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Summary

• Evolution of genetic (co)variances (the G-matrix) fundamentally influences multitrait 

divergence. Here, we isolated the contribution of two chromosomal quantitative trait 

loci (QTLs), a meiotic drive locus and a polymorphic inversion, to the overall G-matrix 

for a suite of floral, phenological and male fitness traits in a population of Mimulus 
guttatus. This allowed us to predict the evolution of trait means and genetic 

(co)variances as a function of allele frequencies, and to evaluate theories about the 

maintenance of genetic variation in fitness.

• Individuals generated using a replicated F2 breeding design were grown under common 

conditions, genotyped and measured for trait values.

• Significant additive genetic variance existed for all traits, and most genetic covariances 

were significantly nonzero. Both QTLs contribute to the additive genetic (co)variances 

of multiple traits. Pleiotropy was not generally consistent, either between QTLs or with 

the genetic background.

• Shifts in allele frequencies at either QTL are predicted to result in substantial changes 

in the G-matrix. Both QTLs contribute substantially to the genetic variation in pollen 

viability. The Drive QTL, and perhaps also the inversion, demonstrates the contribution 

of balancing selection to the maintenance of genetic variation in fitness.
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Introduction

Understanding the processes that lead to phenotypic divergence is a central goal of 

evolutionary biology. Quantitative genetics has contributed greatly to this endeavor, in part 

because of the explicit recognition that phenotypic evolution results from both direct 

selection on a trait and indirect selection on genetically correlated traits (Lande, 1979; 

Arnold, 1994). The cornerstone of this approach is the genetic (co)variance matrix, or G-

matrix, which describes the pattern of genetic variation and covariation among traits and 

thus determines the multivariate response to selection. Stability of the G-matrix is often 

assumed both for predicting long-term evolution and for retrospective analyses of past 

selection, an assumption that remains contentious (Turelli, 1988a; Phillips & Arnold, 1999; 

Roff, 2000; Steppan et al., 2002). Allele frequency changes at loci of major effect, 

particularly those that exhibit substantial pleiotropy, change the shape of the G-matrix and 

can significantly alter the rate and trajectory of multivariate evolution even in the short term 

(Turelli, 1988b; Carriére & Roff, 1995; Agrawal et al., 2001).

Mapping of quantitative trait loci (QTLs) is commonly used to investigate the genetic 

architecture of variation in traits (Tanksley, 1993). However, most QTL mapping studies 

focus on the genetics of differences between divergent populations or species, rather than on 

individual differences within populations. Even when crosses are conducted within 

populations, typical experiments evaluate marker-trait associations in progeny derived from 

a small number of parental genotypes (typically two), and thus are mute on the crucial detail 

of allele frequencies at QTL. In this study, we combined G-matrix and QTL approaches by 

employing a breeding design that incorporated 138 genomes randomly derived (Fig. 1) from 

a single natural population of Mimulus guttatus (Iron Mountain) located in central Oregon, 

USA. Using the replicated F2 breeding design (Kelly, 2009), we estimated the overall G-

matrix, as well as the contribution of two previously mapped QTLs to this matrix, for a suite 

of floral, phenological, and male fitness traits. This merger of QTL and G-matrix methods 

yields statistics that are quantitatively informative about the evolutionary potential of the 

Iron Mountain population for this collection of traits.

The floral traits examined were corolla size and shape and the relative lengths of anther and 

pistil. These characters affect mating system (Lin & Ritland, 1997; van Kleunen & Ritland, 

2004; Fishman & Willis, 2008) and are under strong selection in the field (Fenster & 

Ritland, 1994; Willis, 1996). Our male fitness traits, the number of pollen grains per flower 

and the proportion of grains that are viable, covary with mating system (Ritland & Ritland, 

1989; Fenster & Carr, 1997). They are also critical components of inbreeding depression 

(Carr & Dudash, 1997; Kelly, 2003) and post-zygotic reproductive isolation within the M. 
guttatus species complex (Fishman & Willis, 2001). Rate of development, measured as the 

number of days to reach bud and subsequent anthesis of the first flower (phenology), is a key 

component of local adaptation (Hall & Willis, 2006). Alterations in developmental timing of 

floral parts may represent key innovations in the radiation of Mimulus (Fenster et al., 1995). 

All of these traits are variable at multiple taxonomic levels within the M. guttatus species 

complex: between individuals within local populations, between local populations within 

species and between species. Differences are not limited to mean trait values: variances and 
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covariances also differ among populations. Quantitative trait locus (co)variance estimates are 

particularly relevant for understanding the latter (Kelly, 2009).

Both QTLs that we investigate are chromosomal features for which the alternative ‘alleles’ 

can be directly scored by genotyping individuals at diagnostic molecular markers. The 

female meiotic-drive locus (alternative alleles D/d) is a chromosomal structural variant that 

appears to include the centromere of Linkage Group 11 (Fishman & Saunders, 2008); 

Mimulus chromosomes are identified according to the linkage maps of QTL studies, such as 

those of Fishman et al. (2002) and Hall et al. (2006). This locus was discovered because of 

extreme nonmendelian segregation in hybrids between an inbred line of Mimulus guttatus 
and its close relative Mimulus nasutus (Fishman et al., 2002; Fishman & Willis, 2005), but 

has subsequently been found to be polymorphic within the Iron Mountain M. guttatus 
population. In that population the region containing the drive locus exhibits extensive 

linkage disequilibrium, with the derived drive region consisting of a unique multilocus 

haplotype. The intraspecific segregation advantage of the D allele is more modest than in 

interspecific crosses but should have swept to fixation in the absence of a fitness cost. 

Fishman & Saunders (2008) have recently shown that the DD genotype suffers reduced 

pollen viability relative to D/d and d/d.

The second QTL is a polymorphic inversion on Linkage Group 6 (Lee, 2009). The Inversion 

polymorphism (alternative alleles C/c) was identified in a QTL mapping study of the Iron 

Mountain population. In that study, we synthesized three different F2 mapping populations 

by crossing large-flowered to small-flowered genotypes. The linkage maps from each cross 

exhibited suppressed recombination among a large number of markers on Linkage Group 6. 

Subsequent genetic studies revealed extensive linkage disequilibrium in this genomic region 

within the Iron Mountain population (Lee, 2009). Specifically, the derived inverted segment 

(allele C) harbored a specific constellation of alleles at polymorphic marker loci on Linkage 

Group 6. Genotyping of these markers was used to identify Inversion type (i.e. QTL 

genotype) in this study. Reduced pollen viability consistently maps to this region and is 

associated with the C allele. Floral traits are also affected by this QTL, but the estimated 

effects are heterogeneous among different crosses.

Because these two QTLs have alleles readily identifiable by diagnostic marker alleles, we 

are able to estimate both allele frequencies and effects. Together, these determine the 

population-level genetic (co)variance contributed by each QTL (Kelly, 2009). We evaluate 

the percentage of the overall (co)variance explained by each QTL and assess consistency in 

pleiotropy across both QTLs as well as with the genetic background. This fulfills two 

distinct but complementary aims. First, we predict evolution of trait means, genetic 

variances and covariances as a function of allele frequencies at these two QTLs. Second, we 

use our results to evaluate theories about the evolutionary maintenance of genetic variation 

in fitness.
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Materials and Methods

Estimating genetic parameters from the replicated F2 design

The replicated F2 design is a large collection of crosses between randomly extracted inbred 

lines and a common reference line drawn from the same population (Fig. 1). Each such 

‘Line Cross Family’ consists of replicate individuals of the parental lines (denoted Px for 

family x), F1s and F2s. Each random line is assumed to be fully homozygous and ‘random 

extraction’ implies that lines are representative of the natural population in terms of allele 

frequency at QTLs. Because both random lines and the reference line are fully homozygous, 

all F1s within a particular line cross family are genetically identical. The F2 subfamily is 

internally heterogeneous owing to segregation of allelic differences between the random and 

reference lines. Individuals of each type in each line cross family are grown under common 

conditions, measured for trait values, and genotyped at QTLs. While the replicated F2 design 

is founded by inbred lines, most of the genotypes measured in the study are not highly 

homozygous (over 75% of the plants in our study are F1s or F2s). It thus circumvents the 

‘artificial genetic background’ criticism often leveled at QTL studies based on recombinant 

inbred lines (RILs) or near-isogenic lines (NILs).

The phenotype of a plant was modeled as the sum of statistically independent genetic and 

environmental contributions. We ignored epistasis and parsed the entire genotypic value into 

two components, the effect of the QTL and the effect of the remainder of the genome:

z = g′ + g∗ + e Eqn 1

(z is the vector of phenotypic values for an individual; g′ is the vector of QTL effects on 

each trait; g* is the vector of background genotypic values; and e is the vector of 

environmental deviations. g* and e are random vectors, each with a covariance matrix to be 

estimated from the data. These are the usual G-matrix and E-matrix of evolutionary 

quantitative genetics (Arnold, 1992), although the former is minus the contribution of the 

particular QTL(s) characterized by g′.

Our approach assumes that the entire collection of phenotypic measurements from the 

experiment follows a multivariate normal distribution. Based on this, we maximized the 

likelihood (probability density function) for the data (Shaw, 1987; Searle et al., 1992). With 

multinormality, the model is fully articulated if the expected values and (co)variances of 

measurements are expressed as a function of model parameters, either fixed effects or 

variance components. The former determine the expected value of measurements and the 

latter determine the covariance of residuals from these expectations. Because our two QTL 

are ‘Known Alleles QTL’ in the terminology of Kelly (2009), g′ are estimated as fixed 

effects. We let a denote the additive effect of the QTL allele that is homozygous in the 

reference line and d denote the dominance effect (genotypic parameterization of Falconer & 

Mackay, 1996, ch. 7).

The expectations and covariances for g* with additive genetic effects at background loci are 

given in Appendix 1 of Kelly (2009). However, previous studies of Iron Mountain M. 
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guttatus indicate that quantitative traits typically exhibit directional dominance or inbreeding 

depression (Willis, 1996; Kelly & Arathi, 2003). A generalization of the replicated F2 design 

equations for a single trait with an arbitrary number of loci, arbitrary numbers of alleles per 

locus and arbitrary dominance is given in the Supporting Information, Notes S1. These 

equations retrieve the additive model as a special case. With dominance, it is necessary to 

estimate distinct means for the reference line (P0), the population of random lines (Px), and 

the population of F1 plants. However, the F2 mean is then constrained:

E[zF2
] = (2E[zF1

] + E[zP0
] + E[zPx

])/4 Eqn 2

( z∗ denotes the observed mean of a group and E[*] is the expectation).

Species and experimental protocols

Mimulus guttatus DC (2n = 28) is a small, self-compatible wildflower that occurs 

throughout western North America. Local populations may be either annual or perennial and 

there is extensive variation in mating system. The plants of this study are derived from Iron 

Mountain, which is a large, annual (or winter annual) population located in the Cascade 

Mountains of central Oregon (Willis, 1996). This population is predominantly outcrossing 

(Willis, 1993).

J. H. Willis randomly sampled line founders from Iron Mountain in August of 1995 (Willis, 

1999). Each line was subsequently propagated by single-seed descent with conscious effort 

to avoid selection. These lines are now 8–14 generations inbred and have been confirmed to 

be homozygous at highly polymorphic microsatellite markers (Kelly, 2003). We chose a 

specific inbred line, IM767, from Iron Mountain to use as our reference line. This line was 

used as a pollen donor to produce F1 hybrids with each of 138 of the random lines. A single 

F1 plant from each cross was subsequently self-pollinated to produce an F2 family.

From each line cross family, we attempted to grow and measure 12 F2 progeny, six F1 

progeny, and six individuals of the random parental line. We also grew and measured 339 

individuals from IM767, the reference line. Owing to germination failure or failure to 

flower, the actual size of each line cross family was often less than the full complement of 

24 plants. After eliminating a small fraction of plants owing to ambiguities in genotyping 

(see below), the final sample size was 3118 plants. Germination was staggered across four 

‘cohorts’, each separated by 1–2 wk. Each line cross family spanned two cohorts and the 

reference line was grown in each cohort. Plants were grown in a glasshouse with light 

augmentation (18 h daylength). Beginning 14 d after sowing, plants were fertilized every 

week using N–P–K (10 : 30 : 20) at a concentration of 3.95 g l−1 of water. Plants began 

flowering 19 d after sowing.

For most plants in the study, we were able to note the day on which the first flower bud 

erupted from the meristem. Bud duration is the time from this event until anthesis of the first 

flower. Four morphological measurements were taken on the days in which each plant 

produced its first and second flowers: corolla width, corolla length, pistil length, and anther 
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length. Stigma–anther separation is calculated as the difference between the last two 

measurements. We collected pollen from the first two flowers and stored it in 

microcentrifuge tubes for later counting. The total number of viable and nonviable pollen 

grains per flower was estimated using a Coulter Counter Model Z1 (Coulter, Miami, FL, 

USA) dual (for detailed description of these procedures see Kelly et al., 2002; Kelly, 2003).

Alternative alleles of the drive locus can be identified cytogenetically (Fishman & Saunders, 

2008), but it is more efficient to genotype diagnostic marker loci. We used a length 

polymorphic marker HB5 as an indicator of genotype at the Drive QTL. HB5 allele length 

277 (bp) was classified as D while all other allele lengths were classified as d. The derived 

Inversion QTL allele, C, was identified by a specific combination of alleles at two different 

marker loci: allele length 240 at marker locus MgSTS431 and allele 201 at MgSTS229. All 

other allelic combinations were assigned c. The QTL genotype assignments from marker 

data were based on genetic analyses subsequent to QTL screens (Y. W. Lee & L. Fishman, 

unpublished). Any error caused by these assignments, or recombination between marker and 

QTL, will reduce the estimated effects of the QTLs, thus making our tests conservative. 

IM767 is homozygous for the ancestral allele at both QTLs (c and d).

DNA extraction and genotyping were done in a 96-well format. Young leaves were collected 

from each measured F2 plant and from a single F1 and parental plant of each line cross 

family. We extracted DNA using our standard laboratory pipeline (Marriage et al., 2009) and 

amplified marker loci using a touchdown PCR protocol (Hall & Willis, 2005). All markers 

were length polymorphic and PCR-amplified fragments were detected on an ABI 3130 

genetic analyser (Applied Biosystems). We scored size fragments using the genemapper 4.0 

software (Applied Biosystems). We first genotyped the parental lines and F1s from each line 

cross family to determine the families that were segregating for each QTL. We then 

genotyped F2 progeny of polymorphic families. Measurements were eliminated if there was 

any inconsistency between parental and progeny genotypes.

Model fitting and evaluation procedures

We first fitted the general linear model (GLM) to each trait individually using maximum 

likelihood. We let Yijklmn denote the trait value(s) of the nth individual of type i (reference 

line, random line, F1 or F2) in family m, cohort j, with Drive QTL genotype k and Inversion 

QTL genotype l:

Y ijklmn = μi + γj + gk
1 + gl

2 + gijklmn
∗ + eijklmn Eqn 3

(μ is the mean of type i; γ is the (fixed) effect of cohort (j = 1, 2, 3, 4); g1 is the (fixed) effect 

of the genotype at the drive locus; g2 is the (fixed) effect of the genotype at the inversion 

locus; gijklmn
∗  is the (random) effect of the genomic background; eijklmn

∗  is the (random) 

environmental deviation for individual n). Both gijklmn
∗  and eijklmn

∗  are independent of the 

fixed effects and each other. When fitting the model to pairs of traits, each trait has a distinct 

set of effects. This is a mixed model and the full log-likelihood for the dataset, l, has a closed 

form (Shaw, 1987; Searle et al., 1992, p. 234).
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The most general model, allowing arbitrary dominance at loci contributing to the genetic 

background and effects from both QTLs, has 15 parameters: 10 fixed effects (means for the 

reference line, random lines and F1s, the three cohort effects and the additive (a) and 

dominance (d) effect of the reference line allele for each QTL) and five variance components 

(VE, C11, C12, C22 and VS). We determined the log-likelihood of this most general model 

and compared it with more restricted models using both likelihood ratio tests and AIC 

(Akaike information criterion) (Burnham & Anderson, 2002). Two sorts of restriction were 

considered: we can reduce the complexity of the genetic background model by assuming 

additivity, resulting in either two or three variance components, and one fewer fixed effect 

(see Notes S2); we can also eliminate one or both of the QTLs, deleting two or four fixed 

effects from the parameter set.

After analysing the single trait results, we adopted the fully general model for fixed effects 

(Eqn 2) and the intermediate complexity three-parameter additive model for estimating the 

genetic covariances between traits (see Notes S2). Under this assumption, the single trait 

variance components are the additive variance of the genetic background (denoted V*A[x] 

for trait x), the environmental variance (VE[x]) and the segregational variance (VS[x]). The 

segregational variance is determined by gametic variation specific to the reference line 

(Kelly, 2009). If many additive loci contribute to the genetic background, then VS[x] should 

be approximately equal to VA[x]
∗ /4. For two traits (x and y), the corresponding covariances 

are CA[x,y]
∗ , CE[x,y] and CS[x,y]. In applying Eqn 3 to a trait pair (x and y), we estimate 29 

parameters: the 13 parameters for each trait, plus CA[x,y]
∗ , CE[x,y] and CS[x,y].

To maximize the log-likelihoods for all models, we used a combination of stochastic hill-

climbing and Markov Chain Monte Carlo (MCMC) search executed in a matlab program 

(code written by A.G.S. available upon request). An initial stochastic search, in which steps 

are only taken if they increase the log-likelihood, was run until the log-likelihood improved 

by less than 0.001 per thousand iterations. In each iteration, a new set of parameter values 

was obtained by adding a vector of normal deviates with variance δ and mean 0 to the 

current vector. The magnitude of δ was adjusted periodically to maintain an intermediate 

step frequency.

Following the initial search, we conducted at least six cycles of MCMC followed by 

stochastic search. The MCMC search proceeded in the same way as the stochastic search, 

except that downhill steps were taken with probability equal to the ratio of the new 

(suggested) and current likelihoods (Metropolis et al., 1953). Each cycle involved 500 

iterations of MCMC, followed by uphill stochastic search starting from the endpoint of the 

MCMC. The stochastic search continued until convergence. The parameter set that yielded 

the highest log likelihood over the course of the entire search was retained. To ensure 

validity of the algorithms, we wrote a parallel set of programs in C (code by J.K.K. available 

upon request). All results are fully congruent between these two different platforms.
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Results

The means and standard deviations of measurements for each type of plant in our breeding 

design are given in Table 1. The floral traits and pollen counts are averages of measurements 

from the first two flowers, except where measurements were missing. The phenological 

traits apply to the first flower only. The morphological traits and bud duration each exhibited 

a roughly normal distribution of values (within types) and were analysed on their original 

scale of measurement. Stigma–anther separation was calculated from the difference between 

stigma and anther lengths and thus is not an independent trait. ‘Days to bud’ was right-

skewed, which we addressed by applying a square-root transformation. We also log-

transformed total pollen and applied the angular transformation (arcsin square-root) to the 

proportion of grains viable. The transformed values were used in QTL and G-matrix 

estimation (all figures).

Genotyping of the 138 random lines showed that 55 were DD while only four were CC. 

Thus, allele frequencies for the derived QTL alleles within the parental lines were p(D) = 

0.41 (p(d) = 0.59) and p(C) = 0.03 (p(c) = 0.97), respectively. At the drive locus, a total of 

574 F2 individuals were successfully genotyped and 145 were DD, 285 were Dd, and 144 

were dd. Interestingly, this marker showed no segregation distortion. The inversion appeared 

to segregate normally in the four polymorphic line cross families, but samples sizes were not 

sufficient for a meaningful test for segregation distortion.

The single trait analyses involved 144 model fits: 16 models for each of nine traits (Notes 

S2). Comparisons of maximum likelihood values indicated that (1) dominance significantly 

alters both the fixed effects and variance components of the genetic background model, and 

(2) the estimated contribution of QTLs to trait variation and the statistical significance of 

these effects are relatively independent of the genetic background model. Regarding (1), 

constraining the means of F1 and F2 families to the midpoint of the reference line and mean 

of random lines (as expected with additive gene effects) greatly reduced likelihoods (i.e. 

elevates AIC values, Table S2). In other words, all traits exhibited significant directional 

dominance (inbreeding depression). Even after accommodating dominance for fixed effects, 

we found that the dominance model for variance components (five parameters) is favored 

over the additive model (three or two parameters) for eight of the nine traits (Table S2).

Importantly, QTL effect estimates are relatively independent of the genetic background 

model. We compared maximum likelihoods from four QTL models: no QTLs, the Drive 

QTL only, the Inversion QTL only and both QTLs included. Excluding the additive fixed 

effect model (the background model that yields uniformly low likelihoods), the same QTL 

model is invariability selected for a particular trait regardless of the model for the genetic 

background (bold type in Table S2). Table 2 reports QTL effect estimates using the three-

parameter additive model for the genetic background. This model was chosen for entirely 

practical reasons. Additive (co)variances cannot be disentangled from nonadditive 

components with the more general background model in the replicated F2 design (see Notes 

S1). To extract parameter estimates that are directly comparable to those obtained in other 

G-matrix studies, we also used the three-parameter additive model for estimating genetic 

covariances among traits.
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Neither QTL had significant effects on the corolla width, corolla length, or anther length. 

Pollen viability, total pollen, and days to bud were affected by both QTL. Stigma–anther 

separation was affected by the Drive QTL, while pistil length and bud duration were affected 

by the Inversion QTL (Table 2). The ancestral alleles for both QTL have positive additive 

effects on the pollen traits and on days to bud. The d allele reduced stigma–anther separation 

while the c allele reduced bud duration. Genetic dominance is evident and variable within 

and between QTLs. Estimates suggested overdominance for both QTLs in their effects on 

days to bud.

The pattern of QTL significance for effects on pistil length, anther length and stigma–anther 

separation merits comment. The ancestral drive allele significantly reduces stigma–anther 

separation mainly by reducing pistil length. The former effect is significant while the latter is 

not. This is likely because the strong positive environmental covariance between pistil and 

anther lengths was ‘factored out’ of stigma–anther separation. Indeed, the heritability of the 

stigma–anther separation was substantially greater than for either component trait (Table 3a). 

The ancestral (noninverted) allele at the second QTL appeared to increase the lengths of 

both pistil and anthers, although only the larger effect on pistil length was significant. The 

estimated effect of the Inversion QTL on stigma–anther separation, while larger than for the 

Drive QTL, is not significant. This is unsurprising given that standard errors were generally 

much larger for Inversion QTL estimations owing to the fact that this QTL was segregating 

within only four line cross families.

The overall G-matrix for these traits was estimated by considering all trait pairs without 

distinguishing QTLs (Table 3a). This is the (co)variance matrix for the aggregate quantity (g

′ + g*) in Eqn 1. All traits exhibited significant additive genetic variation and most of the 

additive genetic covariances were significantly nonzero. Genetic (co)variances were 

classified as significantly nonzero based on the likelihood ratio test with 2 df – no genetic 

(co)variation reduces the model by two parameters (VA[x] = VS[x] = 0 or CA[x,y] = CS[x,y] 

= 0).

Combining QTL allelic effect estimates with the allele frequencies in our line sample 

yielded estimates for QTL (co)variances (Table 3a). With two alleles,

Vq[x] = 2p(1 − p)(ax + dx(1 − 2p))2 Eqn 4

is the QTL additive genetic variance for trait x. There is a nonzero QTL covariance for each 

trait pair that is jointly influenced by a single QTL.

Cq[x,y] = 2p(1 − p)(ax + dx(1 − 2p))(ay + dy(1 − 2p)) Eqn 5

is the QTL additive covariance for traits x and y. In Eqns 4 and 5, the genotypic effects (a 
and d) are attributed to the allele with population frequency p (Falconer & Mackay, 1996, p. 

126).
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The estimated (co)variance attributable to the genetic background, g* of Eqn 1 or gijklmn
∗  of 

Eqn 3, is the difference between corresponding terms in Table 3. The differences between 

QTL-specific (co)variances and trait associations generated by the remainder of the genome 

characterize variable pleiotropy from a population perspective. For example, the joint effects 

of the Drive QTL on pollen viability and stigma–anther separation are depicted in Fig. 2. 

The ellipses represent the joint distribution for genetic background values in the population. 

The major and minor axes of the ellipse were calculated from the background additive 

genetic (co)variances of these two traits. The major axis is the dimension of greatest genetic 

variability (Schluter, 1996) and its length is twice the corresponding standard deviation.

Discussion

The G-matrix summarizes inheritance for multiple phenotypic traits and fundamentally 

influences the evolution of trait means in response to selection (Hazel, 1943; Lande, 1979). 

Correlated evolution of multiple traits is common, and patterns of trait association are often 

consistent across multiple levels of divergence (Gould, 1966; Harvey & Pagel, 1991). 

Theoretical considerations suggest that evolution proceeds most readily along the principle 

axis of the G-matrix, which is the multivariate direction of greatest additive genetic variance. 

Patterns of morphological divergence between species seem to be biased towards this 

‘genetic line of least resistance’ (Schluter, 1996). Of course, quantitative prediction of 

diversification depends on the stability of, or predictability of changes in, the G-matrix 

through time. Understanding the rate and pattern of G-matrix evolution remains a central 

objective in evolutionary biology (Arnold et al., 2008).

A key issue for G-matrix evolution is the magnitude and diversity of phenotypic effects 

associated with individual QTLs. Genetic ‘step size’ has been discussed extensively in 

relation to diversification (Gottlieb, 1984; Coyne & Lande, 1985) and there is empirical 

evidence that genes of major effect contribute to adaptation (Orr & Coyne, 1992; Bradshaw 

et al., 1998). If diversification occurs through the recruitment of standing genetic variation, 

then the distribution of phenotypic effects across polymorphic loci should be a primary 

target for experimental studies. Robertson (1967) argued that this distribution of effects is 

likely to be exponential, with a few major QTL segregating along with a great many 

relatively minor loci. In the short term under directional selection, allele frequency changes 

at major QTL are likely to have the most pronounced effect on the G-matrix (Agrawal et al., 
2001). However, initial allele frequency and pleiotropy are as important as effect size in 

identifying a QTL as major in this context (Kelly, 2009).

Our approach is based on the recognition that genetic (co)variances are aggregate functions 

of QTL allele frequencies and effects (Turelli, 1988b; Phillips & McGuigan, 2005) and that 

the genomic components of the G-matrix are estimable statistics (Kelly, 2009 and references 

therein). In this study, we estimate a G-matrix for floral and life history traits in the Iron 

Mountain population of Mimulus guttatus. The overall matrix (Table 3a) is subsequently 

decomposed into portions contributed by each of two specific QTLs (Table 3b) and a 

remainder from the rest of the genome. In the following sections, we first review our results 

in relation to the extensive quantitative genetic literature on M. guttatus and then discuss 
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how QTL estimates can be translated into predictions for G-matrix evolution. We also 

consider the QTL (co)variance estimates in relation to evolutionary models for the 

maintenance of genetic variation. Finally, we review a series of important assumptions/

caveats associated with these conclusions and with our approach in general.

The G-matrix for Mimulus guttatus at Iron Mountain

Our character set includes measures of flower size, the relative positions of reproductive 

structures, phenology, and male reproductive capacity (Table 1). All traits exhibit significant 

additive genetic variation. The narrow sense heritability is highest for floral morphology, 

intermediate for male fitness traits and lowest for the phenological traits (diagonal of Table 

3a). Our estimates for morphology and male fitness traits are close to those obtained in 

previous studies of the Iron Mountain population (see Table 2 of Kelly & Arathi, 2003; 

Table 3 of Kelly, 2003), although present estimates are slightly higher because we averaged 

measurements from two flowers.

The strong positive genetic correlations between floral morphology with total pollen are 

unsurprising, but the significant relationship between pollen viability and corolla width is 

notable. Genetic correlations with the phenological traits were generally nonsignificant 

(except for corolla length with days to bud), but this is likely caused by a lack of power. 

Artificial selection on corolla size induces a correlated response in days to flower (Holeski 

& Kelly, 2006; Kelly, 2008). When QTLs are included in the model (Table 3b), genetic 

correlations involving the phenological traits are clearly identified. The Inversion QTL 

generates a negative covariance between bud duration and both pollen traits while the Drive 

QTL generates a negative covariance between stigma–anther separation and days to bud. 

These results indicate the increase in power achieved by including QTLs in breeding designs 

for G-matrix estimation.

When compared with previous studies, our results contribute to accumulating evidence that 

the G-matrix is quite malleable within the M. guttatus species complex. For the same 

collection of morphological characters, much lower (but still positive) VA estimates have 

been obtained from a California population (Robertson et al., 1994) and a largely clonal 

population on the Oregon coast (T. Marriage, unpublished). By contrast, Carr & Fenster 

(1994) obtained VA estimates generally greater than those in Table 2 from two other 

Californian populations of M. guttatus. Self-fertilizing populations/taxa within the complex 

have highly reduced flowers and the total phenotypic variances of flower size within such 

populations are typically less than VA of outcrossing populations (see Table 2 of Carr & 

Fenster, 1994). With respect to covariances, van Kleunen & Ritland (2004) estimated a 

strongly negative genetic correlation between pollen viability and corolla width, while our 

estimate is significantly positive (Table 2). The observed differences in genetic (co)variation 

patterns among populations of the M. guttatus complex motivates a more fine-scale 

consideration of the genomic regions responsible for variation.

QTL (co)variances and multivariate evolution

The QTL (co)variances shed light on how the G-matrix is likely to evolve. Our experiment 

isolated the contribution of two chromosomal QTLs to the overall G-matrix. The Drive QTL 
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(Linkage Group 11) and the Inversion QTL (Linkage Group 6) each affect pollen viability, 

total pollen and days to bud. Stigma–anther separation is significantly influenced by the 

Drive QTL, while bud duration is affected by the inversion (Table 3). Previous mapping 

studies had demonstrated the effect of these QTLs on pollen viability (Fishman et al., 2002; 

Fishman & Saunders, 2008; Lee, 2009), but the allele-specific effects on stigma–anther 

separation and on the developmental timing traits are novel to this experiment.

With estimates for allele frequencies, effect sizes, pleiotropy, and dominance, we can 

explore the role of these loci in creating, maintaining, or reducing genetic constraints. For 

example, the Drive QTL contributes a negative covariance between stigma–anther separation 

and pollen viability. This is directly opposite to the overall positive genetic covariance 

between these two traits (Fig. 2). As a consequence, changes in allele frequencies at this 

QTL will result in evolution along the line of greatest genetic resistance. Fixation of either 

QTL allele would reduce the genetic variances of these traits, but increase the magnitude of 

the genetic correlation.

Figures 3 and 4 explore the evolution of the overall G-matrix for trait pairs as a function of 

allele frequencies at one or both QTLs. Here, the major and minor axes of each ellipse are 

functions of the genetic (co)variances for these traits. At the endpoints in these figures, 

where QTL allele(s) are fixed, the ellipse represents the background genetic (co)variance. 

The background (co)variance is calculated by subtracting the QTL (co)variance (Table 3b) 

from the overall additive (co)variance (Table 3a). These figures provide an empirical 

example of trajectories predicted by Agrawal et al. (2001) for G-matrices with selection on 

major QTLs.

Figure 3 considers only the Inversion QTL, which creates a negative covariance between 

pollen viability and bud duration. Genotypic values for the Inversion QTL do not follow the 

classical expectation wherein heterozygotes have the lowest pollen viability owing to 

crossovers within the inversion that generate aneuploid gametes (Darlington, 1937; 

Sturtevant, 1938). Instead, heterozygotes have intermediate means for both traits. The 

Inversion QTL contributes fully one-third of the total negative genetic covariance between 

pollen viability and bud duration, even at the extreme allele frequency of our parental line 

population (p(C) = 0.03). If allele frequency is shifted to 0.5, the Inversion QTL would 

generate an estimated negative covariance that is 7.7 times that of the genomic background 

(central ellipse in Fig. 2). Evolution at this QTL would substantially alter both the 

eigenvalues and eigenvectors of the G-matrix (Phillips & Arnold, 1999).

Figure 4 considers simultaneous changes at both QTLs. In contrast to Fig. 2, the relationship 

between male fitness traits and days to bud is characterized by consistent pleiotropy. Both 

QTLs and the genetic background contribute positive covariance to pollen viability and total 

pollen. Changes in QTL allele frequency alter the magnitude but not the direction of the 

covariance (Fig. 4a). Allelic substitutions here would represent evolution along the path of 

least resistance. For days to bud, both QTLs display a pattern of overdominance. This causes 

the direction of their contribution to covariance to change with allele frequencies (Fig. 4b). 

When the derived alleles are frequent (high values for p(C) and p(D)), both QTL contribute 

positively to the genetic covariance of total pollen and days to bud. When C and D are rare, 
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however, both QTLs contribute negatively to the covariance. Over-dominance also results in 

curvature of the evolutionary trajectory as allele frequencies change, even though trait means 

ultimately shift along the genetic line of least resistance (Fig. 4b). This curvature could not 

be predicted from the G-matrix without information about QTL-specific details.

The maintenance of genetic variation in male fitness

Our estimates for QTL effects and allele frequencies suggest that over one-fourth of the 

additive genetic variance in pollen viability is generated by the Drive and Inversion QTLs. 

These results are intriguing in light of previous quantitative genetic studies of pollen 

viability variation within Iron Mountain. Mutation-selection balance is a natural null model 

for a trait like pollen viability, which (all else being equal) should be under strong directional 

selection. We previously used a breeding design that involved both inbred and outbred plants 

to estimate the inbreeding load, the additive genetic variance and several inbreeding variance 

components for pollen traits (Kelly, 2003). These estimates indicated an excess of additive 

genetic variation relative to the expectation under mutation– selection balance and we 

rejected several explicit models in which variation is caused by rare, partially recessive 

alleles.

The chromosomal feature QTLs (Table 3) are concrete examples of the kind of loci that were 

predicted to exist, but not identified by the quantitative genetic study of Kelly (2003). The 

alternative alleles at the Drive QTL segregate at intermediate frequency and are likely 

maintained by a balance between individual and gametic selection (Fishman & Saunders, 

2008). The derived Inversion type (allele C) is homozygous in only 3% of random lines and 

could be considered deleterious. However, allele C is likely more common in the wild 

population (see below), and given its pronounced effect on the phenotype, it would be 

surprising for an unconditionally deleterious mutation to reach even 3% in a large stable 

population such as that of Iron Mountain. With respect to our previous arguments based on 

variance components, it is important that the rare allele at the Inversion QTL is partially 

dominant with respect to its pollen effects (Table 2). Rare dominants make a much larger 

variance contribution than rare recessives and have a wholly different signature in a 

population’s response to inbreeding (Cockerham & Weir, 1984).

Caveats

The quantitative merger of QTL mapping with G-matrix estimation requires that the 

mapping population is genetically representative of the natural population (Kelly, 2009). Our 

parental lines were initiated from random field plants, but subsequently propagated by 

successive generations of self-fertilization (Fig. 1). Lethality and sterility mutations were 

certainly lost during this process and such mutations might contribute via pleiotropy to 

quantitative trait variation in the natural population. Also, while the single-seed descent 

method greatly limits the opportunity for selection during line formation, there is still some 

evidence of glasshouse adaptation in our line population (Willis, 1999).

For both QTLs, we can assess the assumption of representative sampling by comparison 

with field data. For the Drive QTL, the frequency of D in a field sample of 148 plants was 

0.34 (Fishman & Saunders, 2008). This is lower than the frequency among our random lines 
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(0.41), but not significantly so (χ[1]
2 = 1.9, P > 0.1). In a sample of 183 field plants, the C 

allele frequency was 0.08 (Lee, 2009). This is substantially greater than the frequency of 

0.03 among our random lines – the difference is nearly significant in a contingency table test 

(χ[1]
2 = 3.56, P > 0.06). If we use the field allele frequency estimates in conjunction with the 

allelic effects in Table 3, the combined additive variance contribution of these two QTLs to 

pollen viability nearly doubles.

For the purpose of estimation, we assumed two alleles at each QTL, an assumption that is 

unlikely to be correct. The derived allele (C) at the Inversion QTL is defined by a specific 

haplotype across a constellation of markers that span c. 30 cM in other Mimulus linkage 

maps (Fishman et al., 2002; Hall et al., 2006). As a consequence, this QTL certainly 

includes hundreds of genes, many of which are likely to be variable within our ancestral 

allele class (c). It is also entirely possible that the multiple phenotypic effects of the 

Inversion QTL, e.g. on bud duration and pollen viability (Fig. 3), are attributable to 

differences at distinct genes within this genomic region. The QTL covariance would then be 

a consequence of linkage disequilibrium within a recombination-suppressed region as 

opposed to pleiotropy.

There is also a suggestion that more than two ‘alleles’ segregate for the Drive QTL. Across 

polymorphic F2 families, there was no evidence of segregation distortion at the Drive QTL 

in this experiment. This is surprising if the D and d allele types are internally homogeneous. 

Given our sample sizes, we should have been able to detect the 58 : 42 conspecific 

segregation ratio reported by Fishman & Saunders (2008). It is relevant here that all our DD 

× dd crosses involved a single dd genotype (that of IM767). By contrast, Fishman & 

Saunders (2008) used a single DD genotype (IM62) in conspecific crosses and their 

collection of dd parents did not include IM767. The lack of segregation distortion in the 

present experiment may reflect functional heterogeneity within the D and/or d allelic classes. 

This is a worthwhile topic for future studies.

Importantly, the consequence of dichotomously classifying alleles is that we are likely 

underestimating QTL variances. If there is intra-allelic variation in phenotypic effects, then 

the total QTL variance can be partitioned into two components: the variance among 

genotypic classes as defined dichotomously (e.g. C/c and D/d) and the average intracategory 

variance. Our estimates (Table 3b) capture only the former component. Since the 

intracategory component cannot be negative and may be substantially positive, our estimates 

are conservative.

It is more difficult to characterize the net effect of another simplifying assumption, the 

absence of epistasis. While the additive/dominance model is a reasonable starting point for 

G-matrix decomposition, we have previously shown that epistasis contributes to variation in 

these characters within the Iron Mountain population (Kelly, 2005). One implication is that 

our estimates (Tables 2 and 3) may be somewhat specific to the IM767 reference line. The 

difference between QTL genotypes (for either D/d or C/c) might expand or contract when 

considered against other genetic backgrounds. Finally, our estimates are context dependent 
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in one other important regard: all plants were grown under glasshouse conditions. The 

magnitude of QTL effects might be different in the field.

Conclusions and prospects

The integration of QTL mapping methods into G-matrix estimation can address questions 

about the evolutionary potential of natural populations. Distinguishing the genetic 

(co)variance contribution of QTLs (e.g. Table 3) allows prediction of G-matrix evolution as 

an explicit function of allele frequency. While this study is limited to two QTLs, it does 

provide examples of how changes at one or a few loci can substantially alter genetic 

covariances (Figs 2–4). The QTL (co)variance estimates also inform questions about the 

maintenance of genetic variation. Many specific processes have been shown to contribute to 

variation, but the relative importance of different mechanisms remains unclear (Mitchell-

Olds et al., 2007). Measurements of natural selection at the scale of individual QTL 

(Schemske & Bradshaw, 1999) enable rigorous tests of hypotheses about the balance of 

evolutionary forces. The importance of a QTL can be subsequently evaluated by estimating 

its (co)variance contribution relative to that of the other QTLs and the remainder of the 

genome.

The Drive and Inversion QTLs were considered in this study because they are the only 

‘known alleles’ QTLs yet identified from the Iron Mountain population (i.e. QTLs for which 

marker loci can diagnose alternative functional alleles in randomly selected plants). The fact 

that both QTLs are chromosomal structural variants is interesting when considered in 

relation to the traditional literature on the maintenance of genetic variation by natural 

selection. The t-haplotype, a meiotic drive polymorphism of mice (Bruck, 1957; Lewontin & 

Dunn, 1960), is an archetypal protected polymorphism. Predictable geographical and 

seasonal fluctuations in the frequency of inversion types within Drosophila pseudoobscura 
and Drosophila persimilis are a classic example of how environmental heterogeneity can 

maintain genetic variation (Dobzhansky, 1948). At present, we do not know the selective 

mechanisms (if any) that maintain the derived inversion segment within the Iron Mountain 

population. Field studies are underway to determine if there is a fitness benefit associated 

with this haplotype sufficient to offset its detrimental effect on male reproductive capacity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The overall plan for the experiment is depicted: field sampling followed by line extraction 

and experimental crosses, and finally estimation of genetic parameters specific to the natural 

population.
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Fig. 2. 
The drive quantitative trait locus (QTL) genotypic means in relation to the background 

genetic (co)variance between viable pollen per flower and stigma–anther separation in 

Mimulus guttatus. The bivariate means for each genotype (DD, Dd and dd) are given ± 1 SE 

relative to the overall population mean (centered at 0, 0). The length of the primary axis of 

the larger ellipse is equal to twice the square root of the largest eigenvalue of the background 

G-matrix.
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Fig. 3. 
The joint distribution of additive genetic values for Mimulus guttatus bud duration and 

pollen viability is depicted for three different values for p(C), the frequency of the derived 

Inversion allele. The axes of each ellipse are calculated from the estimated G-matrix of these 

two traits at that value of p(C). Axis lengths are equal to the square root of their associated 

eigenvalues.
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Fig. 4. 
The joint distribution of additive genetic values is depicted in populations of Mimulus 
guttatus with both QTL fixed for the derived allele (p(C) = p(D) = 1), both QTL fixed for the 

ancestral allele (p(C) = p(D) = 0), and at intermediate allele frequencies (p(C) = p(D) = 0.5). 

The axes of each ellipse are calculated from the estimated G-matrix of these two traits at that 

value of p(C). Axis lengths are equal to the square root of their associated eigenvalues.
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Table 2

Results of model fitting are described for single trait data from Mimulus guttatus

Drive QTL Inversion QTL

Trait a d a d

CorWid −0.015 (0.05) −0.008 (0.05)   0.205 (0.17)   0.230 (0.15)

CorLen   0.019 (0.05) −0.067 (0.06)   0.015 (0.17)   0.084 (0.16)

Anther   0.028 (0.05) −0.018 (0.06)   0.169 (0.18)   0.155 (0.16)

Pistil −0.080 (0.05) −0.063 (0.05)   0.318 (0.18)   0.147 (0.15)

SA −0.170 (0.05) −0.073 (0.05)   0.241 (0.18)   0.057 (0.15)

PV   0.225 (0.04) −0.067 (0.06)   0.609 (0.15) −0.218 (0.16)

Pollen   0.099 (0.04)   0.076 (0.06)   0.324 (0.14) −0.165 (0.17)

DTB   0.034 (0.05)   0.172 (0.07)   0.294 (0.14)   0.492 (0.19)

Bud −0.031 (0.04)   0.018 (0.07) −0.329 (0.12) −0.161 (0.20)

Allelic effects, a and d, are attributed to the ancestral allele and are in units of phenotypic SD. Standard errors, determined from the asymptotic 
dispersion matrix of the likelihood model, are given in parentheses. Bold type indicates the QTL has a significant effect on the trait.

CorWid, corolla width; CorLen, corolla length; Anther, anther length; Pistil, pistil length; SA, stigma-anther separation; PV, arcsin squareroot (sqrt) 
pollen viability; Pollen, log total pollen; DTB, sqrt Days to bud; Bud, bud duration.
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