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Abstract 

Our paper provides a theoretical explanation for the time-varying macroeconomic volatility by 

introducing the unobservability of regime switching and learning. With the unobservability of 

regime switching, agents must endogenously form their expectations using best-performed 

forecasting models. We find that if the regime switching is observable to agents, agents do not 

shift their expectation frequently and so will not generate a larger macroeconomic volatility. 

However, with the unobservability of regime switching where no agents can know which regime 

is dominant, allowing endogenous expectation formation would give rise to larger macro 

fluctuations (first-layer amplification mechanism), which is made through agents frequently 

shifting their expectations. Furthermore, we consider the policy implication under the zero lower 

bound. Our simulations show that in the unobservable regime switching, the economy is more 

likely to fall into a deflationary trap.  To avoid the deflation risk, the policy maker should set a 

higher expected inflation based threshold. If the expected inflation is under the threshold, an 

aggressive policy rate will be implemented; otherwise, the normal Taylor-rule monetary policy 

will be used. Furthermore, to reduce the deflation risk, the strategy for the policy maker is to raise 

the threshold, and this will generate larger macroeconomic fluctuations (second-layer 

amplification mechanism) due to more frequent policy strategy switching. We argue that 

sometimes only with unobservability, the policy maker faces a dilemma between avoiding 

deflation risk and maintaining macroeconomic stability, and huge macroeconomic fluctuations do 

not necessarily result from bad luck or bad policy but from the two-layer amplification mechanism 

caused by the unobservability. 
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Chapter 1: Introduction 

Time-varying volatility has been an attractive topic in macroeconomics and financial markets in 

recent years. From the volatility evolution of aggregate macroeconomic variables in US economy 

in figure 1 and 2, two regularities can be clearly seen. First, the volatility of macroeconomic data 

including the real GDP growth and the GDP deflator is time-varying through the whole sample. 

Second, the absolute deviation of real GDP growth and GDP deflator before 1984 is much larger 

than that after 1984 (before 2008). For the first regularity, many scholars explored the question by 

using ad hoc setting. Some of them used GARCH approach or stochastic volatility approach to 

relax the setting of the time-invariant variance. Shephard (2008) argues that the stochastic 

volatility setting can surprisingly capture some important features of economic data. Justiniano 

and Primiceri (2006) and Fernandez-Villaverde and Rubio-Ramirez (2007) introduce stochastic 

volatility approach in the DSGE framework and improve the model’s performance in data fitting. 

For the second regularity, many researchers modeled the scenario in time-varying and structural 

break setting and explored the interesting phenomenon. Kim and Nelson (1999) used Bayesian 

Markov-Switching model to find structural changes after 1980 and McConnell and Perez-Quiros 

(2000) explored the interesting phenomenon that the volatility of US output growth has shown a 

substantial decline in the early 1980s. Afterwards, Sensier and Dijk (2004) used 214 US 

macroeconomic time series over the period 1959-1999 to test for a change in the volatility. They 

find that after 1980 structural breaks occurred more than before 1980, which is supported by 80% 

of these series. However, all models use the ad hoc setting and improve the data fitting.  

Researchers usually model variances of shocks as constant throughout the whole sample, 

for example, smets and Wouters (2003, 2007), Lubik and Schorfheide (2004) and An and 

Schorfheide (2007). However, in many areas such as asset pricing, monetary policy and term 

structures, scholars usually find the empirical regularity that the volatility of macroeconomic data 

is time-varying and often exogenously assume stochastic process for volatility and explore the 

effect of this setting. Their objective is to improve the performance in data fitting and the model 

forecasting. 

Unfortunately, those setups for the time-varying volatility were ad hoc and had no sound 

micro-foundation. Early important literature concentrates on empirical studies that tried to measure 

the time component in the variance of inflation, for example, Khan (1977) used the absolute value 
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of the first difference of inflation and Klein (1977) used a moving variance around a moving mean 

as a key measure.  

 

 

Figure 1. Real GDP growth, absolute deviation from one-year-rolling-window mean 

 

Figure 2. CPI-based inflation, absolute deviation from one-year-rolling-window mean 

The main breakthrough was made by Engle (1982) who proposed autoregressive 

conditional heteroscedasticity (ARCH). In the literature about ARCH, the evolution of variance of 
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time series variables is modeled as autoregressive process. The advantage of ARCH is that people 

can easily deal with a scoring iterative maximum likelihood method and OLS method. Many 

studies also used the original idea to obtain the time-varying dynamic features of macroeconomic 

variables including that Engle (1982) found the British inflation has time-varying behaviors. After 

Engle (1982), there are 139 variations of Engle (1982), see Bollerslev (2010). For example, 

Generalized ARCH (GARCH) was created by Bollerslev (1986), Nonlinear GARCH was 

proposed by Engle and Ng (1993).  Nelson (1991) put forward Exponential GARCGH, ZakoÔan 

(1994) came up with threshold GARCH and Sentana (1995) raised Quadratic GARCH, and so on.

 Many studies also use the stochastic volatility approach to discuss the macroeconomic 

volatility. The first literature that stochastic volatility approach was introduced in the DSGE 

framework is Justiniano and Primiceri (2006) and then Fernandez-Villaverde and Rubio-Ramirez 

(2007), which relax the assumption of time-invariant-variance shocks. The introduction of 

stochastic volatility into DSGE models shows the volatility of shocks has been changed 

significantly over time and improve the model’s performance. Shephard (2008) argues that the 

stochastic volatility setting can surprisingly capture some important features of economic data. 

However, those papers only set the volatility of shocks exogenously. There are some debates about 

advantages and disadvantages of the stochastic volatility approach and the GARCH approach, for 

example, Villaverde and Ramirez (2010) argue that there are no advantages to using GARCH 

process instead of SV for four reasons. First, GARCH process has one less degree of freedom. 

Second, separating level from volatility shocks in GARCH process is significantly difficult. Third, 

it is hard to incorporate GARCH approach in the DSGE framework, preventing DSGE modelers 

from combining theoretical and empirical exploration. Fourth, the GARCH models usually have a 

worse data fitting than the stochastic volatility model.  

Another commonly used approach to modeling volatility is Markov regime switching. This 

approach is a discrete setting compared with the GARCH approach and the stochastic volatility 

approach. All changes occurring will be discrete jumps from one regime to another regime. In the 

real world, we are often not able to clearly figure out that the discrete-sampling data behavior 

results from Markov regime switching or some continuous process, which is first pointed out by 

Diebold (1986). In finance, Ait-Sahalia, Hansen and Scheinkman (2009) propose a continuous-

time Markov process to deal with data. There is consensus that in the real world the volatility in 

many cases is probably a mix of continuous and discrete events, but still, there are events that are 
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easier to interpret a discrete change. For example, the federal funds rate after 2008 reached zero 

lower bound (ZLB) and the Fed lost the leverage of the overnight interest rate. Moreover, the 

approval of Dodd-Frank Act in 2010 and the Large-Scale Asset Purchase (LSAP) announced in 

late 2008 are all discrete events. Afterwards, the change in operating LSAP can be interpreted as 

continuous events. Later, to make our economic story simpler and more significant, we will use 

regime switching to model the case of observability and that of unobservability in exogenous 

shocks.  

Having discussed the exogenous setting for generating the time-varying volatility, we still 

have a fundamental question still unresolved: where does the time-varying volatility come from? 

This is a more challenging question than modeling the time-varying volatility behavior. 

Economists started to explore some endogenous channels to generate more volatile data. In recent 

studies, Navarro (2014) develops a novel mechanism in which firms’ volatility arises 

endogenously because of financial disruptions. Basu and Bundick (2015) discovered that 

introduction of fluctuations in uncertainty and zero lower bound can well explain the stochastic 

volatility in recent macroeconomic data. Gomes (2017) explores the effect of heterogenous wage 

setting strategies in a macro framework where endogenous fluctuations emerge.  

However, the literature uses rational expectation to model agents’ behavior. As we know, 

the information available in the economy is always limited and usually prevents agents from 

forming rational expectation. Thus, there is a big strand of literature that uses boundedly rational 

expectation or learning to model the endogenous volatility. Marcet and Nicolini (2003) use the 

endogenous switching gain to study hyperinflation. Lansing (2006) uses learning in New 

Keynesian Phillips curve to endogenously generate time-varying volatility. His paper derives the 

optimal variable gain as the fixed point of a nonlinear map that relates the gain to the 

autocorrelation of inflation changes.  

Besides, the observability of macroeconomic shocks has a significant impact on agents’ 

belief or functional form of the forecasting model. Even though we replace rational expectation 

models with learning-based models, without the ability to observe important economic data, the 

assumption for having “correct” functional form of the forecasting model is still unrealistic. For 

simplicity, we only focus on the discussion about the observability of exogenous shocks. Agents 

can only use available data to choose feasible forecasting models and condition expectations on 
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the available data and the chosen forecasting model. Lucas (1973) assumed that aggregate price 

levels were unobserved, and he leveraged this friction to impart real effects of surprise money on 

output. Mankiw and Reis (2002) and Sims (2003) consider informational frictions on rational 

inattention. King and Rebelo (1999) assume that certain types of productivity shocks are 

unobserved. Woodford (2003) argues that expectations are likely to be formed before certain 

shocks are realized. Levine et al (2012) assumes that shocks are not observed by agents leads to 

improved empirical performance in the DSGE framework. Cochrane (2009) argues that the 

monetary policy shock (which is captured by an innovation associated to an instrument rule) 

should not be taken as observable; he finds that there are multiple learnable equilibria even when 

the model is determinate.  

The main contribution of this paper is that we incorporate learning, unobservability and 

regime switching mechanism in the New Keynesian model to provide a theoretical explanation for 

the time-varying macroeconomic volatility. There are several papers that are closely related to our 

paper. Milani (2014) also used learning to generate macroeconomic time-varying volatility. But in 

the model setting, agents endogenously update the gain coefficient according to the past forecast 

errors. The paper does not discuss about the observability of exogenous shocks. Branch and Evans 

(2007, 2011), presenting a framework in which regime changes in volatility arise, is related with 

our paper. However, the paper emphasizes that the under-parametrization of forecasting models is 

important to endogenously generating volatility. But this is unrealistic for third reasons. First, the 

model setting assumes that agents favor parsimony in their forecasting model and select the best 

performing model from the set of underparameterized forecasting models. However, since agents 

have incentives to combine a broader set of variables in improving forecasting performance, the 

selection’s separation of parsimonious forecasting models will not exist. Second, we argue that no 

agents or professional economists in the market would unrealistically use the supply shock as a 

proxy of the demand shock or use the demand shock as a proxy of the supply shock. Third, their 

papers ignore the behavior of agents estimating unobservable shocks according to advanced 

computational techniques. For example, consider preference shocks in the demand side and 

productivity shocks in the supply side. However, when the estimation is considered, some 

estimates are high-quality while some are low-quality. In our paper, we use a regime switching 

between high-quality and low-quality estimates to unify different scenarios: sometimes, some 

agents can perfectly observe true regime-switching-based shocks and some agents can only 
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“observe” low-quality shocks which can be interpreted as low-quality-estimates for shocks; 

sometimes, all agents cannot observe true shocks and they can only accurately estimate the shocks 

in turn according to “hard-to-estimate” structural changes occurring alternatively, which is 

modeled as regime switching mechanism.  

In our paper, we can view the economy as an “expectation-based” game. We discuss three 

cases. First, there is no regime switching. Second, there are observable regime switching where 

some agents (perfect observers) can observe1 which regime dominates and its realized data. Third, 

there is an unobservable regime switching that all agents (imperfect observers) can only observe 

the regime-1 and regime-2 shocks but they cannot know which regime dominates. The second case 

can be usually modeled as a small-sized structural break and the third case can be treated as a big-

sized unprecedented structural break. In small-sized structural breaks, some people can still know 

which regime the economy is stuck in and estimate the macroeconomic shocks by using 

computational methods. However, in unprecedented structural breaks (e.g. 2008 financial crisis), 

people even cannot figure out which regime the economy is in because of the increasing 

uncertainty.  

The three cases will discuss the effect of endogenous expectation mode selection on the 

macroeconomic volatility. We find that in the first case the macroeconomic volatility does not 

seem to behave in the time-varying manner even though the endogenous expectation mode 

selection is allowed. The reason is intuitive. In the structural-break-free economy agents that can 

observe the exogenous shocks will not deviate from their original best-performing forecasting 

model because they will form more “correct” belief on the economy after some-period model 

training. There is no any force to deviate from the stable equilibrium. The volatility of 

macroeconomic data in the stable equilibrium remains constant. However, when structural breaks 

are introduced in the second case and the third case, the regime switching will lead to a time-

varying feature, which is consistent with a large literature about structural changes, see Kim and 

Nelson (1999) and Sensier and Dijk (2004). But the difference is that the second case cannot 

generate a larger volatility when allowing endogenous selection of forecasting models while the 

third case can generate a larger volatility. The reason is about the observability of structural breaks. 

                                                           
1 In this paper, “observe” does not necessarily mean directly “observe” in datasets, and it might also mean 

“estimate” by using advanced computational techniques or algorithms. 
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In the “easy-to-observe” regime-switching economy (case 2), agents who can observe the true 

regime are more likely to continue to use their own forecasting model, thus, the agents do not have 

incentives to deviate from their forecasting model, while other agents without the ability to observe 

the true regime can also only use their “compromising” forecasting models for the expectation 

formation. One thing that is worth pointing out is that when a regime is switched, the perfect 

observer’s forecasting performance is not necessarily best because the regime switching as a shock 

has different impacts on different agents, but after short periods (still in the same regime) the 

perfect observer’s forecasting performance will continue to be the best when the economy in that 

regime converges to the corresponding equilibrium. Hence, the regime switching in the second 

case can give rise to a time-varying volatility, but the exogenous mechanism of expectation mode 

shifts cannot contribute to an extra volatility due to their unwillingness to deviate from their 

forecasting models. In the third case, however, the deviations from their forecasting models will 

happen very frequently, which causes a larger volatility. There are the direct effect and the indirect 

effect. When a regime equilibrium is formed, agents will use this regime’s forecasting model to 

form expectation. Once the regime is switched to the other one, the direct effect is first triggered: 

the regime switching itself as a shock will cause the economy to be volatile; after the regime 

switching is turned on, agents will change their forecasting model to be consistent with the new 

regime, which will result in an extra volatility of macroeconomic data. This is the indirect effect. 

Therefore, continuously speaking, when regimes are switched back and forth, the volatility of 

macroeconomic data is time-varying and larger. In this sense, the indirect effect of the second case 

is very weak.  

Furthermore, we consider the zero lower bound environment, and policy makers must 

consider deflation risk when the economy suffers from a negative shock. Taking unobservability 

into account, macroeconomic volatility will increase. Some action must be taken for avoiding 

inflation risk. Our recommended policy solution is setting an expected inflation based threshold 

under which the policy maker will use a low enough interest rate to boost the economy and above 

which the policy maker will use Taylor-rule based monetary policy. In this setting, we find two 

interesting implications. First, the sharp fluctuations of output and expectation switching keep the 

same pace with policy regime switching, but the inflation does not respond to the policy switching 

strongly. Second, raising expected inflation based threshold reduces the likelihood of the economy 

falling into the deflationary trap, but the likelihood of the economy staying in the aggressive policy 
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regime increases. Raising the threshold boosts the economy more strongly and increases the 

duration of unsustainable boom in output. 

Then we explore two important extensions. First, with unobservability, the policy maker 

faces a dilemma: avoid the deflation risk and maintain the macroeconomic stability. Without the 

unobservability problem, the policy maker may not face such dilemma. The reason is that when 

regime switching occurs endogenous expectation formation will generate larger macroeconomic 

fluctuations (the first-layer amplification mechanism). When the policy maker observes such large 

fluctuations, she must raise the expected inflation based threshold to avoid the deflation spiral. 

However, the higher threshold makes the economy more frequently enter and exit the aggressive 

policy regime, leading to a higher volatility (he second-layer amplification mechanism). Hence, it 

is impossible that the policy maker maintains the macroeconomic stability and avoid the deflation 

risk at the same time. Second, large macroeconomic fluctuations are not necessarily from a bad 

luck or a bad policy. Put it differently, a situation with good-luck shocks and a reasonable policy 

can also generate unexpected fluctuations with unobservability. Put it simply, with unobservability, 

the two layers of amplification mechanism will generate substantial macroeconomic fluctuations 

from a “good-luck” shock. Moreover, the endogenous amplified fluctuations sometimes are not 

mistakenly made by the policy maker because the policy must take a responsibility of avoiding 

deflation risk.  

Before starting our formal model, we generalize the concept of the rational expectation 

based on observable data. Following Evans and McGough (2015), the rational expectation is a 

fixed point of agents’ beliefs. Formally, a general model is  

𝑦𝑡 = 𝑓(𝐸𝑡𝑦𝑡+1, 𝑣𝑡)        (1) 

Let vector spaces of real sequences 𝑌 and 𝑉 be copies of ℝ∞. Assume that there is only one agent 

forming expectation and there is a probability distribution ℋ over  𝑌 × 𝑉. Let 𝑦𝑡 and 𝑣𝑡 be the 

respective history vectors, the belief ℋ determines the conditional distribution of 𝑦𝑡+1 on 𝑦𝑡 and 

𝑣𝑡. Agents are said to be internally rational if they form expectation as follows 

𝐸𝑡𝑦𝑡+1 = 𝐸
ℋ(𝑦𝑡+1|𝑦

𝑡, 𝑣𝑡)       (2) 
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We say that ℋ  tracks the joint distribution over 𝑌 × 𝑉 . New data 𝑦𝑡  is generated after the 

expectation formation 𝐸ℋ(𝑦𝑡+1|𝑦
𝑡, 𝑣𝑡), and the new data 𝑦𝑡 has a realized probability distribution 

𝑇(ℋ) over 𝑌 × 𝑉 that depends on the agents’ belief ℋ. It is said that internal rational agents are 

externally rational if there is a fixed point of belief 𝑇(ℋ) = ℋ. Thus, we have a formal definition 

of rational expectation equilibrium. 

Definition. A rational expectation equilibrium of a model (1) with expectation formation (2) is a 

probability distribution ℋ over 𝑌 × 𝑉 where 𝑇(ℋ) = ℋ.  

However, rational expectation is not a realistic assumption. There are several reasons. First, 

the rational expectation requires agents to know functional form, but the structure of the economy 

is usually unobservable to agents and needs agents to use data to update their belief on the structure 

of the economy. Second, there are some unobservable fundamental variables that determine the 

evolution of the economy, so agents in this case cannot form rational expectation. Third, agents 

often have different belief systems to choose in the real world, but rational expectation cannot 

allow this situation to occur. In this paper, we introduce the unobservability where agents can only 

forecast using relatively better-performed models which is trained by updated data. In following 

sections, we will also consider heterogenous beliefs. We assume that the aggregate expectation 

operator �̃�𝑡  is a linear combination of individual expectation operators �̃�𝑡 = ∑ 𝑛𝑖�̃�𝑡
𝑖𝑛

𝑖  where 

�̃�𝑡
𝑖𝑦𝑡+1 = 𝐸𝑖

ℋ𝑖(𝑦𝑡+1|𝑦
𝑡, 𝑣𝑡).  
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Chapter 2: Model 

We start with the hybrid New Keynesian model. Following the hybrid IS curve with the backward-

looking term, see Fuhrer (2000), we have  

𝑥𝑡 = 𝛼1𝑥𝑡−1 + 𝛼2�̃�𝑡𝑥𝑡+1 − 𝛼3(𝑖𝑡 − �̃�𝑡𝜋𝑡+1) + 𝑒𝑡    (3) 

𝑒𝑡 = 𝜌𝑒𝑒𝑡−1 + 𝜀𝑡
𝑒 

Where 𝑥𝑡 is the output gap, 𝑒𝑡~𝐴𝑅(1) is the demand shock and 𝜀𝑡
𝑒~𝑖𝑖𝑑(0, 𝜎𝑒

2). On the other hand, 

following Galí et. al. (2005), we can write the hybrid New Keynesian Phillips curve, which is 

caused by nominal price rigidity as follows 

𝜋𝑡 = 𝜆1𝜋𝑡−1 + 𝜆2�̃�𝑡𝜋𝑡+1 + 𝜆3𝑥𝑡 + 𝑢𝑡     (4) 

𝑢𝑡 = 𝜌𝑢𝑢𝑡−1 + 𝜀𝑡
𝑢 

Where 𝜋𝑡  is the inflation, 𝑢𝑡~𝐴𝑅(1)  is the supply shock and 𝜀𝑡
𝑢~𝑖𝑖𝑑(0, σu

2) . We follow the 

forward-looking Taylor-type monetary policy rule 

𝑖𝑡 = 𝜒𝑥�̃�𝑡𝑥𝑡+1 + 𝜒𝜋�̃�𝑡𝜋𝑡+1       (5) 

Where 𝜒𝑥  and 𝜒𝜋  are the expectational responses from the output gap and the inflation, 

respectively. Putting monetary policy rule back to hybrid IS curve and hybrid Phillips curve, a 

compact form can be written as follow 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2�̃�𝑡𝑦𝑡+1 + 𝐴3𝑠𝑡      (6) 

𝑠𝑡+1 = 𝑃𝑠𝑡 + 𝜀𝑡 

Where 𝑦𝑡 = (𝑥𝑡, 𝜋𝑡)
′ , 𝑠𝑡 = (𝑒𝑡, 𝑢𝑡)′ ,  𝜀𝑡 = (𝜀𝑡

𝑒 , 𝜀𝑡
𝑢)′ , 𝐴1 = [

1 0
−𝜆3 1

]
−1

[
𝛼1 0
0 𝜆1

] , 𝐴2 =

[
1 0
−𝜆3 1

]
−1

[
𝛼2 − 𝛼3𝜒𝑥 𝛼3 − 𝛼3𝜒𝜋

0 𝜆2
] , 𝐴3 = [

1 0
−𝜆3 1

]
−1

and 𝑃 = [
𝜌𝑒 0
0 𝜌𝑢

].  

In the following, we will discuss three cases: no regime switching, observable regime switching 

and unobservable regime switching. 

 



11 
 

2.1. Case 1: No Regime Switching  

There are two agents in the market, one with the mass n can observe the shock 𝑠𝑡 and the other 

with the mass 1-n cannot observe 𝑠𝑡 . The former (𝑠𝑡  agent) is a fundamental leaner who uses 

fundamental solution to form her expectation and the latter (VAR agent) is VAR learning who 

uses VAR to form her expectation due to unobservability of shock 𝑠𝑡. In the beginning, we treat n 

exogenously. We assume that agents form their expectations after observing 𝑠𝑡 at time t. Thus, the 

forecasting model, also called perceived law of motion (PLM), of the two agents are 

PLM 1: 𝑦𝑡 = 𝐵𝑡𝑠𝑡 

PLM 2: 𝑦𝑡 = 𝐶𝑡𝑦𝑡−1 

𝐵𝑡 and 𝐶𝑡 are updated by agents after new data is realized. It is worth pointing out that the agent 1 

at time t uses the key exogenous data to predict the macroeconomic data at time t, here, only 

fundamental solution (i.e. no sunspot exists) is considered. while the agent 2 due to a lack of 

exogenous data can only form expectation about the macroeconomic data by using lagged 

endogenous data (VAR). The aggregate expectation is �̃�𝑡𝑦𝑡 = n�̃�𝑡
1𝑦𝑡 + (1 − 𝑛)�̃�𝑡

2𝑦𝑡. The timing 

of the “expectation-based” economy is as follows 

 𝐵𝑡−1 and 𝐶𝑡−1 are determined at the end of time t-1;  

 𝑠𝑡 = 𝑃𝑠𝑡−1 + 𝜀𝑡 is realized at the beginning of time t. 

 Form Expectation 

PLM 1: 𝑦𝑡 = 𝐵𝑡−1𝑠𝑡 => �̃�𝑡
1𝑦𝑡+1 = �̃�𝑡

1𝐵𝑡−1𝑠𝑡+1 = 𝐵𝑡−1𝑃𝑠𝑡 

PLM 2: 𝑦𝑡 = 𝐶𝑡−1𝑦𝑡−1 => �̃�𝑡
2𝑦𝑡+1 = 𝐶𝑡−1

2 𝑦𝑡−1 

 Generate time-t data 𝑦𝑡 

ALM: 𝑦𝑡 = 𝜉1𝑡𝑦𝑡−1 + 𝜉2𝑡𝑠𝑡 , where 𝜉1𝑡 = 𝐴1 + (1 − 𝑛)𝐴2𝐶𝑡−1
2  and 𝜉2𝑡 =  𝑛𝐴2𝐵𝑡−1𝑃 +

𝐴3, 

 Update 𝐵𝑡 and 𝐶𝑡 with moment method 

𝐵𝑡 = 𝜉1𝑡𝑟1𝑡 + 𝜉2𝑡, where 𝑟1𝑡 = (∑ 𝑦𝑖−1
𝑡
𝑖=1 𝑠𝑖′)(∑ 𝑠𝑖

𝑡
𝑖=1 𝑠𝑖′)

−1 
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𝐶𝑡 = 𝜉1𝑡 + 𝜉2𝑡𝑟2𝑡, where 𝑟2𝑡 = (∑ 𝑠𝑡𝑦𝑖−1
′𝑡

𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1
′𝑡

𝑖=1 )−1 

 Go back to the first step and repeat the same process, t = t+1 

It is assumed that 𝑠𝑡 is realized before agents’ expectation formation. It is easy to obtain the 

evolution for 𝜉1𝑡 and 𝜉2𝑡 below 

𝐴1 + (1 − 𝑛)𝐴2(𝜉1𝑡 + 𝜉2𝑡𝑟2𝑡)
2 → 𝜉1𝑡+1 

𝑛𝐴2(𝜉1𝑡𝑟1𝑡 + 𝜉2𝑡)𝑃 + 𝐴3 → 𝜉2𝑡+1 

Here, there is a fixed point (𝜉1̅ , 𝜉2̅), and Restricted Perception Equilibrium (RPE) is written as 

𝑦𝑡 = 𝜉1̅𝑦𝑡−1 + 𝜉2̅𝑠𝑡. The difference between RPE and REE is that REE makes PLM and ALM 

consistent while RPE cannot let ALM consistent with PLM. Before obtaining the local stability 

condition, we write the evolution system in a compact way 

𝜉𝑡+1 = 𝑇𝑛(𝜉𝑡) 

Where  

 𝜉𝑡 = (𝜉1𝑡, 𝜉2𝑡)′ 

 𝑇𝑛 = (𝑇𝑛1, 𝑇𝑛2)′  

 𝑇𝑛1(𝜉𝑡) = 𝐴1 + (1 − 𝑛)𝐴2(𝜉1𝑡 + 𝜉2𝑡𝑟2𝑡)
2 

 𝑇𝑛2(𝜉𝑡) = 𝑛𝐴2(𝜉1𝑡𝑟1𝑡 + 𝜉2𝑡)𝑃 + 𝐴3  

Now the local stability condition can be given: 𝐷𝑇𝜉𝑖𝑡 =
𝑑𝑇𝑛𝑖(�̅�𝑡)

𝑑𝜉𝑖𝑡
 has all eigenvalues within the unit 

circle for i=1, 2 

 𝜉�̅� is RPE value of 𝜉𝑡 

 𝐷𝑇𝜉1𝑡 =
𝑑𝑇𝑛1(�̅�𝑡)

𝑑𝜉1𝑡
= (1 − 𝑛)(𝜉1̅𝑡 + 𝜉2̅𝑡𝑟2𝑡)

′
⨂𝐴2 + (1 − 𝑛)𝐼⨂𝐴2(𝜉1̅𝑡 + 𝜉2̅𝑡𝑟2𝑡) 

 𝐷𝑇𝜉2𝑡 =
𝑑𝑇𝑛2(�̅�𝑡)

𝑑𝜉2𝑡
= 𝑛𝑃1

′⨂𝐴2 

 ⨂ denotes the Kronecker product 

Now consider that n is endogenously determined every period. The mechanism is that 𝑠𝑡 agent 

can change her own forecasting model to VAR forecasting model once VAR forecasting model 

performs better than 𝑠𝑡 forecasting model in terms of mean square errors (MSE). It is important to 
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mention that VAR agent cannot use 𝑠𝑡 forecasting model due to her unobservability of 𝑠𝑡 and she 

can only use VAR forecasting model to form her expectation. Formally, at time t, the performance 

is measured by (negative) mean square errors (MSE) 𝑈𝑡
𝑗
= −(𝑦𝑡−1 − �̃�𝑡−1

𝑗
𝑦𝑡−1)

′
(𝑦𝑡−1 −

�̃�𝑡−1
𝑗
𝑦𝑡−1), 𝑗 = 1, 2. Here, 1 stands for 𝑠𝑡 agent and 2 stands for VAR agent. When 𝑈𝑡

1 ≥ 𝑈𝑡
2, the 

𝑠𝑡 agent still uses 𝑠𝑡 forecasting model for her expectation formation. When 𝑈𝑡
1 < 𝑈𝑡

2, the 𝑠𝑡 agent 

uses VAR forecasting model to form expectation. However, when the pure forward looking New 

Keynesian (NK) model is used and 𝑈𝑡
1 < 𝑈𝑡

2 occurs, the mass of agents using VAR forecasting 

model will be 1, which will lead to an explosion in macroeconomic system. Thus, we set a 

threshold  �̅� such that the mass of agents using VAR forecasting model cannot exceed �̅�. Thus, 

formally put, evolution system can be written as  

𝜉𝑡+1 = {
𝑇𝑛(𝜉𝑡),when 𝑈𝑡

1 ≥ 𝑈𝑡
2

𝑇1−�̅�(𝜉𝑡), when 𝑈𝑡
1 < 𝑈𝑡

2 

We can interpret that 𝑇𝑛 and 𝑇1−�̅� define two different paths for the evolution of 𝜉𝑡, where 𝜉𝑡 is 

switched between the two paths based on the relative performance about 𝑠𝑡 forecasting model and 

VAR forecasting model.  

According to figure 3, the graph of model performance shows that st agents always choose st 

model instead of VAR model. It means that st agents always informative signals to forecast and 

VAR model does not contain fundamental information to explain what is happening today, let 

alone forecast for the future. The graphs of output gap and inflation around the steady state show 

that endogenous expectation formation and exogenous expectation formation do not have any 

effects on their fluctuations, because st agents do not change st model to the uninformative VAR 

model. From the graph of volatility, both output volatility and inflation volatility are very stable 

through the whole window. It means that allowing the endogenous expectation formation does not 

help build up the volatility. The figure 6 gives the reason. We see that after the 450th period agents 

in most periods still endogenously choose 𝑠𝑡 forecasting model for expectation formation, which 

is almost the same as the pre-450th-period case. 
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Figure 3. This is the case without regime switching where 𝑠𝑡 agents and VAR agents are in the market. In the model 

performance, 1 stands for 𝑠𝑡 forecasting model performing best, 0 stands for VAR forecasting model performing best. 

In volatility and endogeneity, only exogenous expectation formation is allowed before 900 periods and endogenous 

expectation formation is allowed after 900 periods. Mass of 𝑠𝑡 agents n=0.95 and �̅� = 0.2. 

 

2.2. Case 2: Observable Regime Switching 

Having discussed a basic model only with a single exogenous shock, we transfer our attention to 

more than one exogenous shocks. The reason is that in the real world the shock hitting the 

macroeconomy is different from shocks used to form agents’ expectation. In this paper, we 

introduce regime switching mechanism to formulate our economy.  

Assume that the economy has a shock set S = {𝑠𝑡, 𝑠𝑡
0, 𝑠𝑡

1} . There is regime switching 

mechanism 𝑠𝑡 = 1[𝑧𝑡=0]𝑠𝑡
0 + 1[𝑧𝑡=1]𝑠𝑡

1  and the state 𝑧𝑡 = 0, 1  can be determined by 𝑧𝑡 =

{
0, 𝑡 = 4𝑘 + 1, . . ,4𝑘 + 3
1, 𝑡 = 4𝑘

(𝑘 ∈ ℕ) , and the two shocks have the following evolution 𝑠𝑡+1
0 =

𝑃0𝑠𝑡
0 + 𝜎0𝜀𝑡  and 𝑠𝑡+1

1 = 𝑃1𝑠𝑡
1 + 𝜎1𝜀𝑡 , where 𝜀𝑡~𝑁(0,1). Thus, the evolution of the exogenous 

shock is 𝑠𝑡+1 = 1[𝑧𝑡=0]𝑃0𝑠𝑡
0 + 1[𝑧𝑡=1]𝑃1𝑠𝑡

1 + (1[𝑧𝑡=0]𝜎0 + 1[𝑧𝑡=1]𝜎1)𝜀𝑡. There are three agents, 𝑠𝑡 

agent who can observe 𝑠𝑡, 𝑠𝑡
0 agent who can only observe 𝑠𝑡

0 and the VAR agent who can observe 
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nothing in the shock set S. The mass distribution of the three agents is 𝑛 , 𝑛0 , 1 − 𝑛 − 𝑛0 , 

respectively. Intuitively, if 𝑧𝑡 = 0, the shock 𝑠𝑡
0 dominates; if 𝑧𝑡 = 1, the shock 𝑠𝑡

1 dominates. We 

can simply interpret the three agents as perfect observer, imperfect observer and blind observer. 

They use signals of different quality to form their own expectations. The quality of signals is 

ordered as 𝑠𝑡 > 𝑠𝑡
0 > 𝑉𝐴𝑅 . In terms of shock formation, this is a discrete setup. The reason why 

such discrete instead of continuous setup is introduced in our model is that there are many 

structural changes when some events occur in the economy, such as the zero-lower bound for the 

monetary policy is reached or the Dodd-Frank Act was approved. However, it is worth pointing 

out that the real-world shocks must be a mix of a discrete case and a continuous case but we want 

to use discrete model for some reasons. First, we want to emphasize the effect of a discrete event 

on the economy. A lot of macroeconomic volatility is closely related to some specific events, for 

example, the economy after 2008 hit zero lower bound. Second, functional forms in continuous 

models are difficult to determine in a micro foundation, and there are many variations in ad hoc 

settings. Originally, we have initial mass distribution of agents 𝑛, 𝑛0 and 1 − 𝑛 − 𝑛0. However, 

over time, when agents release their forecasting performance based on mean square error every 

period, observe each other’s performance and determine their own forecasting models for a period 

ahead. Due to the limitation in the observability of shocks, different agents have different feasible 

set of forecasting models. VAR agent cannot choose other forecasting models no matter how good 

other models perform. 𝑠𝑡
0 agent can use VAR forecasting model if her 𝑠𝑡

0 forecasting model is 

weaker than VAR model, but she cannot choose 𝑠𝑡 forecasting model due to her unobservability 

of shock 𝑠𝑡 . 𝑠𝑡  agent can shift either to VAR forecasting model or to 𝑠𝑡
0  forecasting model if 

needed. There is one point needed to emphasize. When the VAR forecasting model has best 

performance and all agents will choose VAR to form expectation, but in the standard New 

Keynesian model (pure forward looking), if VAR’s expectation formation is made, the economic 

system may explode. To avoid an explosion of macroeconomic system, we set a threshold �̅� = 0.2 

such that there is only a mass �̅� of VAR agents. The three agents’ forecasting models (i.e., PLM) 

are as follows,  

PLM 1 for type 1 agent: 𝑦𝑡 = 𝐵𝑡−1𝑠𝑡 

PLM 2 for type 2 agent: 𝑦𝑡 = 𝐵𝑡−1
0 𝑠𝑡

0 
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PLM 3 for type 3 agent: 𝑦𝑡 = 𝐶𝑡𝑦𝑡−1 

The expectation formations of 𝑠𝑡  agent, 𝑠𝑡
0  agent and VAR agent are �̃�𝑡

1𝑦𝑡+1 = 𝐵𝑡−1(𝑃1𝑠𝑡 +

1[𝑧𝑡=0](𝑃0 − 𝑃1)𝑠𝑡
0), �̃�𝑡

2𝑦𝑡 = 𝐵𝑡−1
0 𝑃0𝑠𝑡

0 and �̃�𝑡
3𝑦𝑡 = 𝐶𝑡−1

2 𝑦𝑡−1, respectively. It is easy to obtain the 

aggregate expectation �̃�𝑡𝑦𝑡 = 𝑛�̃�𝑡
1𝑦𝑡 + 𝑛0�̃�𝑡

2𝑦𝑡 + (1 − 𝑛0 − 𝑛)�̃�𝑡
3𝑦𝑡 . Now we write the 

macroeconomic system in a compact way 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2�̃�𝑡𝑦𝑡+1 + 𝐴3𝑠𝑡 

𝑠𝑡 = 1[𝑧𝑡=0]𝑠𝑡
0 + 1[𝑧𝑡=1]𝑠𝑡

1 

𝑠𝑡+1
0 = 𝑃0𝑠𝑡

0 + 𝜎0𝜀𝑡 

𝑠𝑡+1
1 = 𝑃1𝑠𝑡

1 + 𝜎1𝜀𝑡 

𝜀𝑡~𝑁(0,1) 

𝑧𝑡 = {
0, 𝑡 = 4𝑘 + 1, . . ,4𝑘 + 3
1, 𝑡 = 4𝑘

(𝑘 ∈ ℕ) 

At the time t, the timeline is as follows 

 𝐵𝑡−1 , 𝐵𝑡−1
0  and 𝐶𝑡−1 are updated at the end of time t-1;  

 Based on Q and 𝑧𝑡−1, 𝑧𝑡 is realized at time t. 

 𝑠𝑡 = 𝑃1𝑠𝑡−1 + 1[𝑧𝑡=0](𝑃0 − 𝑃1)𝑠𝑡−1
0 + (1[𝑧𝑡=0]𝜎0 + 1[𝑧𝑡=1]𝜎1)𝜀𝑡 is realized at the beginning of 

time t.  

 Form Expectation 

PLM 1: 𝑦𝑡 = 𝐵𝑡−1𝑠𝑡 => �̃�𝑡
1𝑦𝑡+1 = �̃�𝑡

1𝐵𝑡−1𝑠𝑡+1 = 𝐵𝑡−1(𝑃1𝑠𝑡 + 1[𝑧𝑡=0](𝑃0 − 𝑃1)𝑠𝑡
0) 

PLM 2: 𝑦𝑡 = 𝐵𝑡−1
0 𝑠𝑡

0=> �̃�𝑡
1𝑦𝑡+1 = �̃�𝑡

1𝐵𝑡−1
0 𝑠𝑡+1

0 = 𝐵𝑡−1
0 𝑃0𝑠𝑡

0 

PLM 3: 𝑦𝑡 = 𝐶𝑡−1𝑦𝑡−1 => �̃�𝑡
2𝑦𝑡+1 = 𝐶𝑡−1

2 𝑦𝑡−1 
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 Endogenize 𝑛 and 𝑛0: 𝑈𝑡
𝑗
= −(𝑦𝑡−1 − �̃�𝑡−1

𝑗
𝑦𝑡−1)′(𝑦𝑡−1 − �̃�𝑡−1

𝑗
𝑦𝑡−1), j=1, 2, 3 for 𝑠𝑡, 𝑠𝑡

0 and 

VAR 

o 𝑈𝑡
1 ≥ max {𝑈𝑡

2, 𝑈𝑡
3}: the mass of 𝑠𝑡 agent is n. 

 𝑈𝑡
2 ≥ 𝑈𝑡

3: the mass of 𝑠𝑡
0 agent is 𝑛0 and the mass of VAR agent is 1 − 𝑛0 − 𝑛 

 𝑈𝑡
2 < 𝑈𝑡

3: the mass of 𝑠𝑡
0 agent is 0 and the mass of VAR agent is 1 − 𝑛 

o 𝑈𝑡
2 > max {𝑈𝑡

1, 𝑈𝑡
3}: the mass of 𝑠𝑡

0 agent is 𝑛0 + 𝑛, the mass of 𝑠𝑡 agent is 0 and the 

mass of VAR agent is 1 − 𝑛0 − 𝑛 

o 𝑈𝑡
3 > max {𝑈𝑡

1, 𝑈𝑡
2}: the mass of VAR agent is �̅�, the mass of 𝑠𝑡 agent is 𝑛 +

1−�̅�−𝑛−𝑛0

2
 

and the mass of 𝑠𝑡
0 agent is 𝑛0 +

1−�̅�−𝑛−𝑛0

2
   

 Generate time-t data 𝑦𝑡 

ALM: 𝑦𝑡 = 𝜉1𝑡𝑦𝑡−1 + 𝜉2𝑡𝑠𝑡 + 𝜉3𝑡𝑠𝑡
0 

o 𝜉1𝑡 = 𝐴1 + (1 − 𝑛 − 𝑛0)𝐴2𝐶𝑡−1
2 ,  

o 𝜉2𝑡 =  𝑛𝐴2𝐵𝑡−1𝑃1 + 𝐴3  

o 𝜉3𝑡 = 𝑛𝐴2𝐵𝑡−11[𝑧𝑡=0](𝑃0 − 𝑃1) + 𝑛0𝐴2𝐵𝑡−1
0 𝑃0 

 Update 𝐵𝑡, 𝐵𝑡
0 and 𝐶𝑡 with moment method (see Appendix) 

𝐵𝑡 = 𝜉1𝑡𝑟𝑦𝑠𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠𝑠𝑡 , where 𝑟𝑦𝑠𝑡 = (∑ 𝑦𝑖−1
𝑡
𝑖=1 𝑠𝑖′)(∑ 𝑠𝑖

𝑡
𝑖=1 𝑠𝑖′)

−1  and 𝑟𝑠𝑠0𝑡 =

(∑ 𝑠𝑖
0𝑡

𝑖=1 𝑠𝑖′)(∑ 𝑠𝑖
𝑡
𝑖=1 𝑠𝑖′)

−1 

𝐵𝑡
0 = 𝜉1𝑡𝑟𝑦𝑠0𝑡 + 𝜉2𝑡𝑟𝑠𝑠0𝑡 + 𝜉3𝑡  where 𝑟𝑦𝑠0𝑡 = (∑ 𝑦𝑖−1

𝑡
𝑖=1 𝑠𝑖

0′)(∑ 𝑠𝑖
0𝑡

𝑖=1 𝑠𝑖
0′)−1  and 𝑟𝑠𝑠0𝑡 =

(∑ 𝑠𝑖
𝑡
𝑖=1 𝑠𝑖

0′)(∑ 𝑠𝑖
0𝑡

𝑖=1 𝑠𝑖
0′)−1 

𝐶𝑡 = 𝜉1𝑡 + 𝜉2𝑡𝑟𝑠𝑦𝑡 + 𝜉3𝑡𝑟𝑠𝑦0𝑡, where 𝑟𝑠𝑦0𝑡 = (∑ 𝑠𝑖𝑦𝑖−1
′𝑡

𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1
′𝑡

𝑖=1 )−1 and 𝑟𝑠𝑦0𝑡 =

(∑ 𝑠𝑖
0𝑦𝑖−1

′𝑡
𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1

′𝑡
𝑖=1 )−1 

 Update t = t+1, repeat this process 

Now fixing 𝑧𝑡, 𝑛 and 𝑛0, the evolution system for  𝜉1𝑡, 𝜉2𝑡 and 𝜉3𝑡 is 

𝐴1 + (1 − 𝑛 − 𝑛0)𝐴2(𝜉1𝑡 + 𝜉2𝑡𝑟𝑠𝑦𝑡 + 𝜉3𝑡𝑟𝑠𝑦0𝑡)
2 → 𝜉1𝑡+1 
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𝑛𝐴2(𝜉1𝑡𝑟𝑦𝑠𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠𝑠𝑡)𝑃1 + 𝐴3 → 𝜉2𝑡+1 

𝑛𝐴2(𝜉1𝑡𝑟𝑦𝑠𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠𝑠𝑡)1[𝑧𝑡=0](𝑃0 − 𝑃1) + 𝑛0𝐴2(𝜉1𝑡𝑟𝑦𝑠0𝑡 + 𝜉2𝑡𝑟𝑠𝑠0𝑡 + 𝜉3𝑡)𝑃0 → 𝜉3𝑡+1 

Compactly put, we have 

𝜉𝑡+1 = 𝑇𝑛,𝑛0,𝑧𝑡(𝜉𝑡) 

 𝜉𝑡 = (𝜉1𝑡, 𝜉2𝑡, 𝜉3𝑡)′ 

 𝑇𝑛,𝑛0,𝑧𝑡 = (𝑇𝑛,𝑛0,𝑧𝑡
1 , 𝑇𝑛,𝑛0,𝑧𝑡

2 , 𝑇𝑛,𝑛0,𝑧𝑡
3 )′  

 𝑇𝑛,𝑛0,𝑧𝑡
1 (𝜉𝑡) = 𝐴1 + (1 − 𝑛 − 𝑛0)𝐴2(𝜉1𝑡 + 𝜉2𝑡𝑟𝑠𝑦0𝑡 + 𝜉3𝑡𝑟𝑠𝑦1𝑡)

2 

 𝑇𝑛,𝑛0,𝑧𝑡
2 (𝜉𝑡) = 𝑛𝐴2(𝜉1𝑡𝑟𝑦𝑠𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠𝑠0𝑡)𝑃1 + 𝐴3 

 𝑇𝑛,𝑛0,𝑧𝑡
3 (𝜉𝑡) = 𝑛𝐴2(𝜉1𝑡𝑟𝑦𝑠𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠𝑠0𝑡)1[𝑧𝑡=0](𝑃0 − 𝑃1) + 𝑛0𝐴2(𝜉1𝑡𝑟𝑦𝑠1𝑡 + 𝜉2𝑡𝑟𝑠𝑠1𝑡 +

𝜉3𝑡)𝑃0 

The local stability condition is that 𝐷𝑇𝜉𝑖𝑡 =
𝑑𝑇𝑛,𝑛0,𝑧𝑡(�̅�𝑡)

𝑑𝜉𝑖𝑡
 has all eigenvalues within the unit circle 

for i=1, 2, 3 

 𝜉�̅� is RPE value of 𝜉𝑡 

 𝐷𝑇𝜉1𝑡 =
𝑑𝑇𝑛,𝑛0,𝑧𝑡

1 (�̅�𝑡)

𝑑𝜉1𝑡
= (1 − 𝑛 − 𝑛0)(𝜉1̅𝑡 + 𝜉2̅𝑡𝑟𝑠𝑦0𝑡 + 𝜉3̅𝑡𝑟𝑠𝑦1𝑡)

′
⨂𝐴2 + (1 − 𝑛 −

𝑛0)𝐼⨂𝐴2(𝜉1̅𝑡 + 𝜉2̅𝑡𝑟𝑠𝑦0𝑡 + 𝜉3̅𝑡𝑟𝑠𝑦1𝑡) 

 𝐷𝑇𝜉2𝑡 =
𝑑𝑇𝑛,𝑛0,𝑧𝑡

2 (�̅�𝑡)

𝑑𝜉2𝑡
= 𝑛𝑃1

′⨂𝐴2 

 𝐷𝑇𝜉3𝑡 =
𝑑𝑇𝑛,𝑛0,𝑧𝑡

3 (�̅�𝑡)

𝑑𝜉3𝑡
= 𝑛 (𝑟𝑠𝑠0𝑡1[𝑧𝑡=0](𝑃0 − 𝑃1))

′

⨂𝐴2 + 𝑛0𝑃0′⨂𝐴2 

 ⨂ denotes the Kronecker product 

Now consider that 𝑛 and 𝑛0 are endogenously determined. This endogenous evolution path 

can be split into eight paths, four paths for 𝑧𝑡 = 0 and four paths for 𝑧𝑡 = 1. Formally,  



19 
 

𝜉𝑡+1 =

{
 
 

 
 

𝑇𝑛,𝑛0,𝑧𝑡(𝜉𝑡),when 𝑈𝑡
1 ≥ 𝑈𝑡

2 ≥ 𝑈𝑡
3

𝑇𝑛,0,𝑧𝑡(𝜉𝑡),when 𝑈𝑡
1 ≥ 𝑈𝑡

3 ≥ 𝑈𝑡
2

𝑇0,𝑛+𝑛0,𝑧𝑡(𝜉𝑡),when 𝑈𝑡
2 ≥ max {𝑈𝑡

1, 𝑈𝑡
3}

𝑇
𝑛+

1−�̅�−𝑛−𝑛0
2

,𝑛0+
1−�̅�−𝑛−𝑛0,

2
,𝑧𝑡
(𝜉𝑡),when 𝑈𝑡

3 ≥ max {𝑈𝑡
1, 𝑈𝑡

2}

 

Now, we assign 𝑛 = 0.85 and 𝑛0 = 0.1, and �̅� = 0.2, and simulate the economy 50 times.  

 

Figure 4. This is the case of regime switching without unobservability. green line is 𝑠𝑡
0-model-based expectation and 

yellow line is VAR-based expectation. In the model performance, 1 stands for 𝑠𝑡 forecasting model performing best, 

0 stands for 𝑠𝑡
0 forecasting model performing best and -1 stands for VAR forecasting model performing best. 

According to figure 4, there are two interesting phenomena. 

1. There is no significant difference after allowing endogenous expectation formation, and 

the expectation is usually switched between 𝑠𝑡
0 model and 𝑠𝑡 model. 

2. Endogenous expectation formation does not generate more volatility in output and inflation 

For the first phenomenon, after allowing endogenous expectation formation (after 450th period), 

the frequency of agents choosing 𝑠𝑡
0 forecasting model compared to that before 100th period does 

not significantly change, which implies that the endogenous expectation formation mechanism 

does not lead to a huge change in the way of agents choosing the best-performed models. Another 
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interesting thing is that the model choice is always between 𝑠𝑡
0 model and 𝑠𝑡  model, not VAR 

model. It means that VAR model does not give a better fitting and explain what is going on today 

and let alone forecast for the future. When 𝑠𝑡
0 is dominant, 𝑠𝑡

0 model might be selected by 𝑠𝑡 agent; 

when 𝑠𝑡
1  is dominant, 𝑠𝑡  model might be chosen by 𝑠𝑡  agent. Even though the best-performed 

models are often switched between 𝑠𝑡 model and 𝑠𝑡
0 model, the aggregate expectation does not 

necessarily shift that much. The reason is that when 𝑠𝑡
0 model overperforms other models, the 

dominant regime is very likely to be 𝑠𝑡
0 model, and 𝑠𝑡 agent’s expectation should be the same no 

matter whether she use 𝑠𝑡
0 model or 𝑠𝑡 model. Hence, the mass distribution change does not mean 

that the aggregate expectation changes. For the second phenomenon, since the aggregate 

expectation does not change that much between exogenous expectation formation and endogenous 

expectation formation, it is clear that the evolution path of output gap and inflation should not be 

different. 

 

2.3. Case 3: Unobservable Regime Switching 

Now we consider a further case where all agents cannot observe 𝑠𝑡 which has a direct impact on 

the economy. Assume that the economy has a shock set S = {𝑠𝑡, 𝑠𝑡
0, 𝑠𝑡

1}. There is regime switching 

mechanism 𝑠𝑡 = 1[𝑧𝑡=0]𝑠𝑡
0 + 1[𝑧𝑡=1]𝑠𝑡

1  and the state 𝑧𝑡 = 0, 1  can be determined by 𝑧𝑡 =

{
0, 𝑡 = 4𝑘 + 1, . . ,4𝑘 + 3
1, 𝑡 = 4𝑘

(𝑘 ∈ ℕ) , and the two shocks have the following evolution 𝑠𝑡+1
0 =

𝑃0𝑠𝑡
0 + 𝜎0𝜀𝑡  and 𝑠𝑡+1

1 = 𝑃1𝑠𝑡
1 + 𝜎1𝜀𝑡 , where 𝜀𝑡~𝑁(0,1). Thus, the evolution of the exogenous 

shock is 𝑠𝑡+1 = 1[𝑧𝑡=0]𝑃0𝑠𝑡
0 + 1[𝑧𝑡=1]𝑃1𝑠𝑡

1 + (1[𝑧𝑡=0]𝜎0 + 1[𝑧𝑡=1]𝜎1)𝜀𝑡. There are two agents, 𝑠𝑡
10 

agent who can observe 𝑠𝑡
1 and 𝑠𝑡

0 and the VAR agent who can observe nothing in the shock set S. 

The mass distributions of the two agents is 𝑛10 and 1 − 𝑛10, respectively. For convenience, we 

will use 𝑠𝑡
0 agent and 𝑠𝑡

1 agent to represent the 𝑠𝑡
10 agent in different cases, one for 𝑠𝑡

10 agent using 

𝑠𝑡
0 forecasting model and one for using 𝑠𝑡

1 forecasting model. The mass distribution of 𝑠𝑡
0 agent 

and 𝑠𝑡
1  agent and VAR agent is 𝑛0 , 𝑛1  and 1 − 𝑛0 − 𝑛1.  Here, 𝑛10 = 𝑛0 + 𝑛1 . When 𝑠𝑡

0 

forecasting model overperforms other models,  𝑛1 = 0; symmetrically, when 𝑠𝑡
1 forecasting model 

overperforms other models,  𝑛0 = 0. We can simply interpret this case as one where all agents do 

not have perfect information about which exogenous shock hits the economy. In some sense, in 
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some parameter setting, 𝑠𝑡
1 and 𝑠𝑡

0 are good proxies for 𝑠𝑡. When 𝑧𝑡 = 0, 𝑠𝑡
0 is exactly 𝑠𝑡 and 𝑠𝑡

1 is 

a “bad-quality” proxy of 𝑠𝑡. When 𝑧𝑡 = 1, 𝑠𝑡
1 is exactly 𝑠𝑡 and 𝑠𝑡

0 is a “bad-quality” proxy of 𝑠𝑡. 

Different from the previous model, 𝑠𝑡
10 agent can observe two exogenous shocks but is not sure 

about the true exogenous shock 𝑠𝑡 . She can base her expectation formation on the relative 

performance among all forecasting models. She would use VAR forecasting model if both of 𝑠𝑡
0 

and 𝑠𝑡
1 forecasting model are weaker than VAR model and in many cases she would be more likely 

to use one of 𝑠𝑡
1 and 𝑠𝑡

0 forecasting models due to the fact that some information is better than no 

information, but since the shock 𝑠𝑡  is unobservable to 𝑠𝑡
10 agent, she cannot use 𝑠𝑡  forecasting 

model for her expectation formation; On the other hand, VAR agent cannot choose 𝑠𝑡
1 forecasting 

model or 𝑠𝑡
0 forecasting model due to her unobservability of shocks in the shock set S. Similarly, 

when the VAR forecasting model is best in performance we set the threshold �̅� < 1 such that there 

is only a mass �̅� of VAR agents in order for avoiding the explosion in the pure forward-looking 

NK model. The three agents’ forecasting models (i.e., PLM) are as follows,  

PLM 1: 𝑦𝑡 = 𝐵𝑡−1
1 𝑠𝑡

1 

PLM 2: 𝑦𝑡 = 𝐵𝑡−1
0 𝑠𝑡

0 

PLM 3: 𝑦𝑡 = 𝐶𝑡𝑦𝑡−1 

The expectation formations of 𝑠𝑡
1  agent and 𝑠𝑡

0  agent and VAR agent are �̃�𝑡
1𝑦𝑡+1 = 𝐵𝑡−1

1 𝑃1𝑠𝑡
1 , 

�̃�𝑡
2𝑦𝑡 = 𝐵𝑡−1

0 𝑃0𝑠𝑡
0  and �̃�𝑡

3𝑦𝑡 = 𝐶𝑡−1
2 𝑦𝑡−1 , respectively. It is easy to obtain the aggregate 

expectation �̃�𝑡𝑦𝑡 = 𝑛1�̃�𝑡
1𝑦𝑡 + 𝑛0�̃�𝑡

2𝑦𝑡 + (1 − 𝑛0 − 𝑛1)�̃�𝑡
3𝑦𝑡. Now we write the macroeconomic 

system in a compact way 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2�̃�𝑡𝑦𝑡+1 + 𝐴3𝑠𝑡 

𝑠𝑡 = 1[𝑧𝑡=0]𝑠𝑡
0 + 1[𝑧𝑡=1]𝑠𝑡

1 

𝑠𝑡+1
0 = 𝑃0𝑠𝑡

0 + 𝜎0𝜀𝑡 

𝑠𝑡+1
1 = 𝑃1𝑠𝑡

1 + 𝜎1𝜀𝑡 
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𝜀𝑡~𝑁(0,1) 

𝑧𝑡 = {
0, 𝑡 = 4𝑘 + 1, . . ,4𝑘 + 3
1, 𝑡 = 4𝑘

(𝑘 ∈ ℕ) 

Expectation-based economy is evolving as follows 

 𝐵𝑡−1
1  , 𝐵𝑡−1

0  and 𝐶𝑡−1 are determined at the end of time t-1;  

 Based on Q and 𝑧𝑡−1, 𝑧𝑡 is realized at time t.  

 𝑠𝑡 = 𝑃1𝑠𝑡−1 + 1[𝑧𝑡=0](𝑃0 − 𝑃1)𝑠𝑡−1
0 + (1[𝑧𝑡=0]𝜎0 + 1[𝑧𝑡=1]𝜎1)𝜀𝑡 is realized at the beginning of 

time t.  

o Derivation: 𝑠𝑡 = 1[𝑧𝑡=0]𝑃0𝑠𝑡−1
0 + 𝑃1(𝑠𝑡 − 1[𝑧𝑡=0]𝑠𝑡−1

0 ) + (1[𝑧𝑡=0]𝜎0 + 1[𝑧𝑡=1]𝜎1)𝜀𝑡 

 Form Expectation 

PLM 1: 𝑦𝑡 = 𝐵𝑡−1
1 𝑠𝑡

1 => �̃�𝑡
1𝑦𝑡+1 = �̃�𝑡

1𝐵𝑡−1
1 𝑠𝑡+1

1 = 𝐵𝑡−1
1 𝑃1𝑠𝑡

1 

PLM 1’: 𝑦𝑡 = 𝐵𝑡−1
0 𝑠𝑡

0=> �̃�𝑡
1𝑦𝑡+1 = �̃�𝑡

1𝐵𝑡−1
0 𝑠𝑡+1

0 = 𝐵𝑡−1
0 𝑃0𝑠𝑡

0 

PLM 2: 𝑦𝑡 = 𝐶𝑡−1𝑦𝑡−1 => �̃�𝑡
2𝑦𝑡+1 = 𝐶𝑡−1

2 𝑦𝑡−1 

 Endogenize 𝑛 and 𝑛0: 𝑈𝑡
𝑗
= −(𝑦𝑡−1 − �̃�𝑡−1

𝑗
𝑦𝑡−1)′(𝑦𝑡−1 − �̃�𝑡−1

𝑗
𝑦𝑡−1), j=1, 2, 3 for 𝑠𝑡

1, 𝑠𝑡
0 and 

VAR 

o 𝑈𝑡
1 > max {𝑈𝑡

2, 𝑈𝑡
3}: the mass of 𝑠𝑡

1 agent is 𝑛10, the mass of 𝑠𝑡
0 agent is 0 and the mass 

of VAR agent is 1 − 𝑛10 

o 𝑈𝑡
2 > max {𝑈𝑡

1, 𝑈𝑡
3}: the mass of 𝑠𝑡

1 agent is 0, the mass of 𝑠𝑡
0 agent is 𝑛10 and the mass 

of VAR agent is 1 − 𝑛10 

o 𝑈𝑡
3 > 𝑈𝑡

1 > 𝑈𝑡
2: the mass of 𝑠𝑡

1 agent is 1 − �̅�, the mass of 𝑠𝑡
0 agent is 0 and the mass 

of VAR agent is �̅� 

o 𝑈𝑡
3 > 𝑈𝑡

2 > 𝑈𝑡
1:  the mass of 𝑠𝑡

1 agent is 0, the mass of 𝑠𝑡
0 agent is 1 − �̅� and the mass 

of VAR agent is �̅� 

 Generate time-t data 𝑦𝑡  

ALM: 𝑦𝑡 = 𝜉1𝑡𝑦𝑡−1 + 𝜉2𝑡𝑠𝑡
1 + 𝜉3𝑡𝑠𝑡

0 
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o 𝜉1𝑡 = 𝐴1 + (1 − 𝑛10)𝐴2𝐶𝑡−1
2 ,  

o 𝜉2𝑡 = 𝑛1𝐴2𝐵𝑡−1
1 𝑃1 + 𝐴31[𝑧𝑡=1]    

o 𝜉3𝑡 = 𝑛0𝐴2𝐵𝑡−1
0 𝑃0 + 𝐴31[𝑧𝑡=0]  

 Update 𝐵𝑡
1, 𝐵𝑡

0 and 𝐶𝑡 with moment method 

𝐵𝑡
1 = 𝜉1𝑡𝑟𝑦𝑠1𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠0𝑠1𝑡 , where 𝑟𝑦𝑠1𝑡 = (∑ 𝑦𝑖−1

𝑡
𝑖=1 𝑠𝑡

1′)(∑ 𝑠𝑡
1𝑡

𝑖=1 𝑠𝑡
1′)−1  and 

𝑟𝑠0𝑠1𝑡 = (∑ 𝑠𝑡
0𝑡

𝑖=1 𝑠𝑡
1′)(∑ 𝑠𝑡

1𝑡
𝑖=1 𝑠𝑡

1′)−1 

𝐵𝑡
0 = 𝜉1𝑡𝑟𝑦𝑠0𝑡 + 𝜉2𝑡𝑟𝑠1𝑠0𝑡 + 𝜉3𝑡  where 𝑟𝑦𝑠0𝑡 = (∑ 𝑦𝑖−1

𝑡
𝑖=1 𝑠𝑡

0′)(∑ 𝑠𝑡
0𝑡

𝑖=1 𝑠𝑡
0′)−1  and 

𝑟𝑠1𝑠0𝑡 = (∑ 𝑠𝑡
1𝑡

𝑖=1 𝑠𝑡
0′)(∑ 𝑠𝑡

0𝑡
𝑖=1 𝑠𝑡

0′)−1 

𝐶𝑡 = 𝜉1𝑡 + 𝜉2𝑡𝑟𝑠1𝑦𝑡 + 𝜉3𝑡𝑟𝑠0𝑦𝑡 , where 𝑟𝑠1𝑦𝑡 = (∑ 𝑠𝑡
1𝑦𝑖−1

′𝑡
𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1

′𝑡
𝑖=1 )−1  and 

𝑟𝑠0𝑦𝑡 = (∑ 𝑠𝑡
0𝑦𝑖−1

′𝑡
𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1

′𝑡
𝑖=1 )−1 

 Update t = t+1, repeat this process 

Fixing 𝑧𝑡, 𝑛1 and 𝑛0, the evolution system for  𝜉1𝑡, 𝜉2𝑡 and 𝜉3𝑡 is written as 

𝐴1 + (1 − 𝑛1 − 𝑛0)𝐴2(𝜉1𝑡 + 𝜉2𝑡𝑟𝑠1𝑦𝑡 + 𝜉3𝑡𝑟𝑠0𝑦𝑡)
2 → 𝜉1𝑡+1 

𝑛1𝐴2(𝜉1𝑡𝑟𝑦𝑠1𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠0𝑠1𝑡)𝑃1 + 𝐴31[𝑧𝑡=1] → 𝜉2𝑡+1 

𝑛0𝐴2(𝜉1𝑡𝑟𝑦𝑠0𝑡 + 𝜉2𝑡𝑟𝑠1𝑠0𝑡 + 𝜉3𝑡)𝑃0 + 𝐴31[𝑧𝑡=0] → 𝜉3𝑡+1 

Writing the system into a compact form, we have 

𝜉𝑡+1 = 𝑇𝑛,𝑛0,𝑧𝑡(𝜉𝑡) 

 𝜉𝑡 = (𝜉1𝑡, 𝜉2𝑡, 𝜉3𝑡)′ 

 𝑇𝑛,𝑛0,𝑧𝑡 = (𝑇𝑛,𝑛0,𝑧𝑡
1 , 𝑇𝑛,𝑛0,𝑧𝑡

2 , 𝑇𝑛,𝑛0,𝑧𝑡
3 )′  

 𝑇𝑛,𝑛0,𝑧𝑡
1 (𝜉𝑡) = 𝐴1 + (1 − 𝑛1 − 𝑛0)𝐴2(𝜉1𝑡 + 𝜉2𝑡𝑟𝑠1𝑦𝑡 + 𝜉3𝑡𝑟𝑠0𝑦𝑡)

2 

 𝑇𝑛,𝑛0,𝑧𝑡
2 (𝜉𝑡) = 𝑛1𝐴2(𝜉1𝑡𝑟𝑦𝑠1𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠0𝑠1𝑡)𝑃1 + 𝐴31[𝑧𝑡=1] 

 𝑇𝑛,𝑛0,𝑧𝑡
3 (𝜉𝑡) = 𝑛0𝐴2(𝜉1𝑡𝑟𝑦𝑠0𝑡 + 𝜉2𝑡𝑟𝑠1𝑠0𝑡 + 𝜉3𝑡)𝑃0 + 𝐴31[𝑧𝑡=0]  
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The local stability condition is obtained: 𝐷𝑇𝜉𝑖𝑡 =
𝑑𝑇𝑖(�̅�𝑡)

𝑑𝜉𝑖𝑡
 has all eigenvalues within the unit circle 

for i=1, 2, 3 

 𝜉�̅� is RPE value of 𝜉𝑡 

 𝐷𝑇𝜉1𝑡 =
𝑑𝑇1(�̅�𝑡)

𝑑𝜉1𝑡
= (1 − 𝑛1 − 𝑛0)(𝜉1̅𝑡 + 𝜉2̅𝑡𝑟𝑠1𝑦𝑡 + 𝜉3̅𝑡𝑟𝑠0𝑦𝑡)

′
⨂𝐴2 + (1 − 𝑛1 −

𝑛0)𝐼⨂𝐴2(𝜉1̅𝑡 + 𝜉2̅𝑡𝑟𝑠1𝑦𝑡 + 𝜉3̅𝑡𝑟𝑠0𝑦𝑡) 

 𝐷𝑇𝜉2𝑡 =
𝑑𝑇2(�̅�𝑡)

𝑑𝜉2𝑡
= 𝑛1𝑃1

′⨂𝐴2  

 𝐷𝑇𝜉3𝑡 =
𝑑𝑇3(�̅�𝑡)

𝑑𝜉3𝑡
= 𝑛0𝑃0′⨂𝐴2 

 ⨂ denotes the Kronecker product 

Now consider that 𝑛1 and 𝑛0 are endogenized. This endogenous evolution path can be split 

into eight paths, four paths for 𝑧𝑡 = 0 and four paths for 𝑧𝑡 = 1. Formally,  

𝜉𝑡+1 =

{
 
 

 
 
𝑇𝑛10,0,𝑧𝑡(𝜉𝑡),when 𝑈𝑡

1 > max {𝑈𝑡
2, 𝑈𝑡

3}

𝑇0,𝑛10,𝑧𝑡(𝜉𝑡),when 𝑈𝑡
2 > max {𝑈𝑡

1, 𝑈𝑡
3} 

𝑇1−�̅�,0,𝑧𝑡(𝜉𝑡), when 𝑈𝑡
3 > 𝑈𝑡

1 > 𝑈𝑡
2

𝑇0,1−�̅�,𝑧𝑡(𝜉𝑡),when 𝑈𝑡
3 > 𝑈𝑡

2 > 𝑈𝑡
1

 

Now, we assign 𝑛1 = 0.5 and 𝑛0 = 0.5, and �̅� = 0.2, and simulate the economy 50 times. Here, 

we do not let VAR agents exist in the model, but the agents can use VAR model for expectation 

formation.  

According to figure 5, there are two interesting features. After allowing endogenous 

expectation formation,  

1. Endogenous expectation formation makes output and inflation more volatile.  

2. Agents’ st
1  expectation and st

0  expectation is more volatile than those in the case with 

exogenous expectation formation. 

From the graph of volatility, it is clear to see that the endogenous expectation formation will make 

output and inflation volatile. There is an amplification mechanism. When we fix the mass 
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distribution of agents, the aggregate expectation is always from a half-and-half combination of st
0 

expectation and st
1 expectation; however, once the mass distribution of agents can freely shift 

based on their performance, the aggregate expectation will come from either st
0 expectation or st

1 

expectation. When regime is switching from st
0 to st

1, the model performance will give agents a 

signal of expectation switching from st
0 expectation to st

1 expectation, a structural break will show 

up in aggregate expectation, which gives rise to a large volatility in output and inflation. When 

regime switching occurs very frequently, the endogenous expectation switching will happen 

frequently as well. The second feature is very interesting. First, why are st
0 expectation and st

1 

expectation more volatile than those in the case with exogenous expectation formation? The reason 

is that the actual output and inflation data is more volatile than the case of exogenous expectation 

formation, and the volatile data will return a volatile coefficient system for st
0 model and st

1 model, 

leading to a volatile expectation.  

 

Figure 5. This is the case of regime switching with unobservability. In the model performance, 1 stands for 𝑠𝑡
1  

forecasting model performing best, 0 stands for 𝑠𝑡
0  forecasting model performing best and -1 stands for VAR 

forecasting model performing best. 

Combining the first and second feature, we can find a more interesting point, that is, the 

increased volatility of macroeconomic data and the increased volatility of expectation can be 

strengthened by each other. The entangled forces drive the economy more volatile.  



26 
 

 

2.4. Visualization of the Effects: Regime Switching Shocks and Endogenous 

Expectation Switching Shocks 

We use the absolute value of first order difference of macroeconomic paths as measurement for 

volatility. The reason is that we would like to measure the length of every step the economy moves 

forward, where this is only dependent on the current state and not on the historical path. In this 

sense, this measure is better than the traditional variance in a specific sample or rolling-window 

samples.  

First, we look at the effect of regime switching shock. In doing so, we use two cases to 

compare: one case is that the endogenous expectation switching shock is shut down and the regime 

switching shock is opened; the other case is that both shocks are shut down. Practically, setting the 

expectation formation exogenously is the shutdown of endogenous expectation switching shock 

and setting a very infrequent regime switching 𝑧𝑡 = {
0, 𝑡 = 100𝑘 + 1, … , 100𝑘 + 99
1,  𝑡 = 100𝑘

(𝑘 ∈ ℕ) 

represents a shutdown of regime switching shocks and setting a very frequent regime switching 

𝑧𝑡 = {
0, 𝑡 = 4𝑘 + 1,… , 4𝑘 + 3
1,  𝑡 = 4𝑘

(𝑘 ∈ ℕ) represents cyclical regime switching shocks. To avoid 

the effect of fundamental shocks, we set AR(1) st
0  process and st

1  process having the same 

variance by balancing convergence speed and the variance of white noise, see the figure below. In 

the following figure, we see two features. First, for both output and inflation, the step length of the 

economy moving forward as volatility with regime switching shocks is much larger than that 

without regime switching shocks, which is indicated by the fact that the volatility of output 

increases from less than 10−4 to more than 3 ∗ 10−4 in the following graph. In this sense, the 

effect of regime switching shocks is more important than the effect of fundamental shocks, 

especially on output. Second, the output is more sensitive to regime switching shocks than inflation. 

It is clear that the left graph indicates that frequent regime switching shocks make the volatility of 

output surpass the volatility of inflation. Moreover, from the right graph, it also shows that the 

sharp impulse responses of output to regime switching shocks is stronger than that of inflation.  
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Figure 6. The left graph is 𝑠𝑡
0 process and the right graph is 𝑠𝑡

1 process 

 

Figure 7. Regime switching shock with exogenous expectation formation 

 

Second, we look at the effect of endogenous switching shock. In similar logic, we set a 

frequent regime switching as 𝑧𝑡 = {
0, 𝑡 = 4𝑘 + 1,… , 4𝑘 + 3
1,  𝑡 = 4𝑘

(𝑘 ∈ ℕ)  and allow endogenous 

expectation formation (the left graph) relative to exogenous expectation formation (the right graph). 
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There are two interesting points. First, endogenous expectation switching shocks drive more 

fluctuations in both output and inflation and the output is more sensitive to expectation switching 

shocks. Second, there are many impulsive peaks in the left-hand graph. In the right-hand graph, 

without expectation switching shocks, the volatility of output and inflation is roughly between 5 ∗

10−5 and 3 ∗ 10−4. However, in the left-hand graph, the volatility of inflation lies between 5 ∗

10−5 and 4 ∗ 10−4, and the volatility of output gap can reach 10−3, meaning that the effect of 

endogenous expectation switching shocks is much larger than that of regime switching shocks. 

There is an interesting amplification mechanism. An endogenous expectation switching shock is 

usually driven by a regime switching shock and it cannot exist without the regime switching. 

Therefore, an endogenous expectation switching shock can be viewed as an amplifier based on 

regime switching shocks. 

 

Figure 8. Endogenous expectation switching shocks 

In sum, it is seen that the effect of the regime switching shocks is much larger than that of 

the fundamental shocks on the volatility of output and inflation and the endogenous expectation 

switching shocks as an amplifier are much larger than that of regime switching shocks. Moreover, 

the volatility of output is sensitive to both shocks, especially to endogenous expectation switching 

shock.   
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Chapter 3: Policy Implications at Zero Lower Bound 

Having seen how the unobservability generates a greater macroeconomic volatility in the previous 

section, we discuss the monetary policy implication in this section. We consider the possibility of 

zero lower bound and assume that the central bank sets an inflation target �̅�, say 0.5% per quarter, 

so the policy maker sets the policy rate as  

𝑖𝑡 = 𝑖
∗ + 𝜒𝑥�̃�𝑡𝑥𝑡+1 + 𝜒𝜋(�̃�𝑡𝜋𝑡+1 − �̅�)        (7) 

Where 𝑖∗ =
((𝛼1+𝛼2−1−𝛼3𝜙𝑥)

1−𝜆1−𝜆2
𝜆3

+𝛼3)

𝛼3
�̅�  which guarantees that one equilibrium inflation is �̅� . 

Therefore, there are two equilibria: one is a healthy equilibrium (�̅�, �̅�), and the other is a deflation 

equilibrium (�̅�𝑑, �̅�𝑑), represented by the graph below. 

 

Figure 9. ZLB and two equilibria 

 

In this section, to investigate the role of unobservability on the deflation risk and the policy 

setting, we only consider the case where agents can observe 𝑠𝑡
0 or 𝑠𝑡

1 but not 𝑠𝑡.  It is interesting 

that greater macroeconomic fluctuations driven by the endogenous expectation switching would 

push the economy to the deflation equilibrium, in which case a traditional policy making usually 

fails to avoid deflation risk if policy makers only consider exogenous shocks. We will visualize 
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the effects of two shocks -regime switching shock and endogenous expectation switching shock- 

in different parameter settings, and then explore how the policy rate threshold is able to avoid as 

much as possible the economy to fall in a deflationary trap. 

 

3.1. Simulations 

Considering zero lower bound, there are two equilibria: the healthy equilibrium (�̅�, �̅�) and the 

deflationary equilibrium (�̅�𝑑, �̅�𝑑). When shocks are large enough, the economy will evolve and 

fall into the deflationary trap �̅�𝑑, which must be avoided by the policy maker.  Policy makers are 

assumed to use an expected inflation based threshold �̃�  as an alert: when agents’ aggregate 

inflation expectation is above �̃�, policy makers use the standard Taylor rule for policy making; 

when the expected inflation is lower than the threshold �̃�, policy makers use an aggressive policy 

rate 𝜑, calibrated as 0.1%, to boost the economy. If the inflation is below �̃� which is calibrated as 

0.25%, the economy is counted as be stuck in a deflationary trap.  

We do simulations as follows. Imagine that the economy starts from a positive shock, where a 

half of agents live in each unconnected informational island, meaning that expectation is formed 

exogenously. After 4000 periods, their information can be exchanged, that is, informational islands 

are connected, meaning that agents’ expectation is formed endogenously. All agents use historical 

data to update the same forecasts for every step, and continue until 5000 periods. In between, when 

the expected inflation is less than this threshold, the policy maker would abandon Taylor rule and 

switch to an aggressive policy rate, say 0.1% ≪ �̅�, instead until the expected inflation goes above 

the threshold. We repeat the economic scenarios 10 times and 50 times. We track the evolution of 

the economy. We care about several things under different parametrization in threshold value �̃� 

and the connectivity of islands: aggressive policy switching frequency, deflation frequency, time-

varying model performance and the convergence time and stability of the convergence path. 

 Baseline model 

We start with a model with a threshold �̃� = 0.003, 4-cycle regime switching and endogenous 

expectation formation. 4-cycle regime switching denotes that the economy stays in regime 𝑠𝑡
0 for 
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three consecutive periods and then jumps to regime 𝑠𝑡
1 and immediately jumps back to regime 𝑠𝑡

0 

after one period. The reason why we set 4-cycle is that we want a relatively frequent regime 

switching to simulate an economy with frequent structural changes. From graphs of output gap 

and inflation, we have three interesting findings. First, when islands are connected, the economy 

converges very fast. The economy converges to the equilibrium very slowly and such equilibrium 

is a restricted perception equilibrium that is different from the healthy or the deflation equilibrium, 

and the reason is that the “wrong” expectational feedback matters to the economy and cannot be 

corrected through shifting to the best-performed model. After endogenous expectation formation 

is allowed, the economy immediately converges to the area around one equilibrium. Second, large 

output fluctuations are exactly consistent with policy switching, but inflation does not respond that 

strongly to policy switching. When the economy is stuck in the low inflation expectation, the 

policy would be switched to an aggressive policy regime to stay away from the deflationary trap, 

but the demand would immediately respond to the low interest rate environment leading to 

boosting economic growth. However, inflation does not have such large reactions because the 

price level does not directly response to interest rates but the relation between demand and supply. 

Third, the best-performed model switching is consistent with policy switching. Furthermore, the 

result shows that agents prefer VAR models during the policy switching. The reason is that when 

the economy is switched to a different policy regime, the situations would become more 

complicated for forecasting, and market participants would take some time to figure out what 

factor would be the good fit to explain what is happening today and use it for forecasting tomorrow. 

Such complicated scenarios lead agents to behaving in a conservative way, meaning that they give 

up identifying which is the dominant regime of fundamentals.  

The following table shows the aggressive policy switch frequency and deflation frequency 

in all periods the economy experiences. The number of simulations is how many times the 

economy goes through 5000 periods and all periods are the number of simulations times 5000 

periods. When we simulate the economy 50 times, the economy experiences 54.75% of aggressive 

policy regime periods and stays in deflationary trap in 27.21% of all periods.  
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Figure 10. Policy switching threshold �̃� = 0.003 and regime switching 𝑧𝑡 = {
0, 𝑡 = 4𝑘 + 1,… , 4𝑘 + 3
1,  𝑡 = 4𝑘

(𝑘 ∈ ℕ) and 

the endogenous expectation formation is allowed after 900 periods. In model performance, 1 denotes that 𝑠𝑡
1 model 

outperforms other models, 0 denotes that 𝑠𝑡
0  model outperforms other models and -1 denotes that VAR model 

outperforms other models. In policy switching and deflationary trap, 1 in policy switching denotes Taylor-rule policy 

used and 0 in policy switching denotes aggressive policy used; 1 in deflationary trap denotes that the economy is stuck 

in the deflationary trap and 0 in deflationary trap denotes that the economy is away from deflationary trap. 

 

 

 

 

 

Table 1. �̃� = 0.003 and 4-cycle regime switching 

 

 Infrequent Regime Switching Model 

Consider the economy experiences the infrequent regime switching with 12-cycle where the 

economy stays in regime 𝑠𝑡
0 for 11 consecutive periods and in regime 𝑠𝑡

1 for one period. There are 

two attractive questions for one-life simulation. First, why doesn’t the policy switch? Why doesn’t 

simulation Aggressive policy 

(%) 

Deflation 

(%) 

10 59.57% 33.41% 

50 54.75% 27.21% 
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the economy fall into the deflationary trap? The straightforward source is due to smaller regime 

switching shocks resulting in smaller endogenous expectation switching shocks. When macro 

fluctuations get smaller, the economy would usually go around the healthy equilibrium, and 

expected inflation would be stable and not smaller than the alert threshold. Therefore, the policy 

switching does not occur that frequently, making the macroeconomic volatility smaller and more 

stable, so there are no excessive fluctuations in output and inflation. 

Having simulated 10 times and 50 times, from the following table showing the aggressive 

policy switch frequency and deflation frequency in all periods the economy experiences, we can 

see that the economy experiences 0.86% of aggressive policy switching and stays in deflationary 

trap in only 0.42% of all periods when we simulate the economy 10 times. When simulating the 

economy 50 times, the two numbers are still not changed that much: the probability of the policy 

maker using an aggressive policy is 1.25% and the economy has the probability of 0.38% in falling 

into a deflationary trap. Clearly, the infrequent regime switching depresses the endogenous 

expectation switching shocks and policy switching shocks that generate larger macroeconomic 

volatility.  
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Figure 11. Policy switching threshold �̃� = 0.003 and regime switching 𝑧𝑡 = {
0, 𝑡 = 12𝑘 + 1,… , 12𝑘 + 11
1,  𝑡 = 12𝑘

(𝑘 ∈ ℕ) 

and the endogenous expectation formation is allowed after 900 periods. In model performance, 1 denotes that 𝑠𝑡
1 

model outperforms other models, 0 denotes that 𝑠𝑡
0 model outperforms other models and -1 denotes that VAR model 

outperforms other models. In policy switching and deflationary trap, 1 in policy switching denotes Taylor-rule policy 

used and 0 in policy switching denotes aggressive policy used; 1 in deflationary trap denotes that the economy is stuck 

in the deflationary trap and 0 in deflationary trap denotes that the economy is away from deflationary trap. 

 

 

 

 

Table 2. �̃� = 0.003 and 4-cycle regime switching 

 

 A Model with a higher the Expected Inflation Based Threshold 

We consider the effect of raising the alert threshold from �̃� = 0.003 to �̃� = 0.004. When the policy 

maker realizes that the regime switching can generate more endogenous volatility from connecting 

informational islands, they must raise an alert threshold �̃� to avoid inflation risk. However, there 

are two side products. First, a higher threshold leads to stronger fluctuations in output and inflation. 

In higher expected inflation environment, the economy stays in a low policy rate environment, 

boosting the economic activities and inflation more than in lower expected inflation environment. 

Second, the unsustainable boom in output lasts longer period. Clearly, the economy is more likely 

to stay in an aggressive policy environment if the policy maker worries about and want to avoid 

the deflation spiral.  

In sum, the following table summarizes the three cases above. We can find that infrequent 

regime switching results in less volatility in the macroeconomy and an aggressive policy is used 

rarely. From the graph above, we already know that there are no large output fluctuations when an 

aggressive policy regime is not often reached. In this sense, there are two-level excessive volatility: 

one is from endogenous expectation switching and the other is from policy regime switching. What 

is worth emphasizing is that switching to an aggressive policy regime would lead to a considerable 

simulation Aggressive policy 

(%) 

Deflation 

(%) 

10 0.86% 0.42% 

50 1.25% 0.38% 
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but unexpected output volatility. Hence, when the policy maker compromises and raise the alert 

threshold �̃� to maintain inflation expectation to an acceptable level and then low deflation risk 

which is shown to be reduced roughly from 27% to 16%, the frequency of the policy switching 

gets higher, that is, from around 55% to 67%, then it is shown in the above graph that 

macroeconomic fluctuations get larger. 

 

Figure 12. Policy switching threshold �̃� = 0.004 and regime switching 𝑧𝑡 = {
0, 𝑡 = 4𝑘 + 1,… , 4𝑘 + 3
1,  𝑡 = 4𝑘

(𝑘 ∈ ℕ) and 

the endogenous expectation formation is allowed after 900 periods. In model performance, 1 denotes that 𝑠𝑡
1 model 

outperforms other models, 0 denotes that 𝑠𝑡
0  model outperforms other models and -1 denotes that VAR model 

outperforms other models. In policy switching and deflationary trap, 1 in policy switching denotes Taylor-rule policy 

used and 0 in policy switching denotes aggressive policy used; 1 in deflationary trap denotes that the economy is stuck 

in the deflationary trap and 0 in deflationary trap denotes that the economy is away from deflationary trap. 

 

 �̃� = 0.003 and 4-cycle �̃� = 0.003 and 12-cycle �̃� = 0.004 and 4-cycle 

simulation Aggressive 

policy (%) 

Deflation 

(%) 

Aggressive 

policy (%) 

Deflation 

(%) 

Aggressive 

policy (%) 

Deflation 

(%) 

10 59.57% 33.41% 0.86% 0.42% 68.67% 11.63% 

50 54.75% 27.21% 1.25% 0.38% 66.93% 15.87% 
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Table 3. Comparison in the frequency of aggressive policy regime switching and the frequency of the deflation between 

baseline model, the model with infrequent regime switching and the model with a higher alert threshold.  

3.2. Discussions 

We discuss two topics in this section. First, without unobservability, the economy staying in 

healthy equilibrium suffers from small shocks, policy makers do not worry that the economy would 

enter a deflationary spiral. Policy makers’ goal is only to maintain the macroeconomic stability. 

But with unobservability leading larger shocks generated by frequent endogenous expectation 

switching, policy makers must consider not only to maintain macroeconomic stability, but also to 

avoid deflation risk even under a small negative shock. Second, the macroeconomics literature has 

been exploring an interesting but long-lasting question: what is the reason for large 

macroeconomic fluctuations? Bad policy, bad structural change or bad policy? This questions 

sometimes is not simple, because often they are endogenous, see Bernanke (2004). We will 

investigate the effect of unobservability on the two issues.  

3.2.1. Policy Makers’ Dilemma with Unobservability 

When fundamental shocks are small enough and there is the unobservability problem, the policy 

maker does not need to worry about the deflation risk. The only thing that policy makers care about 

is how to maintain the macroeconomic stability. The solution to this problem is suggested by 

Bernanke (2004), who argues that to maintain macroeconomic stability policy makers must avoid 

a bad cycle: attempts to achieve higher output lower interest rates, and then it leads to an increase 

in inflation, and policy makers tighten the policy for rising inflation and then make a sharp 

contraction in output. However, once we consider that the economy has the unobservability 

problem, the unobservability in the dominant regimes would generate a substantial endogenous 

volatility, which results in that a small negative fundamental shock can be amplified to be a very 

large one, probably making the economy fall into a deflationary spiral. Therefore, policy makers 

must use an aggressive policy to protect the economy from deflation risk in advance. But the 

problem if policy makers take this step is that when the inflation expectation sometimes is a little 

low but the current inflation is still good, the low policy rate would boost the economic activities 

and inflation very quickly and strongly. Since the threshold is higher, the economy is more likely 

to be in the aggressive policy regime so that the unstable and large volatility in output would last 
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longer. In this case, policy makers face a dilemma: to avoid deflation risk, policy makers must 

raise the alert threshold which leading to macroeconomic instability. It is worth pointing out that 

such dilemma does not exist if there is no unobservability problem.  

 

Figure 13. The relationship among macroeconomic volatility, policy switching and deflation risk 

 

3.2.2. Volatility: Bad Luck or Bad Policy? 

Much traditional literature widely discusses where the substantial macroeconomic volatility comes 

from. There are three typical sources: bad luck, structural change and bad policy. Until now, 

looking for a starting point of macroeconomic volatility is far from settled. For example, 

researchers have been exploring why the volatility in the macroeconomy gets smaller after 1980, 

which, a reduced volatility, is opposite from what we care about under zero lower bound. Some 

economists agree with good luck. Ahmed, Levin and Wilson (2004) shows that 50%~75% of the 

reduction of output volatility since 1980s is from good luck. However, they also argue that almost 

all the reduction of inflation volatility since 1980s is from good policy. Stock and Watson (2003) 

draw a similar conclusion with Ahmed, Levin and Wilson (2004), but they also investigate the 

relation between US and G-7 countries that part of the reduction in volatility is from the reduction 

in common international shocks between countries. Some other researchers emphasize the 

importance of structural changes. Kahn, McConnell and Perez-Quiros (2002) find that the 

improvement in inventory management techniques is the most important reason that output 

becomes less volatile because a decline in the inventory volatility smooths the output volatility. 

Dynan, Elmendorf and Sichel (2005) explain that the output volatility is reduced through 

efficiency-improved financial market. They found that the financial services are more and more 
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dependent on online transaction platforms which has been improved aggressively so that people 

are easier to have access to financial markets and easier to get loans or other financial services, 

which smooths consumption and then output. Some economists think that good luck or good 

structural changes result from good policies. Clarida, Galí and Gertler (2000) argue that before 

1979, Fed did raise the nominal interest rate but the real interest rate still declined because the 

expected inflation goes up more quickly than nominal interest rates do. The policy maker raised 

the nominal interest rate and real interest rate aggressively after 1980s so that the high-inflation 

economy then cooled down. Bernanke (2004) argues that there is a bad cycle before 1979: initially, 

policy makers lower interest rates to attempt to achieve higher output, and then inflation would 

rise very quickly which is unexpected, so the policy would be tightened, leading to a sharp 

contraction in output, and policy makers must lower interest rates again. This cycle is going on 

again and again, making output more volatile. He argues that the reduced impact of oil and 

commodity shocks after 1980s is due to the stable and low inflation expectation resulted from a 

successful policy after Volker took office as the Chairman of the Federal Reserve Board.  

However, the question itself is not easy to be completely settled. The fundamental problem 

is the endogeneity problem. The fundamental shocks would be reduced along with a good policy 

implemented by central banks, and good structural changes may happen as well. Conversely, if 

the economy has a good luck or good structural change, the central banks will have more potential 

policy tools to achieve the dual mandate. The worse the economic situations (bad luck or bad 

structural changes), in a higher probability the policy would be a bad policy due to a more limited 

number of feasible policy tools. So, the fundamental question is: where is the “starting point”?  

We put forth a potential mechanism that can exogenously generate excessive 

macroeconomic volatility under unobservability. There are two layers of “amplifiers” for 

macroeconomic fluctuations: endogenous expectation switching and policy strategy switching. 

The mechanism is as follows. Unobservability makes agents endogenously choose best-performed 

models to form expectations leading to the first level of excessive volatility amplified by 

endogenous expectation formation. Upon seeing such large volatility, the policy maker must set a 

higher expected inflation threshold to avoid the deflation risk, and such a higher threshold makes 

the policy regime switching more frequently, resulting in an even larger, named as the second level 

of, macroeconomic volatility.  
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Based on our analysis above, a large macroeconomic fluctuation does not necessarily result 

from a bad luck. The endogenous expectation formation gives a first level of amplified volatility. 

The dilemma faced by policy makers indicates that sometimes an excessive macroeconomic 

volatility does not imply that a bad policy is made because monetary policy also takes a 

responsibility of avoiding deflation risk.  
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Chapter 4: Conclusion 

Our paper provides a theoretical explanation for excessive macroeconomic fluctuations with 

unobservability in regime switching where agents consider to endogenously choose a best-

performed model for expectation formation. We discuss three cases: no regime switching, regime 

switching with agents’ ability to observe the dominant regime and regime switching with agents’ 

inability to observe the dominant regime. We find that without the regime switching the agents in 

most cases endogenously use the “correct” forecasting model to form expectation so that the 

macroeconomic volatility cannot be amplified. However, when the regime switching without 

unobservability is introduced, there is a larger economic fluctuation resulting from the regime 

switching. However, agents that can observe the two regimes and the dominant regime will use 

the “right” model to form expectation in most cases, so there is no frequent endogenous expectation 

switching for more fluctuations. When the regime switching with unobservability is considered, 

since agents cannot observe which regime switching is dominant one, agents will shift their 

expectation back and forth based on the two candidate models’ performance, giving rise to a large 

increase in the macroeconomic volatility. 

Furthermore, we explore the monetary policy implications under unobservability. We 

consider the zero lower bound constraint and then the problem of deflation risk. Since it is 

indicated in the third chapter that the unobservability of regime switching can generate the larger 

endogenous volatility in the macroeconomy, the policy maker must consider a policy-related 

solution for those fluctuations. Our recommended policy solution is setting an aggregate expected 

inflation based alert threshold, and the standard Taylor-rule based monetary policy is adopted if 

the aggregate expected inflation is above the threshold; otherwise, an aggressive low policy rate is 

used. We have four findings. First, the output fluctuation pattern is consistent with policy switching, 

but inflation is not. Second, the switching of agents’ expectation always goes along with the policy 

regime. Third, infrequent regime switching does lead to less policy regime switching and then 

lower volatility of output and inflation. fourth, raising the threshold generates stronger fluctuations 

in both output and inflation, and output peaks last longer than the case where the threshold is lower.  

Moreover, we discuss two interesting issues. First, with unobservability, policy makers 

face a dilemma: maintain macroeconomic stability and avoid inflation risk. It is worth pointing out 
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that such dilemma does not necessarily exist without unobservability. Regime switching will lead 

agents to change their expectation frequently and generate more volatility and policy makers must 

raise the threshold to avoid the deflationary spiral and the economy is more frequently switched 

between the normal policy regime and the aggressive policy regime, giving rise to a strong 

macroeconomic instability. So, if policy makers do not raise the threshold, the economy would be 

exposed under a higher deflation risk. Second, large macroeconomic fluctuations are not 

necessarily from bad luck or bad policy. We argue that unobservability can generate endogenous 

volatility which is not from bad luck, and policy makers raising the threshold to avoid the 

deflationary spiral but make the economy more frequently switched between the normal policy 

regime and the aggressive policy regime, giving rise to a strong macroeconomic instability.  
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Appendix  

A. Benchmark Parameter Calibration: Galí (2015) 

Parameters Description Calibrated Value 

𝜶𝟏 Backward-looking coefficient in IS curve 0 

𝜶𝟐 Forward-looking coefficient in IS curve 1 

𝜶𝟑 Inverse elasticity of intertemporal substitution 1 

𝝀𝟏 Backward-looking coefficient in Phillips curve 0 

𝝀𝟐 Discount factor  0.99 

𝝀𝟑 Slope of the NKPC (composite parameter for price rigidity) 0.0572 

𝝆𝒆 Persistence parameter in demand shock 0.8 

𝝆𝒖 Persistence parameter in supply shock 0.8 

𝛔𝒆 Standard deviation in demand shock 0.0001 

𝛔𝒖 Standard deviation in demand shock 0.0001 

𝝌𝒙 Central bank’s output gap response 1.5 

𝝌𝝅 Central bank’s output gap response 1.5 

 

B. Derivation for Coefficients’ Update 

According to PLM 1 𝑦𝑡 = 𝐵𝑡−1𝑠𝑡 + 𝑣𝑡 , where 𝑣𝑡 is iid with mean 0. When new time-t data comes 

into agents’ information set, 𝐵𝑡 will be updated. Using the moment method, we have  

𝐸𝑦𝑡𝑠𝑡′ = 𝐵𝑡𝐸𝑠𝑡𝑠𝑡′ 

Where 𝐸𝑦𝑡𝑠𝑡
′ = 𝐸(𝜉1𝑡𝑦𝑡−1 + 𝜉2𝑡𝑠𝑡 + 𝜉3𝑡𝑠𝑡

0)𝑠𝑡
′ = 𝜉1𝑡𝐸𝑦𝑡−1𝑠𝑡

′ + 𝜉2𝑡𝐸𝑠𝑡𝑠𝑡
′ + 𝜉3𝑡𝐸𝑠𝑡

0𝑠𝑡
′ = 𝐵𝑡𝐸𝑠𝑡𝑠𝑡′ , 

then we have  

𝐵𝑡 = 𝜉1𝑡𝐸𝑦𝑡−1𝑠𝑡
′(𝐸𝑠𝑡𝑠𝑡′)

−1 + 𝜉2𝑡 + 𝜉3𝑡𝐸𝑠𝑡
0𝑠𝑡
′(𝐸𝑠𝑡𝑠𝑡′)

−1 

Using the sample data available until time t, we obtain 𝐸𝑠𝑡𝑠𝑡
′ =

1

𝑡
∑ 𝑠𝑖
𝑡
𝑖=1 𝑠𝑖′, 𝐸𝑠𝑡

0𝑠𝑡
′ =

1

𝑡
∑ 𝑠𝑖

0𝑡
𝑖=1 𝑠𝑖′ 

and 𝐸𝑦𝑡−1𝑠𝑡
′ =

1

𝑡
∑ 𝑦𝑖−1
𝑡
𝑖=1 𝑠𝑖′ . Finally, we have 𝐵𝑡 = 𝜉1𝑡𝑟𝑦𝑠𝑡 + 𝜉2𝑡 + 𝜉3𝑡𝑟𝑠𝑠𝑡 , where 𝑟𝑦𝑠𝑡 =

(∑ 𝑦𝑖−1
𝑡
𝑖=1 𝑠𝑖′)(∑ 𝑠𝑖

𝑡
𝑖=1 𝑠𝑖′)

−1 and 𝑟𝑠𝑠0𝑡 = (∑ 𝑠𝑖
0𝑡

𝑖=1 𝑠𝑖′)(∑ 𝑠𝑖
𝑡
𝑖=1 𝑠𝑖′)

−1. 
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Applying the similar method, we can obtain 𝐵𝑡
0 = 𝜉1𝑡𝑟𝑦𝑠0𝑡 + 𝜉2𝑡𝑟𝑠𝑠0𝑡 + 𝜉3𝑡  where 𝑟𝑦𝑠0𝑡 =

(∑ 𝑦𝑖−1
𝑡
𝑖=1 𝑠𝑖

0′)(∑ 𝑠𝑖
0𝑡

𝑖=1 𝑠𝑖
0′)−1 and 𝑟𝑠𝑠0𝑡 = (∑ 𝑠𝑖

𝑡
𝑖=1 𝑠𝑖

0′)(∑ 𝑠𝑖
0𝑡

𝑖=1 𝑠𝑖
0′)−1 and 𝐶𝑡 = 𝜉1𝑡 + 𝜉2𝑡𝑟𝑠𝑦𝑡 +

𝜉3𝑡𝑟𝑠𝑦0𝑡 , where 𝑟𝑠𝑦0𝑡 = (∑ 𝑠𝑖𝑦𝑖−1
′𝑡

𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1
′𝑡

𝑖=1 )−1  and 𝑟𝑠𝑦0𝑡 =

(∑ 𝑠𝑖
0𝑦𝑖−1

′𝑡
𝑖=1 )(∑ 𝑦𝑖−1𝑦𝑖−1

′𝑡
𝑖=1 )−1 
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