compiled code requires a context to track its

state. In the compiled code, this context consists of the C stack, as well as several other state

variables, such as the next time the task should run and a flag indicating if the task is blocked.

Together, these make up the task control block (TCB) for the task, which is the final type of storage

allocated by the compiler, and it’s structure is show in detail in Section 6.6. The compiler allocates

space for the task control block statically, sizing the block based on the size of the fixed elements

of the block, a default amount of stack space to account for Arduino library usage, and finally

stack space for the number of binds used by the task, which the compiler tracks while generating

64

the code. The following shows the generated code used to define the TCB for three tasks from the

semaphore example.

void haskinoMain();
#define HASKINOMAIN_STACK_SIZE 100
byte haskinoMainTcb[sizeof(TCB) + HASKINOMAIN_STACK_SIZE];
void task2();
#define TASK2_STACK_SIZE 104
byte task2Tcb[sizeof(TCB) + TASK2_STACK_SIZE];
void task1();
#define TASK1_STACK_SIZE 100
byte task1Tcb[sizeof(TCB) + TASK1_STACK_SIZE];

The address of the allocated TCB, as well as the size of the allocated stack are passed to the

task creation calls, as can be seen from the creation call for task1 shown below:

createTask(1, task1Tcb, TASK1_STACK_SIZE, task1);

6.5 Scheduling the Generated Code

The small Haskino runtime system used with the generated C code needs to duplicate the schedul-

ing capabilities of the Haskino interpreter, to allow Haskino programs to be move seamlessly

between the two environments. These capabilities are provided by a small multitasking kernel that

is a core part of the runtime. Like the Haskino interpreter, generated tasks are cooperative, only

yielding the processor at delays and semaphore takes.

The scheduling algorithm used is a simple cooperative algorithm. Since the number of tasks

expected is relatively small, a separate ready list is not used. Instead, each time the scheduler is run

when a task yields the processor, the list of all tasks is scanned starting at the task after the yielding

task for a task whose next time to run is less than or equal to the current time, and is not blocked.

Starting the list search at the next task after the yielding task ensures that scheduling will occur in a

round robin sequence of the ready tasks, even if each tasks yields with a delayMilliseconds(0).

The compiler inserts a taskComplete() call at the end of each generated task. If the task ever

reaches this call, it will mark the task as blocked so that it will no longer run. As task control

blocks are allocated statically, the task control block memory is not freed.

65

6.6 Runtime Structure Detail

Analogous to the structures used by the firmware interpreter to track tasks and their scheduling,

the compiler runtime’s kernel uses task control blocks (TCBs) to manage the task scheduling.

typedef struct tcb_t
{
struct tcb_t *next;
byte id;
void (*entry)(void);
uint32_t millis;
bool hasRan;
bool ready;
uint16_t stackPointer;
uint16_t stackSize;
byte stack[];
} TCB;

Like the interpreter, the kernel keeps track of the TCBs as a linked list, and the id of the task

used in the create and schedule commands is stored in the TCB. As was stated in Section 6.4, the

local binds are allocated as stack variables. As we saw in Section 6.4, the stack is allocated as

part of the TCB, and the TCB also contains fields which indicate the stack size, as well as storage

space for the task stack pointer to be stored when a running task is interrupted by the scheduler.

Also like the interpreter TCB, the ready field indicates if the task is ready to run, and if not, the

millis field indicates at what millisecond tick it will be ready. Finally, the hasRan field is used

to determine if the task has ran before. When the task is ran for the first time, the entry field will

define what program location it will run from.

6.7 Dynamic Memory Management

Both the Haskino interpreter, and the compiler, require some form of dynamic memory manage-

ment to handle the Word8 list expressions which are used in the Haskino expression language for

strings and byte array data such as I2C input and output (discussed in Section 4.1.1). In both

cases the garbage collection scheme is simple, with memory elements being freed when an asso-

66

ciated reference count for the element goes to zero. The interpreter uses the standard libc memory

routines malloc() and free(), which allocates space from the heap.

The libc heap allocation scheme was not practical for use with the generated thread code. With

the standard Arduino libc memory management, the program’s stack grows down from the top of

memory, while the heap grows up from the bottom of available memory. The malloc() routine

includes a test to make sure that the new memory allocation will not cause the heap to grow above

the stack pointer. While this will work with the interpreter, the compiler statically allocates the

stack for each of the tasks, and the stack pointer for all of the tasks would then be below the heap,

causing any memory allocation to fail.

One possible solution to this issue that was considered was to rewrite the Arduino memory

management library to remove the heap/stack collision detection, so that it would be usable with

multiple stacks. Instead, to improve speed and determinism of the memory allocation and garage

collection in the compiled code, a fixed block allocation scheme was instead chosen. Through a

library header file, the programmer is able to choose the number of 16, 32, 64, 128 and 256 byte

blocks available for allocation. The runtime then keeps a linked list of the free blocks for each

block size, and the memory allocator simply returns the head of the free list of the smallest block

size larger the the requested size. If no blocks of that size are available, then the next larger free

list is tried until a free block is found, or until the allocation fails.

6.8 Comparing Interpreted and Compiled Size

It has been stated that the Haskino compiler makes more efficient use of the small amount of

storage space available on the Arduino Uno boards than does the Haskino intepreter. Table 6.1

shows the amount of space used by both the Haskino interpreter, and the runtime used by the

compiler, without any user program present. Both the raw size, and the percentage of the available

resource are shown.

Table 6.2 shows the percentage of available Uno Flash and RAM used by the example programs

from Section 5.4.1 (Example 1) and Section 5.4.2 (Example 2). The number of buffers available

67

Haskino Haskino
Interpreter Runtime

Flash Size 31124 bytes 3052 bytes
RAM Size 901 bytes 437 bytes

Uno Flash Usage 95.0% 9.3%
Uno RAM Usage 44.0% 21.3%

Table 6.1: Interpreter and Runtime Storage Sizing with no user program

for dynamic memory management in the runtime is user configurable. The unoptimized numbers

for the runtime reflect the default allocation, where the optimize reflect values customized for the

specific program. These numbers are for hand written Deep EDSL code, not for those that are

automatically translated, as will be presented in Chapter 7 and Chapter 9.

Haskino Haskino
Interpreter Runtime

Example 1 Flash Usage 95.0% 14.5%
Example 1 Unoptimized RAM Usage 56.9% 70.8%
Example 1 Optimized RAM Usage - 45.0%

Example 2 Flash Usage 95.0% 30.4%
Example 2 Unoptimized RAM Usage 151.6% 70.8%
Example 2 Optimized RAM Usage - 47.9%

Table 6.2: Interpreter and Runtime Storage Sizing for Example Programs

Note that for Example 2, the LCD Counter example, the RAM requirements for the interpreted

version of the program exceeds the memory available on a Uno board, due to the size of the

generated byte code for the tasks. This program was tested using an Arduino Mega 2560 board

which has 8 Kbytes of RAM, as opposed to the Uno’s 2 Kbytes. However, the compiled version

fits comfortably within the Uno’s 32 Kbytes of flash, and 2 Kbytes of RAM.

While the size of the interpreter means that large programs may not be implemented with it

in their entirety, it may still be used to prototype and debug smaller portions of more complicated

programs. For example, it may be used to prototype code for interfacing to new hardware, where

the hardware interface may not be well understood. Once the interface section is prototyped with

the interpreter, the entire program may then be developed with the compiler.

68

Chapter 7

Shallow to Deep Translation

The shallow to deep transformation of a program written in a monadic EDSL that I developed uses

a worker-wrapper based transformation to move from a shallowly to a deeply embedded language.

To demonstrate my transformation, I return to our simple example with it’s shallow EDSL syntax

of:

let button1 = 2
let button2 = 3
let led = 13
loop $ do

a <- digitalRead button1
b <- digitalRead button2
digitalWrite led (a || b)
delayMillis 100

The simple example in the Deep ESDL syntax is:

let button1 = 2
let button2 = 3
let led = 13
loopE $ do

a <- digitalReadE (lit button1)
b <- digitalReadE (lit button2)
digitalWriteE (lit led) (a ||* b)
delayMillisE (lit 100)

The lit operations lift a basic Haskell type into the Expr expression type, and the ||* operator

is the logical or operation between two values of the Expr Bool type.

Writing even this simple example in the deeply embedded style presents challenges to the pro-

grammer, as opposed to the shallowly embedded style, which is more idiomatic Haskell. The

overhead to writing in the deeply embedded style becomes even greater when using conditionals

69

and iteration. It would be preferable that the programmer be able to write in the shallowly embed-

ded style, and let the compiler transform it to the deeply embedded style automatically. For now, I

will show how this simple example may be written in the shallow version, and automatically con-

verted to the deep version, and will deal with conditionals and iteration later in section Section 7.2

and Section 8.

7.1 Basic Transformation

In the following steps in the transformation, we will omit the initial let expressions, and concentrate

on the loop body. First, we will de-sugar the do notation, and get the following form:

loop (
digitalRead button1 >>=
(\ a -> digitalRead button2 >>=
(\ b -> digitalWrite led (a || b))) >>

delayMillis 100)

In the first step of the transformation, we will convert each of the shallow commands and

procedures into their deep versions, inserting worker-wrapper (Section 2.4) abs and rep function

calls to maintain the types of the overall computation. The rep function moves a value from the

basic Haskell type to one of the Expr type, and the abs function has the opposite effect, moving a

value from a Expr type to a basic Haskell type. The rep is equivalent to the lit function of the

ExprB typeclass, and may remain in the transformed code, while the abs function should never

actually be evaluated in the transformed code.

rep :: ExprB a => a -> Expr a
rep w = lit w

abs :: Expr a -> a
abs _ = error "Internal error: abs called"

In the following descriptions of transformations, the transformations will be described in the

style of GHC rewrite rules (Jones et al., 2001). In some cases the rules given would not be valid for

GHC, as the left hand side is not a function application, however the syntax of the rules provides a

convenient representation of the transformations.

70

The first transformation presented is of primitives, which return values. Each use of a shallow

primitive prim will be transformed to use a deep version, primE. These shallow and deep versions

have the forms:

prim :: a1 -> ... -> an -> Arduino b
primE :: Expr a1 -> ... -> Expr an ->

Arduino (Expr b)

The term prim represents a generic shallow primitive, and primE represents a generic deep

procedure. A specific transformation will be needed for each of the actual procedures in the DSL,

but this generic procedure is used to show the form of the transformation. This transformation is

achieved using the following rule.

forall (arg1 :: a1) ... (argn :: an).
prim arg1 .. argn
=

abs <$> (primE (rep arg1) ... (rep argn))

Applying this transformation step to our example program, we get the following:

loopE (
abs <$> digitalReadE (rep button1) >>=
(\ a -> abs <$> digitalReadE (rep button2) >>=
(\ b -> abs <$> digitalWriteE (rep led)

(rep (a || b)))) >>
abs <$> delayMillisE (rep 1000))

Now that we have the worker-wrapper operators have been placed in the code, the next step

in the transformation involves moving the rep operators inside of expressions, transforming the

shallow functions over standard Haskell types into deep functions over types in the Expr data type.

We refer to these transformations as “rep push” operations, pushing the rep operators to the interior

of expressions. The instance of this type of transformation used in our simple example is for the

boolean or operator, and the rule for the transformation is:

forall (b1 :: Bool) (b2 :: Bool).
rep (b1 || b2)
=

(rep b1) ||* (rep b2)

71

After applying the rep push transformation rule to the example, the expression is transformed

from a Bool type into a Expr Bool type as shown below.

loopE (
abs <$> digitalReadE (rep button1) >>=
(\ a -> abs <$> digitalReadE (rep button2) >>=
(\ b -> abs <$> digitalWriteE (rep led)

((rep a) ||* (rep b)))) >>
abs <$> delayMillisE (rep 1000))

Now that we have moved the rep functions inside of expressions, we can apply the next rule of

the transformation, starting to move the abs operators closer to the rep operators to achieve fusion.

This rule is a variant of the third monad rule, and has the form:

forall (f:: Arduino (Expr a)) (k:: a -> Arduino b).
(abs <$> f) >>= k

=
f >>= k . abs

Applying this monadic rule to the example, we move the abs operators through the two

monadic binds, changing them to a composition of the continuation with the abs.

loopE (
digitalReadE (rep button1) >>=
(\ a -> digitalReadE (rep button2) >>=
(\ b -> abs <$> digitalWriteE (rep led)

((rep a) ||* (rep b))) . abs
) . abs >>

abs <$> delayMillisE (rep 1000))

Having moved the abs operators through the binds, with the next rule we would like to move

the abs operators inside of the lambdas. The transformation to do this has the following form:

forall (f :: Arduino a).
(\ x -> f[x]) . abs
=

(\ x’ -> let x=abs x’ in f[x])

The notation f[x] represents the usage of the binding x somewhere inside the function f. When

this rule is applied to the example, two let expressions are inserted into the lambda expressions, as

show below:

72

loopE (
digitalReadE (rep button1) >>=
(\ a’ -> let a = abs a’ in
digitalReadE (rep button2) >>=

(\ b’ -> let b = abs b’ in
abs <$> digitalWriteE (rep led)

((rep a) ||* (rep b)))) >>
abs <$> delayMillisE (rep 1000))

The let expressions may then be eliminated by replacing instances of a and b in the body of the

lambdas with (abs a’) and (abs b’) respectively. This will result in:

loopE (
digitalReadE (rep button1) >>=
(\ a’ -> digitalReadE (rep button2) >>=

(\ b’ -> abs <$> digitalWriteE (rep led)
((rep (abs a’)) ||*
(rep (abs b’))))) >>

abs <$> delayMillisE (rep 1000))

Now, with the rep and abs applications correctly positioned, one final simple transformation

is required. The rep-abs combinations may be fused by the following rule.

forall x.
rep(abs(x))
=

x

Applying the fusion rule, our transformed code has the following form:

loopE (
digitalReadE (rep button1) >>=
(\ a’ -> digitalReadE (rep button2) >>=

(\ b’ -> abs <$> digitalWriteE (rep led) (a’ ||* b’))) >>
abs <$> delayMillisE (rep 1000))

There are two calls to abs left in the transformed code. As the primitives they are associated

with are joined by the >> operator, not the >>= operator, and Haskell uses lazy evaluation, the

return values of the functions that abs is applied to will never be evaluated. Therefore, they may

be eliminated, and we have achieved of goal with the translation as shown below.

73

loopE (
digitalReadE (rep button1) >>=
(\ a’ -> digitalReadE (rep button2) >>=

(\ b’ -> digitalWriteE (rep led) (a’ ||* b’))) >>
delayMillisE (rep 1000))

The transformations described in the example in this section, and which are implemented in the

plugin (Chapter 9), currently cover monadic code written with the higher level Haskell functions

>>= and >>. They do not handle other higher level Haskell monadic functions such as mapM. The

worker-wrapper transformation techniques used in this section could be extended to define rules

for transforming instances of mapM and other higher order functions.

7.2 Transformation of Conditionals

Conditionals in deeply embedded DSLs normally take the form of functions over three arguments,

one for the boolean test, and one each for the then and else branch of the conditional. Writing the

conditionals in this form, as opposed to the normal Haskell if-then-else form, is another case where

writing code for a deeply embedded DSL is inconvenient. The transformations presented here once

again allow the program author to write in a shallowly embedded DSL form, like standard Haskell

coding, and have the program automatically transformed to the deep EDSL form.

There are two types of conditionals which must be transformed. The first of these are condi-

tionals where the then and else expressions are of the main data type of the EDSL. Once again,

using our example of the Haskino language, these are terms of the Arduino monad type. In the

Haskino language, this type of conditional function has the following type:

ifThenElseE :: ExprB a => Expr Bool ->
Arduino (Expr a) ->
Arduino (Expr a) ->
Arduino (Expr a)

Another small example code section which deals with three button inputs and two LED outputs

will be used to demonstrate the conditional transformation:

74

a <- digitalRead button1
b <- if a

then do
digitalWrite led1 True
digitalRead button2

else do
digitalWrite led2 True
digitalRead button3

The main transformation of the conditional is similar to the command and procedure transfor-

mations we performed in Section 7.1. The rule syntax for the transformation is as follows:

forall (b :: Bool) (m1 :: ExprB a => Arduino a)
(m2 :: ExprB a => Arduino a).

if b then m1 else m2
=

abs <$> ifThenElseE (rep b) (rep <$> m1)
(rep <$> m2)

Applying this rule to our example, after also applying the command and procedure transfor-

mations from Section 7.1, the shallow code containing the conditional is transformed into the

following:

a <- digitalRead button1
b <- abs <$> ifThenElseE (rep a)

(rep <$> do
digitalWrite (rep led1) (rep True)
digitalRead button2)

(rep <$> do
digitalWrite (rep led2) (rep True)
digitalRead button3)

At this point, two more manipulation rules need to be added to the transformation toolbox. The

first is a rule which will push the fmap application of rep through the monadic binds in the then

and else branches. It has the following form:

forall (f :: Arduino a) (k :: a -> Arduino b).
rep <$> (f >>= k)

=
f >>= \ x -> rep <$> k x.

After the application of this rule, along with the other rules described in Section 7.1, the con-

ditionals example is transformed to the following:

75

a’ <- digitalReadE button1
b’ <- ifThenElseE (a’)

(do
digitalWriteE (rep led1) (rep True)
rep <$> (abs <$> digitalReadE

(rep button2)))
(do

digitalWriteE (rep led2) (rep True)
rep <$> (abs <$> digitalReadE

(rep button3)))

Now the final rule required is the fmap analog to the rep-abs fusion rule we used earlier in

Section 7.1, which will fuse the rep and abs functions in the then and else branches.

forall (m :: Expr a => Arduino a).
rep <$> (abs <$> m)

=
m

After applying this rule, the example is as follows:

a’ <- digitalReadE button1
b’ <- ifThenElseE (a’)

(do
digitalWriteE (rep led1) (rep True)
digitalReadE (rep button2)))

(do
digitalWriteE (rep led2) (rep True)
digitalReadE (rep button3)))

The other form of conditional found in many deeply embedded DSLs is a conditional over the

expression language. In the Haskino language, this conditional has the following type:

ifB :: ExprB a => Expr Bool ->
Expr a -> Expr a -> Expr a

Transformation of an if-then-else expression written in a shallowly embedded form to this

deeply embedded conditional requires only one transformation rule, as shown below. Following

this application rule, the rep-push rules described in Section 7.1 may be used to further reduce the

expressions in the boolean test, as well as the then and else branches of the expression.

76

forall (b :: Bool) (t :: ExprB a => a)
(e :: ExprB a => a).

if b then t else e
=

abs $ ifB (rep b) (rep t) (rep e)

77

Chapter 8

Iteration and Recursion Transformation

An Arduino C programmer would use for or while loops for programming iteration, however,

a Haskell programmer would use recursion for the same task. The Haskino deep EDSL provides

a iterateE structure for iteration, but as the goal of my research is to provide relatively idiomatic

Haskell syntax to the programmer, using it is unsatisfying. Instead, it would be better to be able

to translate tail recursive functions in the shallow EDSL into functions using the iterateE structure

automatically, as has been done with conditionals and the other shallow components of the DSL.

8.1 First Recursion Example

Starting with a typical iteration example on the Arduino, we will blink a LED a specified number

of times in Haskino.

led = 13
button1 = 2
button2 = 3

blink :: Word8 -> Arduino ()
blink 0 = return ()
blink t = do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
blink $ t-1

We would like to transform recursive functions of the type Expr a -> Arduino(Expr b)

into functions which use an imperative iteration loop. We enable the transformation by creating a

data type, Iter. This type indicates on a specific iteration of the loop, if the function should return

78

(it is "Done"), or if it should perform the computation associated with the next iteration of the loop

(it needs to "Step").

data Iter a b
= Step a
| Done b

A Haskell function is also defined which performs the iterative loop. This function will not

be used in the final implementation, but is defined to allow us to demonstrate the transformation

method in the shallow version of the DSL. The iteration function, iterLoop, takes the initial value

of the input argument, and a function which is able to perform a single step of the iteration that

returns either a Step value of the input type, or a Done value of the output type.

iterLoop :: a -> (a -> Arduino (Iter a b)) ->
Arduino b

iterLoop iv stepF = do
result <- stepF iv
case result of

Step va -> iterloop va stepF
Done vb -> return vb

The transformation is started by adding a wrapper function to insert the iterLoop function.

The worker function, blink is formed by applying the Done constructor to the body of the original

function, in which the pattern matching notation has been removed, replacing it with conditional

notation.

blink :: Word8 -> Arduino ()
blink a = iterLoop blinkI a

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = Done <$>

if (t == 0)
then return ()
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
blink $ t-1

79

We now apply the first rule of our recursion transformation to the function, which is used to

move the Done constructor through any conditionals:

forall f x.
Done <$> if b then f else g

=
if b then (Done <$> f) else (Done <$> g)

Applying this rule to the example function gives:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then Done <$> return ()
else Done <$> (do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
blink (t-1)

We now introduce the other basic rule of the recursive transformation to move the Done con-

structor call to the end of the bind chain.

forall f g.
Done <$> (f >>= g)

=
f >>= \ x -> Done <$> g x.

Applying this rule repeatedly we obtain:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then Done <$> return ()
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
Done <$> (blink (t-1))

Finally, in the branches where the recursive function call is present, we can apply the following

rule to eliminate the recursive call, f, instead inserting the Step constructor.

80

forall x.
Done <$> (f x)

=
Step <$> (return x)

With the example, and applying the rule, it then becomes:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then Done <$> return ()
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
Step <$> (return (t-1))

Finally, we use the following rule involving the Done constructor, and an equivalent one for the

Step constructor.

forall x.
Done <$> (return x)

=
return (Done x)

This moves the constructor inside of the return, and leaves us with the final transformed version:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then return (Done ())
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
return (Step (t-1))

8.2 Translating to Haskino Iteration

The example transformation of the last section was demonstrated on the shallow version of the

DSL for clarity. We would now like to replace the iterLoop function which is written in Haskell,

with the Haskino iteration primitive. This primitive has the following type:

81

iterateE :: Expr a ->
(Expr a -> Arduino (ExprEither a b)) ->
Arduino (Expr b)

The Haskino expression language also has an ExprEither type, as was discussed in Sec-

tion 4.1.3, which will be used instead of the Iter type, and is defined as:

data ExprEither a b where
ExprLeft :: (ExprB a, ExprB b) =>

Expr a -> ExprEither a b
ExprRight :: (ExprB a, ExprB b) =>

Expr b -> ExprEither a b

As the iterateE and ExprEither are defined in the deep version of Haskino, it is preferable to do

the recursive transforming after first transforming the example from the shallow language to the

deep using the transformation from Section 7.1. Doing so gives us the following for the example

from the previous section:

blinkE :: Expr Word8 -> Arduino (Expr ())
blinkE t =

ifThenElseE (t ==* rep 0)
(return (rep ()))
(do

digitalWriteE (rep led) (rep True)
delayMillisE (rep 1000)
digitalWriteE (rep led) (rep False)
delayMillisE (rep 1000)
blinkE (t - (rep 1))

We now can use the method we demonstrated in the previous section, using iterateE instead

of iterLoop, and the ExprEither type instead of the Iter type. We also need to replace the

conditional used in the function, as ifThenElseE is only defined over one type, and instead we

will use the ifThenElseEither which is defined over two types.

ifThenElseEither :: (ExprB a, ExprB b) =>
Expr Bool ->
Arduino (ExprEither a b) ->
Arduino (ExprEither a b) ->
Arduino (ExprEither a b)

82

Applying the recursion transformation method, using the ExprLeft constructor in place of the

Step constructor, and ExprRight in place of Done we get:

blinkE :: Expr Word8 -> Arduino (Expr ())
blinkE t = iterateE t blinkEI

blinkEI :: Expr Word8 ->
Arduino (ExprEither Word8 ())

blinkEI t =
ifThenElseEither (t ==* rep 0)

(return (ExprRight (rep ())))
(do
digitalWriteE (rep led) (rep True)
delayMillisE (rep 1000)
digitalWriteE (rep led) (rep False)
delayMillisE (rep 1000)
return (ExprLeft (t - (rep 1)))

8.3 Second Recursion Example

The second example deals with another form of iteration that is typical in systems that deal with

hardware response. In this example we want a function that waits for a button to be pressed. This

is detected by the return from a Haskino read of a digital pin becoming True. The function would

be written in a shallow, tail recursive style as follows:

wait :: Arduino ()
wait = do
b <- digitalRead button1
if b then return () else wait

The method of transformation from Sections 8.1 and 8.2 works for functions with one argu-

ment, but not with functions with zero arguments as in this example. To transform functions of

this type require us to first transform the function into one that takes a parameter of type Expr ()

which is not used in the body of the function, but allows us to use the iterateE construct, and

the ExprEither type, both of which are parameterized over two types. Adding the argument, and

transforming the function from shallow to deep, we have:

83

waitE :: Ardruino (Expr ())
waitE = waitE’ (lit ())

waitE’ :: Expr () -> Arduino (Expr ())
waitE’ _ = do

b <- digitalReadE button1
ifThenElseE b (return (lit ())) (wait (lit ()))

Applying the recursive transformation method from Section 8.1, we are able to transform this

second small recursive example to the following:

waitE :: Ardruino (Expr ())
waitE = waitE’ (lit ())

waitE’ :: Expr () -> Arduino (Expr ())
waitE’ t = iterateE t waitE’I

waitE’I :: Expr () -> Arduino (ExprEither () ())
waitE’I _ =

b <- digitalReadE button1
ifThenElseEither (b)

(return (ExprRight (rep ())))
(return (ExprLeft (rep ())))

The same method can be used to transform the recursive functions which are used as the top

level loop in a typical Arduino program. Returning to our first simple example from Section 7.1,

we may now write it recursively as:

progLoop :: Arduino ()
progLoop = do

a <- digitalRead button1
b <- digitalRead button2
digitalWrite led (a || b)
delayMillis 1000
progLoop

Using the methods described in the previous section, this will be translated to:

progLoopE :: Arduino (Expr ())
progLoopE = progLoopE’ (lit ())

progLoopE’ :: Expr () -> Arduino (Expr ())
progLoopE’ t = iterateE t progLoopE’I

84

progLoopE’I :: Arduino (Expr (Either () ()))
progLoopE’I _ = do

a <- digitalReadE (lit button1)
b <- digitalReadE (lit button2)
digitalWriteE (lit led) (a ||* b)
delayMillisE (lit 1000)
return (ExprLeft (lit ()))

8.4 Third Recursion Example

As the third example, I present a transformation of recursion which demonstrates both a recursive

function which returns a non-unit value, and the ability to greatly simplify a deep EDSL function

by being able to write it in the shallow EDSL.

A common peripheral used on the Arduino is a small LCD display, and some of these display

units also have a set of five buttons that may be used to indicate Up, Down, Left, Right, and

Select. A press of one of these buttons is detected by the user program by reading a 16 bit analog

input, where each single button press is denoted by a range of values. The shallow version of a

recursive function which waits for one of the keys to be pressed, and returns an 8 bit unsigned

integer corresponding to the button pressed is shown below:

analogKey :: Arduino Word8
analogKey = do

v <- analogRead button2
case v of

| v < 30 -> return $ keyValue KeyRight
| v < 150 -> return $ keyValue KeyUp
| v < 350 -> return $ keyValue KeyDown
| v < 535 -> return $ keyValue KeyLeft
| v < 760 -> return $ keyValue KeySelect

_ -> analogKey ()

The following is the resulting deep version after shallow to deep and recursive transformations:

analogKeyE :: Arduino (Expr Word8)
analogKeyE = analogKeyE’ (lit ())

analogKeyE’ :: Expr () -> Arduino (Expr Word8)
analogKeyE’ t = iterateE t analogKeyE’I

85

analogKeyE’I :: Expr () ->
Arduino (ExprEither () Word8)

analogKeyE’I _ = do
v <- analogReadE button2
ifThenElseEither (v <* 30)
(return (ExprRight (lit (keyValue KeyRight))))
(ifThenElseEither (v <* 150)
(return (ExprRight (lit (keyValue KeyUp))))
(ifThenElseEither (v <* 350)

(return (ExprRight (lit (keyValue KeyDown))))
(ifThenElseEither (v <* 535)
(return (ExprRight (lit (keyValue KeyLeft))))
(ifThenElseEither (v <* 760)

(return (ExprRight (lit (keyValue KeySelect))))
(return (ExprLeft (lit ())))))))

With this example, we can see the advantage of using the pattern matching notation in the

shallow version, as opposed to the more verbose deep notation, especially with the deeply nested

conditionals present in the deep version.

8.5 Mutual Recursion

The recursion examples and methods that I have shown so far have all been of functions which

call themselves. The recursion methods I have described may be extended to cover mutually tail

recursive functions as well, and in this section I will describe those extensions. To walk through

these recursive transformation methods, I will use a common basic example of mutual tail recur-

sion, which is a recursive method of calculating if a number is even or odd. This is example is

shown below written in shallow Haskino style.

isEven :: Word8 -> Arduino Bool
isEven 0 = return True
isEven n = isOdd $ n - 1

isOdd :: Word8 -> Arduino Bool
isOdd 0 = return False
isOdd n = isEven $ n - 1

To start the translation, we return to the Iter data type that we defined in Section 8.1. To

enable the handling of mutually tail recursive functions, we extend the data type by adding a Int

86

parameter to the Step constructor. This additional parameter will allow us to specify which of

the mutually tail recursive functions should be called to when we are making a recursive call (or

"Step").

data Iter a b
= Step Int a
| Done b

In addition to adding the extra parameter to the Iter data type, we also add an Int parameter

to the iteration function, iterLoop, and to the step function, stepF, that we defined in Section 8.1.

iterLoop :: Int -> a -> (Int -> a -> Arduino (Iter a b)) ->
Arduino b

iterLoop i iv stepF = do
result <- stepF i iv
case result of

Step i’ va -> iterloop i’ va stepF
Done vb -> return vb

Now the original functions can both be defined in terms of a common function which executes

the iteration function, passing in as our new Int parameter an index that indicates which of the

original functions was called.

isEven :: Word8 -> Arduino Bool
isEven n = isEvenOdd 0 n

isOdd :: Word8 -> Arduino Bool
isOdd n = isEvenOdd 1 n

isEvenOdd :: Int -> Word8 -> Arduino Bool
isEvenOdd i n = iterLoop i n isEvenOddI

The step function created by the transformation is then made up of a sequence of conditionals

which test the index passed to it, and compute the body of the appropriate recursive function based

on that index. For our even/odd example, this is illustrated below:

isEvenOddI :: Int -> Word8 -> Arduino (Iter Word8 Bool)
isEvenOddI i n = do

if i == 0
then

Body of recursive function 1 (isEven)
else

Body of recursive function 2 (isOdd)

87

Once this structure has been setup, we may proceed with applying the rules defined in Sec-

tion 8.1 to insert, move, and transform the Done primitives to Done and Step primitives in each

of the recursive function bodies. The only required modification to the rules is changing the step

insertion rule to handle any of the recursive functions, inserting the corresponding index of the

recursive function as a step parameter.

forall x.
Done <$> findex x

=
(Step index) <$> (return x)

Doing this in our even/odd example results in the final step function.

isEvenOddI :: Int -> Word8 -> Arduino (Iter Word8 Bool)
isEvenOddI i n = do

if i == 0
then

if n == 0
then return $ Done True
else return $ Step 1 (n - 1)

else
if n == 1
then return $ Done False
else return $ Step 0 (n - 1)

8.6 Mutual Recursion State Machine

When constructing embedded systems software, a state machine is a common mechanism used.

Mutual tail recursion provides a clean implementation of a state machine, with each mutually

recursive function representing computation associated with a state, and the mutual tail recursive

call a transition to the next state.

To demonstrate the usefulness of Haskino in programming such state machines, and as a further

example of the mutual tail recursion transformation, I will present an example of a simple state

machine using the displays and buttons that were discussed in Section 5.4.2 and Section 8.4. Also,

where the first mutual recursion example used a shallow example, as I did for the first self recursive

88

example, this example will now move to using the deep embedding in the transformation, with the

Haskino iterative function (iterateE) and type (ExprEither).

This example will use the six key keyboard on the LCD display/keyboard to cause state transla-

tions in the state machine. Upon entering a state, the state number and the key which was pressed to

cause the state transition will be displayed on the LCD display. Upon power-up, the state machine

will enter State1. From there, any key press will cause a transition to State2. To move between

State2 and State3, the left and right keys are used. Pressing the select button in either State2 or

State3 will return to State1. Any other key press in State2 or State3 will keep the machine in it’s

current state. The state machine diagram for this example is shown in Figure 8.1.

State1

State3State2

Right

Left

Other
Key

Other
Key

SelectSelect

Any
Key

Power
On

Figure 8.1: Example State Machine

The mutually tail recursive shallow Haskino code to implement this state machine is shown

below, with calls to the analogKey function of Section 8.4 and a state display function which will

display the state and key pressed on the LCD display, displayState. The top level function,

stateMachine, calls the first mutually recursive function state1 to provide the power on state

transition. Each of the state functions follows a common pattern of displaying the state and key,

waiting for the next key press, then calling one of the recursive functions to move to the next state.

89

stateMachine :: LCD -> Arduino ()
stateMachine lcd = state1 $ keyValue KeyNone

where
state1 :: Word8 -> Arduino ()
state1 k = do

displayState lcd 1 k
key <- analogKey
case key of

_ -> state2 key

state2 :: Word8 -> Arduino ()
state2 k = do

displayState lcd 2 k
key <- analogKey
case key of

1 -> state3 key
5 -> state1 key
_ -> state2 key

state3 :: Word8 -> Arduino ()
state3 k = do

displayState lcd 3 k
key <- analogKey
case key of

2 -> state2 key
5 -> state1 key
_ -> state3 key

To transform these mutually recursive functions into an iterative function, as before the func-

tions are first transformed from shallow to deep. Then, as was done with the simple even/odd

example in the last section, a common function for all of the state functions is created (in this case

state1_deep_mut), and the original state functions are written in terms of that function.

The common function calls the Haskino iterateE function, which has been modified from the

original version to add an Expr Int parameter, similar to the Int parameter that was added to the

iterLoop function in Section 8.5.

stateMachine_deep :: LCD -> Arduino (Expr ())
stateMachine_deep lcd = state1_deep (lit (keyValue KeyNone))

where
state1_deep :: Expr Word8 -> Arduino (Expr ())
state1_deep k = state1_deep_mut (lit 0) k

state2_deep :: Expr Word8 -> Arduino (Expr ())
state2_deep k = state1_deep_mut (lit 1) k

90

state3_deep :: Expr Word8 -> Arduino (Expr ())
state3_deep k = state1_deep_mut (lit 2) k

state1_deep_mut :: Expr Int -> Expr Word8 -> Arduino (Expr ())
state1_deep_mut = iterateE i k state1_dep_mut_step

Finally, the step function, state1_deep_mut_step, is built up from the transformed bodies

of the original mutually recursive state functions. The bodies are transformed using the methods

described in Section 8.2. They are then inserted into a sequence of conditionals which test the step

function’s index parameter, i, determining which of the transformed bodies is executed by the step

function.

state1_deep_mut_step :: Expr Int -> Expr Word8 ->
Arduino (ExprEither Word8 ())

state1_deep_mut_step i k =
ifThenElseEither (i ==* (lit 0))

(do
displayState_deep lcd (lit 1) k
key <- analogKey_deep
ExprLeft (lit 1) key)

(ifThenElseEither (i ==* (lit 1))
(do

displayState_deep lcd (lit 2) k
key <- analogKey_deep
(ifThenElseE (key ==* 1)

(ExprLeft (lit 2) key)
(ifThenElseE (key ==* 5)

(ExprLeft (lit 0) key)
(ExprLeft (lit 1) key))))

(do
displayState_deep lcd (lit 3) k
key <- analogKey_deep
(ifThenElseE (key ==* 2)

(ExprLeft (lit 1) key)
(ifThenElseE (key ==* 5)

(ExprLeft (lit 0) key)
(ExprLeft (lit 2) key)))))

With this last step, the mutually recursive functions have been transformed into an iterative

structure which may be easily transformed into C code and executed on the resource limited Ar-

duino.

91

8.7 Recursion Translation with Multiple Arguments

The recursion transformations described in the examples in this chapter, and those currently im-

plemented by the plugin described in Chapter 9 are limited in the types of functions they can

transform. In the case of both self and mutually tail recursive functions, the transforms are only

defined for recursive functions with zero or one arguments. Additionally, for mutually tail recursive

functionals, all of the functions must have the same type signature.

However, both of these sets of limitations could be removed by modifying the transformations

to operate using tuples. This would require adding tuples to the Expr language, which is not

a small effort, but once this was done the transformations could be extended. The extensions

described below make use of functions which build tuples in the Expr language with types defined

as follows:

exprTuple2 :: Expr a -> Expr b -> Expr (a,b)
exprTuple3 :: Expr a -> Expr b -> Expr c -> Expr (a,b,c)
exprTuple2 :: Expr a -> Expr b -> Expr c -> Expr d -> Expr (a,b,c,d)

The following is an example of a recursive deep Haskino function with 2 arguments:

multiFunc :: Expr Word8 -> Expr Float -> Arduino (Expr Word16)
multiFunc a b = do

...
multiFunc c d

The transformations in this chapter could be extended to apply to functions of this type by

passing a tuple type as the initialization parameter, and including a tuple in the ExprEither type

that is returned by the step function. Applying this method to our 2 argument example, we would

use the following types of wrapper and step functions.

multiFuncE :: Expr Word8 -> Expr Float -> Arduino (Expr Word16)
multiFuncE a b = iterateE 0 (exprTuple2 a b) multiFuncEI

multiFuncEI :: Expr (Word8, Float) ->
Arduino (ExprEither (Word8, Float) Word16)

92

We could apply a similar technique to mutually tail recursive functions which have different

argument types. For example, consider the following example functions, one of which takes an 8

bit integer argument, while the other takes a float as an argument.

mutFunc1 :: Expr Word8 -> Arduino (Expr ())
mutFunc1 a = do

...
mutFunc2 b’

mutFunc2 :: Expr Float -> Arduino (Expr ())
mutFunc2 b = do

...
mutFunc1 a’

In this case, the transformations could be extended as shown below to once again pass Expr

tuples as initialization arguments, with the unused elements of the tuple set to default values of

zero. Only one element of the tuple would be required for each of the transformed recursive

function bodies, but combined into the iterative step function the tuple type would be required.

mutFunc1 :: Expr Word8 -> Arduino (Expr ())
mutFunc1 a = mutFunc12 0 (exprTuple2 a (lit 0.0))

mutFunc2 :: Expr Float -> Arduino (Expr ())
mutFunc2 b = mutFunct12 1 (exprTuple2 (lit 0) b)

mutFunc12 :: Expr Int -> Expr (Word8, Float) -> Arduino (Expr ())
mutFunc12 i init = iterateE i init mutFunc12I

mutFunct12I :: Expr Int -> Expr (Word8, Float) ->
Arduino (ExprEither (Word8, Float) Word16)

As the number of parameters to the recursive functions grow, higher order tuples would be

required, so the size of tuple supported by the Expr language would be the new limit on the type

of recursive function transformations which could be handled.

93

Chapter 9

Plugin Architecture and Implementation

The shallow to deep transformations, as well as the recursive transformations in my system, are

implemented using the GHC Plugins mechanism (GHC Team, 2016). The Haskino plugin manip-

ulates the Haskell module being compiled through a series of Core to Core passes, where Core is

GHC’s intermediate language(Peyton Jones & Santos, 1998).

A Haskell module’s top level ModGuts data structure is carried throughout all phases of the

compiler, including plugin passes. This data structure contains not only the Core of the module

under compilation, but also a global reader environment of all in-scope symbols, GHC transfor-

mation rules, information about other modules imported to the one under compilation, and other

information useful to the compiler pass. Each pass of a GHC plugin is defined as the following

type:

ModGuts -> CoreM ModGuts

Each of the passes in our plugin transforms the list of Core Bind’s, which are part of the

ModGuts data type, into another list of Core Bind’s in the returned ModGuts. The plugin operates

on Bind’s that are of the type of the DSL’s Monad and Expr types, which in my case study is one

of the types (ExprB a => Arduino a) or (ExprB a => a). By the time that the compiler has

translated native Haskell into Core, Bind’s are separated into recursive (Rec) and non-recursive

(NonRec) Bind’s. The passes associated with the shallow to deep transformation operate on both

Bind’s constructed with NonRec and those constructed with Rec, while those associated with the

tail recursion transformation operate only on the Bind’s constructed with Rec.

The plugin has been designed to be customized for other monadic EDSLs, and not to be used

just for my case study EDSL of Haskino. The types of the DSL monad and expression types are

94

specified in a single module as Template Haskell names, allowing the plugin to be customized

quickly for a new EDSL based on the remote monad monadic structure. Similarly, tables of EDSL

primitives and rules components are used in several of the passes to allow for EDSL customization,

and they will be described in more detail later in this chapter. Finally, as the plugin has been

developed, I have built up the basis for a plugin toolkit which is designed to be lighter weight than

such tools as Hermit (Farmer et al., 2015). For example, I have generalized and made into a utility

the routines from Hermit which are used to look up Core dictionaries, which frequently need to be

generated as part of the transformation process.

The plugin operates on a per module basis, transforming all functions of the DSL type present

in the module. GHC plugins may be invoked by specifying the -fplugin flag with the plugin

name either on the command line, or in a compiler directive within the file. This allows us to

specify on a module by module basis if the transformations will be performed. Using this method,

a file may still be written directly in the Deep EDSL without transformations, or in the Shallow

EDSL with transformations. The can be useful for regression testing during development of the

plugin, allowing the results of the transformation to be compared the native Deep code.

The structure of the passes implemented by the GHC plugin is shown in Figure 9.1. The plugin

passes are inserted in the pass chain before the standard GHC passes. Each of the passes of the

plugin are described in one the following sections. The current ordering of the passes is required

for the passes to function as written, and has been chosen to optimize the amount of code required

for each pass. However, the optimal ordering as well as other optional orders, are still under

investigation as part of ongoing research.

9.1 Simplifier Pass

The first pass ran by the plugin is a pass to execute the GHC simplifier, without any inlining, rule

rewriting, or eta-expansion.

This pass is ran to complete any inlining of functions that may be have been done in the GHC

compiler before it passes the Core for the module to our plugin. I found that some functions that

95

Simplifier Pass

Ap Removal Pass

Conditionals Pass

EDSL Primitives Pass

Return Translation Pass

Local Functions Pass

Rep Case Push Pass

Rep Push Pass

Abs Lambda Pass

Rep Abs Fusion Pass

Recursion Pass

Abs Then Removal Pass

GHC Standard Passes

Figure 9.1: Structure of Transformation Plugin Passes

were inlined would be left in the form of (\x -> F[x])(y), and running the simplifier pass will

perform the function application, and leave the Core in a standard form for transformation by the

rest of the plugin. The function used to call the simplifier pass is shown below.

simplPass = CoreDoSimplify 1 SimplMode {
sm_names = [],
sm_phase = Phase 2,
sm_rules = False,
sm_inline = False,
sm_case_case = False,
sm_eta_expand = False

}

96

9.2 Ap Removal Pass

The second simplifier executed by the plugin is a pass which removes the Haskell application

operator $, which is still present in the Core that the plugin receives. Replacing this operator with

a standard function application reduces the number of rules that are required for subsequent passes,

and the replacement is the equivelant of the following rule:

forall (f :: a -> b, g :: a)
f $ g
=

f g

This simple pass provides an opportunity to demonstrate the basic methods used for performing

many of the passes in the plugin. First, a new monad is defined by adding the Reader monad

transformer to the compiler’s base CoreM monad, to allow the ModGuts structure to be accessed

from within the plugin. Some of the passes use the State monad transformer instead of the Reader,

as they require state information to be updated during the pass.

data BindEnv = BindEnv
{ pluginModGuts :: ModGuts
}

newtype BindM a = BindM { runBindM :: ReaderT BindEnv CoreM a }
deriving (Functor, Applicative, Monad

,MonadIO, MonadReader BindEnv)

The top level function for this pass is apRemovePass, and it uses the utility function provided

by the compiler, bindsOnlyPass, to map a transformation function, apRemoveBind, over each of

the bindings defined in the module under compilation.

apRemovePass :: ModGuts -> CoreM ModGuts
apRemovePass guts = do

bindsOnlyPass (\ x ->
(runReaderT (runBindM $

(mapM apRemoveBind) x) (BindEnv guts))) guts

In the case of this pass, the transformation function, apRemoveBind, calls a function,

apRemoveExpr, for each of the expressions present in the bind. For recursive binds, a helper

97

function, apRemoveBind’ is used to call apRemoveExpr for each of the expression in the list of

recursive binds.

apRemoveBind :: CoreBind -> BindM CoreBind
apRemoveBind (NonRec b e) = do
e’ <- apRemoveExpr e
return (NonRec b e’)

apRemoveBind (Rec bs) = do
bs’ <- apRemoveExpr’ bs
return $ Rec bs’

The expression transformation function, apRemoveExpr, is a recursive function which handles

each of the constructors present in a CoreExpr. The segment below contains only two of the

possible constructors, the rest were omitted for brevity.

1 apRemoveExpr :: CoreExpr -> BindM CoreExpr
2 apRemoveExpr e = do
3 apId <- thNameToId ’($)
4 case e of
5

...
6 App e1 e2 -> do
7 let (f, args) = collectArgs e
8 let defaultReturn = do
9 e1’ <- apRemoveExpr e1

10 e2’ <- apRemoveExpr e2
11 return $ App e1’ e2’
12 -- Pattern match instances of:
13 -- <$> :$ Type t1 :$ Type t2 :$ dict :$ f :$ g
14 -- and replace with f :$ g
15 case f of
16 Var fv | fv == apId -> do
17 case args of
18 [_, _, _, f’, arg] -> do
19 arg’ <- apRemoveExpr arg
20 return $ mkCoreApps f’ [arg’]
21 _ -> defaultReturn
22 _ -> defaultReturn
23 Lam tb el -> do
24 e’ <- apRemoveExpr el
25 return $ Lam tb e’

26
...

The thNameToId function on line 3 of the function is a utility function that converts Template

Haskell names into GHC ID’s. In the App case of the pattern match (line 6), the function searches

98

for the ID desired ($) in the first expression of the App. If it is found, it is replaced with a direct

function application, after first recursively calling the apRemoteExpr on it’s argument. The other

case of the pattern match shown here, the Lam constructor (line 23), is shown to demonstrate that

we need to call apRemoteExpr recursively for all of the other instances of CoreExpr that may be

present.

9.3 Conditionals Pass

The Conditionals Pass transforms standard Haskell if-then-else expressions into the DSL’s embed-

ded if-then-else constructs. The pass searches the Core for two alternative Case expressions with

alternattives of False and True, which return a type of Arduino a, and transforms them into the

EDSL’s IfThenElseE primitives according to the methods in Section 7.2. Note, that this trans-

formation will also transform the syntax of Haskell Case pattern matching with guards of the type

shown in the analogKey example in Section 8.4.

The transformation performs the equivalent of the rule that was presented in Section 7.2

forall (b :: Bool) (m1 :: ExprB a => Arduino a)
(m2 :: ExprB a => Arduino a).

if b then m1 else m2
=

abs <$> ifThenElseE (rep b) (rep <$> m1)
(rep <$> m2)

Just like the method described for the Ap Removal pass, this pass performs a per bind trans-

formation, as well as a recursive transformation function over the CoreExpr present in the binds.

When a Case constructor is found that returns a value of the Arduino monad type, and has two

alternatives, one False and the other True, it calls the function condTransform to perform the

transformation. condTransform is called with 3 arguments, the type of the case statement, the

Case expression (which is the boolean expression of the if-then-else), and the list of alternatives to

the Case, after recursively transforming the Case expression and the alternatives.

The condTransform function is shown below to note a few of the features that are used

throughout the plugin code. In line 6, we use the GHC utility function tyConAppArgs to retrieve

99

the base type of the Case. For example, if the Case is of the Arduino Word8 type, this will return

the Word8 type. This base type is needed to pass as a parameter to the IfThenElseE constructor

on line 17, where the GHC utility function mkCoreApps is used to construct the constructor appli-

cation. The other parameter needed to construct the IfThenElseE is the dictionary, condDict, as

IfThenElseE is a member of the ArduinoConditional typeclass, and uses ad-hoc polymorphism.

1 condTransform :: Type -> CoreExpr -> [GhcPlugins.Alt CoreBndr] ->
2 CondM CoreExpr
3 condTransform ty e alts = do
4 case alts of
5 [(_, _, e1),(_, _, e2)] -> do
6 let [ty’] = tyConAppArgs ty
7

8 ifThenElseId <- thNameToId ifThenElseNameTH
9 condDict <- thNameTyToDict monadCondTyConTH ty’

10

11 -- Build the args to ifThenElseE
12 arg1 <- repExpr e
13 e1’ <- fmapRepBindReturn e1
14 e2’ <- fmapRepBindReturn e2
15

16 -- Build the ifThenElse Expr
17 let ifteExpr = mkCoreApps (Var ifThenElseId)
18 [Type ty’, condDict, arg1, e2’, e1’]
19

20 -- Apply fmap of abs
21 tyCon <- thNameToTyCon monadTyConTH
22 fmapAbsExpr (mkTyConTy tyCon) ty’ ifteExpr
23 _ -> return e

This dictionary is found on line 9, where our utility function thNameTyToDict is used to

lookup the dictionary, given the Template Haskell name of the typeclass, and the type. The dic-

tionary utility functions are derived from functions developed for use in Hermit (Farmer et al.,

2015). Throughout the plugin, typeclass and type names are abstracted to use general names, not

the specific ones. In this example ifThenElseNameTH and monadCondTyConTH are used instead

of the Haskino specific ifThenElseE and ArduinoConditional. This will allow reuse of the

plugin with a monadic EDSL other than Haskino, by defining the abstract names appropriately for

the specific monad in use.

100

This pass also handles the transformation of the other type of conditional in Haskino, a con-

ditional over the expression language, Expr. In this instance, similar to the monadic conditional,

the plugin looks for two alternative Case expressions with alternative of False and True, which

return a type in the EDSL’s expression type class, ExprB, and transforms them into the EDSL’s

ifB primitive.

9.4 EDSL Primitives Pass

The EDSL Primitives Pass translates the EDSL primitives (in the case of a Remote Monad based

EDSL, commands and procedures are the primitive data types) from their shallow form to their

deep form, as was shown by the rules in Section 7.1.

Like the other passes so far, this pass performs the equivalent of the rules using a per bind

transformation function. The primitives to be translated are specified by a table of pairs of identi-

fiers, the first element of the pair being the shallow version of the primitive, and the second element

being the deep version of the primitive.

data XlatEntry = XlatEntry { fromId :: BindM Id
, toId :: BindM Id

}

xlatList :: [XlatEntry]
xlatList = [XlatEntry (thNameToId ’System.Hardware.Haskino.setPinMode)

(thNameToId ’System.Hardware.Haskino.setPinModeE)
, XlatEntry (thNameToId ’System.Hardware.Haskino.digitalWrite)

(thNameToId ’System.Hardware.Haskino.digitalWriteE)
...

The transformation function recursively searches the Core for function applications of one of

the first elements in the xlatList, and replaces it with an application of the second element. The

function needs to search both App and Var constructors in the CoreExpr, as primitives without any

parameters will show up as expressions in a Var constructor.

In addition to simply substituting the primitives, shallow for deep, the pass compares the types

of the two versions of the primitive, and performs the translation by adding application of rep

101

and abs functions as needed. It first either applies a rep function to each of the arguments of

the primitive, using either simple function application or a fmap function, depending on if the

argument is monadic or not. It also applies an abs to the return value of the primitive using the

fmap function, since the return is of a monadic type.

9.5 Return Translation Pass

For monadic based DSLs, such as Haskino, instances of return functions need to be transformed

just as the EDSL primitives are. This pass transforms the returns with the equivalent of the follow-

ing rule:

forall (x :: ExprB a => a)
return x
=

abs <$> return (rep x)

This transformation is equivalent to the transformation of procedures used in the EDSL Primi-

tives Pass.

9.6 Local Functions Pass

As the plugin was being designed, there were two options for handling local function definitions

in the module being compiled. As running most deeply embedded DSLs consists of inlining those

functions, the first option was to simply inline any applications of those functions in other functions

inside of the module in this pass. However, it was planned to add Lambda expressions to the

Haskino Deep EDSL in the next phase of research, and therefore a method that did not inline

everything in this pass of the transformation was desired. In addition, Haskino was intended to

work with programs that spanned Haskell modules, and not just be limited to a single module, so

the transformations also needed to work with programs that span multiple modules. So, instead

of simply inlining all of the local functions, the decision was made to transform the types of local

functions within this pass of the transformation.

102

In doing this transformation, this pass replaces the shallow function body with a call of a deep

version of the function, as in the following example:

myRead :: Word8 -> Arduino Bool
myRead p = abs <$> (myReadDeep (rep p))

myRead_deep’ :: Expr Word8 -> Arduino Bool

What was the former body of the shallow version is transformed by this pass to become the new

body of the deep version. Using this method, a module being transformed that imports a previously

transformed module will pass type checking during the initial GHC type checking phase, before

the untransformed Core is given to the plugin, since both shallow and deep versions will be present

in the previous module.

This pass also replaces applications of shallow functions, with applications of the deep func-

tions. This means it applies a rep function to each of the arguments of the function, and an abs to

the return value of the function, similar to how EDSL primitives are transformed.

This pass is more complicated that the passes we have seen so far. It performs two sequences of

transformations over the binds in the module, one to handle the function type signature transforma-

tion, and one to handle the function application site changes. In the first transformation sequence,

it examines each bind, and choses the ones where the return value of the bind is one of two types,

either (exprB a => Arudino a), or (exprB a => a), as these are the two types of functions

which are transformed from shallow to deep by this pass. For each of those functions, a new deep

GHC id is created with a name that is the name of the shallow function appended with the string

"_deep". This new id is given a function type that is created by taking the application types and

return types of the shallow function, and transforming them to Expr types. It should be noted here

that only arguments whose type is a member of the ExprB type class are transformed. Other argu-

ment types are left unchanged, and calculations on those arguments will not be deeply embedded,

but will be performed on the host. A new shallow body expression is then created, which is written

as a call of the deep function as shown in the example earlier in this section. The original shallow

body is then transformed, to become the new deep body, applying a rep function to it to change it

103

to the deep type. Since the type of the arguments of the function have been changed to make them

deep, the body must also be transformed by replacing any occurrences of the arguments of ExprB

types in the body with abs applied to the argument. At this point the original bind is replaced with

the two new binds, the shallow id bound to the new shallow body written in terms of the deep id,

and the new deep bind id bound to the transformed shallow body.

In addition to replacing the original bind in the list of top level binds for the module, these two

new binds are also placed in a dictionary, with the shallow id as the key to the new dictionary entry,

and the deep id as the dictionary entry value. Once this dictionary of shallow to deep bind id’s is

created, the list of id’s which are exported from the module is updated in the modGuts structure

as well. If the shallow id from the dictionary exists in the list of binds which is exported, then

we add the deep id to the export list, so that other modules importing this one may use our newly

transformed bind.

At this point, we are ready to start the second transformation sequence through top level binds.

In this transformation sequence, the expressions associated with each bind are recursively trans-

formed using the dictionary that was created in the last sequence. There is one complication to

this procedure though, and that is the handling of let expressions found within each of the top

level binds. As the bind expression is recursively transversed, these let bindings are transformed

in the same manner as the top level binds were. The dictionary of shallow to deep transformations

then becomes a stack of dictionaries, one entry in the stack for each level of let binding. During

the recursive transversal of the expression, when a new transformable let binding is found, a new

dictionary is pushed to the stack containing the shallow to deep id mapping for that let, and when

the let binding is exited, the dictionary is popped from the stack.

During the same recursive transversal of the expressions, any function applications with ei-

ther (exprB a => Arudino a), or (exprB a => a) return types are examined. There are four

possible choices on what is done with these function applications.

1. The function is checked against a list of the deep primitives. If the function is in this list,

then it is already of a deep type, and is not transformed.

104

2. If the function is an element of any of the dictionaries on the stack, then the function is

replaced by the deep id found in the dictionary for the shallow id key, adjusting it’s arguments

and returns values with rep and abs applications as we did in the primitive pass.

3. If the function is not found in either the primitive list or the dictionary, then it is assumed to

be imported from another module. An id with the name of the function, appended with the

string "_deep", is searched for in the global reader environment that is part of the ModGuts

structure. The deep id returned is then substituted for the shallow function, and it’s arguments

and return value adjusted as with the primitive pass.

4. If the shallow id is not found in the global search, it indicates an error with the plugin

implementation, and a compiler error message is issued.

9.7 Rep Case Push Pass

The Rep Case Push pass is the first of the passes used to manipulate the worker-wrapper functions

which were inserted by the previous passes, transforming shallow expression functions to deep,

and moving the worker-wrapper functions for possible fusion in the later passes.

This pass was not required by the original simple examples that were used to test the plugin.

However, when more complicated Haskino code was used with the plugin, such as the Haskino

LCD library, it was found that the plugin did not properly translate all Haskino code. For example,

the Haskino LCD library defines a LCDController type as follows:

105

data LCDController =
Hitachi44780 { lcdRS :: Pin

, lcdEN :: Pin
, lcdD4 :: Pin
, lcdD5 :: Pin
, lcdD6 :: Pin
, lcdD7 :: Pin
, lcdBL :: Maybe Pin
, lcdRows :: Word8
, lcdCols :: Word8
, dotMode5x10 :: Bool }

| I2CHitachi44780 { address :: Word8
, lcdRows :: Word8
, lcdCols :: Word8
, dotMode5x10 :: Bool }

This type allows the user to define an instance of a LCD controller that is attached to their

Arduino board, and specify how it is attached (either by a direct, multi-pin connection, or using an

I2C device), what pins it is attached to, and what it’s capabilities are.

Since we have not defined an explicit Case structure in the Arduino EDSL, it was expected no

instances of Core Case constructors would be found at this stage of the plugin pipeline, as they

would have been eliminated by the Conditionals Pass described in Section 9.3. However, this was

found to not be the case. The accessor function, lcdCols that is defined by Haskell to retrieve the

lcdCols element of the data structure will be generated as the following Core code, and it contains

a case that will not be eliminated.

lcdCols :: LCDController -> Word8
lcdCols =
\ (ds_d6T9 :: LCDController) ->

case ds_d6T9 of _ [Occ=Dead] {
Hitachi44780 ds_d6Ta ds_d6Tb ds_d6Tc ds_d6Td ds_d6Te ds_d6Tf

ds_d6Tg ds_d6Th ds_d6Ti ds_d6Tj ->
ds_d6Ti;

I2CHitachi44780 ds_d6Tk ds_d6Tl ds_d6Tm ds_d6Tn -> ds_d6Tm
},

When this is translated to the deep version, by the Local Functions Pass described in Sec-

tion 9.6, the following Core will then be the output of that phase.

106

lcdCols :: LCDController -> Expr Word8
lcdCols_deep’ =
\ (ds_d6T9 :: LCDController) ->
rep_
@ Word8
System.Hardware.Haskino.Expr.$fExprBWord8
(case ds_d6T9 of _ [Occ=Dead] {

Hitachi44780 ds_d6Ta ds_d6Tb ds_d6Tc ds_d6Td ds_d6Te ds_d6Tf
ds_d6Tg ds_d6Th ds_d6Ti ds_d6Tj ->

ds_d6Ti;
I2CHitachi44780 ds_d6Tk ds_d6Tl ds_d6Tm ds_d6Tn -> ds_d6Tm

}),

From this Core output, we can see that the rep application is not where it needs to be to

transform the return value of the accessor function to the deep type. To handle this case, as well as

others that appear when using this type of data type in Haskino code, we need to define yet another

type of transformation rule to manipulate the rep worker-wrapper function.

The Rep Case Push pass is the plugin pass that implements this additional transformation. It

performs the equivalent of the following rule, moving the rep application through the case, and

applying it to each of the constituent alternatives of the case.

forall (a1 :: ExprB a => a) ... (an :: ExprB a => a)
rep (case c of e1 -> a1 ... cn -> an)

=
case c of e1 -> rep_ a1 ... cn -> rep_ an

Like many of the other passes we have discussed, this pass performs a simple recursive search

of the Core constructors, looking for an instance of the rep function applied to a Case constructor

which returns a type of the ExprB typeclass. It then replaces that with a Case constructor with the

rep function applied to each of the alternatives.

Going back to our example in this section, after this pass has transformed the core for the

lcdCols accessor function, it looks like the following, with the rep application now in the proper

position.

107

lcdCols_deep’ :: LCDController -> Expr Word8
lcdCols_deep’ =

\ (ds_d6T9 :: LCDController) ->
case ds_d6T9 of _ [Occ=Dead] {
Hitachi44780 ds_d6Ta ds_d6Tb ds_d6Tc ds_d6Td ds_d6Te ds_d6Tf

ds_d6Tg ds_d6Th ds_d6Ti ds_d6Tj ->
rep_
@ Word8
System.Hardware.Haskino.Expr.$fExprBWord8
ds_d6Ti;

I2CHitachi44780 ds_d6Tk ds_d6Tl ds_d6Tm ds_d6Tn ->
rep_
@ Word8
System.Hardware.Haskino.Expr.$fExprBWord8
ds_d6Tm

}

9.8 Rep Push Pass

The Rep Push pass is the second of the passes used to manipulate the worker-wrapper functions

which were inserted by the previous passes. This pass is performed in the plugin in a similar

method to the EDSL primitive pass. It also contains a table of pairs of the functions with the from

and to functions to transform for each of the EDSL Expr language operations. (In the example

in Section 7.1 discussing the Rep Push transformations, this pair consists of the (||) and (||*)

functions). One of the sets of pairs is defined for each of the DSL’s Expr operations, and is used to

move the operation from a shallow operation in basic Haskell types, to a deep operation using the

Expr language operators.

data XlatEntry = XlatEntry { fromId :: BindM Id
, toId :: BindM Id

}
xlatList :: [XlatEntry]
xlatList = [XlatEntry (thNameToId ’not)

(thNameToId ’Data.Boolean.notB)
, XlatEntry (thNameToId ’(||))

(thNameToId ’(||*))
...

108

As with the EDSL Primitive pass, the transformation function recursively searches the Core for

function applications of one of the first elements in the xlatList, and replaces it with an applica-

tion of the second element, applying a rep to each of the arguments of the replacement function. It

also compares the types of the original and the replacement functions, and automatically generates

the required type arguments and dictionaries for the functions.

While designing the type comparison functions for the operator transformation, a difficulty was

encountered. When attempting to translate shallow comparison operators such as (==) to a deep

comparison operator, (==*), it was found that the translation needed to deal not just with type

arguments and dictionaries, but also with coercions. This is due to the fact that the definition of

the EqB, OrdB, and IfB typeclasses have function types which contain type equality constraints in

their definitions, as show below with the EqB class.

class Boolean (BooleanOf a) => EqB a where
(==*), (/=*) :: (bool ~ BooleanOf a) => a -> a -> bool

These type equality constraints translate to coercions in the Core language. Dealing with coer-

cions in the type comparisson and translation functions would significantly complicate the trans-

lation. Instead, it was determined to be cleaner to eliminate the type equality requirements by

extending the ExprB typeclass to include wrapper functions for equality, ordinality, and condi-

tional expression functions. These are the eqE, lessE (and related functions), and ifBE functions

shown in the type class definition and example instance below.

109

class ExprB a where
lit :: a -> Expr a
remBind :: Int -> Expr a
showE :: Expr a -> Expr [Word8]
lessE :: Expr a -> Expr a -> Expr Bool
lesseqE :: Expr a -> Expr a -> Expr Bool
-# INLINE lesseqE #-
lesseqE a b = notB (lessE b a)
greatE :: Expr a -> Expr a -> Expr Bool
-# INLINE greatE #-
greatE a b = lessE b a
greateqE :: Expr a -> Expr a -> Expr Bool
-# INLINE greateqE #-
greateqE a b = notB (lessE a b)
eqE :: Expr a -> Expr a -> Expr Bool
neqE :: Expr a -> Expr a -> Expr Bool
-# INLINE neqE #-
neqE a b = notB (eqE a b)
ifBE :: Expr Bool -> Expr a -> Expr a -> Expr a

instance ExprB Word8 where
lit = LitW8
remBind = RemBindW8
showE = ShowW8
-# INLINE lessE #-
lessE = (B.<*)
-# INLINE eqE #-
eqE = (==*)
-# INLINE ifBE #-
ifBE = ifB

Adding these functions to the typeclass eliminates the coercions from the Core and simplifies

the translation, with a small increase to complexity of the EDSL. Also, default definitions were

added for the non-required functions in the EqB and OrdB typeclasses (such as lesseqE and

neqE) to provide convient translation targets for the translation table. The additional functions

in the typeclass are marked as INLINE in their definitions so as to not add an additional function

application in the generated code.

110

9.9 Abs Lambda Pass

The Abs Lambda pass is the last of the passes used to manipulate the worker-wrapper functions

in preparation for fusion. This pass performs the equivalent of two of the rules described in

Section 7.1. The first of these two rule analogues pushes the abs function applications through

monadic >>= and >> operators.

forall (f :: ExprB a => Arduino a)
(g :: ExprB a,b => a -> Arduino (Expr b))
(k :: ExprB b, c => b -> Arduino c).
(f >>= (abs_ <$> g)) >>= k

=
(f >>= g) >>= k . abs_

The second rule, which moves the abs inside of lambdas, which has the form shown below.

forall (f :: Arduino a).
(\ x -> f[x]) . abs
=

(\ x’ -> let x=abs x’ in f[x])

In the implementation of this pass, these two rules are applied in one recursive traversal through

the Core code. The pass identifies bind chains where the abs function applications need to be

moved to the end of the bind chain. When the end of the bind chain is also found to be a lambda,

the abs is eliminated, the lambda argument x is renamed to x_abs and it’s type is changed to Expr

a. As a final step, any occurrence of x in the body of the lambda is replaced with abs(x_abs).

9.10 Rep Abs Fusion Pass

This pass fuses the rep and abs pairs that have been moved next to each other by the previous

passes. It performs the equivalent of the two rep-abs fusion rules described in Section 7.1.

forall x.
rep(abs(x))
=

x

111

forall m.
rep <$> (abs <$> m)

=
m

After this pass is complete, there will be some applications of rep left in the Core, where it is

required to lift literal basic Haskell values into the EDSL’s Expr language.

9.11 Recursion Pass

The Recursion Pass transforms Deep EDSL tail recursive functions into the Deep EDSL’s iterateE

construct. It performs the equivalent of rules described in Chaper 8 with a Core-to-Core pass, and

only operates on Core Bind’s constructed with Rec.

The plugin as stands transforms tail recursive Haskino functions with zero or one arguments.

Recursive functions with larger number of arguments are currently flagged to the user as not trans-

formable. Transformation of these type of functions could be added to the pass, but would require

the addition of tuples to the Haskino Deep EDSL, as described in Section 8.7.

The pass starts by examining all of the recursive binds in the module, looking for binds re-

turning a type of the EDSL monadic type (Arduino) over an ExprB type. Those with zero or one

arguments, where the type signature for all of the recursive functions in the recursion group have

the same type signature (same argument type and same return type), are chosen for transformation.

Those that do not meet this criteria are flagged as not transformable by printing a compiler error

message. For those that have the proper number of arguments, it creates a new wrapper func-

tion as a non-recursive bind, and populates it with an instance of the iterateE function with the

proper types. It then takes the former bodies of the mutually recursive function (or of the body

of the single recursive function), and passes them to a function to perform the recursive trans-

formation, the result of which then becomes the third argument to the iterateE function. The

original recursive functions are then rewritten to call the new wrapper function, passing the recur-

sive function index and the initialization value as arguments to the wrapper function. If the orig-

inal recursive functions had no arguments, then the iterateE function will have a return type of

112

ExprEither (Expr ()) (Expr a), and the initialization value will simply be LitUnit, which

is the only value in the Expr () type.

The transformation function performs the equivalent of the following three rules from Chap-

ter 8. The first moves the Done constructor through any conditionals:

forall f x.
Done <$> if b then f else g

=
if b then (Done <$> f) else (Done <$> g)

The second moves the Done constructor call to the end of the bind chain.

forall f g.
Done <$> (f >>= g)

=
f >>= \ x -> Done <$> g x.

And the final, in the branches where the recursive function call is present, eliminates the recur-

sive call, instead inserting the Step constructor.

forall x.
Done <$> findex x

=
(Step index) <$> (return x)

To implement these rules, the transformation function, transformRecur, walks the monadic

bind chain of the function, and at each stage, performs one of five options.

1. If function at that position is an ifThenElseE, it is replaced with an ifThenElseEitherE

of the appropriate type, and the transformation function is called recursively for each branch

of the conditional.

2. If the function at that position is a monadic bind it:

• Checks the left hand side of the bind to determine if it is a non-tail recursive call. If it

is, it issues an error message.

• If it is not, it then calls the transformation function recursively for the right hand side

of the bind.

113

3. If the function is a recursive call to the function under transformation, the call is replaced

with a call to a monadic return. The argument to the monadic return is then wrapped with an

ExprLeft, to signal to the iterateE primitive that the iteration will continue for this branch.

4. If the function is a return, then this branch is a non-recursive one. The argument to the return

is wrapped with an ExprRight, to signal to the iterateE primitive that the iteration will not

continue for this branch.

5. Finally, if none of the above are true, then this is a non-recursive branch, with a call to another

Haskino monadic function. Therefore, we apply an fmap of ExprRight to it, to indicated the

return value of the Haskino function will be the return value of the overall iteration structure.

Once the bodies of the recursive functions are transformed, a new step function is created which

is passed as the final parameter of the iterateE function in the wrapper function. The created

step function consists of a scaffolding of ifThenElseEither conditionals which test the function

index passed to the step function, ensuring that the proper transformed recursive function body is

executed for each call of the step function. Once this scaffolding is created, the transformed bodies

are placed within the conditional arms. If there was only one recursive function in the recursive

group, then the conditional scaffolding will not be created, and the transformed recursive function

body will be inserted directly as the step function body.

9.12 Abs Then Pass

After the other transformation passes, there may be some applications of abs left in the Core,

but due to Haskell’s lazy evaluation, these will never be evaluated. This will occur when an EDSL

procedure’s return value is not bound to a lambda argument, but is instead used with the >> operator

instead of the >>= operator. To simplify the generated Core, these unevaluated instances of abs

are eliminated by this pass.

114

9.13 Debugging the Plugin

There were several facilities used for debugging during the development of the plugin. The first

of these was a pass that was defined for the plugin that dumped all of the binds in the module

under compilation at the stage of the pipeline where the debug pass was inserted. It’s definition is

relatively simple:

dumpPass :: ModGuts -> CoreM ModGuts
dumpPass guts = do
putMsg $ ppr (mg_binds guts)
return guts

It uses the putMsg facility of the CoreMonad to output a SDoc type to the console. The ppr

function is a pretty printer for members of the Outputable typeclass, which includes most of the

internal data structures of GHC. This pass simply pretty prints all of the binds in the ModGuts

structure to the console.

For debugging the inner workings of a plugin pass, the same putMsg function (and it’s cousin,

putMsgS which takes a String as a parameter), were used within the code of the pass itself. To en-

able this, the monads used in the translation passes were made instances of a generic pass typeclass,

which defines a function to lift CoreMonad functions into the pass monad.

instance PassCoreM BindM where
liftCoreM m = BindM $ lift m

Then, using this functionality, the putMsg may be used with the transformation pass code, as

in this example printing out a Core structure.

liftCoreM $ putMsg $ ppr someCoreStruct

Finally, if very detailed information about the Core, including all fields and components of the

internal GHC identifiers and operators, was needed, the Hackage CoreDump (Ömer Sinan Ağa-

can, 2015) package was modified to work with the Haskino plugin structure. This resulted in a

showPass which may be used much like the dumpPass, but which prints very verbose information

for detailed debugging. This detail was rarely needed, but was essential in a few cases.

115

9.14 Plugin Translation Limitations

The translations performed by the Haskino plugin can handle most Haskino source, however, the

plugin does have limitations. The limits on recursion translation were detailed in Section 9.11.

There are also known limitations to the shallow to deep translation. One of these is the inability to

translate the Haskino primitive modifyRemoteRef. The type signatures of the shallow and deep

versions of this primitive are shown below.

modifyRemoteRef :: RemoteRef a -> (a -> a) -> Arduino ()
modifyRemoteRefE :: RemoteRef a -> (Expr a -> Expr a) ->

Arduino (Expr ())

The limits of the transformation are due to the inability to translate the second argument of

the primitive. The translation is currently unable to handle the transformation of primitive argu-

ments which are functions. The issue may be worked around by using a readRemoteRef and

writeRemoteRef sequence. The translation could also be extended to handle the application of a

rep to the functional argument if it is a lambda. This would require the addition of a repLambda

rule similar to the absLambda rule described in Section 9.9. For a function argument that is a local

bind, the translation would not need to apply a rep, as the local bind would already be translated

to a deep function.

The second known limitation is in dealing with enumerated data types in the Haskino code. An

example is from the LCD display with keyboard example described in Section 8.4. We would like

to encode the key choices by deriving Enum on the Key data type, and then determine the value by

doing a fromEnum as shown below.

data Key = KeyNone
| KeyRight
| KeyLeft
| KeyUp
| KeyDown
| KeySelect

deriving Enum

keyValue :: Key -> Word8
keyValue = fromEnum

116

However, this will not work with the shallow to deep translation, as there is currently not a

Expr operation to translate from an Enum data type to an Expr Int. Therefore, we would need to

define a new operation, fromEnumE as is shown below.

fromEnum :: Enum a => a -> Int

fromEnumE :: Enum a => a -> Expr Int
fromEnumE = lit . fromEnum

The translation from fromEnum to fromEnumE could be added to the Rep Push pass described

in Section 9.8. However, the translation function in that pass would also need to be updated, as it

is not currently able to handle the translation of operation functions that have non-ExprB types as

parameters, as is the case with fromEnum and it’s first parameter. Until this is updated, hand written

functions which go from an enumerated data type to an integer type are required to be written in

Haskino, as is the case with the key example from Section 8.4, shown below.

keyValue :: Key -> Word8
keyValue KeyNone = 0
keyValue KeyRight = 1
keyValue KeyLeft = 2
keyValue KeyUp = 3
keyValue KeyDown = 4
keyValue KeySelect = 5

The final known limitation of Haskino’s plugin translation has to do with how construction

of lists of type [Word8] are coded in a Haskino application. We will use an example from the

Haskino interpreter bootstrap case study, where we would like to recursively call the readFrame’

function with the input list appended with the checksum. As Haskell programmer would normally

write this as:

readFrame’ $ l ++ [c]

However, this fails to translate. This is due to the fact GHC normally uses the build list

constructor to construct lists. The plugin is not currently able to translate the build function.

Allowing this syntax would require adding a plugin translation pass that either applies a rule for

moving rep functions inside of the build function, transforming it’s parameters from [Word8] to

117

Expr [Word8], or translates the build function application into a combination of cons operations

and an empty list constructor. For now, Haskino code using list construction must construct the

lists with a cons (:) and empty list sequence ([]) as shown below.

readFrame’ $ l ++ c : []

118

Chapter 10

Case Studies

The compiler plugin described in Chapter 9, implementing the rules and algorithms detailed in

earlier chapters, allows a user to write in a shallowly embedded syntax, and have the program

automatically translated to a deeply embedded program, which may then be compiled to C. In this

chapter, we will examine two case studies which use this system to implement larger programs than

the simple ones we have examined up to this point. Although directly comparing entire programs

written in Haskino, which are then compiled to C, to the same programs written directly in C is

difficult, we can compare subsets of the programs.

The first case study examines writing a driver for a common Arduino peripheral, a multi-

line LCD display (which was discussed in Sections 5.4.2, 9.7, and 8.6). The second case study

examines writing the Haskino interpreter in Haskino itself, allowing Haskino to "bootstrap" itself.

10.1 Case Study: LCD Driver and Applications

The multi-line LCD display, a common Arduino peripheral, and snippets of code dealing with it,

have been discussed in several of the previous chapters. The writing of an LCD driver for Haskino

was a key part of the research, and enabled many of the examples in this dissertation.

In Section 9.7, the LCDController data type was discussed in relation to how it had to be han-

dled differently by the compiler plugin. The LCDController data type is part of a larger datatype

that describes the interface to the controller, from both a configuration and a state standpoint. The

top level LCD data type, as well as the state related LCDData data type are shown below.

119

data LCD =
LCD {

lcdController :: LCDController -- Actual controller
, lcdState :: LCDData -- State information
}

data LCDData =
LCDData {

lcdDisplayMode :: RemoteRef Word8 -- left/right/scrolling etc.
, lcdDisplayControl :: RemoteRef Word8 -- blink on/off, dsply on/off
, lcdGlyphCount :: RemoteRef Word8 -- count of custom glyphs
, lcdBacklightState :: RemoteRef Bool
}

The state data type, LCDData is made up of Haskino RemoteRef’s which are used to store

state information about the display for the driver during execution. An instance of the LCD data

type is created with the lcdRegister function, which is passed as a parameter an instance of the

LCDController data type, specifying how the controller hardware is wired into the Arduino sys-

tem. The lcdRegister function then creates four new RemoteRef’s for the new instance of the

LCDData data type, and that is combined with the lcdController argument to create the overall

data structure which identifies a specific instance of the hardware controller.

lcdRegister :: LCDController -> Arduino LCD
lcdRegister controller = do

mode <- newRemoteRef 0
control <- newRemoteRef 0
count <- newRemoteRef 0
backlight <- newRemoteRef True
let ld = LCDData { lcdDisplayMode = mode

, lcdDisplayControl = control
, lcdGlyphCount = count
, lcdBacklightState = backlight
}

let c = LCD { lcdController = controller
, lcdState = ld
}

initLCD c
return c

The new instance of the LCD data type is retured from the registration function, and is passed to

all of the driver functions as the identification of the display instance, which allows an application

120

to use multiple displays if so desired. As the LCD data type is not an instance of ExprB, it is not

translated by the compiler plugin during the shallow to deep transformation.

Two of the applications used as examples in this dissertation use the LCD Display Driver.

The LCD Counter example in Section 5.4.2 is the first of these. Also, the mutual recursion state

machine example in Section 8.6 uses the driver as well. The driver proved invaluable during the

development of the system by providing an easy to read visual output for debugging, as well as

being representative of the required interfaces for an Arduino peripheral and driver.

10.1.1 Simple LCD Application

A common first example of a programming language is a "Hello World" application. I will use

a similar application as an intro example of programming the Arduino using the LCD driver. As

this research was done at the University of Kansas, my example program will be called "Hello

Lawrence". In the main loop, it will display each of following three strings on the LCD display:

"Rock", "Chalk" and "Jayhawk". After displaying each string it will delay for 1500ms. The C

language version that would be written directly with the Arduino IDE is shown below:

#include <LiquidCrystal.h>
const int rs = 8, en = 9, d4 = 4, d5 = 5, d6 = 6, d7 = 7;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
lcd.begin(16, 2); // Specify the size of the display

}

void loop() {
lcd.home();
lcd.print("Rock");
delay(1500);
lcd.home();
lcd.print("Chalk");
delay(1500);
lcd.home();
lcd.print("Jayhawk");
delay(1500);
lcd.clear();

}

121

The Arduino C code uses the Arduino provided library, LiquidCrystal, to program the LCD

display. Like the Haskino LCD driver’s lcdRegister function, this library requires creating a

LiquidCrystal object which specifies which pins the LCD display is connected to.

The Haskino version of the same application is shown next:

hitachi :: LCDController
hitachi = Hitachi44780 { lcdRS = 8

, lcdEN = 9
, lcdD4 = 4
, lcdD5 = 5
, lcdD6 = 6
, lcdD7 = 7
, lcdBL = Just 10
, lcdRows = 2
, lcdCols = 16
, dotMode5x10 = False
}

hello :: LCD -> Arduino ()
hello lcd =

lcdHome lcd
lcdWrite lcd $ litString "Rock "
delayMillis 1500
lcdHome lcd
lcdWrite lcd $ litString "Chalk "
delayMillis 1500
lcdHome lcd
lcdWrite lcd $ litString "Jayhawk"
delayMillis 1500
lcdClear lcd
hello lcd

helloLawrence :: Arduino ()
helloLawrence = do

lcd <- lcdRegister hitachi
lcdBacklightOn lcd
hello lcd

This main application code for this simple application is written similarly in both languages.

The library source for both LCD drivers will not be shown here for the sake of brevity, but I

will use this example program to compare the resource utilization and performance of directly

programming it in C using the Arduino IDE, against utilizing Haskino to write the program and

generate C code from it.

122

10.1.2 Resource Usage Comparison

Table 10.1 shows the differences in RAM and Flash usage between the two versions, simply mea-

sured by the output of the Arduino avr-size tool which is run following the program linking.

For the Haskino version, the static definition of the task control block was removed before com-

piling, as it includes the stack space for the default task allocated by the runtime, and stack size is

not included in the pure C version by the avr-size tool. Stack usage was calculated by passing

-fstack-usage to gcc during compilation, and then analyzing the call tree to find the maximum

approximate static usage. The Haskino version uses the dynamic memory management described

in Section 6.7, and the minimum number of allocation blocks required for the application was

determined through experimentation, and those buffer sizes are reflected in the numbers in the

table.

Hello Lawrence Hello Lawrence
Application in C Application in Haskino

Flash Size 2093 bytes 5926 bytes
Static RAM Size 61 bytes 144 bytes
Stack RAM Size 24 bytes 24 bytes
Total RAM Size 85 bytes 168 bytes
Uno Flash Usage 6.4% 18.1%
Uno RAM Usage 4.1% 8.2%

Table 10.1: Summary Sizing of Hello Lawrence Application Written in C and Haskino

Hello Lawrence Hello Lawrence
Application in C Application in Haskino

List Buffers – 60 bytes
Remainder of Application/Libs 61 bytes 84 bytes

Total Ram Size 61 bytes 144 bytes

Table 10.2: Detail of Static RAM Usage in Hello Lawrence Application

As can be seen from the measurements in the table, the Haskino version uses more Flash

and RAM than the C version does. The static RAM usage of the two versions is shown in more

detail in Table 10.2. The Haskino version requires list process buffer space where the C version

does not. The remaining memory difference between the two versions is for the remainder of the

123

applications/libraries/runtime for the Haskino version, which requires 23 more bytes than the C

version, which is a 37% increase.

The flash memory usage consists of several different components, and those are detailed in

Table 10.3. The Haskino Runtime makes up approximately 17% of the total flash storage require-

ments of the Haskino version, and this is a flat "tax" that is independent of the application size.

Looking at the application and library flash storage requirements, we can see that the Haskino ver-

sion requires approximately 200% more flash storage than the C version does. In section 10.1.4,

we will examine the cause of that large expansion, and how it might be reduced.

Hello Lawrence Hello Lawrence
Application in C Application in Haskino

Arduino Libraries 978 bytes 978 bytes
Haskino Runtime — 1616 bytes

Application and LCD Library 1114 bytes 3332 bytes
Total Flash Size 2092 bytes 5926 bytes

Table 10.3: Detail of Flash Usage in Hello Lawrence Application

10.1.3 Processing Time Comparison

In addition to comparing the resource utilization for the LCD application case study, the processing

time required for the main loop of the application was also compared. For both the C and Haskino

versions, the time required for the main loop with the delays removed was measured. In other

words, the time required to display the three strings in the message was measured. The loop was

ran for 1000 iterations, and the measured time was then divided by 1000 to calculate the number

in Table 10.4. The Haskino version was 2.6% faster than the C version, which may be due to the

inlined nature of the Haskino generated code.

Hello Lawrence Hello Lawrence
Application in C Application in Haskino Delta

Main Loop time 12.65 ms 12.32 ms -2.6%

Table 10.4: Processing Time in Hello Lawrence

124

10.1.4 Duplicated Code

There is a large difference between the flash memory resources used by the Haskino and C versions

of the application, in fact the Haskino version uses almost three times as much flash. Analysis of

the generated code reveals the large contributor to the size of the Haskino version. The structure

of the application is such that it writes commands to the LCD display unit using sequences of

digitalWrite’s in many locations in the generated C code. Due to the inherent inlining nature

of executing a deeply embedded EDSL, this command code is repeated many times. In the case

study application there are 17 copies of the command code, which is generated from the Haskino

source function transmit. Measuring the size of the generated code for this function reveals that

it requires 140 bytes of Flash space per instance of the generated code. If this code were moved to a

generated C function, 16 copies of it could be eliminated. This would require inserting 17 function

calls in their place, and estimating 16 bytes of code per function call, the estimated savings would

be 16 * 140 - 17 * 16, or 1968 bytes. Table 10.5 shows the differences between the interpreter

version after these savings.

Shallow Haskino Shallow Haskino
Interpreter in C Interpreter in Haskino

Arduino Libraries 978 bytes 978 bytes
Haskino Runtime — 1616 bytes

Application and LCD Library 1114 bytes 1364 bytes
Total Flash Size 2092 bytes 3958 bytes

Table 10.5: Detail of Optimized Flash Usage in Hello Lawrence Application

The results in the table show that with the projected savings from the shared code elimination

optimization, the Haskino version of the application would only have a 22% increase in flash

storage required over the C version. This is a much preferred result as compared to the original

200% increase detailed in Section 10.1.2.

Given the opportunity for a large percentage reduction in flash usage by eliminating the du-

plicated code, finding a method to eliminate the inlining of these functions would provide great

benefits. One possible method that would provide these benefits is examined in Chapter 11.

125

10.2 Case Study: Bootstrapping Haskino

A common mechanism used to demonstrate the flexibility of a language system is to build part of

that system using the system itself. An example of this is the GHC Haskell compiler, which is

written in Haskell, and a new version is built using an older version of the compiler.

To demonstrate Haskino’s ability to perform a partial bootstrapping, I have written a version

of the Haskino interpreter in Haskino. This interpreter may then be compiled to C, then machine

code, and programmed to flash on the Arduino. It interoperates with the Haskino host, allowing

programs written in Haskino to be executed on the interpreter.

The Haskino interpreter’s structure, in both implementations, consists of of 4 major sections.

The first is the reception of the interpreter primitive over the serial port, and verifying the com-

mands integrity with a checksum calculation. Second, the command byte is used to dispatch pro-

cessing specific to that primitive. Third, the specific primitive processing verifies the arguments

to the command, if any, and calls the appropriate Arduino native API. Finally, if the primitive is a

procedure, and requires a response to be sent to the host, that response is built and send over the

serial port.

The expression evaluation functions in the C version of the Haskino interpreter, which evaluate

the Expr portions of the Haskino language, are mutually non-tail recursive. This would be difficult

to write in the current version of Haskino, without implementing lambdas in the language, or

using some other method of generating C functions with recursive calls. Therefore, the version of

the interpreter implemented for this bootstrapping case study is one that implements the shallow

version of the interpreter, similar to the original Haskino interpreter described in Chapter 3. The

major difference between the updated shallow version, and the one described in Chapter 3, is

that the updated interpreter uses the current Haskino protocol, which has been updated to handle

deeply embedded primitives. The consequence of this is that most of the primitive handlers in the

interpreter need to check that the arguments passed to the primitive are simple shallow literals, not

more complicated expressions, before the handler operates on them.

126

10.2.1 Checksum Calculation

The messages sent to and from the interpreter are protected by a checksum value to provide a

message integrity measure. The checksum is additive, and covers all of the bytes of the message

except for the checksum byte itself and the ending frame byte.

The checksum must be calculated both on reception of a message, to compare to the value

received for the checksum and validate the message, and on transmission of reply messages. In

the case study implementation, both the reception and transmission of messages was written in a

tail recursive style. The current plugin limitation of transforming functions with only zero or one

arguments provided some challenges to writing the the checksum calculation code. Two different

methods were used to circumvent these challenges in the case study implementation.

For the receive checksum calculation, a remoteRef was used as an accumulator, updated for

each received, decoded character. This requires creating the remoteRef at the top level of the

program, and passing it down to the readFrame routine, similar to what we did in Section 10.1.

The code for the readFrame routine is shown below.

readFrame :: RemoteRef Word8 -> Arduino [Word8]
readFrame ref = do

writeRemoteRef ref 0
readFrame’ []

where
readFrame’ :: [Word8] -> Arduino [Word8]
readFrame’ l = do

c <- readChar
if c == hdlcEscape
then do

c’ <- readChar
ch <- readRemoteRef ref
writeRemoteRef ref (ch + c’ ‘xor‘ hdlcMask)
readFrame’ $ l ++ (c’ ‘xor‘ hdlcMask : [])

else do
if c == hdlcFrameFlag
then do

ch’ <- readRemoteRef ref
checkFrame l ch’

else do
ch’’ <- readRemoteRef ref
writeRemoteRef ref (ch’’ + c)
readFrame’ $ l ++ (c : [])

127

For the transmit checksum calculation, a different approach was taken to work around the one

argument limit to a tail recursive function transformation. To calculate the checksum on transmit,

the checksum accumulator is added to the front of the list representing the outgoing message.

The process of transmitting a byte then removes two bytes from the list, the checksum and the

actual byte to transmit, and then adds the update checksum back. The code which implements

transmitting the reply message (without the frame flag) is shown below.

sendReplyBytes :: [Word8] -> Arduino ()
sendReplyBytes l = sendReplyBytes’ $ 0 : l
where
check :: [Word8] -> Word8
check l’ = head l’ + l’ !! 1

sendReplyBytes’ :: [Word8] -> Arduino ()
sendReplyBytes’ l’ = do

sendEncodedByte $ l’ !! 1
if length l’ == 2
then sendEncodedByte $ check l’
else sendReplyBytes’ $ check l’ : drop 2 l’

10.2.2 Resource Usage Comparison

Table 10.6 shows the differences in RAM and Flash usage between the two versions, simply mea-

sured by the output of the Arduino avr-size tool which is run following the program linking.

For the Haskino version, the static definition of the task control block was removed before com-

piling, as it includes the stack space for the default task allocated by the runtime, and stack size is

not included in the pure C version by the avr-size tool. Stack usage was calculated by passing

-fstack-usage to gcc during compilation, and then analyzing the call tree to find the maximum

approximate static usage. Both versions use memory buffers to store the incoming and outgoing

messages, and those configurable buffer sizes were set to only handle the maximum size message

required by the interpreter. The Haskino version uses the dynamic memory management described

in Section 6.7, and the minimum number of allocation blocks required for the interpreter was de-

termined through experimentation, and those buffer sizes are reflected in the numbers in the table.

As can be seen from the measurements in the table, the Haskino version uses more Flash and

128

Shallow Haskino Shallow Haskino
Interpreter in C Interpreter in Haskino

Flash Size 12428 bytes 23018 bytes
Static RAM Size 534 bytes 741 bytes
Stack RAM Size 51 bytes 50 bytes
Total RAM Size 585 bytes 791 bytes
Uno Flash Usage 37.9% 70.2%
Uno RAM Usage 26.1% 34.2%

Table 10.6: Summary Sizing of Haskino Interpreter Written in C and Haskino

Shallow Haskino Shallow Haskino
Interpreter in C Interpreter in Haskino

Scheduler — 84 bytes
Message Buffers 32 bytes 96 bytes

Remainder of Application/Libs 502 bytes 561 bytes
Total Ram Size 534 bytes 741 bytes

Table 10.7: Detail of Static RAM Usage in Haskino Interpreter

RAM than the C version does. The static RAM usage of the two versions is shown in more detail

in Table 10.7. The Haskino version requires more buffer space, because of it’s list processing,

which requires a larger number of intermediate buffers. The Haskino version uses 84 bytes of

memory for structures for the scheduler (the task control block and semaphores). These are not

strictly required for the interpreter, as there is only one thread of execution, so they could be

optimized out. The remaining memory difference between the two versions is the remainder of

the applications/libraries/runtime for the Haskino version, which requires 59 more bytes than the

C version, which is an 12% increase.

The flash memory usage consists of several different components, and those are detailed in

Table 10.8. The Haskino Runtime makes up approximately 15% of the total flash storage require-

ments of the Haskino version, and this is a flat "tax" that is independent of the application size.

Looking at the true application flash storage requirements, we can see that the Haskino version

requires approximately 61% more flash storage than the C version does. In Section 10.2.5 of this

chapter, we will examine some of the causes of that expansion, and how it might be reduced.

129

Shallow Haskino Shallow Haskino
Interpreter in C Interpreter in Haskino

Arduino Libraries 1032 bytes 1032 bytes
Haskino Runtime — 3602 bytes

Application 11396 bytes 18384 bytes
Total Flash Size 12428 bytes 23018 bytes

Table 10.8: Detail of Flash Usage in Haskino Interpreter

10.2.3 Processing Time Comparison

In addition to comparing the resource utilization for the interpreter case study, the amount of time

to process interpreter primitives was compared between the two interpreter versions. The results

from measuring two different DSL primitive sequences is shown in Table 10.9. The first primitive

sequence consists of sending a single digitalRead command to the interpreter. The second primitive

sequence consists of a sequence of 8 digitalRead primitives followed by a queryFirmware primitive

to cause the Remote Monad packet to be transmitted. Both the C and Haskino interpreter code was

instrumented with time measurement code that starts timing when the first primitive command is

received, and stops timing when the last primitive response is sent. The primitive sequences were

repeated 1000 times for the measurements, with the total time measured divided by 1000. The

measurements were repeated 10 times, and the mean of those 10 times is reported in the table.

Shallow Haskino Shallow Haskino
Interpreter in C Interpreter in Haskino Delta

Total Time digitalRead 4.168 ms 4.093 ms
Communication time 1.042 ms 1.042 ms

Host time 0.133 ms 0.133 ms
Processing digitalRead 2.993 ms 2.918 ms -2.5%

Total Time digitalWrite 8.204 ms 8.222 ms
Communication time 6.163 ms 6.163 ms

Host time 0.188 ms 0.188 ms
Processing digitalWrite 1.853 ms 1.871 ms 1.0%

Table 10.9: Processing Time in Haskino Interpreter

130

In addition to the total time taken for each primitive sequence, the table shows the amount of

communication time on the serial bus for sending the primitive commands and responses for the

sequence, at a baud rate of 115200. Also, since the test measures 1000 primitive sequences in a

row, for each sequence the Haskell host will take some time to process the response and send out

the new primitive sequence. This host time was measured using the debug output on the host, which

is timestamped. The mean host processing time is included for each sequence in the table as well.

The processing time on the Arduino is the total time for the sequence, minus the communication

time and the host processing time.

There is a small difference in processing time between the C and Haskino interpreters in each

case. In one case the C interpreter was faster, and in the other the Haskino interpreter is faster.

The communication time is a large portion of both examples. At first glance, it appears that the

processing time is of the same order for both interpreters, with neither having a clear advantage.

The C interpreter may be faster in some cases due to using simple C arrays for buffers, while the

Haskino interpreter uses list processing. On the other hand, the inlining of the Haskino generated

code will have a performance advantage over the function calls present in the C version.

The timing analysis for this limited case study does not lead to more general conclusions, other

than saying both versions are functional within the interpreter requirements, and are able to process

the interpreter commands within the same order of magnitude as the communication time.

10.2.4 List Processing Optimization

Much of the computation in the Haskino interpreter involves manipulating the primitive messages

sent to and from the host. In the Haskino version, most of these operations are programmed using

the [Word8] list types that are part of the EDSL.

Upon examining the C code generated from the Haskino compiler, it was found that there were

many sections of code which looked like the following:

131

if (((((uint8_t) list8Elem(list8Slice(bind5,1,0),0)) == 2) &&
((((uint8_t) list8Elem(list8Slice(bind5,1,0),1)) == 0) &&
((((uint8_t) list8Elem(list8Slice(bind5,1,0),3)) == 2) &&
((((uint8_t) list8Elem(list8Slice(bind5,1,0),4)) == 0)))))

This is the type of code generated from the Haskino source code in the primitive handlers

which verify that their arguments are literals. The Haskino code snippet which it is generated from

is shown below.

processSetPinMode :: [Word8] -> Arduino ()
processSetPinMode m =

if (head m == exprTypeVal EXPR_WORD8) &&
(m !! 1 == exprOpVal EXPR_LIT) &&
(m !! 3 == exprTypeVal EXPR_WORD8) &&
(m !! 4 == exprOpVal EXPR_LIT)

Haskino’s expression language was designed to keep the number of basic expression operators

to a minimum, to reduce the code required to process those operators in the deeply embedded

version of the interpreter. Therefore, Haskell list operations such as tail, take, and drop are all

implemented in the Haskino GADT using a slice operation, which takes a list and two parameters.

SliceList8 :: Expr [Word8] -> Expr Int -> Expr Int -> Expr [Word8]

The first parameter specifies the start index of the slice of the list to be taken, and the second

parameter specifies the length of slice. If the second parameter is zero, it indicates that all of the list

after the start index should be returned. This Haskino Expr primitive is translated into list8Slice

in the Haskino runtime, and the list element operator, !!, is translated into list8Elem in the

runtime.

The repeated occurrences of list8Elem with a parameter of list8Slice in the generated

code are the result of processSetPinMode being called with a parameter m, which is the result

of calling tail on the received Haskino primitive. This result of tail is the primitive message

with the primitive identifier removed. These repeated calls may be optimized by making use of an

axiom about the operation of the element and slice operators:

forall (list :: [Word8]) (start :: Int) (length :: Int) (index:: Int).
ElemList8 (SliceList8 list start length) index
=
ElemList8 list (start + index)

132

When the Haskino compiler is processing an ElemList8 operator, it can examine the list pa-

rameter, and determine if it is a SliceList8 operator. If so, the call to list8Slice can be

eliminated from the generated code. Doing so changes the C code generated for our example to

the following.

if (((((uint8_t) list8Elem(bind5,(1 + 0))) == 2) &&
((((uint8_t) list8Elem(bind5,(1 + 1))) == 0) &&
((((uint8_t) list8Elem(bind5,(1 + 3))) == 2) &&
((((uint8_t) list8Elem(bind5,(1 + 4))) == 0)))))

The generated code could be further simplified by implementing Haskino compiler optimiza-

tions for constant folding. However, the gcc compiler which is used to compile the C to machine

code already has such optimizations built in. Implementing the list splice/element optimization in

the Haskino compiler results in the reduction of Flash space used by the Haskino shallow inter-

preter from 23018 bytes to 21898 bytes, which is a 4.9% reduction.

Two other axioms related to the list processing were subsequently discovered, and are shown

below.

forall (list :: [Word8]) (start :: Int) (length :: Int) (index:: Int).
LenList8 (SliceList8 list start length)
=
SubInt (LenList8 list) index

forall (list :: [Word8]).
LenList8 (RevList8 list)
=
LenList8 list

Optimizations for the Haskino compiler were implemented for these axioms as well. They had

only a negligible effect on the case study, but may have a greater effect on other examples where

they are used with a greater frequency.

10.2.5 Duplicated Code

After the list processing optimizations have been implemented, there still remains a considerable

gap between the flash memory resources used by the Haskino and C versions of the interpreter.

133

Analysis of the generated code reveales another large contributor to the size of the Haskino version.

The structure of the interpreter is such that the receive message code is at the start of the main

loop, and is shared by all of the primitive processing. However, the send reply message code

is called at the end of each primitive processing branch. Due to the inherent inlining nature of

executing a deeply embedded EDSL, this send reply code is repeated in each of the primitive

processing branches in the generated code. In the case study interpreter there are 19 copies of the

send message code, which is generated from the Haskino source function sendReply. Measuring

the size of the generated code for this function reveals that it requires 268 bytes of Flash space per

instance of the generated code. If this code were moved to a generated C function, 18 copies of it

could be eliminated. This would require inserting 19 function calls in their place, and estimating

16 bytes of code per function call, the estimated savings would be 18 * 268 - 19 * 16, or 4520

bytes. Table 10.10 shows the differences between the interpreter version after these savings.

Shallow Haskino Shallow Haskino
Interpreter in C Interpreter in Haskino

Arduino Libraries 1032 bytes 1032 bytes
Haskino Runtime — 3602 bytes

Application 11396 bytes 12744 bytes
Total Flash Size 12428 bytes 17378 bytes

Table 10.10: Detail of Optimized Flash Usage in Haskino Interpreter

The results in the table show that with the projected savings from the shared code elimination

optimization, the Haskino version of the interpreter would only have a 12% increase in flash storage

required over the C version. This is a much preferred result as compared to the original 61%

increase detailed in Section 10.2.2.

Given the opportunity for a large percentage reduction in flash usage by eliminating the du-

plicated code, especially with the limited resources present in an Arduino, finding a method to

eliminate the inlining of these functions would provide great benefits. One possible method that

would provide these benefits is examined in Chapter 11.

134

Chapter 11

Sharing in the Generated Code

Section 10.2.5 discussed the issue of the large increase in compiled program size due to the inlining

of functions that are called repeatedly. This chapter presents a transformation solution that allows

those repeatedly called routines to be compiled into independent C functions to reduce the gener-

ated code size. This method has not yet been implemented in the plugin, but the transformation

rules and methods for doing so are presented in this chapter.

Eliminating this type of duplicated inlined code has been previously examined, by using a

similar method to the one I will describe, and was referred to as λ -sharing in relation to the Nikola

EDSL (Mainland & Morrisett, 2010). The Nikola method to eliminate the duplication was similar,

however, the Nikola EDSL design is different from Haskino. The EDSL approach used in Nikola

is not monadic at the user level (although it does use monads for reification), and it required the

user to insert an additional function call into the EDSL source to indicate a lambda that was shared

(Haskino’s method for identifying the shared functions will be covered in Section 11.3).

11.1 Plugin Transformation for Sharing

The goal of the transformation is to somehow structure the EDSL description of the function such

that the compiler is able to know how to generate an independent C function in a type preserving

manner. We want to do this without introducing lambdas and higher kinds to the GADT we use to

represent the EDSL, as this would greatly complicate the implementation.

135

To start, we define members of the ArduinoPrimitive GADT, one for each arity of function

transformation we wish to support. We could define the application primitives to use currying,

however, that would require function types in the GADT.

App1Arg :: (ExprB a, ExprB b) => String ->
ExprArgType a -> ExprRetType b -> ArduinoPrimitive (Expr b)

App2Arg :: (ExprB a, ExprB b, ExprB c) => String ->
ExprArgType a -> ExprArgType b -> ExprRetType c ->
ArduinoPrimitive (Expr c)

...

Also, user facing functions are defined to call them. In this case, they are not really user facing,

but will only be used by the Haskino plugin in the transformation.

app1Arg :: (ExprB a, ExprB b) => String ->
ExprArgType a -> ExprRetType b -> Arduino (Expr b)

app2Arg :: (ExprB a, ExprB b, ExprB c) => String ->
ExprArgType a -> ExprArgType b -> ExprRetType c ->
Arduino (Expr c)
...

These functions make use of two new types which wrap the Expr arguments and the Arduino

monadic return value. Their purpose is to pass type information to the compiler in a easy to use

manner. The compiler could determine the type by pattern matching on the expressions and the

Arudino primitives that make up the body of the function, however, this would be complicated due

to the large number of expression and EDSL primitives that make up Haskino. It would also be

fragile, requiring change every time a new primitive is added. Instead, we use the new types in a

manner similar to the type parameters of a Core function. We will pattern match on the constructors

for these types, which will indicate the ExprB type of the expression or the monadic return value.

These wrappers are defined as:

data ExprArgType a where
ExprArgTypeB :: Expr Bool -> ExprArgType Bool
ExprArgTypeW8 :: Expr Word8 -> ExprArgType Word8
...

136

data ExprRetType a where
ExprRetTypeB :: Arduino(Expr Bool) -> ExprRetType Bool
ExprRetTypeW8 :: Arduino(Expr Word8) -> ExprRetType Word8
...

A new type class and an extension to the ExprB type class are also added to provide polymor-

phic support for the plugin translation.

class ExprB a => ArduinoApp a where
exprRetType :: Arduino(Expr a) -> ExprRetType a

class ExprB a where
...
exprArgType :: Expr a -> ExprArgType a

Finally, we add a second new function to the ExprB class, which is used for construction of

"remote arguments". This is analogous to the remBind that was discussed in Section 4.1.1.

class ExprB a where
...
remArg :: Int -> Expr a
...

Now that we have laid the ground work by defining the data structures that will be used to

construct the transformed functions by the plugin, let’s look at transforming the simple function

exampleFunc, which adds two integer arguments.

exampleFunc :: Expr Int -> Expr Int -> Arduino(Expr Int)
exampleFunc x y = return $ x + y

This function will be transformed to the pair of functions show below.

exampleFunc :: Expr Int -> Expr Int -> Arduino(Expr Int)
exampleFunc x y =

app2Arg "exampleFunc" (exprArgType x) (exprArgType y)
(exprRetType (exampleFunc_orig (remArg 0) (remArg 1)))

exampleFunc_orig :: Expr Int -> Expr Int -> Arduino(Expr Int)
exampleFunc_orig x y = return $ x + y

137

The original function body is placed in a new function binding. The original binding is re-

defined to call the application function of the proper arity, in this case app2Arg. The original

argument expressions are wrapped by the exprArgType constructors. The original body function

is called with Expr arguments of the remArg class function, which have an integer argument that

specifies the argument position. When this function is executed during cross-complation, the AST

that is built will have these remArg expressions substituted at the expression argument sites in

the original function, and the compiler will be able to translate these into the proper C function

argument names. In other words, this call with evaluate to the following code in our example.

return $ (RemArgInt 0) + (RemArgInt 1)

Just as we wrapped the arguments with exprArgType, the function call of the original function

is wrapped with a exprRetType to pass the return type information to the compiler.

Replacing the original function with a wrapped call to a helper function provides two advan-

tages over trying to do a transformation at the call site of a transformed function. First, it continues

to support the multi-module compilation that the rest of Haskino supports. Second, support of par-

tially applied functions in the Haskino source is more easily supported, as the transformed function

will be called when all of the arguments have been provided, and again does not require function

types to be added to the GADT.

11.2 Compiler Support

The compiler will be extended to support compiling the new appXArg primitives. The string

provided as the first parameter to the appXArg function will be used as the name of the non-inlined

C function generated by the compiler. This will require the function name generated by the plugin

to be unique, and may require including a Haskell module identifier in the name as well. (For

example Module.function may be transformed to Module_function).

The compiler will be able to generate the function call at the call cite using this name and it’s

standard compilation of Expr expressions with the arguments. In our example case, if the original

call site looked like:

138

exampleFunc (3 * 4) (5 * 6)

the generated C code at the call site would be:

exampleFunc((3*4), (5*6))

The compiler will then need to compile the independent, non-inlined function. It will match

on the ExprArgType and ExprRetType to generate the type signature of the function. As the

original function may be called many times, the compiler will need to keep a list of those functions

which have been compiled, and only compile the function body the first time one of it’s call sites is

encountered. It will also need to extend it’s CompileState data type, so that it may maintain a list

of compiled functions which will be added to the output before the body of the main task function.

For our example function, the complier would generate a C function like the following:

int exampleFunc(int arg1, int arg2)
{
return(arg1 + arg2)
}

11.3 Designating Functions for Sharing

There are several potential methods for determining which functions would need to be indepen-

dently generated, as opposed to inlined. GHC supports the ability of the user to mark a function

with an annotation. One intended use of these annotations is for compiler plugins such as ours.

The user could mark those functions as needed to not be inlined with such annotations. Conversely,

the default compilation could be flipped to be non-inlined, and the user could mark functions to be

inlined.

Finally, the plugin could employ a heuristic, making one or more passes through the code, to

determine if a function is called more than a specified number of times (or using another appropri-

ate metric), and generate separate functions for those that satisfy the heuristic.

139

11.4 Haskino Foreign Function Interface

The same transformation used for un-inlining of code would also prove to be very useful for defin-

ing a Foreign Function Interface (FFI) for use with Haskino. This would allow Haskino functions

to call C library functions which have been linked with the generated C code.

First, we will define EDSL primitives and a type class which will be used as a placeholder for

the external function body in the Haskino source.

ArduinoFFIB :: ArduinoPrimitive (Expr Bool)
ArduinoFFIW8 :: ArudinoPrmitive (Expr Word8)

...

class ExprB a => ArduinoFFI a where
arduinoFFi :: Arduino(Expr a)

Consider the following example in Haskino source, where a user could include the following

code to designate that an example C function which takes a uint8_t argument and a uint16_t

argument, and returns a uint32_t result, is an external C function.

exampleCFunc :: Expr Word8 -> Expr Word16 -> Arduino(Expr Word32)
exampleCFunc = arduinoFFI

The plugin could detect the binding to arduinoFFI, and transform this into:

exampleCFunc :: Expr Word8 -> Expr Word16 -> Arduino(Expr Word32)
exampleCFunc x y =

app2Arg "exampleCFunc" (exprArgType x) (exprArgType y)
(exprRetType arduinoFFI)

The compiler, when compiling an appXArg primitive, would compile the function call at the

call site in the same manner as it did in Section 11.2. However, instead of compiling the indepen-

dent function body, it would pattern match on the arduinoFFI primitives, and compile an external

function definition as follows.

extern uint32_t exampleCFunc(uint8_t arg1, uint8_t arg2);

One limitation on the external C functions, would be that those functions having arguments or

return values with the equivelent of [Word8] types would be required to use the Haskino runtime

list functions to compute the list operations.

140

Chapter 12

Related Work

12.1 Functional Languages and Embedded Systems

There is other ongoing work on using functional languages to program embedded systems in gen-

eral, and the Arduino in specific.

An early use of deep embeddings for remote execution was in the domain of graphics was Fran,

Functional Reactive Animation (Elliott & Hudak, 1997; Elliott et al., 2003). It is used to compose

rich, multimedia animations using Haskell. Although this is not directly in the embedded systems

space, it does illustrate early techniques for compiling deep embedded DSLs.

A recent example is the Ivory language (Elliott et al., 2015) which provides a deeply embed-

ded DSL for use in programming high assurance systems, but does not make use of the strong

remote monad design pattern, and only generates C rather than also providing a remote interpreter.

Also, it’s syntax is typical of a deep EDSL and requires additional keywords and structures above

idiomatic Haskell. An additional EDSL built on top of Ivory, called Tower (Hickey et al., 2014),

provides the ability to define tasking for multithreaded systems. However, it depends on the sup-

port of an underlying RTOS, as opposed to the minimal scheduler of Haskino.

The Feldspar project (Axelsson et al., 2010, 2011; Svenningsson & Axelsson, 2013) is a

Haskell embedding of a monadic interface that targets C, and focuses on high-performance. In-

terestingly, this work also attempt to make use of both deep and shallow embeddings inside a

single implementation. Both Feldspar and Haskino use some form of monadic reification technol-

ogy (Persson et al., 2012; Svenningsson & Svensson, 2013; Sculthorpe et al., 2013).

141

A shallowly embedded DSL for programming the Arduino in the Clean language, called ArDSL

has been developed (Koopman & Plasmeijer, 2015). Their work does not make use of the remote

monad design pattern, and does not provide a tethered, interpreted mode of operation.

The frp-arduino package (Lindberg, 2015) provides a method of programming the Arduino us-

ing Haskell, but using a functional reactive programming paradigm, and once again only compiling

to C code.

A second method for programming an Arduino with functional reactive programming, this time

using F#, is Juniper (Helbling & Guyer, 2016). Juniper is an extensive compiled language, not a

DSL. It does not include interpreted capabilities.

12.2 Blending Shallow and Deep EDSLs

There have been several other efforts to blend shallow and deep EDSL’s.

Svenningsson and Axelsson (Svenningsson & Axelsson, 2013) explored combining deep and

shallow embedding. They used a deep embedding as a low level language, then extended the

deep embedding with a shallow embedding written on top of it. Haskell type classes were used to

minimize the effort of adding new features to the language.

Yin-Yang (Jovanovic et al., 2014) provides a framework for DSL embedding in Scala which

uses Scala macros to provide the translation from a shallow to deep embedding. Yin-Yang goes

beyond the translation by also providing autogeneration of the deep DSL from the shallow DSL.

The focus of Yin-Yang is in generalizing the shallow to deep transformations, and does not include

recursive transformations.

Scherr and Chiba (Scherr & Chiba, 2014) proposed using load time implicit staging, as opposed

to compile time mechanisms, as an alternative to deep embedding. Their prototype in Java allows

the user to write in a shallow EDSL, then extracts expression semantics from Java bytecode at load

time.

Forge (Sujeeth et al., 2013) is a Scala based meta-EDSL framework which can generate both

shallow and deep embeddings from a single EDSL specification. Embeddings generated by Forge

142

use abstract Rep types, analogous to my EDSL’s Expr types. Their shallow embedding is generated

as a pure Scala library, while the deeply embedded version is generated as an EDSL using the

Delite (Brown et al., 2011) framework.

Both Yin-Yang and Delite are built on top of Lightweight Modular Staging (Rompf & Odersky,

2010), a general purpose staging framework for developing deep EDSL’s based on type directed

transformations. Conal Elliott’s work in compiling to categories (Elliott, 2017) is another method

for developing a programing system that exhibits attributes similar to Haskino, combining ease of

use with analysis and optimization. Elliott developed GHC plugins (Elliott, 2015a)(Elliott, 2016)

for compiling Haskell to hardware (Elliott, 2015b), using worker-wrapper style transformations

equivalent to the abs and rep transformations used in the Haskino plugin. These plugins were

later generalized to enable additional interpretations (Elliott, 2017).

143

Chapter 13

Conclusion

Programming small, embedded systems with a functional programming language can prove chal-

lenging. Their limited memory resources do not lend themselves well to the garbage collection of

most functional language systems. Embedded domain specific languages provide a way to bridge

that gap.

This was the rationale for developing the Haskino programming system. Starting with an

interpreter on the Arduino, and using the Remote Monad design pattern to implement monadic

communication from the Haskell host, a method for tethered programming of the Arduino with

a shallow EDSL was developed. This was subsequently extended to use a deep EDSL, allowing

entire blocks of computation to be executed remotely. To overcome the limitation on program size

due to limited Arduino resources and the size of the Haskino interpreter, a complimentary compiler

was developed that is able to compile the same deep monadic Haskell code used by the interpreter

into C code. The C code only requires a small runtime library, and takes up much less of the limited

storage resources than the interpreter, allowing more complicated programs to be developed, and

also allowing the programmed Arduino to operate standalone.

As many programs for embedded systems are more efficiently implemented with multiple

threads of execution, both the Haskino interpreter and compiler allow development of multi-

threaded software. The scheduler for the Haskino interpreter provides cooperative scheduling

between tasks, as well as intertask communication. The scheduling of multiple threads and inter-

thread communication is implemented to work in the same manner in the Haskino runtime used

with the compiler. This allows multi-threaded programs to be tested and debugged using the inter-

preter, then compiled to an executable binary for stand alone execution and deployment.

144

The completed interpreter and compiler provided complimentary, but effective ways of using

Haskell as a development environment for Arduino software. The interpreter’s shallow EDSL

hosted in Haskell allows the programmer using the EDSL to write in relatively idiomatic Haskell,

and provide a quick turnaround development environment. The compiler’s deep EDSL provides

better performance and resource utilization by allowing code generation from the DSL’s abstract

syntax tree, although at the cost of a much more difficult to use syntax. The ideal would be to allow

the programmer to write in the shallow EDSL, and have it automatically transformed into the deep

EDSL, allowing ease of use as well as the benefits of compilation. This has been achieved with the

GHC compiler plugin developed for Haskino. This method and plugin, however, are not limited to

Haskino, but may be applied to a wide range of similarly structured monadic EDSLs. With one set

of source code, an EDSL user is provided with a quick turnaround, prototyping environment, and

a higher performance, generated code system.

13.1 Reflections

Haskino began it’s life as a method to explore the use of the Remote Monad in the embedded

systems space. For that purpose, it was very useful, however, it did not end there. It slowly grew

into a useful system for developing software for the Arduino platform using Haskell. Beyond that,

it provided an invaluable platform for exploring transformations of EDSLs from shallow to deep.

Development of the plugin using manipulation of Haskell’s intermediate language, Core, proved

challenging, but this should not have been surprising. Intermediate languages are not designed for

general purpose programming, but are used by a much smaller, select community as a language that

is useful to optimize compilation. Therefore, documentation and debug techniques are similarly

smaller in scope. As the plugin was developed, experience provided clues to recognizing the root

cause of issues. Two common issues involved the compiler issuing an error message indicating that

a symbol was not found. The first common cause of this was an error in the type that the plugin

code had provided for looking up a Core dictionary. If the type did not have an instance of the

type class for which the dictionary was being looked up, the compiler would return a non-existent

145

mangled dictionary name. The errant type is normally part of the mangled name provided in the

error message, so with experience it became easier to find the source of the type error. The second

common cause of the missing symbol error was when the plugin transformation had inadvertently

eliminated a symbol. In this case, the debugging routines described in Section 9.13 were useful,

by allowing the dumping of Core from the input to the plugin pass where the error occurred.

Another common error encountered during development was when the transformation was in-

complete, and an abs was left in the transformed Core. When attempting to compile the program

to C, this would result in an error message when the abs was evaluated. Once again, the debugging

routines could be used to dump the transformed Core, and the offending abs could be found. A

useful extension to the plugin would be to add source line annotations to the abs function as an

additional parameter. Similar annotations to an EDSL using a GHC plugin have been proposed be-

fore (Seidel, 2014). This would allow for a more informative error message which would indicate

a relatively specific location in the Haskino source where the issue occurred.

The types chosen to be a part of the Haskino ExprB type class, and therefore part of Hask-

ino’s Expr language, and transformable by the plugin, were initially limited to the unsigned in-

tegers, signed integers, floats, and booleans that are used by the Arduino API. The Arduino API

also includes an enumerated type, PinMode, with three defined constructors, INPUT, OUTPUT, and

INPUT_PULLUP. The initial versions of translated Haskino did not include this type in the expres-

sion language, but instead left the the values passed to the setPinMode primitive as a shallow

value, the result of a fromEnum call on the PinMode value. This proved sufficient for basic pro-

grams, but when implementing the Haskino interpreter in Haskino, it was not acceptable. It was

desirable to write the code to handle the setPinMode command with a code snippet like the one

below.

let mode = case m !! 5 of
0 -> INPUT
1 -> OUTPUT
2 -> INPUT_PULLUP
_ -> INPUT

setPinMode (m !! 2) mode

146

This code failed to translate, with an error caused by an abs left in the translated code. The

shallow values could only be evaluated and bound to a variable on the host, not on the target as

part of the generated deep code. Because of this, PinMode was added as a full fledged member of

the ExprB type class.

13.2 Future Work

The Haskino plugin is currently designed to be used with different monadic EDSLs, by using

tables with the plugin to specify the type, primitives, and operations in the EDSL. This could be

improved upon by work to further generalize the system, so that it could be used with both monadic

and non-monadic EDSLs.

The plugin currently handles translation of monadic code using binds. A natural extension of

this would be to develop transformation rules to handle other higher level functions such as mapM.

These would then be used to extend the plugin system for working with EDSLs implementing

primitives for these functions.

The list processing optimization described in Section 10.2.4 is one example of optimization

that was performed on the C code generated by the plugin and compiler. At the current time, the

potential optimizations have not been extensively explored, and this is an area for future research.

Finally, effort could be expended to generalize the tools and routines used within the transfor-

mation plugin, to provide a more extensive framework or toolkit for writing such plugins.

147

References

arduino.cc (2017). https://www.arduino.cc/en/Reference/Board.

Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckegård, B., Persson, A.,

Sheeran, M., Svenningsson, J., & Vajdax, A. (2010). Feldspar: A domain specific language

for digital signal processing algorithms. In MEMOCODE’10 (pp. 169–178).

Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., & Persson, A. (2011).

The design and implementation of feldspar. In Implementation and Application of Functional

Languages (pp. 121–136). Springer.

Bracker, J. & Gill, A. (2014). Sunroof: A monadic DSL for generating JavaScript. In M. Flatt &

H.-F. Guo (Eds.), Practical Aspects of Declarative Languages, volume 8324 of Lecture Notes in

Computer Science (pp. 65–80). Springer International Publishing.

Brown, K. J., Sujeeth, A. K., Lee, H. J., Rompf, T., Chafi, H., Odersky, M., & Olukotun, K. (2011).

A heterogeneous parallel framework for domain-specific languages. In Proceedings of the 2011

International Conference on Parallel Architectures and Compilation Techniques, PACT ’11 (pp.

89–100). Washington, DC, USA: IEEE Computer Society.

Dawson, J., Grebe, M., & Gill, A. (2017). Composable network stacks and remote monads. In

Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell, Haskell 2017 (pp.

86–97). New York, NY, USA: ACM.

Elliott, C. (2013). Hackage package boolean-0.2.3.

Elliott, C. (2015a). https://github.com/conal/lambda-ccc.

Elliott, C. (2015b). https://github.com/conal/talk-2015-haskell-to-hardware.

148

https://www.arduino.cc/en/Reference/Board
https://github.com/conal/lambda-ccc
https://github.com/conal/talk-2015-haskell-to-hardware

Elliott, C. (2016). https://github.com/conal/reification-rules.

Elliott, C. (2017). Compiling to categories. Proc. ACM Program. Lang., 1(ICFP).

Elliott, C., Finne, S., & de Moor, O. (2003). Compiling embedded languages. Journal of Func-

tional Programming, 13(2).

Elliott, C. & Hudak, P. (1997). Functional reactive animation. In International Conference on

Functional Programming.

Elliott, T., Pike, L., Winwood, S., Hickey, P., Bielman, J., Sharp, J., Seidel, E., & Launchbury, J.

(2015). Guilt free ivory. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell (pp.

189–200).: ACM.

Erkok, L. (2014). Hackage package hArduino-0.9.

Farmer, A., Sculthorpe, N., & Gill, A. (2015). Reasoning with the HERMIT: tool support for equa-

tional reasoning on GHC core programs. In Proceedings of the 8th ACM SIGPLAN Symposium

on Haskell (pp. 23–34).: ACM.

GHC Team (2016). The Glorious Glasgow Haskell Compilation System User’s Guide, Version

8.0.1. http://www.haskell.org/ghc.

Gill, A., Bull, T., Farmer, A., Kimmell, G., & Komp, E. (2013). Types and associated type families

for hardware simulation and synthesis: The internals and externals of Kansas Lava. Higher-

Order and Symbolic Computation, (pp. 1–20).

Gill, A. & Dawson, J. (2016). Hackage package remote-monad-0.2.

Gill, A. & Hutton, G. (2009). The worker/wrapper transformation. Journal of Functional Pro-

gramming.

Gill, A. & Scott, R. (2015). https://github.com/ku-fpg/blank-canvas.

149

https://github.com/conal/reification-rules
http://www.haskell.org/ghc
https://github.com/ku-fpg/blank-canvas

Gill, A., Sculthorpe, N., Dawson, J., Eskilson, A., Farmer, A., Grebe, M., Rosenbluth, J., Scott,

R., & Stanton, J. (2015). The remote monad design pattern. In Proceedings of the 8th ACM

SIGPLAN Symposium on Haskell (pp. 59–70).: ACM.

Girard, J.-Y., Taylor, P., & Lafont, Y. (1989). Proofs and Types. New York, NY, USA: Cambridge

University Press.

Grebe, M. (2017a). https://github.com/ku-fpg/haskino.

Grebe, M. (2017b). https://github.com/ku-fpg/haskino-examples.

Grebe, M. & Gill, A. (2016). Haskino: A remote monad for programming the arduino. In Practical

Aspects of Declarative Languages (pp. 153–168).: Springer.

Grebe, M. & Gill, A. (2017). Threading the Arduino with Haskell. In Post-Proceedings of Trends

in Functional Programming. inpress.

Grebe, M., Young, D., & Gill, A. (2017). Rewriting a shallow dsl using a ghc compiler extension.

In Proceedings of the 16th ACM SIGPLAN International Conference on Generative Program-

ming: Concepts and Experiences, GPCE 2017 (pp. 246–258). New York, NY, USA: ACM.

Helbling, C. & Guyer, S. Z. (2016). Juniper: A functional reactive programming language for the

arduino. In Proceedings of the 4th International Workshop on Functional Art, Music, Modelling,

and Design, FARM 2016 (pp. 8–16). New York, NY, USA: ACM.

Hickey, P. C., Pike, L., Elliott, T., Bielman, J., & Launchbury, J. (2014). Building embedded sys-

tems with embedded dsls. In Proceedings of the 19th ACM SIGPLAN international conference

on Functional programming (pp. 3–9).: ACM.

Hoare, C. A. (1972). Proof of correctness of data representations. Acta Informatica, 1(4), 271–281.

Jones, S. & Launchbury, J. (1991). Unboxed values as first class citizens in a non-strict functional

language. Conference on Functional Programming

150

https://github.com/ku-fpg/haskino
https://github.com/ku-fpg/haskino-examples

Jones, S. P., Tolmach, A., & Hoare, T. (2001). Playing by the rules: rewriting as a practical

optimisation technique in ghc. In Haskell workshop 1 (pp. 203–233).

Jovanovic, V., Shaikhha, A., Stucki, S., Nikolaev, V., Koch, C., & Odersky, M. (2014). Yin-yang:

Concealing the deep embedding of dsls. In Proceedings of the 2014 International Conference

on Generative Programming: Concepts and Experiences, GPCE 2014 (pp. 73–82). New York,

NY, USA: ACM.

Koopman, P. & Plasmeijer, R. (2015). A shallow embedded type safe extendable dsl for the ar-

duino. In Trends in Functional Programming (pp. 104–123).: Springer.

Lindberg, R. (2015). Hackage package frp-arduino-0.1.0.3.

Mainland, G. & Morrisett, G. (2010). Nikola: Embedding compiled gpu functions in haskell. In

Proceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10 (pp. 67–78). New

York, NY, USA: ACM.

Marlow, S., Brandy, L., Coens, J., & Purdy, J. (2014). There is no fork: An abstraction for efficient,

concurrent, and concise data access. In International Conference on Functional Programming

(pp. 325–337).: ACM.

Persson, A., Axelsson, E., & Svenningsson, J. (2012). Generic monadic constructs for embed-

ded languages. In A. Gill & J. Hage (Eds.), Implementation and Application of Functional

Languages, volume 7257 of Lecture Notes in Computer Science (pp. 85–99). Springer Berlin

Heidelberg.

Peyton Jones, S. & Santos, A. L. M. (1998). A transformation-based optimiser for Haskell. Science

of Computer Programming, 32(1–3), 3–47.

Rompf, T. & Odersky, M. (2010). Lightweight modular staging: A pragmatic approach to runtime

code generation and compiled dsls. In Proceedings of the Ninth International Conference on

151

Generative Programming and Component Engineering, GPCE ’10 (pp. 127–136). New York,

NY, USA: ACM.

Scherr, M. & Chiba, S. (2014). Implicit staging of edsl expressions: A bridge between shallow and

deep embedding. In Proceedings of the 28th European Conference on ECOOP 2014 — Object-

Oriented Programming - Volume 8586 (pp. 385–410). New York, NY, USA: Springer-Verlag

New York, Inc.

Sculthorpe, N., Bracker, J., Giorgidze, G., & Gill, A. (2013). The constrained-monad problem. In

Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming

(pp. 287–298).: ACM.

Seidel, E. (2014). (ab)using compiler plugins to improve embedded dsls. https://galois.com/

blog/2014/12/abusing-compiler-plugins-improve-embedded-dsls/.

Sujeeth, A. K., Gibbons, A., Brown, K. J., Lee, H., Rompf, T., Odersky, M., & Olukotun, K.

(2013). Forge: Generating a high performance dsl implementation from a declarative spec-

ification. In Proceedings of the 12th International Conference on Generative Programming:

Concepts & Experiences, GPCE ’13 (pp. 145–154). New York, NY, USA: ACM.

Sulzmann, M., Chakravarty, M. M. T., Peyton Jones, S., & Donnelly, K. (2007). System F with

type equality coercions. In Types in Language Design and Implementaion (pp. 53–66).: ACM.

Svenningsson, J. & Axelsson, E. (2013). Combining deep and shallow embedding for EDSL. In

Trends in Functional Programming (pp. 21–36). Springer.

Svenningsson, J. D. & Svensson, B. J. (2013). Simple and compositional reification of monadic

embedded languages. In Proceedings of the 18th International Conference on Functional Pro-

gramming (pp. 299–304).: ACM.

Wadler, P. & Blott, S. (1989). How to make ad-hoc polymorphism less ad hoc. In Proceedings of

152

https://galois.com/blog/2014/12/abusing-compiler-plugins-improve-embedded-dsls/
https://galois.com/blog/2014/12/abusing-compiler-plugins-improve-embedded-dsls/

the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’89 (pp. 60–76). New York, NY, USA: ACM.

Ömer Sinan Ağacan (2015). Hackage package CoreDump-0.1.2.0.

153

	Introduction
	Embedded Domain Specific Languages
	Haskino
	Contributions
	Organization

	Technical Background
	Arduino Background
	Arduino General Purpose IO
	Arduino Time
	Some Arduino Examples
	Arduino Analog I/O
	Higher Level Arduino Interfaces
	Building and Running Arduino Programs

	Remote Monad
	Haskell and GHC
	GHC Core
	Core Dictionaries
	GHC Compiler Plugins
	GHC Rules

	The Worker/Wrapper Transformation

	Remote Monads and Interpreters
	The Arduino Remote Monad
	Bytecode Interpreter and Protocol

	Remote Binding of Computations
	The Deep Extensions
	The Expr Type
	Deep Allocations
	Deep Conditionals
	Shallow in Terms of Deep

	DSL Iteration Design Choices
	The Unit Dichotomy
	Deep Protocol and Firmware
	Deep Example
	Debugging

	Scheduler
	Scheduling the Interpreter
	Inter-thread Communication
	Firmware Scheduler Details
	Examples
	Multiple LED Example
	LCD Counter Example

	Comparing Shallow to Deep
	Cutting the Cord

	Compiler
	Compiler Structure
	Initialization Code Generation
	Task Code Generation
	Storage Allocations
	Scheduling the Generated Code
	Runtime Structure Detail
	Dynamic Memory Management
	Comparing Interpreted and Compiled Size

	Shallow to Deep Translation
	Basic Transformation
	Transformation of Conditionals

	Iteration and Recursion Transformation
	First Recursion Example
	Translating to Haskino Iteration
	Second Recursion Example
	Third Recursion Example
	Mutual Recursion
	Mutual Recursion State Machine
	Recursion Translation with Multiple Arguments

	Plugin Architecture and Implementation
	Simplifier Pass
	Ap Removal Pass
	Conditionals Pass
	EDSL Primitives Pass
	Return Translation Pass
	Local Functions Pass
	Rep Case Push Pass
	Rep Push Pass
	Abs Lambda Pass
	Rep Abs Fusion Pass
	Recursion Pass
	Abs Then Pass
	Debugging the Plugin
	Plugin Translation Limitations

	Case Studies
	Case Study: LCD Driver and Applications
	Simple LCD Application
	Resource Usage Comparison
	Processing Time Comparison
	Duplicated Code

	Case Study: Bootstrapping Haskino
	Checksum Calculation
	Resource Usage Comparison
	Processing Time Comparison
	List Processing Optimization
	Duplicated Code

	Sharing in the Generated Code
	Plugin Transformation for Sharing
	Compiler Support
	Designating Functions for Sharing
	Haskino Foreign Function Interface

	Related Work
	Functional Languages and Embedded Systems
	Blending Shallow and Deep EDSLs

	Conclusion
	Reflections
	Future Work

