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Abstract

Moral inclinations expressed in user-generated content such as online reviews or tweets

can provide useful insights to understand users’ behavior and activities in social net-

works, for example, to predict users’ rating behavior, perform customer feedback min-

ing, and study users’ tendency to spread abusive content on these social platforms. In

this work, we want to answer two important research questions. First, if the moral at-

tributes of social network data can provide additional useful information about users’

behavior and how to utilize this information to enhance our understanding. To an-

swer this question, we used the Moral Foundations Theory and Doc2Vec, a Natural

Language Processing technique, to compute the quantified moral loadings of user-

generated textual contents in social networks. We used conditional relative frequency

and the correlations between the moral foundations as two measures to study the moral

break down of the social network data, utilizing a dataset of Yelp reviews and a dataset

of tweets on abusive user-generated content. Our findings indicated that these moral

features are tightly bound with users’ behavior in social networks. The second ques-

tion we want to answer is if we can use the quantified moral loadings as new boosting

features to improve the differentiation, classification, and prediction of social network

activities. To test our hypothesis, we adopted our new moral features in a multi-class

classification approach to distinguish hateful and offensive tweets in a labeled dataset,

and compared with the baseline approach that only uses conventional text mining fea-

tures such as tf-idf features, Part of Speech (PoS) tags, etc. Our findings demonstrated

that the moral features improved the performance of the baseline approach in terms of

precision, recall, and F-measure.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, social networks play pivotal roles in our lives. Millions of people are interacting on

these social platforms by engaging in various activities such as posting comments, tagging, fol-

lowing, etc. One of the obvious consequences of these phenomena is the huge amount of user-

generated content, in particular, textual data which is posted and recorded every day. For instance,

Twitter has reached more than 330 million of active users as of the fourth quarter of 2017 [3].

Yelp.com which is known for the users’ reviews on businesses, such as restaurants, has 148 mil-

lion posted reviews by the end of 2017 [5]. This large amount of user-generated content posted

daily, contains hidden knowledge about people’s opinions, and interactions such as friendships. In

addition, users’ mandatory and extended profile data, meta data, users’ contacts’ wall, and private

walls are other examples of general types of information extracted from social networks. In more

specific examples, we can observe people’s tendencies in ranking different businesses, and how

they might be misusing social networks to spread abusive content [51].

There are several methods to extract information from social networks’ data such as opinion

mining which is used to automatically determine human opinion from text. Another approach

is scraping for unstructured web data extraction. Sentiment analysis is used to extract subjective
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information from social networks’ data. Clustering techniques and graph theory-based analytics

can be used for unlocking communities and link prediction [8, 33]. Additionally, supervised/semi-

supervised/unsupervised methods, as well as classification algorithms can be used for data mining

and classification tasks [6]. Finally, text analytics incorporate data/text mining, annotation, and

data visualization. For instance, news analytics is an example of capturing the textual attributes of

social networks’ data to measure novelty, sentiment, and relevance of social media news.

Text mining tries to automatically extract useful knowledge from textual data such as social

networks’ posts, emails, messages, etc. Some applications of text mining are information extrac-

tion, link analysis, and clustering. These applications help unlock the hidden correlations and

patterns in textual data that yields information on human behavior [51]. While Natural Language

Processing (NLP), is an attempt in the text mining context to extract more latent knowledge from

text, e.g., the sentiments, information about the users, their intent in posting a specific message,

etc. [57], i.e., NLP is the steps taken to extract useful information from natural language input

and/or the use of this information in generating natural language output [10].

1.2 Challenges in Mining Social Networking Data

The performance of text mining methods is not as expected and the textual data on social networks

provides a rich source of academic research challenges for the text mining community. The general

key challenges are listed below:

Due to the commercial value of the data, social network platforms do not allow comprehensive

access to raw data, e.g., Twitter API’s limitation for number of accessible tweets. Data cleansing is

another key challenge due to the ambiguous, abbreviated, unstructured, and missing information in

social networks’ textual data [10, 54]. Some social platforms such as Twitter are of very short texts

and these short messages might not provide sufficient similarity measures for extracting useful

knowledge [26, 54].

Data protection and users’ privacy is another challenge [10]. Moreover, there is an abundance
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of information on different topics, i.e., each tweet can be associated with multiple labels based on

its hashtags, URLs, retweeting status, users’ profile, etc. [54]. Data visualization can help extract

useful information from abundant natural language data, however, given the magnitude of the data,

visualization can face computational issues.

Furthermore, combining different data attributes with a holistic approach can help better un-

derstand social networks, e.g., we can combine real-time market information, with textual data,

and geo-location tags [10]. However, this data might not be easily available and might suffer from

ambiguity. The lack of ground truth in supervised methods can also result in several issues which

can be more severe with a holistic approach. Also, user-generated content on social networks is

time-sensitive. There might be millions of textual data related to a controversial social event during

a specific time-frame [54]. Additionally, many social events are mostly about cultural, behavioral,

and moral aspects of the human beings, therefore, each domain needs specific features for text

processing rather than a general approach. Quantifying and incorporating these social and moral

aspects is a key challenge. Finally, human coders might not be reliable to annotate the data due to

their personal biases [25, 102]. This bias can influence supervised methods’ outputs, in particular,

in terms of moral, social, and behavioral studies performed on social networks’ data.

Distinguishing hate speech and offensive language in social networks which is of great interest

in the text mining community is an example of these challenges [25]. This differentiation is a

difficult task due to the subjective data, lack of training data, and very short texts in social media

[25, 26]. These challenges are reflected in a misclassification rate of almost 40% in hate speech

detection in a previous study [25].

The following examples can help illustrate the challenges in differentiating hate speech and

offensive language.

Hate speech: "Now is the time for the Aryan race 2 stand up and say ’no more’. Before the

mong**ls turn the world into a ghetto slum." This sentence is targeting a minority group based on

their race.

Offensive language: "D*mb f*cks. Race ba*ing b*tches." This sentence tries to offend others
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and is not explicitly targeting a minority group.

Neither: "looking through race colored glasses." This sentence is a comparatively innocent

comment which is neither targeting nor offending other users.

As it can be implied from the examples above, the differentiation between hate speech and

offensive language is challenging for human coders and automatic NLP techniques due to the

subjective definitions and manifestations of these contents in social networks. To be more specific,

hate speech is a malicious, biased speech in social networks which targets, degrades, and humiliates

victims based on their intrinsic characteristics such as race, gender, sexuality, ethnicity, etc. It can

be potentially harmful to people who are members of these groups and has inevitably increased

with the fast-growing social interactions in social networks.

However, offensive language is different from hate speech since the offensive words are not

used in the same manner as hate speech. In hate speech, the “dangerous” speech, humiliates victims

and invites for violence against a minority group [39] while in offensive language the offensive

words might be simply part of daily conversations which have a relatively high prevalence on

social media or they can be popular slurs among teenagers [99, 101].

It is notable that ‘*’ signs are not part of the original tweets in the previous examples and are

inserted by us. All tweets have been slightly changed without changing their original meaning to

protect users’ privacy.

1.3 Existing Solutions

Nowadays people’s interactions on social networks are considered a new source that reveals hu-

man’s psychological and behavioral patterns. The influences on users’ online activities has been

extensively studied in recent years in the communities of computer science, sociology, manage-

ment and psychology [20, 24, 78, 96]. Besides the textual content of social networks’ data, several

variables, such as the counts of upvotes and downvotes, usefulness, coolness, etc., are introduced

into these social platforms to provide useful information about the perceived quality or trustworthi-
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ness of the textual content/users. Additionally, several moral features of social networks’ data can

provide new perspectives to tackle the challenges in the text mining community/social networks’

data analysis, e.g., hate speech and offensive language differentiation.

1.3.1 Boosting Features

To address the challenges mentioned in section 1.2, several solutions have been proposed. Re-

cently, link analyses and information in microblogging services are used for event detection [70].

Using users’ metadata information as new features has also been successful in text processing and

unlocking communities [100]. In addition, using Part of Speech (PoS) tags has helped enhance the

NLP techniques to comprehend human language [92]. Furthermore, semantic background knowl-

edge can provide conceptual representations and thus improve cluster purity in text document

clustering [53].

Another set of social and human-based features can also improve text mining procedures on

social networks. For instance, emotion recognition based on known psychological standpoints,

as well as the social dimensions of emotion such as emotion transitions and emotion patterns in

conversations have been helpful [60]. The sentiment tokens associated to social media posts have

also been useful in several studies [7, 77]. Finally, the ideological and stance-based features have

been helpful to extract information from social network debates and question-answers [94].

1.3.2 Moral Features in Social Networks

Among several factors that may affect one’s social behavior, moral inclinations, which were the

first insights in intellectual history [45], play an important role in one’s attitude and social inter-

actions with others. According to the sociologist Christian Smith “humans are moral, believing,

narrating animals” [45, 93]. However, there is little work studying from the moral aspect of the

online reviews.

There have been several studies that model social phenomena based on the insight provided by

the moral values extracted from the user-generated content. [105] modeled ideological tendencies
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by highlighting morally sensitive issues such as same-sex marriage. In [37], moral sentiments

were obtained using word embedding methods and the moral rhetoric over time was extracted

to examine the evolution of the moral tendencies. [58] studied morally sensitive datasets and

the moral loadings of vice keywords in daily tweets. Some studies employed this technique to

associate people’s social distances with their moral loadings [29].

We believe investigating the relationships between a user’s moral inclinations and her behavior

in social networks can help understanding the moral, psychological, and cultural intricacies of

human nature that potentially affect their online activities. In this way, we can simplify some

of the complications of human interactions by analyzing the moral concerns involved in these

interactions.

1.4 Overview

The high-level overview of our structured moral approach combined with social networks’ text

mining and analyses will be discussed in this section.

1.4.1 Users’ Rating Behavior in Online Review Systems

None of the previous studies on the analysis and quantification of morality in social networks have

quantified moral loadings for online reviews, nor the way they influence people’s rating behavior

when any immoral practice is involved.

In this work, we address this issue by studying reviews on Yelp.com, which is a popular online

social platform for rating businesses, to investigate people’s rating patterns in online reviews as

well as how individuals’ moral inclinations affect their ratings. This study will reveal the impor-

tance of a moral perspective in the analysis of social networks due to concrete moral behaviors on

these social platforms. In particular, we are interested in three research problems:

1. If the reviewers’ ratings change in the face of moral violations and how this change manifests

itself in each moral foundation.

6



2. If morally-inclined reviewers tend to elicit the same tendencies in their general average rat-

ing.

3. If the moral loading of the users is an important factor to study their average rating behavior.

To answer these questions, we apply Doc2Vec, a Natural Language Processing (NLP) tech-

nique and Moral Foundations Theory (MFT) [46, 47], a leading conceptual framework in moral

psychology. As defined by MFT, a given text can be moral if it contains one or more moral val-

ues or non-moral. Using Doc2Vec, we analyze the semantic and syntactical meaning of textual

content, and identify reviews with morality (or immorality) associated content. For moral-related

reviews, we associate it with each of the five moral foundations to calculate its moral loadings.

In this way, we can understand the moral concerns expressed in a review and quantify the moral

inclinations of the reviewer.

1.4.2 Social Networks’ Abusive Content

Social networks’ popularity means millions of people are socializing over these social platforms.

Consequently, there is an increase in the negative implications of these online social interactions

such as exploiting social media to spread degrading and abusive language. Hate speech and offen-

sive language are two of the most prominent examples of these negative consequences.

Several countries have already taken preventive actions against hate speech, such as United

Kingdom, France, and Canada [25] as it poses several ethical and social issues [89].

There have been studies to detect hate speech on social networks due to its social, ethical,

and potential legal consequences. For instance, supervised methods are used in [18, 102]. Some

studies are based on bag-of-words approaches and discuss this scheme’s disadvantages in presence

of specific slurs [18, 63]. Another set of studies focus on the syntactic and grammatical features

of hate textual data [39, 92, 103]. Finally, there are studies that suggest using a set of different

boosting features such as web hyper-links and users’ meta data to detect hate communities on

social networks [21, 25, 97, 102].
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However, most of these studies conflate hate speech and offensive language while they are of

different contexts, purposes, and consequences. In addition, none of these studies have focused on

the ethical aspect of hate speech and offensive language to better understand the ethical issues they

might pose.

In this work, we address these issues by studying a set of labeled tweets based on moral founda-

tions. We first define the differences between hate speech and offensive language and then answer

several research questions. In particular we are interested in four research problems:

1. To understand the importance of moral loadings on social networks based on statistical met-

rics. We examine moral loadings’ break down for hate speech and offensive language across

several moral foundations, and if these moral foundations are correlated. In particular, we

are interested in these correlations’ binding and individual aspects.

2. If there is a similar correlation pattern in two different datasets of completely different con-

texts.

3. If we can use the quantified moral weights as new boosting features to improve the differ-

entiation, classification, and prediction of social networks’ textual data, i.e., we use hateful

and offensive tweets to test this hypothesis. We examine if we can use the moral features of

the tweets as boosting features to improve a baseline approach of mainly conventional tf-idf

features.

4. The reasons behind the performance of the improved model which is the baseline approach

combined with the moral features, as well as a comparison between this model and the

models that incorporate the embedding document vectors.

We employ the Doc2Vec embedding tool to analyze the semantic and syntactical meanings

of textual content, and identify reviews with morality (or immorality) associated content. We

calculate the moral loading of each tweet with the vice moral words in each moral foundation

represented in a dictionary corresponding to MFT. We then use a cosine similarity measure to
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identify tweets in each moral foundation. Finally, we classify the tweets by comparing various

models with (or without) the moral features. Our results show that moral loadings are helpful in

terms of analysis and differentiation of hate speech and offensive language.

1.5 Contributions

The main contributions of this proposal are planned to be:

1. Utilize the knowledge extracted from text and moral standpoints to analyze social

networks, in particular, users’ rating behavior. We first propose a structured method to represent

social networks’ user-generated content as vectors using NLP embedding tools. We then use the

moral aspects of this content to identify the moral reviews and moral break down of the content

to understand the rating behavior of the users in the face of moral violations. We then compare

moral-concerned users to regular users and study their general average rating.

2. Utilize the moral attributes as boosting features to classify abusive user-generated

content. We first apply the embedding approach to represent social posts in vectors. We then

integrate the moral theory with the vectors to identify the moral break down and moral loadings of

the data. Finally, we use the computed moral features to improve the classification of hateful and

offensive tweets.

3. Utilize the moral loadings to understand the moral correlations in two different social

contexts. We apply a moral theory to two different textual datasets: The Yelp reviews and the

tweets to understand the moral correlations in two different contexts.

1.6 Thesis Organization

This thesis is organized into the following chapters:

• Chapter 1: Introduction - An introduction to the problem and the main differences between

our approach and previous studies.

9



• Chapter 2: Background - Introducing the main text mining concepts used in the following

chapters.

• Chapter 3: Modeling Morality - An overview of our moral theory.

• Chapter 4: Dataset - Yelp dataset, hateful and offensive tweets’ statistics and preprocessing.

• Chapter 5: The Proposed Approach - Detailed description of the proposed framework for

incorporating morality in NLP.

• Chapter 6: Analysis based on Moral Foundations - Detailed description of analysis of Yelp

users’ rating behavior based on moral foundations and Doc2Vec embedding method.

• Chapter 7: Hate Speech and Offensive Language based on Moral Foundations - Detailed

description of our method to examine moral features as boosting features to predict social

media data. We analyze and classify hateful and offensive tweets utilizing the moral per-

spective.

• Chapter 8: Conclusions and Future Work - The conclusions drawn from the previous chap-

ters and the potential future work.
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Chapter 2

Background

Public social networks are indispensable resources of various types of data and interactions. Fig-

ure 2.1, introduces users’ activities in social networks. These activities result in heterogeneous

social networks’ data. Richthammer et al. [84] divide the data available on social networks into

several categories. In particular, login data, mandatory user profile data, extended user profile data,

network data, ratings and interests such as numbers of up-votes, down-votes, votes for coolness,

funniness, helpfulness, and users’ online business ratings. In addition, the private communica-

tion data/disclosed data category might be user inputs such as posts, messages, tagging, following,

re-tweeting, comments, and online reviews’ information while incidental/disseminated data corre-

sponds to other users’ data. We can also observe application data corresponding to behavioral data,

and connection data. There are several methods to extract knowledge from the abundant and het-

erogeneous data on social networks, such as news analysis, scraping, data visualization, opinion

mining, sentiment analysis, link analysis, graph-theory based approaches to understand the so-

cial graph/the friendships formed based on users’ communications, and clustering algorithms for

unlocking social media communities. Moreover, there are several supervised/unsupervised/semi-

supervised methods available to predict user behavior on social networks.
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Figure 2.1: User activities on social networks [84]

2.1 Text Mining Methods

Textual mining methods are one important approach among various strategies and algorithms to

extract knowledge from the social data. Social networks’ interactions are mostly based on human

language; however, computers comprehend very little of the meaning of human conversations.

In order to be able to command computers to do different tasks and enable them to analyze and

understand human language/text to report their results, we have to represent human text in an un-

derstandable language for computers. Vector Space Models (VSM) and Distributed Vector Models

are two semantic technologies to tackle this problem [98].

2.1.1 Vector Space Models

In vector space models, we compute a word/term-document matrix where each row represents a

word in the vocabulary and each column represents a document from a collection. This model is

based on the occurrences of a word/term in the document. This scheme is a count vector where the

ordering matters since in this model, the first dimension refers to the occurrences of a specific word

in all documents. The word–context matrix is term–document matrix as a special case where the

word is a chunk of textual data instead of a word. Vector space models also consider pair–pattern

matrices where the rows correspond to pairs of terms and the columns represent the patterns where
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the pairs occur [98].

2.1.1.1 Tf-idf

The traditional tf-idf, a well-known vector space weighting scheme, which is the short form of term

frequency-inverse document frequency is popular in the text mining community. Tf-idf is based

on the term frequency count for a specific word or term in each document in the entire corpus.

This count is then compared to the inverse document frequency count after normalization. The

inverse document frequency count is the count of word (or term) in the whole document [71, 91],

i.e., given word w in document d, and a collection of documents D:

T F− IDF(w, d) = fw, d× log(
N

fw, D
) (2.1)

where N is the number of all documents, fw, d is the number of the times w appears in single

document d, and fw, D is the number of documents with the word w [90].

The similarity between two document vectors can be the relationship between the vectors.

However, this relationship does not have any semantic or syntactic attributes and is solely based

on the occurrences of the word/terms [72].

Tf-idf features will be used in chapter 7 for evaluating various models for the hate speech and

offensive language classification task.

2.1.1.2 Bag-of-words

In this model, each document is treated as a bag which contains all words/tokens that appear in the

document, disregarding grammar and order. I.e., in this model, word order is not important and

we represent documents as unordered lists of words/terms [56]. BoW constructs a matrix where

each row corresponds to a word, each column represents a document and each cell is a word count

which results in a very sparse matrix. In the BoW approach, "A likes B." and "B likes A." are

represented similarly as ["A", "B", "likes"].
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2.1.1.3 Point-wise Mutual Information

Point-wise mutual information (PMI) is an alternative weighting scheme to tf-idf where PMI is a

measure of association between a target word and a specific context word. Alternatively, PMI is

a measure to compute the probability of two words to occur together compared to the situation in

which they were independent. This can be applied to an output word w and a context word c as:

PMI(w, c) = log2
P(w, c)

P(w)×P(c)
(2.2)

where P(w, c) shows how often we observe these two words occur together, and P(w)×P(c)

indicates how often we expect these two words to co-occur if they were to occur independently.

This approach results in a measure that indicates the probability of these words to co-occur com-

pared to the chance probability. PMI’s range can be from positive to negative infinity. More pos-

itive values imply a higher probability of co-occurring compared to the chance probability while

negative values imply less chances of co-occurring [22, 23, 56].

2.1.2 Distributed Vector Models

Distributed vector models are more advanced than the space vector models since the meaning of a

word is extracted based on the context words surrounding the word, i.e., similar positions of words

in different documents covey similar semantic or syntactic meanings. The distributional hypothesis

behind these vector models refers to the idea that words occurring in the similar contexts tend to

imply similar meanings [49, 75].

So instead of one-to-one relationships between elements in the vectors and words/terms, each

word is represented across all vector elements and contributes to other words’ meanings.

2.1.2.1 Doc2Vec

Word2Vec, a distributed vector model, is a word-embedding method of natural language processing

recently developed by Google [67]. It is a two-layer neural network to vectorize the words based
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on the given text context. Word2Vec performs a skip-gram and bag-of-words approach to do the

word embeddings. It returns the words and their corresponding vectors in the semantic space, in

which similar words are closer to each other [40, 74, 75].

Doc2Vec is an extension to Word2Vec, which improves Word2Vec by enabling representation

of paragraphs and longer blocks of text as individual vectors. Besides the word vectors, a new

paragraph vector is defined for every paragraph. Similar to Word2Vec, Doc2Vec is the continuous

distributed vector of representations for pieces of texts [67].

In Word2Vec, the aim is to predict a word given its surrounding words. Given a neural network

of only one hidden layer, the input IDs are the context words which are the words surrounding

the output word. The output layer is the word of interest for prediction. The neural network tries

to learn and adjust the corresponding weights by performing the training process to maximize the

probability of the output word. These weights will be the vectorized representation of the words

after several rounds of training. Doc2Vec follows the same pattern; however, it has additional

nodes as special tokens to symbolize each document. Figure 2.2 shows this process where we have

an ID for the paragraph and the context words ‘the’, ‘cat’, and ‘sat’ are the input words [67]. If we

represent the feature that symbolizes the document contexts as D, the context words as W which

are the words in a window surrounding the output word, and the output word as O, Doc2Vec’s goal

is to maximize the following log probability:

max( ∑
∀(O, W, D)

logP(O|W, D)) (2.3)

This stage provides us with the document embeddings and the word embeddings of the training

corpus. The second stage is “the inference stage” for the documents that we have not seen yet.

This process is similar to the previous maximization step. However, in this stage we can keep the

weights as constants and then learn D for the testing corpus [67].

Similar to Word2Vec, Doc2Vec has two versions – the distributed bag-of-words paragraph

vectors model (i.e., PV-DBOW) model and the distributed memory paragraph vectors model (i.e.,

PV-DM). PV-DBOW is similar to the Skip-gram model in word vectors, however, it replaces the
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Figure 2.2: Structure for learning document vectors, “the,” “cat,” and “sat” are the context words
while “on” is the output word. In this model, the concatenation or average of the current vector
and three context words is used to predict the output word [67].

Figure 2.3: Comparison among tf-idf, LSA, and LDA

input by a specific paragraph token that symbolizes the documents. Unlike PV-DBOW that ig-

nores the order of the words, PV-DM takes the word order in a small context into account so that

important information of a paragraph is preserved. The paragraph token acts as a memory of the

context, which is sampled from a sliding window over the paragraph. The paragraph vector can

be constructed as either the concatenation or the average of the words in the context, known as

the Distributed Memory Paragraph Vector model with concatenated (DMC) or averaged (DMM)

paragraph vectors, respectively.

It has been shown that the PV-DM model performs better than the PV-DBOW model because

the latter ignores the context words by directly using random initialized words sampled from para-

graphs [67]. Therefore, we adopt the PV-DM model as the word-embedding method in this work.
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2.1.2.2 Additional Embedding Approaches

There are several other options for the embedding textual data since natural language processing

embedding tools have a rich history of studies. Doc2Vec by Le and Mikolov [67] and Word2Vec

by Mikolov et al. [75] are two of many embedding techniques.

• Deerwester et al. studied latent semantic analysis (LSA)/Latent semantic indexing (LSI)

which is built on top of a VSM approach but adopts the distributional vector hypothesis.

LSA assumes that words that have similar meanings will occur in similar blocks of text.

LSA uses tf-idf as the weighting scheme and models the documents by representing the

corpus in a dimensionality-reduced context matrix. The dimensionality reduction phase is

performed by a truncated singular value decomposition (SVD) [28, 64]. SVD converts the

high-dimensional sparse word-context matrices into low-dimensional matrices by preserving

the semantic relationships [56].

• Latent Dirichlet Allocation proposed by Blei, Ng, and Jordan, which is a three-level hier-

archical Bayesian model for modeling items on top of a set of topics, is another option in

document modeling [13]. This approach is based on a top modeling perspective and is sim-

ilar to LSA/LSI, however in LDA, each document is viewed as a combination of various

topics. Therefore, a set of topics are assigned to each document by LDA. Moreover, LDA

assumes the topic distribution is a sparse Dirichlet prior. The Dirichlet priors assume each

document has a limited set of topics which utilizes a limited number of frequent words. An

overview and comparison among tf-idf, LDA, and LSA methods is shown in Figure 2.3.

• Another study of Pennington, Socher, and Manning proposed “GloVe: Global Vectors for

Word Representation”, is based on a word-embedding method that utilizes dimensionality

reduction on the co-occurrence word-context matrix [81].
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2.2 Summary

In this chapter, we first introduced various existing data and methodologies for social networks

analysis. We introduced VSMs and distributed vector models as two semantic technologies for

mining natural language in social networks. We then explained the idea and mathematical equa-

tions behind VSMs, in particular, tf-idf. Next, we stated the details of the distributional hypothesis

and the difference between VSM and distributional approaches in representing textual data as vec-

tors. Finally, we discussed other existing embedding methods such as LDA, LSA/LSI, and GloVe.
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Chapter 3

Modeling Morality

3.1 Introduction

Morality coexists within cultural values and psychological inclinations. With a “binding” approach

towards morality, moral systems bind people together by concepts such as family, group, and na-

tion, and ingroup in general. For example, some moral systems value groups above individuals

and consider suppressing individual desires as virtues such as purity and authority. Other moral

systems disregard groups but emphasize the “individuals” welfare by employing moral founda-

tions such as harm and fairness [45]. Purity is also the main basis for religious laws and the main

morality virtue to distinguish moral boundaries [85]. Such moral values represent people’s emo-

tions. If a person is inclined to a specific moral virtue, they will feel glad if that moral foundation

is practiced or supported [44]. Otherwise, they will feel anger and contempt if a moral virtue is

disregarded [86].

Moral inclinations have been studied to distinguish political parties based on the concepts each

party tends to endorse. For example, while liberals tend to endorse harm and fairness, conservatives

believe in all moral virtues with less emphasis on harm and fairness [43, 46]. Similarly, moral

values and individuals’ moral inclinations influence their expression of opinions, for example,

in terms of ratings in online reviews or the moral weight of the abusive online content in social
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networks.

3.2 Moral Foundations Theory

Individuals hold their own moral values to determine right and wrong, however, the definition

of moral or immoral vary widely due to contextual and cultural differences. To understand why

morality varies across cultures and extract the similarities, MFT explains morality varies as a func-

tion of five moral factors, namely moral foundations (MF):

1. Harm (care) as disliking others’ pain

2. Fairness as doing justice based on common rules

3. Ingroup as being loyal to one’s family or nation

4. Authority as respecting and obeying rules and traditions

5. Purity as feeling aversion towards repulsive things [58].

In MFT, a dictionary consisting of keywords and their stems related to the five moral categories,

known as the Moral Foundations Dictionary (MFD) [2], is proposed by Haidt and Graham to

represent each moral foundation with a set of keywords [43, 47]. MFD divides each category into

vice and virtue keywords. Virtue keywords support their corresponding moral foundation, e.g.

“shelter” or “protect” for the harm virtue. Similarly, vice keywords incorporate the words that

violate the moral virtue, e.g. “suffer” or “hurt” for the harm vice. In this work, we use 149 vice

keywords in MFD.

3.3 MFT in Social Networks

Moral foundations’ effects on social networks has been studied extensively in the previous studies.

Dehghani et al. [29] investigated the influence of purity homophily as a main predictor of social
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distances. In addition, Kaur and Sasahara employed big data analysis and word-embeddings to

investigate four morally sensitive issues in twitter [58]. In another study, Zhang and Counts used

MFT to extract the ideological patterns and predict potential changes with moral foundations as

a predicting factor [105]. Landmann and Hess, investigated if specific emotions are elicited by

specific moral foundations [65]. Additionally, Garten et al. employed sentiment analysis on a set

of tweets and examined the evolution of the moral rhetoric over time [37]. The political positions of

people in twitter and their retweeting behavior in inter-community and intra-community retweets

was studied based on MFT variables in [88] by Sagi and Dehghani. In [78], moral inclinations’

effects on users’ rating behavior was studied.

In the series of studies of Sagi and Dehghani, the semantic similarity between keywords of a

specific corpus and the MFD keywords are defined as the moral loading for the topic of interest.

The moral loadings can then be used as a factor to test various morally-relevant hypotheses [52, 87].

Inspired by MFT, researchers in other communities have used machine learning techniques and

NLP to create a user-defined dictionary of words [37, 52]. Furthermore, big data techniques have

been used by Boyd et al. to investigate the relationship between moral values and the behavioral

patterns in texts [14, 52].

21



Chapter 4

Dataset

4.1 Yelp Dataset

Yelp.com is a popular online social network for rating businesses. In this work, we use an open

dataset from the Yelp Dataset Challenge Round 9 [4], which includes 4,153,151 reviews on various

kinds of businesses with each review being rated from 1 to 5 stars.

This dataset also has more than 947,000 tips by one million users for 144 thousand businesses

in UK: Edinburgh, Germany: Karlsruhe, Canada: Montreal and Waterloo, U.S.: Pittsburgh, Char-

lotte, Urbana-Champaign, Phoenix, Las Vegas, Madison, and Cleveland. The dataset is of three

main components: the reviews, the businesses, and the users.

The reviews are presented with several features: review ID, user ID, business ID, star rating of

the review, date of the review, review text, count of useful votes, count of funny votes, and count

of coolness votes.

The businesses are attributed to: business ID, business name, neighborhood name, full address,

city, state, postal code, latitude, longitude, star rating, number of reviews for the business, and is

open 0/1 (closed/open).

The users have the following features: user ID, first name, review count, yelping since, IDs of

friends, number of useful/cool/funny votes sent by the user, number of fans the user has, an array
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of years the user was elite, average stars, number of hot/more compliments/profile compliments/-

cute/cool/funny/writer/photos compliments received by the user, and list/note/plain compliments

received by the user.

In our study, because we concern about the moral inclinations of the reviewers’ text, we first

constructed a morality-relevant dataset of 7,039 English reviews by filtering the reviews with key-

words “moral” and “ethic” by using the review text.

In our data preprocessing, we removed all extra white spaces and punctuations in the text and

converted the capital letters to small letters to avoid extra preprocessing for the uppercase letters.

We then used the reviews’ star ratings and user’s average star rating as features in our studies

in chapter 6.

4.2 Hateful and Offensive Tweets

We use the labeled data provided by Davidson et al. [25], which contains 24,783 tweets. The tweets

were gathered from the twitter API by searching specific hate lexicons from Hatebase.org and

extracting the timeline for the users resulting in 85.4 million tweets. A sample of these tweets was

then labeled by CrowdFlower [1] workers as ‘hate speech’, ‘offensive language’, and ‘neither’ after

receiving instructions on correct strategies for annotation of the tweets, i.e., the workers labeled

the data based on the context in which the words were used and not necessarily by detecting a

specific slur. Each tweet was labeled by at least three workers and the inter-agreement of 92%

was reported by CrowdFlower. Each tweet was assigned a final label of hate speech, offensive

language, or neither based on a simple majority vote [25]. The number of tweets in each label is

listed in Table 4.1.

In the preprocessing step, we lowercased and stemmed the tweets using the Porter stemmer.

We removed extra white spaces and the punctuation.

23



Table 4.1: Number of tweets in each category

Category Count of Tweets
Hate Speech 1,430

Offensive Language 19,190
Neither 4,163

4.3 Yelp Dataset and Tweets’ Discrepancy

Both the Yelp reviews dataset and the tweets’ dataset contain a collection of short texts. But they

differ from each other in the following aspects:

First, these two datasets are from different contexts: Yelp.com is known for rating various busi-

nesses such as restaurants, therefore, our dataset contains online reviews discussing the pros/cons

of each business. While our tweets are related to hate speech and offensive language and mostly

contain curse words.

Second, the average length of the textual data is different in both datasets. Twitter has a 140-

character limitation policy restricting the length of its posts which results in very short texts. There-

fore, the average word count of our tweets is 13.63 words; however, Yelp does not have this limita-

tion and users can discuss the businesses in details. Therefore, the average word count of our Yelp

dataset is 269.097.

Considering different characteristics of the tweets and the Yelp reviews, we can conclude that

we are studying two different sets of social networks’ textual data.
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Chapter 5

The Proposed Solution’s Framework

5.1 The System Design Rationale

We build our system based on Doc2Vec for the analysis of the Yelp dataset, and tf-idf and Doc2Vec

for tweets’ analysis and prediction. There are several reasons behind choosing Doc2Vec from

several approaches discussed in chapter 2 such as LDA, LSA, Word2Vec. Doc2Vec captures the

semantics of the document based on a full block of text in the entire corpus. Analysis based on

words which is the main concern is the previous embedding approaches, cannot efficiently capture

the semantic similarities of the documents as a block of text relative to other blocks of text in the

corpus. In addition, several studies have shown Doc2Vec’s superiority. For instance, Campr and

Ježek [19] compared Doc2Vec, Word2Vec, LDA, and LSA. The results demonstrated Doc2Vec has

superior performance. In [66], it was demonstrated that Doc2Vec performs better than Word2Vec

by comparing these approaches performance and adopting several short and long corpora. The

original paper on Doc2Vec by Le and Mikolov [67] also showed its superiority compared to other

embedding methods, such as a specific version of LDA.

Tf-idf is a traditional embedding approach in text mining community. It is popular due to

several advantages such as easy computation, inclusion of the most descriptive words based on a

simple weighting scheme, finding word overlaps for longer documents of nearly thirty words [26].
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Therefore, it is our main choice for providing a set of fundamental features and a baseline approach

which will be used for further enhancement by incorporating additional features.

5.2 Semantic Similarity to Moral Foundations

The Doc2Vec model learns paragraph vectors from unlabeled text data of a variable length, which

makes it an attractive method to process the textual content of online reviews in chapter 6 and the

content of tweets in chapter 7 in this work. Therefore, we adopted the PV-DM model to convert

each online review (tweet) as a document to a vector in the semantic space. In particular, we

implemented the DMM approach and utilized the average word vectors of the key words of each

moral foundation. Meanwhile, words in the reviews (tweets) are represented as vectors in a vector

space where semantically similar words have similar vector representations. In this way, we can

calculate the text similarity of the review (tweet) to a moral foundation as the cosine similarity of

the document vectors and MF words by averaging MF words’ respective vectors.

5.3 The System Architecture

In this section, we will provide a step by step description of our proposed scheme. The flowchart

of this scheme is shown in Figure 5.1.

5.3.1 Data Preprocessing

The performance of a pattern recognition system is bound to an appropriate data-preprocessing

technique. For the Yelp dataset preprocessing, we removed all extra white spaces and punctuations

in the text and converted the capital letters to small letters to avoid extra preprocessing for the

uppercase letters.

Similarly, for the dataset of tweets, we first lowercased the tweets. We then stemmed the tweets

using the Porter stemmer. Moreover, we removed extra white spaces and the punctuation. We also
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Figure 5.1: Structure for learning document vectors and computing moral loadings

removed twitter’s special tokens: @, RT, hash signs, and URLs only during Doc2Vec model’s

training step.

5.3.2 Compute Document Vectors

We first tokenized the corpus based on the whitespace and removed non-alphanumeric characters

and the less frequently occurred tokens. Then, we treated each document as a separate paragraph

to train the PV-DM model.

After training, we obtained the vector representations for each token in the corpus. For each

sentence, we formed a vector, r = (r1, . . . ,rv)
T , corresponding to the summation of the vectors

of all the tokens in the sentence. Similarly, for each of the five moral foundations, we formed a

vector, f = ( f1, . . . , fv)
T , corresponding to the summation of the vectors of all the vice keywords
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in that moral foundation. These vectors are the representations of our documents/moral words in

the semantic space.

Some studies have proposed the potential to represent the words/documents in Euclidean space

instead of a semantic space [50].

5.3.3 Compute Moral Loadings

We used the cosine similarity between a document vector r and a moral foundation vector f as a

measure for the similarity of a document to a moral foundation, which is calculated as the dot prod-

uct between the two vectors normalized by their norms. In the moral context, a cosine similarity

close to 1 indicates that the review is semantically similar to that moral foundation, while a cosine

similarity close to 0 indicates that the document and the moral foundation are not semantically

related.

Definition of Moral Loading - We define the moral loading mi j for a document as the cosine

similarity between the moral foundation fi the document r j, where i ∈ {1,2,3,4,5} is an index

representing each moral foundation and j corresponds to a document’s index in the entire corpus.

The quantified moral loadings were inspired by a series of studies of Sagi and Dehghani [87, 52]

and Dehghani et al. [29] where the semantic similarity between a corpus’s keywords and the MFD

keywords are defined as the moral loading for the topic of interest.

We then use the moral loadings as features to distinguish documents in each moral foundation

and feed them to an analyzer to either do a classification task or statistical analyses. To quantify

the moral loadings using the Doc2Vec method, we adopted Python’s genism module [83] to learn

paragraph vectors.

Finally, we used cosine similarity to quantify moral loadings. However, there are other simi-

larity measures which can be utilized to do this task, such as:

• Block distance or Manhattan distance, compares the distance in a grid path to get from one

point to another data point. The Block distance between two data points is the sum of the
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differences of their corresponding components [41, 61].

• Dice’s coefficient is computed as twice the number of common terms in two documents over

the total number of terms in both documents [30, 41].

• Euclidean distance or L2 distance is the square root of the sum of squared differences be-

tween corresponding elements of the two vectors [41].

• Jaccard similarity is defined as the number of common terms divided by the number of the

unique terms in the documents [41, 55]

• Matching coefficient is a vector-based scheme where we count the number of similar terms

in the documents where both document vectors are non-zero [41].

• Overlap coefficient is very similar to Dice’s coefficient; however, if one document is a subset

of the other document, we will consider the similarity as a full match [41].

In addition, there are character-based similarity approaches such as Longest Common Sub-

String (LCS) algorithm which considers the similarity between two strings as the length of con-

tiguous chain of characters that are common in both strings, or N-grams where the similarity is

defined as the count of the common N-grams in two strings over the maximal number of the N-

grams in two strings [9, 41].

5.3.4 Analyzer

In this section, we introduce the measures we used to understand the importance of a moral load-

ings in social networks’ data based on a statistical analysis approach. We employed two measures:

Conditional Relative Frequency and the correlations between the moral foundations.

Lastly, we will discuss the classification algorithm options.
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5.3.4.1 Conditional Relative Frequency

If the dataset we are trying to analyze is imbalanced, a simple frequency analysis cannot efficiently

represent the true statistics of the dataset. For instance, when we studied the original dataset of

4,153,151 Yelp reviews, we found that the dataset has an unbalanced number of ratings. The

number of reviews rated with 5 stars is much larger than the reviews rated with 1 star. In particular,

there are 1,704,200 reviews or 41% of the entire Yelp reviews with a 5-star rating and 540,377

reviews which is equal to 13% of of Yelp reviews with a 1-star rating.

Due to this imbalance, we believe the conditional distribution should be more informative and

reasonable than the direct distribution. Therefore, if we represent the star rating in each moral

foundation as r and the dataset of interest as D, we defined the conditional relative frequency

(CRF) of each rating as:

CRF(r, MFi) =
fr, MFi

fr, D
s.t. i ∈ {1,2,3,4,5} and r ∈ {1,2,3,4,5} (5.1)

where D is the dataset of interest, i is an index for each MF, r is 1 to 5 star ratings, fr, MFi is the

number of star ratings in each MF, fr, D is the number of star ratings in the dataset of interest, and

CRF(r, MFi) is the conditional relative frequency of rating r for moral foundation i.

• Yelp reviews’ dataset of interest can be the entire Yelp dataset or the morally filtered dataset

of 7,039 reviews.

• Offensive and hateful tweets’ dataset of interest is the entire corpus of 24,783 tweets since

the dataset is not filtered with specific keywords.

For example, in the case of Yelp reviews, if we have 264 reviews with a 5-star rating in the

harm MF and 2,211 5-star reviews among 7,039 moral Yelp reviews, the CRF will be defined as:

CRF(5, MF harm) =
264

2211
×100
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which means there are more than 11% reviews in the 5-star rating considered related to harm.

In chapters 6 and 7, we will discuss the process of identifying reviews/tweets in each MF.

5.3.4.2 Our Correlation Measure

To understand the moral correlations in our datasets we studied the correlations between the moral

foundations. These correlations will help us extract hidden moral relationships in our data and to

examine if specific MFs are correlated based on their binding or individual attributes. We can also

compare the moral correlations for two different textual and contextual datasets (Yelp reviews and

hateful/offensive tweets).

There are many correlation measures that can be used to calculate the moral correlations:

• Spearman’s rho or Spearman’s rank correlation coefficient which is a rank-based monotonic

function. A high correlation conveys similar rankings between observations within two vari-

ables [68].

• Kendall’s Tau or the Kendall rank correlation coefficient, is a statistical metric that mea-

sures the ordinal association between two variables. This correlation is rank-based, so high

correlations imply similar rankings between observations within two variables [59, 62].

• Gamma correlation coefficient is another rank-based correlation where we measure the sim-

ilarity of the orderings of the data when ranked by the observations’ quantities [42].

In this work, we use the Pearson correlation coefficient (PCC) as a measure of correlation. It

is also referred to as Pearson’s r. Pearson’s r is a measure of the linear correlation between two

variables and was introduced by Karl Pearson [79]. The range of this correlation is from -1 to

1 where 1 indicates perfectly positive linear correlation, 0 indicates no linear correlation, and -1

indicates perfectly negative correlation. For two variables X and Y , this correlation is computed as

below:

rXY =
cov(X , Y )
σX ×σY

(5.2)
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Where cov(X , Y ) is the covariance of X and Y , σX is the standard deviation of X , and σY is the

standard deviation of Y [79].

5.3.4.3 Classification Algorithm

The classification task is to predict tweets’ labels based on a moral perspective. We want to exam-

ine the moral features applicability as new boosting features to improve the classification perfor-

mance. Several classification algorithms such as regularization-based algorithms (multi-class/one-

vs-all approaches), decision tree-based approaches, Naive Bayes, kNN, etc. can be used to perform

this task. In this work, we examined all these algorithms and selected logistic regression with L2

regularization due to its superior performance compared to other models.

5.4 Summary

In this chapter, we described our scheme to understand/analyze moral features in social networks.

We first described our rationale for choosing Doc2Vec and tf-idf. We then defined our scheme by

introducing our preprocessing strategy, our approach to represent documents in the semantic space

using Doc2Vec, and how to calculate the moral loadings. Next, we introduced conditional relative

frequency and Pearson’s r correlation as two metrics to examine concrete moral relationships in

social networks’ data. Finally, we discussed several classification strategies to incorporate moral

loadings in social media data prediction.
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Chapter 6

Rating Behavior based on Moral Foundations:

The case of Yelp Reviews

In the previous chapters, we discussed the importance of a moral analysis on user-generated con-

tent in social networks and introduced our approach. In this chapter, we will conduct this study

by first applying our approach on Yelp reviews. Next, we define a similarity threshold to identify

a set of reviews in each moral foundation. We present the frequency and conditional relative fre-

quency of the reviews in each moral foundation to compare the rating behavior of regular users

with moral-concerned users. In addition, we examine the correlations between moral foundations

as another metric of importance of moral patterns in social networks. Finally, we perform a study

for moral-concerned users to compare their moral rating behavior with their non-moral rating be-

havior reflected in their average rating [78].

6.1 Compute Yelp Reviews’ Moral Loadings

The moral loadings are calculated in the following steps:

1. Represent reviews’ vectors in the semantic space: As described in section 5.3, using

Doc2Vec, we converted each review to a vector in the semantic space. We considered each
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review as a document and used each review as a separate paragraph to train the Doc2Vec

PV-DM model. We embedded the reviews into vectors of size 100 in the semantic space. In

addition, we used a window size of 10 and negative sampling of size 5 which indicates the

count of the noise words drawn by negative sampling.

After training, we obtained the vectors’ representation for each token in the corpus. For

each review, we formed a vector, r = (r1, . . . ,r100)
T , corresponding to the summation of the

vectors of all the tokens in the review. Similarly, for each of the five moral foundations, we

formed a vector, f = ( f1, . . . , f100)
T , corresponding to the summation of the vectors of all

the vice keywords in that moral foundation.

2. Similarity-based moral loadings: We used the same scheme described in section 5.3.3.

We defined the cosine similarity between a review vector r and a moral foundation vector

f as the measure for the similarity of a document to a moral foundation. This similarity is

calculated as the dot product between the two vectors normalized by their norms and named

moral loading mi j for a review where i ∈ {1,2,3,4,5} is an index representing each moral

foundation and j is a review/user’s index for identification in the entire corpus.

Similarly, we define the moral loading Mi j for a reviewer u j as the average of the moral

loadings of all his reviews.

6.2 Yelp Users’ Rating Behavior

In this work, we conducted two experimental studies to explore the relationship between people’s

moral concerns and their rating behavior. In particular, we first identified the frequency of the

ratings in each moral category and calculated the conditional relative frequency considering the

unbalanced datasets. Secondly, we tracked the regular users who have rated the same businesses

as the moral-concerned users identified in our moral corpora, and studied the differences in their

rating behaviors.
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6.2.1 Identify Relevant Users based on the Moral Loadings

In the first study, we aim to investigate if people who care more about morality will rate differently

from the regular users who do not show a clear moral inclination in the face of moral violations. We

are also interested in exploring the different ways that the reviewers rate under different morality

contexts.

To tackle this problem, we first need to identify individuals associated with each of the five

moral foundations, i.e., harm, fairness, ingroup, authority, and purity. As described in chapter 5,

we calculated the moral loadings in each MF category as the cosine similarity for a review and the

keywords in that MF category. We then ranked the reviews based on their moral loadings.

To locate the most similar document to each moral foundation, we defined a cosine similarity

threshold. It is pointed out in [82] that the threshold for the cosine similarity measures in document

comparison should be dynamically adjusted, since low cosine thresholds can produce good results

in terms of precision and recall. In fact, setting a too high threshold without considering the specific

context’s experimental results will result in excluding documents that are similar. As recommended

in [32], “researchers taking the factor analysis approach to LSA should not apply 0.40 or some

similarly preset loading threshold, but instead apply an empirically derived threshold, validated by

a domain expert because thresholds as low as 0.18 were found acceptable.” Following this idea, we

experimentally set the threshold for cosine similarity in our moral corpora to 0.2. Our empirical

analysis showed this threshold as a good boundary to distinguish morally similar documents. In

the morally filtered dataset of 7,039 reviews, there are 5,782 reviews with the cosine similarity

larger than 0.2.

In particular, we had 1,002 reviews for the Ingroup MF category, 1,115 reviews for authority,

1,118 reviews for harm, 1,188 for reviews fairness, and 1,359 reviews for purity. In each case,

the reviews with a loading above 0.2 maintained a reasonably strong relevance to the respective

moral foundation category. In the meantime, the result provides a reasonably large size of morally

relevant reviews to be used in further analysis.
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6.2.2 Relationship between Users’ Moral Concerns and Ratings

Next, we studied the direct relationship between a user’s own moral inclinations and her rating

behavior. In the Yelp dataset, for each review, a user explicitly gives a star rating, ranging from 1

star to 5 stars. The result is shown in Figure 6.1. For each moral foundation category, we show

the distribution of reviews in different star ratings. In all moral foundation categories, it is obvious

that the reviews with 1-star rating outnumber the reviews of any other rating. This indicates users

who care more about the moral concerns tend to give low (i.e., 1-star) ratings.

However, the original dataset of 4,153,151 reviews, has an unbalanced number of ratings. The

number of 5-star rated reviews is much more than 1-star reviews. In particular, there are 1,704,200

reviews with 5 stars which equals to 41% percent of the entire Yelp reviews and 540,377 reviews

are 1-star which incorporates only 13% of Yelp reviews. Therefore, we believe the conditional

distribution is more useful and reasonable than a direct distribution. We compute the CRF based

on equation 5.1.

We first analyzed the conditional relative frequency in relevance to the entire dataset with

4,153,151 reviews. As shown in Figure 6.2, in all five moral foundation categories, the frequency

of reviews in 1-star rating is significantly larger than the number of reviews in other star ratings.

Next, we calculated the conditional relative frequency in relevance to our moral dataset (i.e.,

the dataset with 7,039 moral-relevant reviews). The result is shown in Figure 6.3 For instance, in

the moral dataset of 7,039 reviews, there are more than 20% reviews in 1-star rating considered

related to fairness, while only 6% reviews in 5-star rating are considered related to fairness.

Moreover, in all moral foundation categories except the purity category, a consistent stepwise

decreasing pattern was observed in the conditional relative distribution of reviews with different

star ratings. This indicates that users giving lower ratings tend to consider more about the fairness,

authority, ingroup, and harm aspects in their reviews, while users giving higher ratings have less

considerations in mind [78].

The only exception is the purity category, in which no matter which star rating is given, an
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Figure 6.1: Frequency of each rating in five moral corpora

approximately same relative percentage of users care about purity (e.g., “disgust”, “gross”, “in-

decent”, “trashy”, etc.) in the reviews. This finding is in line with some previous work on moral

foundations. For example, Dehghani et al. [29] investigated the influence of purity homophily as a

predictor of social distances. Their results indicated that comparing with other moral foundations,

purity is the main predictor of the social distances.

6.2.3 Moral-concerned and Regular Users’ Rating Behavior

In this task, we studied the rating behavior of regular users and users with moral inclinations.

In section 6.2.1, we identified a set of users whose reviews are related to five moral foundations.

We also searched the entire Yelp dataset to locate another group of 370,221 users (with repetition),

who had reviewed the same set of businesses that the moral-concerned users reviewed. Therefore,

we constructed two user sets, e.g., regular users and moral-concerned users.

We first show regular users’ rating distribution in Figure 6.4 (left). For the target set of busi-

nesses, this figure shows percentages of reviews with different ratings. Overall, there are more

reviews with 4 and 5 star ratings than the ones with 1-3 star ratings. We also plot the conditional

relative frequency of review ratings in relevance to the count of each rating in the entire dataset,
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Figure 6.2: Conditional relative frequency of each rating relative to the dataset of 4,153,151 re-
views

Figure 6.3: Conditional relative frequency of each rating relative to the dataset of 7,039 reviews
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Figure 6.4: Frequency (left) and conditional relative frequency (right) of the ratings of regular
users

Figure 6.5: Frequency (left) and conditional relative frequency (right) of the ratings of moral-
concerned users

as shown in Figure 6.4 (right). This indicates the rating behavior of the selected regular user set is

compatible to the general users and the selected regular users are not biased [78].

Next, we studied the rating distribution of the users in the moral set. The frequency and con-

ditional relative frequency of ratings of moral-concerned users are shown in Figure 6.5. In both

plots, there are significantly more reviews with 1-star rating than reviews with higher ratings. This

is in line with our findings in the previous task.

Comparing Figure 6.4 and Figure 6.5, we clearly see that regarding the same set of businesses,

Table 6.1: Correlations between stars’ count and cosine similarities

Moral Foundations Correlation
Fairness -0.302

Harm -0.145
Authority -0.350
Ingroup -0.284
Purity 0.065
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regular users who do not care about the moral foundations or face any moral violations, rate dif-

ferently from users who do have moral concerns. In particular, people who care about moral

violations tend to rate lower than regular users. Moreover, the moral-concerned users tend to give

the lowest rating compared to the regular users.

We further studied the correlation between the moral loadings and the count of star ratings for

our five moral corpora using Pearson’s r which was described in equation 5.2. As shown in Table

6.1, the negative correlations for ingroup, fairness, harm, and authority are compatible with the

previous bar plots, since the higher ratings the reviews have, the smaller their moral loadings will

be.

It is worth to point out that the correlation result of the purity category also went along with

the unbalanced rating pattern of the reviewers in the purity moral corpus [78].

6.3 Moral-concerned Users’ Average Ratings and Correlations

In the previous study, we showed that users with moral considerations rate differently from the

regular users. In this study, we aim to examine the rating behavior of the moral-concerned users

by comparing the average ratings of their moral-related reviews and the other reviews that do not

show clear moral relevance. In other words, if the users with high moral loadings show the same

moral inclinations in their general average ratings.

6.3.1 Users’ Average Rating Behavior

To compare moral-concerned users’ average moral ratings and average non-moral ratings, for each

user in the moral set identified in section 6.2.1, we calculated the rating difference of the user as:

di j = |ri j−g j| s.t. 0≤ di j < 4 (6.1)

where g j denotes the average rating of all her reviews, and ri j denotes the average rating of her

reviews regarding the moral foundation i and j is an index for a reviewer u j.
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Figure 6.6: CDF of the absolute difference of average moral ratings and general average moral
ratings of the reviwers for each moral foundation

For each of the five moral foundations, we calculated the rating difference for all the users with

reviews relevant to this moral foundation. The corresponding cumulative density function is shown

in Figure 6.6 to provide direct statistical insights about the moral-relevant users’ rating behavior.

Generally speaking, these reviewers tend to show the same rating behavior in their overall reviews

as compared to their moral-concerned reviews. As shown in Figure 6.6, the maximal of the average

rating difference is 3.8, and more than 50% of users have a rating difference smaller than 1.5 stars,

which is close to the theoretic average rating difference of 2 stars.

Next, we define the weighted average rating difference by incorporating the moral loading of

each user as the weight. This is because users related to one moral foundation have different moral

loadings, which indicates the degree of inclination to the moral foundations. Consequently, we

calculate the weighted average rating difference as Mi j× |ri j− g j|, and show the corresponding

cumulative density function results for five moral foundations in Figure 6.7.

As shown in Figure 6.7, over 90% of users have a rating difference smaller than 2.5, and

over 20% of users have a rating difference smaller than 1, in all five moral foundations. This

indicates that moral-concerned user rates consistently in their moral-concerned reviews and the

general reviews [78].
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Figure 6.7: CDF of the morally weighted absolute difference of average moral ratings and general
average moral ratings of the reviwers for each moral foundation

Table 6.2: Cosine similarities’ correlations

Moral Foundations Fairness Harm Authority Ingroup Purity
Fairness - 0.355 0.681 0.384 0.286

Harm - - 0.368 0.385 0.332
Authority - - - 0.527 0.145
Ingroup - - - - 0.132
Purity - - - - -

6.3.2 Correlations between Moral Foundations

We also studied the correlations between moral foundations with Pearson’s r defined in equation

5.2. As shown in Table 6.2, authority and fairness have the highest correlation, and purity and

ingroup have the lowest value. In fact, purity is not highly correlated with any other moral founda-

tion. This is in line with previous studies [29, 58, 85], our findings in Table 6.1, and the unbalanced

ratings in section 6.2, which indicates that purity is the most peculiar moral foundation. We also

observed that ingroup and authority are highly correlated. This may be because they are from the

binding foundations [45]. We expected a higher correlation between harm and fairness since they

are both individualizing foundations; however, this was not observed in our results.

Finally, we compute a word cloud with all vice keywords identified in our moral corpora. If

the word is not directly in MFD (e.g., MFD by default has several words for the root ‘desert’), we
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Figure 6.8: Word cloud of MFD’s vice keywords in our moral corpora

present words of the same root under one word of the same root which is available in MFD. E.g.,

‘favor’, ‘favors’, ‘favored’ are all of the same root and their representative in MFD is ‘favoritism’.

As shown in Figure 6.8, keywords ‘refuse’ and ‘favoritism’ are highlighted as the most frequent

words in our moral corpora.

6.4 Summary

In this chapter, we analyzed the moral loadings of Yelp reviews by employing the moral founda-

tions theory and by using Doc2Vec as an embedding method to represent the documents in the

semantic space. We first identified reviews in each moral foundation based on a cosine similarity

threshold. Next, we performed a set of statistical analysis using conditional relative frequency and

the correlations between MFs to understand the hidden moral patterns in social networks’ data, and

to compare the rating behavior of moral-concerned users and regular users. Lastly, we examined

moral-concerned users’ moral and non-moral average ratings.

Our results show concrete moral behavior on social networks. We observed that moral-concerned

users tend to rate with the lowest possible rating (1-star) and their rating behavior is different from

the non-biased rating pattern of regular users.

Moreover, we observed that purity is the most peculiar moral foundation. Finally, moral-

concerned users show the same moral inclinations in their general non-moral average rating.
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Chapter 7

Hate Speech and Offensive Language Analysis

and Prediction based on Moral Foundations

In the previous chapter, rating behavior of the users was examined by employing moral foundations

theory and Doc2Vec. This chapter begins by describing the importance of a similar moral study

in terms of user-generated abusive content such as hate speech and offensive language in social

networks. We then propose a study to understand and detect hate speech and offensive language

based on the moral foundations, which has not been done in previous studies. We first use Doc2Vec

and the moral foundations theory to identify tweets in each moral foundation. Next, we discuss

the correlations and frequency of the tweets in each moral foundation. Finally, to examine the

applicability of moral features in prediction of social media textual data, we use the moral loadings

as new features to improve a baseline approach of mainly tf-idf features to classify the tweets.

7.1 Existing Hate Speech and Offensive Language Studies

There is a rich history of studies on detecting hate speech on social networks since hate speech

targets victims based on their intrinsic features and can ignite violence. Therefore, some countries

have taken legal actions against hate speech [25].

Most studies conflate hate speech and offensive language and refer to it as ‘hate speech’, e.g.,
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there are supervised methods that do not particularly emphasize on the difference between hate

speech and offensive language such as [18, 102]. While [25] uses a crowd-sourced hate speech

lexicon to collect tweets containing hate speech, as well as a crowd-sourcing platform to label

the tweets as hate speech, offensive language, and neither. They employ a multi-class model

to automatically classify the tweets and emphasize on the difference between hate speech and

offensive language.

Another set of studies have been focused on the applicability of a bag-of-words approaches,

e.g., [18, 63], discussed that bag-of-words embedding tools can have a high recall, but at the same

time they tend to misclassify hate speech writing due to the presence of specific curse words and

slurs.

Some studies looked at the syntactic and grammatical attributes of hate speech textual data.

For instance, in [103], grammatical relations were explored for semantically filtering offensive

language from a sentence. Several studies have focused on finding the hate groups online. While

[39, 92] studied syntactic features and the use of part of speech tags as syntactic features to detect

hate speech.

There are studies that focus on different boosting features such the micro-blogging hyper-links

and users’ meta data to detect hate communities. For instance, in [21], web hyper-links were used

to detect hate groups. In [97], Facebook’s hate groups’ activities were studied based on text mining

and social media analysis techniques. While [25, 102] mention that features such as gender and

ethnicity in users’ meta data are of great importance in detecting hate speech.

[36] uses a deep learning approach utilizing convolutional neural networks for hate classifica-

tion on social networks.

Finally, as described in [89], hate speech and offensive language are different from cyberbul-

lying on social media. Cyberbullying can have different motives which may not necessarily be

related to the intrinsic features of the victim such as their race, gender, sexuality, and ethnicity.

Furthermore, cyberbullying is repetitive and is based on a power imbalance between the victim

and the bully.
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7.1.1 Hate Speech and Offensive Language Detection Methods

There are several methods to detect hate speech/groups and offensive language on social media, a

few examples are:

• Bag-of-words and tf-idf approaches

• Syntactic information such as Part of Speech (PoS) tags

• Grammatical features

• Users’ meta data

• Supervised methods to classify social networks’ textual data

• Web hyper-links and social media edges to unlock hate communities in social networks’

structural data

• Deep learning approaches

The details and a summary of these approaches in the existing studies mentioned in the previous

section are listed in Table 7.1. The column named “H/O differentiation” with yes and no values,

specifies if the paper has differentiated hate speech and offensive language.

7.1.2 Hate Speech and Offensive Language Challenges

Automatic detection of abusive user-generated content on social networks, in particular, hate

speech and offensive language has faced several key challenges in previous studies. Some of

these challenges are:

• Most studies conflate hate speech and offensive language [25].

• Human coders do not pay attention to the context in which the slurs are used and might

confuse offensive language with hate speech [25].
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Table 7.1: Existing hate speech detection approaches

supervised
methods

syntactic/
PoS

grammatical
features meta-data

deep
learning

web
hyper-links

hate
communities

H/O
Differentiation

Burnap and Williams [18] N
Waseem and Hovy [102] N
Xu and Zhu [103] N
Gitari et al. [39] N
Silva et al. [92] N
Gambäck and Sikdar [36] N
Chau and Xu [21] N
Ting et al. [97] N
Davidson et al. [25] Y

• There are very few published datasets to help train classification or embedding models.

• Bag-of-words approaches are not efficient since they tend to classify the textual data merely

based on the presence of specific slurs and do not consider the context of the words [18, 25,

63].

• More advanced classification and embedding approaches might fail to differentiate hate

speech from offensive language due to the scarcity of specific hateful comments and training

data, e.g., hateful comments against specific nationalities on social networks [25].

• Users’ meta data such as their ethnicity and gender can help detect hate speech, but this

information is usually not available and is not reliable on social networks [25, 102].

7.1.3 Our Approach

None of the previous studies and methods address the moral aspect of abusive user-generated

content. Therefore, there is a need to model this social phenomenon based on the insight provided

by the moral values extracted from the social networks’ textual data. Hate speech and offensive

language contain moral weights, and using these weights can help analyze the moral statistics of

these writings and use them as new means to automatically detect and differentiate them.

We believe a moral perspective can help better understand users’ behavior when spreading hate

speech and offensive language on social networks. In the following sections, we will study hate

speech and offensive language utilizing a moral perspective.
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7.2 Compute Tweets’ Moral Loadings

The moral loadings are computed and utilized for document identification in a step-wise fashion

described below:

1. Represent tweets’ vectors in the semantic space: We employed the same scheme pro-

posed in section 5.3, where we converted each tweet to a vector in the semantic space using

Doc2Vec. We considered each tweet as a document and utilized each tweet as a separate

paragraph to train the Doc2Vec PV-DM model. The tweets were represented in vectors of

400 in the semantic space. The window size used for training the Doc2Vec model was 1, and

5 words were used for negative sampling.

We first trained the model. We then obtained the vectors’ representation for each token in

the corpus. For each tweet, we computed a vector, t = (t1, . . . , t400)
T , corresponding to the

summation of the vectors of all the tokens in the tweet. Similarly, for each of the five moral

foundations, we computed a vector, f = ( f1, . . . , f400)
T , corresponding to the summation of

the vectors of all the vice keywords in that moral foundation.

2. Similarity-based moral loadings: As described in section 5.3.3, the cosine similarity be-

tween t and f , which is the dot product between the two vectors, was used as the criterion

for the similarity between each tweet and each moral foundation. Therefore, we define the

moral loading mi j for a tweet as the cosine similarity between the moral foundation fi and

the tweet t j, where i ∈ {1,2,3,4,5} is an index representing each moral foundation and j is

a tweet’s index for identification in the entire corpus.

3. Classify/Label tweets based on moral foundations: By applying our framework which

was discussed in chapter 5, we calculate a moral loading for each tweet and a corresponding

moral foundation. To identify tweets in each moral foundation, we assign each tweet to

a dominant moral foundation with which the tweet has the highest cosine similarity/moral

loading. Number of tweets in each foundation is shown in Table 7.2.
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7.3 Tweets’ Moral Statistics and Correlations

In this section, we present the statistics of hate speech and offensive language in our dataset. We

discuss the frequency and conditional relative frequency of the tweets in each moral foundation for

hate speech and offensive language, as well as the correlations between the moral foundations.

7.3.1 Frequency and Conditional Relative Frequency

Figure 7.1, shows frequency of the tweets in each moral foundation. We can see that most of the

tweets are in the offensive language category since offensive language such as cursing in daily

tweets is prevalent in social media [99].

However, the dataset is imbalanced with 19,190 tweets labeled as offensive language while

only 1,430 tweets are labeled as hate speech and thus we present the conditional relative frequency

in Figure 7.2, since due to this imbalance, we believe the conditional relative frequency is more

reliable and can give us a better understanding of the moral break down. We utilize equation 5.1

to compute the CRF.

If we consider the hate speech and offensive language bars in Figure 7.2, two moral founda-

tions: fairness and authority are in favor of hate speech while purity, ingroup, and harm are mostly

about offensive language. This means that out of all tweets which were categorized as hate speech

25% are in ingroup and only less than 10% are in harm. While out of all tweets with the ‘neither’

label, more than 40% are in ingroup. In addition, we can see that fairness, ingroup, purity, and

authority have a relatively similar share of 22% to 25% of the hate speech tweets while less than

10% of the ‘hate speech’ label was in harm.

7.3.2 Correlations between Moral Foundations

Next, we calculated the correlations between moral foundations using Pearson’s r which was de-

scribed in equation 5.2. In Table 7.3 for hate speech, all moral foundations are showing relatively

high correlations. We observe that two binding moral foundations authority and ingroup are show-
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Table 7.2: Number of tweets in each moral foundation

Moral Foundation Hate Speech Offensive Language Neither
Fairness 327 3,682 837
Harm 131 2,653 186
Ingroup 338 4,765 1,774
Purity 326 4,984 284
Authority 308 3,106 1,118

Figure 7.1: Frequency of the tweets in each moral foundation

Figure 7.2: Conditional relative frequency of the labels
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Table 7.3: Cosine similarities’ correlations for hate speech

Moral Foundations Fairness Harm Ingroup Purity Authority
Fairness - 0.7579 0.8020 0.8169 0.85211

Harm - - 0. 7667 0.7479 0.7984
Ingroup - - - 0.8099 0.8581
Purity - - - - 0.7793

Authority - - - - -

Table 7.4: Cosine similarities’ correlations for offensive language

Moral Foundations Fairness Harm Ingroup Purity Authority
Fairness - 0.7281 0.7402 0.7778 0.8286

Harm - - 0. 7319 0.7138 0.7835
Ingroup - - - 0.7798 0.8282
Purity - - - - 0.7673

Authority - - - - -

ing the highest correlation while the individual moral foundations harm and fairness are not as

highly correlated as the binding moral foundations. Purity and ingroup which are binding moral

foundations also have a comparatively high correlation.

As shown in Table 7.4, offensive language has relatively lower correlations between moral

foundations. However, we can see that authority which is a binding moral foundation has the

highest correlation with harm which is an individual moral foundation. We expected the corre-

lation between individual foundations harm and fairness to be higher than authority and fairness,

however, we did not observe this in our results.

Interestingly, authority and ingroup have the second highest correlation in offensive language

while they had the highest correlation in hate speech as well.

Finally, we are now able to answer one of our initial questions which was if we can find a

similar correlation pattern for two different datasets of different contexts, i.e., the Yelp dataset

discussed in chapter 6 and chapter 7’s hateful and offensive tweets. Authority and ingroup had a

high correlation in chapter 6 as well. Therefore, authority and ingroup show a strong correlation

disregarding the context in our studies. In addition, individual moral foundations harm and fairness

did not show a strong correlation relative to other correlations in our datasets including the Yelp
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reviews.

7.4 Enhance the Hate Speech Detection in Tweets

In this section, we will use the moral loadings as new features to improve our baseline approach

for classifying “hate speech”, “offensive language”, and “neither” labels.

7.4.1 Baseline and the Improved Models

We will compare five models:

1. Baseline - The features used in the baseline approach are unigram, bigram, and trigrams

weighted by their tf-idf score, part of speech tags which are unambiguous grammatical labels

assigned to words in the context based on the words’ roles in the sentence and computed

using NLTK [95]. PoS tags capture the syntactic attributes of the data. We also incorporated

binary and counts of the hashtags, mentions, retweets, URLs, features for the number of

characters, words, and syllables in each tweet. A similar set of features was adopted in

Davidson et al. [25]’s study on hate speech and offensive language detection.

2. Baseline + doc vectors - We used the document vectors from Doc2Vec as another set of fea-

tures to compare their ability in capturing the semantic similarities to the baseline approach

and to their five moral by-products. We added Doc2Vec features to the baseline approach for

the second model.

3. Baseline + doc vectors + moral loadings - We added the five moral features to the second

model. These five features are the moral loadings of each tweet which were extracted by the

cosine similarity of the vector of the vice moral words and the tweets’ vectors in the semantic

space using Doc2Vec.

4. Baseline + moral loadings - In this model, we added the five moral features to the baseline

model.
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5. Ensemble baseline + moral loadings - We used the ensemble combination of an extremely

randomized trees model, logistic regression with L2 regularization, and a gradient boosting

model for the ensemble results based on the experimental performances of all tested algo-

rithms. This model is similar to the fourth model; however, the classification algorithm is an

ensemble of several models instead of utilizing one model.

The gradient boosting method introduced by Jerome Friedman [34, 35] is a forward step-

wise additive method that tries to strengthen a set of weak learners by optimizing different

differentiable loss functions and implementing gradient descent. The algorithm we used was

based on Friedman’s mean squared error (MSE) which is computed as the mean squared

error with improvement, and a deviance loss function used for probabilistic results [73].

7.4.2 Feature Selection

To reduce the dimensionality of the features we use an extremely randomized trees algorithm to

detect the best features which usually has similar results to Random Forests but the training process

can be faster [38]. Tree-based approaches are common ways for feature selection due to their easy

implementation, robustness, consideration for non-linear correlations among features (where linear

approaches fail), and implicit feature selection [15, 17]. However, using a tree-based approach

enables us to do feature selection by looking at the selected features’ importance and rankings

with scikit-learn library [80]. This feature importance is based on Gini impurity which is a

non-purity split approach, measuring how often a randomly chosen element would be incorrectly

misclassified if it was randomly labeled based on class distributions [16]. This attribute helped us

look through all features’ score-rankings and find the importance of the moral features compared to

the entire feature set. We could detect useful and ineffective features instead of choosing features

uncritically. Moral features’ rankings will be discussed in section 7.4.7.2.

All features defined in section 7.4.1 have undergone the feature selection step which means

we do not introduce any new features to our models after doing feature selection, e.g., we add the

moral loadings to the features in the baseline approach and then perform feature selection to select
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the best set of features. We believe introducing features directly and without doing a selection is

not reasonable since the feature selection step is the criterion for choosing the best sets of features

for all corresponding models and thus we might introduce ineffectual new features by skipping the

feature selection step and incorporating the new features directly in the models.

7.4.3 Split the Dataset

We randomly divide the data to an 8:1:1 ratio which are the training set, the validation set, and the

test set, respectively. The results presented in Tables 7.5 and 7.6 are based on the test set’s results.

We will provide the accuracy for the test set and the validation set.

7.4.4 Classification Algorithm

We adopted several classification algorithms listed below and compared their performance based

on the overall classification performance and the performance for each label:

• decision trees

• logistic regression (with L1 or L2 regularization)

• kNN

• Naive Bayes

• Random Forests

• LinearSVC

From our experiments, logistic regression with L2 regularization has the best performance. So, we

used a logistic regression one-vs-all approach to classify the tweets. All the hyper parameters of

the models were tuned on the validation set using a grid search to avoid over-fitting. In addition,

as mentioned in section 7.4.1, we used the ensemble combination of an extremely randomized

trees model, logistic regression with L2 regularization, and a gradient boosting model for the fifth

model.
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Table 7.5: Overall classification performance

model Precision Recall F1 Score Validation Accuracy Test Accuracy
1. Baseline 82 83 81 83.59 83.22
2. Baseline + doc vectors 83 84 81 85.30 83.66
3. Baseline + doc vectors + moral loadings 83 84 82 84.54 84.26
4. Baseline + moral loadings 84 84 82 84.63 84.31
5. Ensemble baseline + moral loadings 87 88 87 89.24 87.90

Table 7.6: Classification performance for each label

Precision Recall F1 Score
model Hate Offensive Neither Hate Offensive Neither Hate Offensive Neither
1. Baseline 65 83 93 27 97 76 38 89 84
2. Baseline + doc vectors 70 83 91 28 97 79 40 90 85
3. Baseline + doc vectors + moral loadings 69 83 92 29 97 79 40 90 85
4. Baseline + moral loadings 70 83 94 30 98 77 42 90 85
5. Ensemble baseline + moral loadings 46 90 93 37 96 77 41 93 84

7.4.5 Imbalance Handling

Since the data is overly imbalanced, we need a strategy to handle this imbalance. We used Synthetic

Minority Oversampling TEchnique (SMOTE) in the training step of the classification to handle

the imbalanced data since class-imbalanced data favors the majority class. The learner performs

well for the majority class while the minority class is misclassified. This problem affects the true

classification results and is more severe if we have a lot of features [48, 69].

The overall performances of the models are shown in Table 7.5. All classification tasks were

implemented using the scikit-learn library in Python [80].

7.4.6 Performance Evaluation

Accuracy is an intuitive measure where we calculate the ratio of predictions which were accurate.

While precision is the ratio of predicted positive observations which are correct over the count of

total predicted positive observations. Recall is the fraction of correctly predicted positive obser-

vations to all observations in each class. Finally, F1 score/F-measure is the weighted average of

precision and recall to represent the performance with one value and takes both false positives and

false negatives into consideration.

Overall performance - document vectors: As it is shown in Table 7.5, the baseline model has
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82% precision while adding the document vectors improves the performance to 83%. Similarly,

adding the document vectors to the baseline approach improves the recall from 83% to 84%. In

addition, adding the document vectors improves the validation accuracy from 83.5% to 85.30%.

Overall performance - moral loadings: The moral loadings which are the moral by-products of

the documents vectors combined with the baseline approach (fourth model) have the best perfor-

mance among the first four models with 84% precision. The moral loadings and baseline approach

(fourth model) can perform on par with the moral loadings combined with document vectors and

the baseline approach (third model) with 84% and 82% for recall and F-measure, respectively.

Moreover, the validation and test accuracy for baseline approach combined with moral loadings

(fourth model) are the best among the first four models.

The ensemble approach with moral loadings and the baseline approach (fifth model), clearly

has the best results among all five models with 87% precision and F-measure, 88% recall, more

than 89% validation accuracy, and nearly 88% test accuracy.

Each label’s performance - document vectors: Table 7.6 lists the performance for each label. We

observe that adding the document vectors or their moral by-products improves the performance.

For instance, adding the document vectors improves hate precision from 65% to 70% while we

see a similar performance among all models for offensive’s precision with 83%. Similarly, adding

the moral loadings/document vectors improves the recall for hate speech from 27% to 28% and

neither’s recall form 76% to 79%. Moreover, adding document vectors improves hate’ F-measure

to 40%, offensive’s F-measure to 90%, and neither’s F-measure improves by 1% by adding the

document vectors and/or moral loadings. Interestingly, we observe a precision-recall trade-off for

’neither’. A better recall means sacrificing precision (and contrariwise) [104].

Each label’s performance - moral loadings: The fourth model improves hate’s precision to 70%,

while the third model also improves the baseline approach to 69%. In addition, the baseline ap-

proach combined with moral loadings (fourth model) has the best precision for neither with 94%.

While adding the document vectors reduces neither label’s precision from 93% to 92%. The fourth

model improves hate’s recall from 27% to 30%. Similarly, the third model improves the baseline
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approach’s performance to 29%. The fourth model is the only model that improves offensive’s

recall. In all instances, the third and fourth model have improved the F1 score. Hate speech’s

F1 score improves significantly in the fourth model (from 38% to 42%) by combining the moral

loadings with the baseline approach.

The fifth model performs best for offensive’s precision and recall with 90% and 93%, respec-

tively. It also improves the hate recall to 37%.

7.4.7 Discussions

In this section, we will discuss the results and the reasons behind the performance of the improved

models.

7.4.7.1 Moral Features’ Performance

As shown in Table 7.5, the five moral features which are the moral loadings of the tweets are

improving the baseline approach. This improvement is the justification that the moral loadings of

hate speech and offensive language can help classify and distinguish the two. Adding the moral

loadings alone (fourth model) has a better performance than adding document vectors or these

features and moral loadings at the same time. Therefore, using the moral foundations dictionary

and finding the moral loadings of the tweets is the best approach to detect hate speech and offensive

language. This model performs better than simply adding document vectors or introducing an

excessive number of features by adding both Doc2Vec features and moral loadings.

In Table 7.6, we see that using moral loadings helps improving the precision, recall, and F1

score of hate speech. Moral features are performing well for offensive language and neither classes

as well, with neither class’s recall as the only exception. In general, the baseline approach com-

bined with the moral loadings (fourth model) has the best performance for hate/neither precision,

offensive recall, and hate/neither F-measure. Moreover, the ensemble model (fifth model) has the

same set of features as the fourth model combined with an improved/ensemble classification algo-

rithm. Therefore, we can count offensive’s precision and F1 score, and hate recall in this category.
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The moral features combined with the baseline (fourth model) without the document vectors

are performing better due to two reasons:

1. We are adding an excessive number of features by incorporating document vectors and moral

loadings which results in identifying every single data point by single features and generating

a special case for each data point, i.e., the more features we add, the larger the hypotheses

set will be; however, this approach results in a poor performance for the test set. This

phenomenon is also referred to as the “curse of dimensionality” for high-dimensional data

[11, 12, 31].

2. Moral features are the by-products of the document vectors and thus capture their semantics.

Adding the document vectors and moral features is redundant and reduces the effect of the

moral loadings on the prediction given a larger set of hypotheses.

7.4.7.2 Moral Features’ Rankings

The rankings of the moral features from the first step which was feature selection, also shows that

the moral features are highly important with authority ranked 5, ingroup ranked 9, fairness ranked

17, purity ranked 38, and harm ranked 86 among 11,165 features based on their Gini measure for

the best-performing baseline + moral loadings (fourth) model. Higher rankings imply more im-

portant features. These rankings go along with the classification performance of the moral loadings

which improved the baseline approach ’s overall classification performance and the performance

for each label. Interestingly, harm, which had the lowest share of hate speech, offensive language,

and neither labels in Figure 7.2, has the lowest ranking among all moral features.

Moreover, ingroup and authority are of two highest rankings among all moral foundations.

This is in line with our correlation results, since the correlation between authority and ingroup was

high in offensive and hateful tweets, as well as the Yelp reviews.

7.4.7.3 Hate Speech’s Low Performance

Davidson et al. [25] emphasized that most of the misclassification is occurring in hate speech.
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There are several reasons behind this phenomenon according to their study and our results:

• The first issue is that the human coders mostly labeled tweets with bold homophobic and

racial slurs as hate speech while they did not label true hate speech tweets without bold slurs

correctly. If the tweet was hateful but did not contain any slurs at all, the coders mostly

labeled it as neither. So this low performance is partly due to the coders lack of attention to

the context in which slurs were/were not used; although, there are some true misclassified

labels [25].

• The second issue, which was also mentioned in Davidson et al. [25], is some hateful posts

are rare among typical hate speech tweets. For instance, we have several anti-black tweets

where the classifier performs well in detecting their labels; however, we have rare cases of

hateful tweets against other nations/specific nationalities where the classifier does not have

enough training data to detect them correctly.

• Moreover, the classifiers sometimes fail to distinguish the slurs that are used in a daily con-

versation context and the ones that are truly hateful and targeting victims. One major con-

tribution of differentiating hate speech and offensive language is the classifiers’ high perfor-

mance in correctly detecting offensive language. Conflating these two languages results in

labeling people who are merely using slurs in their daily lives as hate speakers, which might

entail legal prohibitions. It is true that combining the offensive and hateful tweets and label-

ing them as hate speech, similar to a multitude of previous studies, will drastically improve

the performance; however, this approach will not fulfill our goal to differentiate these two.

• Despite the key challenges discussed earlier, using the moral loadings improves the classi-

fication performance of hate speech. In the overall performance in Table 7.5, the validation

and test accuracy, which are the direct metrics of intuitive misclassification, have improved

by nearly 1%. In addition, the overall precision has improved from 82% to 84%. The overall

recall and F1 score have improved as well. In Table 7.6, we can see that using the moral

loadings improved hate speech’s precision from 65% to 70%, its recall has improved from
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27% to 30%, and its F1 score has improved from 38% to 42%. Therefore, using the moral

features helps enhancing hate speech prediction performance.

7.4.7.4 Ensemble Model’s Precision and Recall

In our fifth model, we used an ensemble model to further improve the baseline approach. The

ensemble method has improved the overall result since we are using the baseline features combined

with moral loadings (fourth model) which had the best performance among the first four models

and further enhancing its prediction by combining several classification algorithms and voting

among three models. However, this improvement is mostly contributed to offensive language’s

significant improvement in precision. There are two reasons behind the sudden drop in hate speech

precision:

1. The ensemble model is sacrificing the hate speech precision, which drops to 46%, for its

recall. High recall means hurting precision (and contrariwise) [104].

2. Using an ensemble approach rewards the overall performance due to the voting approach

among several models; however, it penalizes the hate precision because of incorporating

the extremely randomized tree in the fifth model. If a single extremely randomized tree is

adopted to classify the baseline approach, the performance will be 41%, 36%, and 38% for

precision, recall, and F1 score respectively. These results imply that a tree-based approach

has a lower precision, but higher recall compared to the first four models in Table 7.6. We can

observe the same pattern for the ensemble approach in Table 7.6. The ensemble approach

has a lower precision and higher recall for hate speech compared to the other four models.

Therefore, incorporating the tree-based in the ensemble model helps the overall performance,

however, it penalizes hate’s precision due to its inability to classify the hate label.

In addition, the tree approach does not have a good performance for the neither class. The

baseline approach for ’neither’ classified with a single extremely randomized model has

67%, 73%, and 70% performances for precision, recall, and F1 score, respectively. So the
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ensemble model which incorporates the tree-based approach does not show an improvement

for this class relative to other models.

One can use manual weighting schemes for the models in an ensemble to set a threshold

to handle the infamous precision-recall trade-off or reduce a model’s strength in the voting

process.

7.4.7.5 Aggregation of Tf-idf and Doc2Vec for Very Short Texts

In this section, we will discuss the reasons behind combining document vectors with tf-idf features

and why they outperform the baseline approach of the traditional tf-idf features.

De Boom et al. [26], mention that the textual data available in social media is mostly of very

short texts. In particular, each tweet is of approximately thirty words. Tf-idf as the traditional

method in the text mining community, works well when we have more word overlaps and its best

performance is for a document of length 30 words. However, sometimes social media texts can be

shorter than 30 words which means we will not have enough word overlap for tf-idf. This is where

word embeddings such as Doc2Vec that can capture the semantic similarities between words can

be useful [26, 74, 75, 76]. De Boom et al. [26] performed further toy tests to justify that adding

the semantic information from a word embedding approach to the traditional tf-idf will improve

the performance of tf-idf while for longer sentences, e.g., tweets of length 30 words, tf-idf alone

can produce comparable results. In another study of De Boom et al. [27], the authors focused on

tweets as their main social media textual data and aggregated the traditional tf-idf with the word

embeddings’ vectors using a loss function to optimize the performance. All combined approaches

outperformed the tf-idf baseline approach significantly due to their ability to capture the semantic

similarities.

In conclusion, we observe the same pattern in our results. Our performance has improved by

adding the document vectors due to the short texts available in our tweets. In addition, the moral

loadings which are the by-products of our document vectors, combined with the baseline approach

(fourth model) is our best-performance model since the tweets in our dataset are of various lengths:
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from one word to longer sentences close to 30 words. By combining the tf-idf features with the

moral loadings obtained from Doc2Vec, we are adding two layers of information to the baseline

approach:

1. We add the semantic similarities which help improve the performance for shorter tweets

where tf-idf fails.

2. We are adding the moral weights of the tweet by using the moral loadings as features.

7.5 Summary

In this chapter, we studied hate speech and offensive language based on tweets’ moral loadings.

We used a crowd-sourced manually labeled dataset which labeled the tweets as offensive language,

hate speech, and neither. We employed the moral foundations theory to analyze the moral break

down for the three classes. We used Doc2Vec to represent the tweets in the semantic space and

defined the cosine similarity of the average of the moral vice key words in the moral foundations

dictionary for each moral foundation and the tweets’ vectors as the measure of similarity to each

moral foundation. This similarity was called tweets’ moral loadings. To identify tweets in each

moral foundation, we assigned the tweets to a moral foundation with which the tweets had the

highest similarity.

We first discussed the frequency and conditional frequency of the tweets. We observed that

purity, ingroup, and harm are mostly offensive language while fairness and authority are in favor

of hate speech (only comparing the hate speech and offensive labels). Furthermore, we noticed that

in general, moral foundations in hate speech have higher correlations compared to offensive lan-

guage. Moreover, binding moral foundations were of higher correlations in hate speech compared

to offensive language.

We then studied the performance of moral features to predict social media data. In particular,

we classified the tweets by creating a baseline approach of tf-idf features, PoS tags, and several

other features such as counts of retweets, number of characters, words, etc. We added the document

62



vectors and the moral loadings to the baseline features to justify that moral loadings are effective

in social networks’ data classification and prediction, e.g., the hateful and offensive tweets. Our

results show that the moral loadings can improve the baseline approach and can help the misclas-

sification of the hate label which was a key challenge in previous studies.
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Chapter 8

Conclusions and Future Work

In this work, we argue that text mining is an important tool to extract knowledge from the textual

data on social networks. However, social networking data analysis/mining and NLP techniques

are facing several challenges such as dealing with the abundance of data and domains or the quan-

tification of the moral and social values of the data. We can tackle these challenges by using new

boosting features.

We argue that our daily activities including our actions in social networks are bound with

morality and culture to certain extent. Therefore, we propose a novel approach to study social

networks’ data based on moral features in specific domains such as business rating platforms and

social networks’ abusive content.

To analyze this relationship and to justify the importance of a moral approach in the presence

of concrete moral patterns on social networks, we studied the influence of moral foundations on

reviewers’ rating behavior in the immorality context. We performed a similar study for immorality

based on hate speech and offensive language in social networks.

• We used the moral foundations proposed in the Moral Foundations Theory (MFT) [46, 47]

and the vice keywords defined in the Moral Foundations Dictionary (MFD) to support a

natural language processing analysis on a dataset of online reviews from the Yelp Challenge.

• We adopted the word embedding method, Doc2Vec, to convert the reviews to vector repre-
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sentations in the semantic space defined by the reviews. By converting the reviews and the

MFD keywords for each moral foundation into vectors, we can calculate the moral loading

of the review in the form of cosine similarity between the vector of the document and the

vector of the average vice words.

• Using an experimentally defined threshold for cosine similarities, we identified a moral cor-

pus and a corresponding moral-concerned user set for each moral foundation.

• We investigated the frequency and conditional relative frequency of review ratings for the

overall moral corpus and the moral corpora associated with each of the five moral founda-

tions, as well as the rating distributions of the regular users who rated the same set of busi-

nesses. The comparison shows that the rating pattern of regular users differs significantly

from the one of the moral-concerned users. Moreover, our findings indicate that people with

moral concerns tend to rate lower if a moral foundation is violated. CRF was one of our two

metrics to study the moral features’ importance in social networks.

• For the moral-concerned users, we also studied differences, in terms of the average rating

and the weighted average ratings, between their moral-related reviews and their all reviews

with no moral consideration. Results in the cumulative density functions reveal that there

is a higher likelihood of a smaller difference if we consider each reviewer’s moral loading.

Moreover, moral-concerned users tend to elicit the same moral tendencies in their general

average rating.

• Next, we examined the correlations between the moral foundations themselves as the sec-

ond metric to understand morality on social networks. Purity was shown to be the most

distinctive moral foundation.

In our second study, we addressed the problem of user-generated abusive content in social

networks as a second means for analyzing the importance and the break down of morality in social

networks. In particular, we studied hate speech and offensive language and their difference which
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lies in the manner they are used. Some curse words are simply part of people’s daily conversations

and their daily tweets [99, 101]. However, some speech are targeted towards minority groups based

on their natural features [25, 39].

We argued that hate speech in itself has an obvious moral weight and a moral study can help

detect and differentiate hate speech and offensive language. We used a dataset of hateful and

offensive tweets to analyze the moral features’ performance in the prediction of social media data.

• To perform our study, we used the concepts we had previously used, i.e., we used moral

foundations dictionary’s vice keywords and employed Doc2Vec to represent the tweets in

the semantic space. We called the cosine similarity of the average of the moral keywords for

each moral foundation with each tweets’ vector, the moral loading of the tweet with respect

to that moral foundation. Next, we assigned each tweet to a dominant moral foundation with

which it had the highest similarity.

• We presented the frequency and conditional relative frequency of the tweets. Our results

show that most tweets are offensive since slurs are prevalent in social media [99]. However,

in our conditional relative frequency, we observed a similar share of 22% to 25% of the

tweets labeled as hate speech for fairness, ingroup, purity, and authority. While more than

40% of the tweets labeled as ‘neither’ are in ingroup.

• We studied the correlations between the moral foundations as a second measure of under-

standing morality in social networks. We observed that in general, hate speech had higher

moral correlations and there were higher correlations between ‘binding’ moral foundations.

Offensive language showed a high correlation between fairness, an individual moral founda-

tion, and authority, a binding moral foundation.

• We observed a high correlation between authority and ingroup in the hate speech, offensive

language, and Yelp datasets.

• Next, we used the moral loadings as new features in a multi-class classification to improve

the classification performance of a baseline approach of tf-idf features, PoS tags, and several
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additional features such as counts of retweets, number of characters, syllables, etc. We used

an extremely randomized trees algorithm for reducing the dimensionality of data and feature

selection and we classified the tweets using logistic regression with L2 regularization after

examining several classification algorithms. Our results indicated that adding the five moral

loadings improved the general baseline model in terms of precision, recall, F-measure, and

test/validation accuracy. Moreover, our moral features had higher rankings based on their

Gini impurity index compared to the entire feature set.

• Lastly, we stated the reasons behind the performance of our models for very short texts which

are prevalent on social media [26]. Adding embedding features such as Doc2Vec features,

can improve the performance since it can capture the semantic similarities for sentences

shorter than 30 words [26, 74, 75, 76]. By adding the moral features we are adding this

semantic information and a layer of moral information and thus we observe an improved

performance.

We believe this work represents a new avenue of analysis on moral psychology and online

social networks. For future work, we will test our findings with larger corpora and more word

embedding methods. We will also consider making a comprehensive dictionary to filter the moral

reviews. In addition, we anticipate developing an extended version of MFD, which incorporates

more words in the same medium. We also hope to incorporate emotion recognition and sentiment

analysis in this study to improve the results. Finally, we hope to incorporate this study in other

abusive behavior in social media such as cyberbullying.
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