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Abstract 

 
 Parvovirus B19 (B19V) is a small, non-enveloped virus that contains a single-stranded DNA 

(ssDNA) genome of 5.6 kb in size. B19V is pathogenic to humans and causes bone marrow 

failure diseases and various other inflammatory disorders. B19V infection exhibits high tropism 

for human erythroid progenitor cells (EPCs) in the bone marrow and fetal liver. The exclusive 

restriction of B19V replication to erythroid lineage cells is partly due to the expression of 

receptor and co-receptor(s) on the cell surface of human EPCs and partly depends on the 

intracellular factors essential for virus replication. On this rationale, we tried to investigate the 

essential host factors for efficient virus replication. Our results demonstrated that signal 

transducer and activator of transcription 5 (STAT5) and RNA-binding motif protein-38 

(RBM38) are two of these important host factors that ensure virus DNA replication and pre-

mRNA processing, respectively, during B19V infection. The stages of erythropoiesis during 

which STAT5 is activated and RBM38 is expressed, are highly susceptible to B19V infection, 

thus suggesting that these two factors are among the key determinants of the B19V restriction to 

human EPCs. 

             B19V requires erythropoietin (EPO) signaling and hypoxia for its efficient replication. 

EPO to EPO receptor signaling activates JAK2-STAT5 pathway that phosphorylates STAT5. In 

our first study, we show that phosphorylated STAT5 is critical for B19V replication. Upon in-

silico analysis, we identified a consensus STAT5 binding element adjacent to the NS1-binding 

elements within the minimal origin of viral DNA replication (Ori) in the B19V genome.  The 

phosphorylated STAT5 specifically interacts with viral Ori both in vivo and in vitro, and is 

actively recruited within the viral DNA replication centers.  Furthermore, our study shows a 

novel interaction between STAT5 and the minichromosome maintenance (MCM) complex. Our 
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proposed model suggests that STAT5 directly facilitates viral DNA replication by recruiting 

MCM complex into viral DNA replication centers. Interestingly, we found that pimozide, a 

STAT5 phosphorylation inhibitor and an FDA-approved drug, inhibits B19V replication in ex 

vivo expanded EPCs, suggesting that pimozide could be a promising antiviral drug for the 

treatment of B19V-related pathologies.  

            B19V expresses a single precursor mRNA (pre-mRNA), which undergoes alternative 

splicing and alternate polyadenylation to generate 12 viral mRNA transcripts. Splicing at the 

second 5’ donor site (D2) of the B19V pre-mRNA is essential for the expression of VP1, VP2 

and 11-kDa. We have previously identified that a cis-acting intronic splicing enhancer 2 (ISE2) 

that lies immediately after the D2 site facilitates recognition of the D2 donor for its efficient 

splicing. In our second study, we described that ISE2 harbors a consensus RBM38 binding 

sequence–5’-UGUGUG-3’. RBM38 is expressed during the middle stage of erythropoiesis. We 

first confirmed that the RBM38 binds specifically with the ISE2 element in vitro. Knockdown of 

RBM38 significantly decreases the level of the spliced mRNA at D2 that encodes 11-kDa protein 

and, thereafter, the expression of the 11-kDa protein. Importantly, we found that the 11-kDa 

protein enhances viral DNA replication and virion release. Accordingly, knockdown of RBM38 

decreases virus replication via downregulating 11-kDa expression. Taken together, these results 

suggest that the 11-kDa protein facilitates B19V DNA replication, and that RBM38 is an 

essential host factor for the splicing of B19V pre-mRNA from D2 to A2-2 sites and for the 

expression of the 11-kDa protein.  In conclusion, we identified two host factors, STAT5 and 

RBM38, which play important roles in B19V replication. We provide a mechanistic overview of 

how STAT5 facilitates virus DNA replication and RBM38 promotes the splicing of B19V pre-

mRNA that ensures the expression of 11-kDa protein.           
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Overview of Parvovirus B19 Replication and Infection1 
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Abstract 

Human parvovirus B19 (B19V) infects erythroid progenitor cells in the bone marrow and fetal 

liver. The specific tropism of B19V for erythroid precursor cells partially relies on the 

intracellular factors in erythroid-lineage cells. In human CD36+ erythroid progenitor cells 

(EPCs), erythropoietin signaling is not only required for the cell differentiation and development, 

but is also indispensable for B19V replication. Specifically, Signal Transducer and Activator of 

Transcription- 5 (STAT5) activation is critical for viral DNA replication. B19V replication-

induced DNA damage response (DDR) also plays an important role in the virus replication. 

B19V multiplies efficiently under hypoxic conditions. B19V induces cell cycle arrest, initially at 

late S-phase, during which B19V fully exploits S-phase factors to replicate the viral genomes. 

Later B19V causes G2 arrest that leads to cell death of EPCs. B19V encodes a single precursor 

mRNA, which harbors two splice donor sites and four acceptor sites. The use of extensive 

alternate splicing and alternative polyadenylation generates at least 12 different species of 

mRNA transcripts. Both the processes of alternate splicing and alternative polyadenylation are 

tightly regulated through cis-acting elements and trans-acting factors flanking the splice donor 

or acceptor sites. In this introductory chapter, we focus on recent advances in the molecular 

virology and pathogenesis of B19V infection.  
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Introduction 

Parvovirus B19 (B19V) is a small, non-enveloped virus that has a diameter of 

approximately 23-26 nm and contains a linear single-stranded DNA genome of 5.6 kb, flanked 

by two identical terminal hairpin structures (Fig. 1-1A) (1). B19V belongs to Erythroparvovirus 

of the Parvoviridae family. The name B19 was coined after the sample number containing the 

virus; panel B and no.19, during the screening of hepatitis B virus (2). B19V infection causes 

several diseases in humans, including like fifth disease in children, transient aplastic crisis, non-

immune hydrops fetalis in pregnant women, persistent anemia in immunocompromised patients, 

arthropathy, cardiomyopathy and inflammation of various other tissues (1). 

            In this chapter, we focus on recent advances in B19V tropism, viral DNA replication and 

viral transcription. Importantly, we will focus on four key factors involved in B19V replication 

that are: a) erythropoietin (EPO) signaling; b) hypoxia; c) DNA damage response (DDR); and d) 

late S-phase arrest. We also summarize the new advancements in B19V pre-mRNA processing 

and its regulation. We also discuss host factors STAT5 and RBM38 (RNA-Binding Motif 

protein- 38), which regulate virus replication and mRNA processing, respectively. Lastly, we 

discuss the underlying mechanism of NS1 induced cell cycle arrest, B19V pathogenesis, and the 

future directions in the development of therapeutics for B19V infection.  
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Viral entry and determinants of viral tropism 

            Productive infection of B19V is restricted to human erythroid progenitor cells, 

particularly, during the stages of burst forming unit-erythroid (BFU- E) to colony forming unit- 

erythroid (CFU-E) (3,4). B19V infects ex vivo expanded EPCs from human bone marrow (3-5), 

peripheral and umbilical blood (6-9) and the fetal liver (10,11). In addition to expanded primary 

EPCs, various other cell lines have been used for B19V infection, including MB-02, UT7/Epo 

and UT7/Epo-S1 (megakaryoblastoid cell lines) (12-14) and JK-1, KU812-Ep6 (erythroid 

leukemia cell lines) (15,16). For efficient B19V replication, erythropoietin and hypoxia play a 

critical role under in vitro conditions (17,18). B19V also infects endothelial cells of various 

tissues, but the infection is largely non-productive (19). In addition, U937 cells, circulating 

angiogenic cells (CACs) and CD34+ endothelial progenitor cells from bone marrow have also 

been reported to be susceptible to B19V infection (20-22). All these cells either express viral 

receptor/co-receptors or use an antibody dependent route via c1q receptor for viral entry (23). 

            The primary receptor for B19V is globoside or P antigen (Fig. 1-2) (24). However, all P 

antigen expressing cells are not permissive to B19V (25). Various other co-receptors like Ku80 

(26), integrin α5β1 (27) and antibody-mediated B19V entry routes (23) are presumed to be 

involved in B19V entry. Importantly, the B19V capsid binds its primary receptor, P antigen and 

undergoes a conformational change, exposing VP1u, a unique (273 aa) N-terminus of the VP1 

capsid protein (Fig. 1-2) (28-30). Since Ku80 and α5β1 integrin haven’t been shown to interact 

with VP1u, it has been hypothesized that VP1u interacts with some unknown co-receptor for 

subsequent internalization. Further, the N-terminal 100 amino acids of VP1u are required for 

internalization, which implies that the PLA2 (phospholipase A2) activity of VP1u is not essential 

for viral entry (31). Interestingly, the VP1u region (without capsid) is efficiently internalized by 
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B19V-permissive cells (32,33), which suggests that primary interaction of B19V with P antigen 

is required only for externalization of VP1u. Mature RBCs also express P antigen and hence 

show primary attachment to B19V, as the virus is not internalized (29). It is presumed that this 

primary interaction may be responsible for systemic dissemination of the virus. Similar to other 

parvoviruses, B19V uses the endocytic pathway but escapes lysosomal degradation to enter the 

nucleus for subsequent replication, transcription and packaging (Fig. 1-2) (34,35). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

Gene expression, splicing, and its regulation 

            Upon entry of the virus into the nucleus, the B19V ssDNA genome is converted to 

double-stranded replicative form (dsRF), which acts a template for both DNA replication and 

transcription (Fig. 1-2) (36). The dsRF viral DNA has a unique but single promoter at map unit 6 

(P6) that expresses a single precursor mRNA (pre-mRNA) (Fig. 1-1B) (37,38).  The P6 promoter 

has an upstream enhancer region and NS1 elements that bind transcription factors (e.g. CREBP, 

GATA, Oct1 etc.) and NS1 protein, respectively, for promoter transactivation (39-42). B19V 

pre-mRNA undergoes alternative splicing and polyadenylation to express at least 12 mature 

mRNA transcripts that encode two structural (VP1 & VP2) and three non-structural (NS1, 7.5-

kDa & 11-kDa) proteins (43-45). The pre-mRNA contains two splice donor sites (D1 & D2) and 

four acceptor sites (A1-1, A1-2, A2-1 & A2-2) (Fig. 1-1B) (1). In addition, it harbors two 

proximal [(pA)p]1/2 and a distal [p(pA)d] polyadenylation sites (Fig. 1-1B) (1). Unspliced 

mRNA transcripts (R1&R1’) that polyadenylate at (pA)p encode the NS1 protein while those 

spliced at A1-1 (R2 & R2’) and use (pA)p sites encode the 7.5-kDa protein (Fig. 1-1B). The 

mRNA transcripts polyadenylated at (pA)d and where 1st  intron (R4 & R5),  1st  and 2nd (R6 & 

R7), or 1st , 2nd and 3rd introns (R8 & R9) are spliced out encode the VP1, VP2 and 11-kDa 

proteins, respectively (Fig. 1-1B)  (44,46,47). Whether other mRNAs (R3 & R3’) encode a 

protein or play any role during virus infection is unknown.  

            While the B19V mRNAs are splice products from a single pre-mRNA, the expression 

levels of the different encoded proteins vary considerably.  Therefore, the virus must employ 

different strategies to regulate the level of gene expression. In absence of viral DNA replication, 

most mRNA transcripts polyadenylate at (pA)p leading to the expression of NS1 and 7.5-kDa 

proteins in both B19V-permisssive or non-permissive cells (Fig. 1B)  (48). Viral DNA 
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replication facilitates the read through of (pA)p and overcomes the blockade to express mRNAs 

that polyadenylate at (pA)d encoding for the VP1, VP2 and 11-kDa proteins (49). Thus, the early 

and late phases of virus infection are dominated by NS1-encoding and VP/11-kDa-encoding 

mRNAs, respectively (50). An alternative model for virus infection was also proposed 

suggesting that B19V genome be considered as single, two state replicative and transcription 

unit, where the increase in viral RNA correlates with viral DNA levels (51). Next, the central 

exon or exon 2 (spanning A1-1/2 to D2) harbors serine arginine (SR) protein binding GAA 

motifs, and the GAA motif between A1-1 and A1-2, constitutes exon splicing enhancer 1 

(ESE1), which defines exon-2 and facilitates splicing at A1-1. The 5’ end of exon 2 promotes 

splicing at A1-2 and serves as exon splicing enhancer 2 (ESE2) (52). Splicing at second donor 

site (D2) is critical for the expression of capsid and 11-kDa encoding mRNAs, and also competes 

with polyadenylation at (pA)p (53). Binding of U1 snRNA to D2 splice donor site inhibits 

polyadenylation at (pA)p (52). D2 is a weak splice donor site and requires two cis-acting 

elements: exon splicing enhancer 3 (ESE3) and intron splicing enhancer 2 (ISE2) for its efficient 

splicing (52). Hence, the interplay of cis-acting elements and trans-acting factors determine the 

splicing efficiency of different splice sites to regulate the expression of different mRNA species. 

While looking for the trans-acting factors that bind ISE2, our results in chapter 3 demonstrate 

that RNA binding protein-RBM38, expressed in the middle stages of erythropoiesis, promotes 

the expression of 11-kDa protein. Specifically, RBM38 binds ISE2 and promotes splicing of the 

third intron (D2 to A2-2), that results in the production of 11-kDa encoding mRNAs. Therefore, 

RBM38 is one of the essential trans-acting factors that regulates the expression of 11-kDa 

protein (54).  
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Viral Proteins and their functions 

B19V expresses two structural proteins (VP1 & VP2) and three non-structural proteins 

(NS1, 11-kDa & 7.5-kDa). 

Non-structural proteins. 

Non-structural protein 1 (NS1). NS1 is 671 amino acid long protein that has a MW of ~ 

78 kDa by SDS-PAGE.  NS1 contains two nuclear localization signals; KKPR (177-179) and 

KKCGKK (316-321) (Fig. 1-3) and is found predominantly in the nucleus of infected cells 

(43,55-57). NS1 contains a DNA binding and endonuclease domain at N-terminus (58), ATPase 

and NTP-binding domains in the central region (59) and a transactivation domain at its C-

terminus (60) (Fig. 1-3). NS1 is critical for virus DNA replication (61), and binds NSBEs (NS1 

binding elements) of the minimum origin of replication of B19V dsRF DNA (Fig. 1-4) (58). 

Upon NS1 binding to NSBEs, it presumably opens up the dsRF DNA and nicks the ssDNA 

substrate at trs (terminal resolution site) (Fig. 1-2) (62). With the assistance of Sp1/Sp3, NS1 

binds P6 promoter for its transactivation (63,64). NS1 induces apoptosis via NTP-binding motif 

(328-335 amino acid) (59,65,66), a DNA damage response  (60,67) and cell cycle arrest (57,68-

70). The putative transactivation domain TAD2 of NS1 is critical for cell cycle arrest and the 

transactivation of host genes. NS1 is thought to be a global transactivator as the expression of 

NS1 protein in UT7/Epo-S1 affected around 1,770 genes, by upregulating 1,064 genes and 

downregulating 706 genes (70). In short, NS1 is a multifunctional protein and plays various roles 

during B19V infection (Fig. 1-5). 

11-kDa protein.  The 11-kDa protein is expressed at high levels during B19V infection 

and localizes more in cytoplasm than nucleus of infected cells.   The abundance of the 11-kDa 

protein in cytoplasm of infected cells is at least 100 times greater than NS1 protein (47,71).  The 
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11-kDa protein is potent inducer of apoptosis during B19V infection and involves caspase-10 

(Fig. 1-2) (71). In chapter 3, our results demonstrate that the 11-kDa protein enhances viral DNA 

replication (~10 fold), and thus determines virion production (54).  Finally, the 11-kDa protein 

has also been implicated in VP2 production and its distribution (61). 

7.5-kDa protein. The function(s) of 7.5-kDa are still unknown. 

Structural proteins. 

Capsid proteins (VP1 & VP2). VP1 is a minor capsid protein, 781 amino acids long (~ 

84 kDa) (56). VP1 shares the same C-terminus with VP2, with extra 273 amino acids, called as 

VP1-unique (VP1u) (43,56). VP2 is a major capsid protein, 554 amino acid long (~ 58 kDa) 

(56). VP1 expression is low (72) and with VP2 assemble into viral capsid (VP1:VP2= 1:20) (Fig. 

1-2)  (56). VP2 has nuclear localization signal at C-terminus, therefore both proteins are found in 

the nucleus of infected cells(73). The capsid first interacts with P antigen (Fig. 1-2) (24) and 

thereafter first 100 amino acids of VP1u help in internalization of the virus particles (31). VP1u 

region from 128 to 160 amino acids exhibits phospholipase A2 activity (74-76), which is 

possibly used to evade lysosomal fusion and ensure nuclear entry of the virions. 
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B19 replication and its regulation 

            B19V replication takes place in the nucleus of the infected cells. The single-stranded 

genome of the virus is first converted to dsRF DNA. B19V genome (RF) contains two 67-bp (nt 

5214 - 5280) long minimum origin of replication (Ori) at both ends (77). Although the origins 

function independently, but both origins are required for the efficient DNA replication of the 

virus (78). B19V genome can replicate without inverted terminal repeats (ITR), however, ITRs 

significantly enhance viral DNA replication (78). Ori contains NS1 binding elements (NSBEs) 

(58), terminal resolution site (trs) (62), STAT5 binding site, and potential host factor binding 

sites (Fig. 1-4) (78). NS1 binds NSBEs and nicks DNA at trs (62), whereas STAT5 binds Ori 

and recruits MCM (Minichromosome Maintenance) complex (78). After NS1 nicking, DNA 

replication continues, and presumably follows rolling hairpin model of replication (Fig. 1-2), as 

suggested for other parvoviruses (79). Upon microarray analysis of dynamic transcriptome of 

B19V infected EPCs, we recently found that DNA metabolism, DNA replication, DNA repair, 

DNA damage response, cell cycle and cell cycle arrest pathways are significantly altered upon 

virus infection (80). Broadly, B19V replication is regulated by the following factors: 

I. EPO-signaling. 

            In response to low oxygen tension, human kidney interstitial fibroblasts secrete EPO, a 

glycoprotein cytokine that promotes the differentiation and development of erythroid progenitors 

that results in the production of mature RBCs (81). During erythropoiesis, pluripotent 

hematopoietic stem cells (HSCs, CD34+) are differentiated into enucleated erythrocytes, 

encompassing the following stages – BFU-Es, CFU-Es, normoblasts, erythroblasts, reticulocytes 

and finally the mature erythrocytes (81,82). The earlier stages of differentiation are EPO-

independent (82), and rely on factors like, stem cell factor (SCF) (83,84), IL-6 (85) and IL-3 
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(83). However, the late stage differentiation process requires EPO (82,86). The exclusive tropism 

of B19V for erythroid progenitor cells partly depends on the expression of receptor and co-

receptors on the cell surface and partly on the essential host cellular factors for efficient virus 

replication. Erythroid lineage cells depend on EPO for survival (87), but B19V also needs EPO 

for its replication (17).  BFU-Es and CFU-Es, the late stage erythroids, are highly susceptible to 

B19V infection (88). B19V-semi permissive cell lines (e.g. UT7/Epo-S1) depend on EPO for cell 

proliferation and survival. Interestingly, B19V-permissivity of these cell lines strictly depends on 

EPO (Fig. 1-2) (88). CD36+ EPCs differentiated from CD34+ in absence of EPO are not 

permissive to B19V infection and B19V genome replicates only in the presence of EPO and 

requires phosphorylated Janus kinase 2 (JAK2) (17). EPO binds EPO-receptor and activates 

ERK, Phosphoinositide 3-kinase (PI3K) and JAK2-STAT5 pathways (Fig. 1-2)  (89). JAK2-

STAT5 pathway is essential for B19V replication while the ERK pathway negatively regulates 

B19V replication and PI3K is dispensable for virus replication (18). Although EPO signaling 

activates ERK pathway, B19V inhibits the ERK pathway presumably through its 11-kDa protein 

(18,90). Therefore, B19V fine tunes the EPO-signaling that favors efficient virus replication. In 

order to understand the underlying mechanism of STAT5 dependent B19V replication, we 

demonstrate in chapter 2 that STAT5 phosphorylation is critical for B19V DNA replication (78). 

The viral Ori harbors a STAT5 binding site (Fig. 1-4) and phosphorylated STAT5 binds viral 

origins both in-vivo as well as in-vitro (78). The mutation of STAT5 binding site within viral 

origins completely abolishes viral DNA replication (78). Importantly, STAT5 interacts with 

MCM complex. The disruption of STAT5-Ori complex leads to decrease in virus DNA 

replication and the abundance of MCM complex decreased significantly at the viral Ori (78). 
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Therefore, our proposed model shows that B19V utilizes STAT5 interaction with viral Ori to 

recruit MCM complex for the initiation of viral DNA replication (78). 

II. Hypoxia. 

            During the propagation of B19V in ex-vivo expanded CD36+ EPCs, progeny virion 

production is not as efficient as under natural conditions in human bone marrow on B19V 

infection of EPCs. The viremia in B19V infected patients goes up to 1013 genomic copies per ml 

of plasma (91,92), which indicates the requirement of other factors in determining the production 

of virions. Oxygen tension is low in bone marrow (93) and lower oxygen pressure favors 

erythroid cell development in culture (94). Interestingly, B19V infected human EPCs at hypoxia 

(1% O2) enhances viral gene expression, viral replication, and virus production. Hypoxia 

augmentation of B19V replication is independent of PHD/HIFα pathway. Hypoxia also enabled 

the B19V-infected pluripotent erythroid cells (KU812F) to yield high progeny virions (95). 

Increase in the productive B19V infection under hypoxic conditions wasn’t due to increase in the 

B19V entry or intracellular trafficking of the virus and HIF-1 was shown not to play any role in 

hypoxia-induced enhancement in B19V infectivity (18). However, hypoxia regulates EPO/EPO-

receptor signaling pathway by upregulating STAT5 and downregulating MEK activation, 

thereby enhancing B19V DNA replication in both B19V-infected EPCs and M20 (infectious 

clone)-transfected UT7/Epo-S1cells (18). We strongly believe that upregulation of STAT5 and 

downregulation of MEK/ERK signaling during hypoxia promote virus replication.  The B19V 

infectious clone grows rapidly (~80 times) in UT7/Epo-S1 cells under hypoxia (18). The culture 

of EPCs or UT7/Epo-S1 cells under hypoxia for B19V propagation is currently the best culture 

system in use. The efficient replication of M20 infectious clone and the subsequent production of 

infectious virions holds promise to study B19V replication and the underlying mechanism(s) of 
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replication. Also, mutagenesis of B19V molecular clone M20 could help to understand the role 

of individual viral proteins and the specific protein domains in virus replication.  

III. Late S phase cell cycle. 

            B19V DNA replication is dependent on host cellular DNA replication, since the virus 

doesn’t encode a viral DNA polymerase (96). B19V induces cell cycle arrest in both virus-infected 

CD36+ EPCs and UT7/Epo-S1 or M20 transfected UT7/Epo-S1 cells at G2/M (14,68). Virus 

infected UT7/Epo-S1-arrested cells display 4N DNA content and (5’-bromo-2-deoxy-uridine) 

BrdU-pulse labeling for de novo DNA synthesis along with DAPI staining indicates that the cells 

are precisely in late-S phase (68). Upon B19V infection of UT7/Epo-S1, cyclin A, cyclin B1 and 

phosphorylated cell division cycle 2 (CDC2) were shown to accumulate and CDC2-cyclinB1 

complex displayed enhanced kinase activity (14). The sequestration of cyclin B1 to the cytoplasm 

in B19V-infected cells indicates that B19V somehow prevents its import to nucleus, thus results 

into cell cycle arrest at G2 phase (14). NS1 alone has been shown to induce a true G2/M cell cycle 

arrest, doesn’t show BrdU incorporation but displays 4N DNA content (68), and de-regulation of 

E2F family transcription factors have been implicated for such arrest (57).  

            While B19V induces DDR that promotes virus replication, virus-induced DDR is not 

involved in cell cycle arrest at G2/M (60). Like other autonomous parvoviruses, B19V infection 

also induces arrest at S phase (67,68). Therefore, B19V induced late S phase arrest is possibly an 

outcome of replication-induced S phase arrest and NS1-induced G2/M arrest. Various S phase 

replication factors like polymerase delta (pol δ), proliferating cell nuclear antigen (PCNA), 

replication factor C-subunit 1 (RFC-1), the MCM complex except the DNA repair DNA 

polymerases are actively recruited to viral replication centers with pol δ and pol α essential for 

viral DNA replication (68,80). It is likely that like other parvoviruses (97-99), B19V exploits the 
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cell cycle arrest at late S phase and uses S phase factors for viral DNA replication. In addition, 

replication protein A-32 (RPA32) also colocalizes with viral replicating machinery. Although 

phosphorylated RPA32 forms also show colocalization, phosphorylation itself seems dispensable 

for virus replication (80), supporting the observation that B19V uses S phase for genome 

amplification.  

IV. DNA damage response (DDR). 

            DNA damage response (DDR) is a cellular defense mechanism to preserve genomic 

stability and integrity in response to double strand breaks (DSBs), single strand DNA breaks, or 

installed replication (100). There are three major kinases (mediators) responsible for signaling 

downstream DDR effects, including Ataxia telangiectasia mutated (ATM), Ataxia telangiectasia 

and Rad3 related (ATR), and DNA dependent protein kinase, catalytic subunit (DNA-PKcs). 

Apart from recognizing the damaged cellular DNA, DDR is also activated by various DNA 

viruses either to combat the infection by invoking innate immune response or to facilitate viral 

DNA replication (96,101). B19V infection induces a DDR by activating all the three PI3K 

kinases (ATR, ATM and DNA-PKcs) (67). Phosphorylated ATM, ATR, DNA-PKcs and their 

downstream effectors (CHK1, CHK2 and Ku70/80) localize within the virus replication centers. 

Activated ATR and DNA-PKcs, but not ATM were found essential for B19V replication (60,67). 

Further, it was found that mere expression of the viral genes didn’t lead to the phosphorylation of 

RPA32 and γH2AX, a hallmark of DDR (60). Interestingly, NS1 itself phosphorylates ATR to 

induces cell cycle arrest, however, such activation of ATR doesn’t lead to phosphorylation of 

RPA32 and γH2AX (70). It was found that replicating, infectious clone-M20, but not a 

replication deficient M20 mutant, led to the induction of DDR (60), which implies that the 

replication process per se is responsible for inducing DDR.  
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Viral pathogenesis 

            Infection with B19V is a global concern and has a seroprevalence against the virus that 

varies from region to region and between the different age groups. The seroprevalence among 

children below the age of 5 years is 2-20%, between the age group of 5-18 years 15-40% and 

among  adults 40-80%(1,102). The virus infection is contracted via inhalation, blood transfusion 

and from pregnant woman to fetus (103,104). It is still unknown how the virus penetrates the 

respiratory and placental barriers to reach the bone marrow and the fetal liver, respectively. The 

incubation time varies between 4-14 days, accompanied with prodromal symptoms like fever, 

headache, malaise and myalgia (1,105). After 2-3 weeks, the rash and joint symptoms become 

visible, which are believed to have an immunopathological origin (106). B19V is an etiological 

agent of erythema infectiosum, arthopathy, hydrops fetalis, transient aplastic crisis, and of a 

persistent infection in immunocompromised patients that causes pure red cell aplasia (PRCA) 

(1,107). Erythema infectiosum or “slapped cheek” is also called Fifth disease in children. 

Following the virus infection, the rashes appear first on the cheeks of the infected children as 

facial erythema, almost 18 days after infection, which then extend to trunk and proximal 

extremities as erythematous maculopapular eruptions (1,107,108). In adults, B19V causes 

arthralgia and arthritis, resembling rheumatoid arthritis and joint symptoms that can last for 

months post- infection (107,109). The parvovirus infection in pregnant women causes non-

immune hydrops fealis due to severe anemia in fetuses, which leads to miscarriage and 

intrauterine fetal death (1,110). Transient aplastic crisis was the first disease linked to B19V and 

is a direct outcome of virus mediated cytotoxicity of erythroid progenitor cells(107). The B19V 

infection in children also leads to thrombocytopenia and immune mediated neutropenia 
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(107,111). In addition, the virus infection is also associated with myocarditis, encephalitis, 

hepatitis, glomerulonephritis and nephrotic syndrome. (1,107).  

Productive infection of B19V induces cell cycle arrest and erythroid cell death. 

            B19V infection induces cell cycle arrest at G2 phase (14). Upon further analyses of the 

cell cycle during the virus infection, it was found that the arrest at G2 phase has 4N DNA content 

but also incorporates BrdU, a thymidine analog, suggesting that the infected cells are in late S 

phase (68). During early infection, the cells are precisely at late S phase, however, at the late 

phase of infection most infected cells are found in G2 phase (68). Interestingly, the expression of 

NS1 induces a true G2 arrest where cells don’t incorporate BrdU but only exhibit 4N DNA 

content (68). There are many players responsible for inducing cell cycle arrest during B19V 

infection. During the B19V induced cell cycle arrest of UT7/Epo-S1 cells, it was observed that 

nuclear import of CDC2/cyclin B1 is prevented (14). NS1 itself causes a true G2 arrest by 

importing the repressive E2F transcription factors (E2F4/E2F5) (57). A putative NS1 

transactivation domain-2 (TAD2) was found responsible for NS1-induced G2 arrest (60). 

Recently, the underlying mechanism of NS1 induced cell cycle arrest was explored in much 

detail (70). NS1-TAD2 domain transactivates several host genes that lead to the activation of 

ATR. Activated ATR phosphorylates cell division cycle 25C (CDC25C) at serine-216 through 

the activation of CHK1 (70). Phosphorylated CDC25C at S216 reduces its phosphatase activity 

and renders it complexed with 14-3-3 protein in the cytoplasm (112). As a result, inactive 

CDC25C is unable to dephosphorylate cyclin B1/CDK1 (pT14/Y15) complex to activate it. An 

active cyclin B1/CDK1 complex is essential for G2 to M transition (113). In NS1-expressing 

UT7/Epo-S1 cells, nuclear entry of cyclin B1/CDK1 complex is not hampered, rather the 

complex exhibits reduced kinase activity (70). Hence, B19V NS1 induces G2 arrest by activating 
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the ATR-CDC25C-CDK1 pathway (70).  NS1 activation of ATR doesn’t lead to the activation of 

γH2AX and RPA32, a hallmark of DDR (60,70). Moreover, DNA replication induced DDR and 

thereafter, activation of ATR leads to the arrest of cells at late S phase (68). It appears that NS1 

or DNA replication mediated activation of ATR transduce signaling through different 

downstream pathways and results in cells arrested at different phases of cell cycle. The last factor 

implicated in B19V infection induced cell cycle arrest is the viral genome itself. A nucleotide 

sequence 5’-GTTTTG T-3’ from the viral promoter region arrests BFU-E progenitor cells at S 

and G2/M phase. This promoter sequence is a CpG oligodoxynucleotide-2006 analog that is a 

ligand of toll-like receptor 9 (TLR9). It appears that viral genomic replication initially stalls 

infected cells at late S phase and later with the help of NS1 arrests at G2/M, which eventually 

leads to cell death. B19V infection specifically targets BFU-E and CFU-E progenitors (114), 

disrupts erythropoiesis and results in the transient aplastic crisis (115). The virus-induced cell 

death is apoptotic in nature and involves caspase-3/6/8 activation (65,116). B19V NS1 activates 

the extrinsic apoptotic pathway involving the TNF-α pathway in CD36+ EPCs or UT7/Epo cells 

(116). The B19V encoded 11-kDa protein is also implicated in causing cell death through 

apoptosis, which involves caspase-10 (71). It was found that 11-kDa is a more potent inducer of 

apoptosis than NS1 (71). 

Non-productive infection of B19V causes inflammatory diseases of various tissues.  

            Virus infection is seen in non-erythroid cells as well. The virus uses an alternative entry 

route by complexing with antibody and entering through complement factor C1q and C1q 

receptor mediated endocytosis (23). There is no clear evidence that B19V replicates or produces 

virions in any non-erythroid cell lineage, hence the infection is considered largely non-

productive.   
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            B19V predominantly infects endothelial cells of various tissues (e.g., aorta, umbilical 

vein and pulmonary arteria etc.) (23). Other cell lines infected include U937 cells (20), 

circulatory angiogenic cells (CACs) and CD34+KDR+ endothelial progenitor cells (21,22). B19V 

infection appears to be  persistent and viral genes are silenced through methylation of CpG sites 

on the DNA (117). Even after the infection is resolved, the viral DNA can be found in various 

tissues like spleen, liver, tonsils, testes and brain (19,118). 

            Upon infection, the infected tissue evokes host-cellular response against the virus which 

culminates in a several pathologies. B19V infection has been linked to several inflammatory 

diseases like cardiomyopathy, rheumatoid arthritis, hepatitis, vasculitis and meningoencephalitis 

(1,19). B19V infection or the expression of viral proteins can modulate the immune response. 

NS1 upregulates IFNAR1 and IL-2 (inflammatory response) and downregulates OAS1 and 

TYK2 (antiviral response) through the activation of STAT3/PIAS3 signaling pathway in human 

endothelial cells (HMEC-1) (119). The increase in the expression of inflammatory molecules 

like NF-κB, IL-6 and COX2 correlated with expression of viral capsid proteins in the colon, 

thyroid and synoviocytes (120-123). Particularly, in synoviocytes, VP1u phospholipase A2 

activity is implicated in the production of inflammatory response (121). NS1 induces apoptosis 

in hepatocytes through the activation of caspse-3 and caspase-9 (66,124).  In summary, B19V 

infection of non-erythroid tissues evokes inflammatory responses that lead to various 

pathologies.  However, with the exception of the placental endothelium (125), no other non-

erythroid cell type supports B19V multiplication. 

B19V induced immune responses 

         The virus infection elicits a strong humoral immune response (126). Initially, the IgM 

antibodies are produced followed by IgG after several days post-infection, which provide few 
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months to lifelong protection, respectively (106,126,127). The antibody response is directed 

against VP1 (74), VP2  (128), and the NS1 (129) proteins. However, the neutralizing antibodies 

produced are against VP1u, the N-terminal (1-80 aa) region of the VP1 protein (130). The CD8+ 

T cells response has also been observed in B19V infected patients, which sustains for several 

months even after the clearance of the virus (131). The T cell-mediated response is specifically 

directed against the VP1 and VP2 proteins, in which the antigen is presented to CD4+ T cell by 

class II molecules (132). Of note, the T cell response is of Th1 type and involves the release of 

IFN- γ, IL-2, IL-12, and IL-15 (133,134).  B19V-induced innate immune responses are not well 

established. There are few studies which show that the viral proteins (NS1 & VP2) regulate the 

expression of defensins, TLR-4/5/7/9 (135) and  TLR9 can recognize CpG ODN-2006, the P6 

promoter region of the genome (136). 
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Conclusion and future directions 

            It has been reported that almost 40-60% of the world’s population is infected with 

parvovirus B19 (137). However, such persistent infection is at sub-immunogenic levels, as viral 

load is kept under control by our immune system, particularly by neutralizing antibodies against 

B19V VP1u region. During times when patients are under immune suppression or infected with 

other pathogens, the viral load increases and causes extensive cell death of erythroid progenitor 

cells and leads to various inflammatory diseases as described above.  

            There is no specific treatment for B19V infection, except IVIG treatment or blood 

transfusion, so there is a need to develop antivirals for B19V infection. The new advancements 

in the field of B19V viral replication have identified various critical steps during the process of 

virus replication. One such important step is NS1 binding to the viral origin and subsequent 

nicking of B19V DNA at trs (58). Recently, in-vitro nicking assay for NS1 was developed (62), 

which could be utilized to screen for inhibitors of NS1 nicking. Furthermore, since the VP1u 

region is essential for viral entry, peptide analogs of VP1u (1-100) (31) or neutralizing 

monoclonal antibodies (138) against VP1u can be employed to check B19V entry. In chapter 2, 

our study demonstrated that STAT5 phosphorylation is essential for B19V DNA replication (78). 

Pimozide, a STAT5 inhibitor and an FDA-approved drug abolishes virus replication in CD36+ 

EPCs (78). Therefore, pimozide could be a potential drug for B19V infection and can be 

repurposed for B19 related pathologies and included in prophylactic anti-virals for transplant 

recipients. However, the development of new antivirals against B19V infection needs an animal 

model to validate any new treatment.  Currently, simian parvovirus (SPV) infection of 

cynomolgus monkeys (139) can be employed to screen anti-B19 antivirals 
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Fig. 1-1. Transcription map of Parvovirus B19.  

(A) Linear ssDNA genome of B19V. The genome is flanked by two inverted terminal 

repeats (ITRs), containing unpaired and mismatched bases, shown as bulges and bubbles, 

respectively. (B) Double stranded replicative form of B19V genome. The viral promoter denoted 

as P6 transcribes a single precursor mRNA (pre-mRNA). Pre-mRNA has two donor sites (D1 & 

D2) and four acceptor sites (A1-1, A1-2, A2-1, and A2-2). Using alternative splicing and 

polyadenylation, pre-mRNA is processed into at least 12 different mRNAs (only R1-R9 shown 

here). Mature mRNAs polyadenylate at (pA)p or (pA)d sites. At least five different proteins are 

known to be encoded by different species of mRNA transcripts. Different colors indicate the use 

of different open reading frames for the translation of proteins. Question marks indicate mRNAs 

encoding unknown proteins. 
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Fig. 1-2. Proposed model of B19V life cycle.  

B19V infects human erythroid progenitor cells. The virus first interacts with globoside 

(Step 1) and undergoes a conformational change that exposes VP1u which subsequently binds an 

unknown co-receptor (Step 1). Thereupon, the virus is endocytosed and somehow escapes the 

lysosomal route and enters the nucleus (Step 3). Inside the nucleus, the virion uncoats and 

releases the ssDNA genome (Step 4). Using the 3’OH of the left ITR, the second strand is 

synthesized to form a functional origin of replication (Step 5). Next, EPO and hypoxia activates 

and increases pSTAT5, which interacts with MCM and then binds Ori region. NS1 binding to 

NS1BE is critical for nicking ssDNA at trs and for helicase activity (step 6). The nicking creates 

a new 3’ OH end to continue DNA replication that results into duplex replicative intermediate 

(Step 7). The dsDNA form also transcribes a single pre-mRNA that is processed into various 

mRNAs which are exported to cytoplasm for translation (Step 8). VP1/2 assemble into trimers to 

form capsids, which are transported back to the nucleus (Step 9). Through strand displacement, 

ssDNA is packaged into capsids, which probably requires NS1 (step 10). NS1 and 11-kDa in the 

cytoplasm induce apoptosis (Step 11). After multiplication, the virions are released though cell 

lysis.  
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Figure 1-3. A diagram of NS1 functional domains. 

The N-terminus (amino acid 2-176) of NS1 possesses DNA binding and endonuclease 

activity. The endonuclease motif resides between amino acids 137 and 145. The central region of 

NS1 exhibits putative helicase activity. Transactivation activity is restricted to the C-terminus of 

NS1. NS1 carries two nuclear localizing signals, between amino acids 177-179 & 316-321 (NLS, 

in green). Three putative transactivation domains have been identified in the C-terminus of the 

NS1 protein: TAD1 (aa 416-424), TAD2 (aa 523-531), and TAD3 (aa 566-574). The central 

region also contains two NTP binding motifs between amino acids 323 to 378 and 367 to 378 

(NTP binding motifs, in purple).  
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Figure 1-4. A diagram of the B19V minimal origin of viral DNA replication (Ori).   

B19V has a 67-bp long minimum origin of DNA replication (Ori) at each end of the 

genome. Ori harbors two NS1 binding elements (NSBE1&2, in red), one STAT5 binding 

element (STAT5BE, in green), a terminal resolution site (trs, black), and two potential cellular 

factor binding elements (CFBE1&2). Question marks denote two unidentified host factors 

binding Ori. 
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Figure 5. NS1 is a multi-functional protein. 

The B19V NS1 multimer binds the dsDNA form of the genome at NSBE1-2 via N-

terminus region (5-7), but nicks ssDNA at trs and covalently attaches to the 5’ end. NS1 induces 

a DNA damage response that is essential for virus replication. The virus replication process leads 

to the activation of ATR, ATM and DNA-PKcs. However, the activation of ATR and DNA-

PKcs, but not ATM, is essential for virus replication. NS1 transactivates its P6 promoter with the 

assistance of Sp1/Sp3. NS1 is a global transactivator and regulates ~1,700 genes. NS1 induces 

apoptosis through the activation of caspases 2/6/8 and TNF-α. The central region of NS1 protein 

exhibits putative helicase activity. 
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Chapter 2:  

Phosphorylated STAT5 Directly Facilitates Parvovirus B19 DNA Replication in Human 

Erythroid Progenitors through Interaction with the MCM Complex2 

 

 

 

 

 

 

 

 

 

 

 

  

                                                 
2 The chapter has been previously published in PLOS Pathogens: Ganaie, S. S., Zou, W., Xu, P., Deng, X., 

Kleiboeker, S., and Qiu, J. (2017) Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in 

human erythroid progenitors through interaction with the MCM complex. 13, e1006370. 

https://doi.org/10.1371/journal.ppat.1006370. 
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Abstract 

Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming 

unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human 

bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid 

progenitor cells is partly due to the intracellular factors that are essential for viral DNA 

replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic 

conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) 

pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results 

revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding 

element was identified adjacent to the NS1-binding element within the minimal origins of viral 

DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral 

DNA replication origins both in vivo and in vitro, and was actively recruited within the viral 

DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance 

(MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting 

the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. 

The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication 

in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could 

be a promising antiviral drug for treatment of B19V-related diseases. 

 

 

 

 

 



33 

 

Introduction 

Human parvovirus B19 is a small, non-enveloped parvovirus with a single-stranded (ss) 

DNA genome of 5.6 kb. It belongs to the genus Erythroparvovirus of the Parvoviridae family 

(140). The B19V genome is flanked by identical inverted terminal repeats (ITRs) at both ends 

(141). B19V is pathogenic to humans and causes a myriad of pathologies, including fifth disease 

in children, transient aplastic crisis, persistent anemia in immune-compromised patients, hydrops 

fetalis in pregnant women, and arthropathy (1,142-145). B19V infects human erythroid 

progenitor cells through initial attachment to its primary receptor (P-antigen) (24) and interaction 

with co-receptors, resulting in virus internalization (27,31). Virus replication and assembly take 

place in the nuclei of infected cells. The B19V double-stranded (ds) replicative form (RF) 

genome expresses the large non-structural NS1 protein, two small non-structural proteins (the 

11-kDa and 7.5-kDa proteins), and two capsid proteins (VP1 and VP2) (43,46,47) 

B19V infects human EPCs during the late stages of maturation, particularly burst forming 

unit-erythroid (BFU-E) cells and colony forming unit-erythroid (CFU-E) cells (3-5,115). B19V 

also infects non-erythroid tissues (21-23), but the infection of these tissues is non-productive, as 

virus replication is not fully supported (19,21,96). Erythropoietin (EPO), a hormone secreted by 

renal tissue in response to hypoxia, is essential for survival, differentiation, and development of 

EPCs during the late maturation stages (87). In addition to the role in survivability of EPCs, 

EPO/EPO receptor (EPO-R) signaling is essential to B19V replication (17). EPO binding to 

EPO-R activates Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 

(STAT5), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK) 

pathways. The JAK2-STAT5 pathway positively regulates B19V replication, the ERK pathway 

negatively regulates B19V replication, and the PI3K pathway is dispensable to B19V replication 
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(18) . Expression of STAT5A is upregulated during hypoxia, and replication of B19V in human 

EPCs is facilitated by hypoxic conditions (18). JAK2 predominantly phosphorylates STAT5A in 

the cells of erythroid lineage (89), and thus STAT5A is largely involved in facilitating B19V 

replication of EPCs under hypoxic conditions (18). The disease outcomes of hematological 

disorders caused by B19V infections result from the death of infected human EPCs. B19V 

infection inhibits erythropoiesis by inducing cell-cycle arrest (57,60,70), and eventually results in 

apoptosis (65,71,116,146). 

The results of this study confirmed that phosphorylation of STAT5 is essential for B19V 

DNA replication. Mechanistically, the B19V RF DNA genome harbors STAT5-binding element 

(STAT5BE) within the minimal origins of DNA replication (Ori), located to the ITRs at each 

end of the viral genome. The binding site specifically binds phosphorylated STAT5 (pSTAT5). 

Moreover, our experiments revealed a novel interaction between STAT5 and minichromosome 

maintenance (MCM) complex; B19V exploits this interaction to recruit MCM complex to the 

viral replication centers for initiation of B19V DNA replication. 
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Materials and Methods 

Ethics statement. 

We purchased CD34+ hematopoietic stem cells, which were isolated from bone marrow 

of a healthy human donor, from AllCells LLC (Alameda, CA) without any identification 

information on the cells, and, therefore, an institutional review board (IRB) review was waived. 

Primary cells and cell lines. 

Primary human CD36+ EPCs were expanded ex vivo from CD34+ hematopoietic stem 

cells as previously described (17,18,147). Briefly, hematopoietic CD34+ stem cells, purchased 

from AllCells, LLC (Alameda, CA), were grown in Wong medium under normoxia up to Day 4 

and frozen in liquid nitrogen (18). In each experiment, Day 4 cells were thawed and grown under 

normoxia in an atmosphere containing 5% CO2 and 21% O2 at 37ºC for 2-3 days, prior to 

incubation under hypoxia at 5% CO2 and 1% O2.  

The megakaryoblastoid cell line, UT7/Epo-S1, was cultured in Dulbecco's modified 

Eagle’s medium with 10% fetal bovine serum and 2 U/ml of EPO (Amgen, Thousand Oaks, CA) 

in 5% CO2 and 21% O2 at 37ºC (14,77). A UT7/Epo-S1 cell line expressing B19V NS1 protein 

(NS1-S1) was cultured under the same conditions, except that 5 µg/ml doxycycline was used to 

induce NS1 expression when needed (70).   

Virus and infection. 

            Plasma samples containing B19V at ~1 × 1012 viral genomic copies per ml (vgc/ml) were 

obtained from ViraCor Eurofins Laboratories (Lee’s Summit, MO). After 2 days of hypoxia, 

CD36+ EPCs were infected with B19V at a multiplicity of infection (MOI) of ~1,000 vgc per 

cell. At 48 h post-infection, the infected cells were analyzed.   
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Chemical inhibitors. 

STAT5-SH2 Inhibitor (STAT5-SH2i, CAS 285986-31-4; catalog number (cat#) 573108), 

a cell-permeable compound that selectively targets the SH2 domain of STAT5 (148), and STAT5 

Inhibitor III, pimozide (CAS 2062-78-4, cat# 573110), which dephosphorylates STAT5 (149), 

were purchased from EMD Millipore (Billerica, MA). Both chemicals were dissolved in DMSO 

to produce stock solutions (at 100mM) that were kept at -80 ºC. 

Proximity ligation assay. 

Duo link In-Situ Red Mouse/Rabbit kit (cat# DUO92101) was purchased from 

MilliporeSigma (St Louis, MO). Proximity ligation assay was performed following the 

manufacturer’s instructions, as described previously (150).   

Immunofluorescence assay and confocal imaging. 

Immunofluorescence assay was carried out as described previously (18,68). Briefly, 

infected EPCs were deposited on slides by cytospinning, fixed with 3.7% paraformaldehyde for 

30 min, and permeabilized with phosphate-buffered saline (PBS, pH7.2) containing 0.5% Triton 

X-100 (PBS-T) for 5 min at room temperature. Non-specific interactions were blocked with 3% 

bovine serum albumin (BSA) before subsequent incubation with primary and fluorescence-

labelled secondary antibodies. The slides were visualized with a Nikon confocal microscope, and 

images were taken at 100 × magnification.  

Plasmid construction. 

pM20 contains the full-length B19V replicative from (RF) genome (nt 1-5596), and pN8 

contains a half-ITR deleted B19 RF genome (nt 199-5410) (77,151). They are diagramed in Fig 

2-2A. pN8mOriL and pN8mOriR were constructed by mutating the STAT5BE of the Ori in the left 

and right half ITRs of the pN8, respectively. Both STAT5BE were mutated in pM20 and pN8 



37 

 

resulted in pM20mOri and pN8mOri, respectively, which are diagramed with mOri shown, and the 

sequence of mutated Ori in the half right ITR is depicted (Fig 2-6A).    

Transfection. 

UT7/Epo-S1 cells were electroporated in V solution using Amaxa Nucleofector (Lonza, 

Basel, Switzerland), as described previously (18). Briefly, B19V infectious clone pM20 or 

mutants were enzymatically digested with Sal I. The linearized DNA was gel-purified. 2 µg of 

DNA was used for electroporation of 2 × 106 cells. After transfection, UT7/Epo-S1 cells were 

cultured under hypoxia of 1% O2.  

Flow cytometry and cell-cycle analysis. 

B19V-infected CD36+ EPCs were examined for virus infection by flow cytometry 

analysis with an anti-B19V capsid antibody, as described previously (18,68). For cell-cycle 

analysis, a bromodeoxyuridine (BrdU) incorporation assay was used, as described previously 

(68).  

Southern blot analysis. 

Lower molecular DNA (Hirt DNA) was extracted from either B19V-infected CD36+ 

EPCs or transfected UT7/Epo-S1 cells by a Hirt extraction method, as described previously (49). 

Hirt DNA extracted from UT7/Epo-S1 cells was further digested with Dpn I to remove non-

replicated plasmid DNA input. Southern blot analysis was performed as reported previously 

(49,60). B19V RF DNA M20 excised from pM20 with Sal I was used as a probe.  

Phosphorylated STAT5 protein purification. 

A biotinylated dsDNA probe (152), 5’-Bio-GAT ACT AGT TTC GTG GAA TCG TGG 

CAC TAT GAA CCA-3’, containing a STAT5BE (underlined), was synthesized by IDT 

(Coralville, IA) and used to purify pSTAT5, following a published protocol (153) with some 

https://www.google.com/search?q=Coralville+Iowa&stick=H4sIAAAAAAAAAOPgE-LSz9U3MMnKyLVIUuIAsUsMDDK0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUA9-vNrUQAAAA&sa=X&ved=0ahUKEwjBsZ_EmNTQAhUji1QKHT4aABAQmxMIkQEoATAS&biw=1920&bih=916
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modifications. Briefly, UT7/Epo-S1 cells grown in 14 dishes of 145 mm diameter were 

collected, washed with PBS, and resuspended in(70) Lysis Buffer-1 (10 mM HEPES, pH 7.6, 0.1 

mM EDTA, 1 mM DTT, 0.5% NP-40, 10 mM KCl, 0.5 mM PMSF, and protease inhibitor 

cocktail (PIC, MillopreSigma) for 5 min on ice. After vortexing, the lysate was centrifuged at 

500 × g for 5 min at 4ºC, and the nuclear pellet was washed with Lysis Buffer-1 without NP-40. 

The pellet was resuspended again in Lysis Buffer-2 (50 mM Tris, pH 7.6, 150 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 1 mM DTT, and 1 mM PMSF, and PIC), vortexed, and kept on ice for 

30 min. The nuclear lysate was sonicated, centrifuged at 12,000 × g for 20 min, and then passed 

through a 0.45 µm filter before being mixed with streptavidin beads pre-bound with the biotin-

dsDNA probe and incubated for several hours. The beads were then washed in Wash Buffer (50 

mM Tris-HCl, pH 7.6, 150 mM NaCl, 3-4 µg/ml poly dI-dC (MilliporeSigma), 1 mM PMSF, 

and PIC). Bound proteins were eluted in Wash Buffer with increasing salt concentrations (0.3 – 1 

M NaCl). The fractions containing pSTAT5 were identified by Western blotting.   

Electrophoretic mobility shift assay (EMSA).  

Electrophoretic mobility shift assay (EMSA) was performed as previously reported (154). 

Complementary forward and reverse oligonucleotides (synthesized at IDT, Coralville, IA) were 

annealed to form dsDNA probes, wt-Ori-39 and mut-Ori-39 that had the STAT5BE mutated 

(152) (Fig 2-2B). The probes were 5’ end labeled with 32P using [γ-32P] ATP.  Each 20 µl 

binding reaction contained 3 µg/ml of poly dI-dC (MilliporeSigma). 

Chromatin immunoprecipitation (ChIP) assay.  

Chromatin immunoprecipitation (ChIP) assay was performed essentially as described 

previously (155,156) with modifications. Cells were fixed in 1% formaldehyde for 10 min at 

room temperature and then quenched in 125 mM glycine. Fixed cells were washed with PBS, 
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and then lysed in 400 µl of Lysis Buffer (10 mM Tris-HCl, pH 8.0, 10 mM NaCl, 0.2 % NP-40, 

1 mM PMSF, and PIC) and incubated for 10 min on ice. After centrifugation at 2,500 rpm for 5 

min at 4ºC, the nuclear pellet was resuspended in 100 µl of Nuclear Lysis Buffer (50 mM Tris-

HCl, pH 8.1,10 mM EDTA, 1% SDS, and PIC) for 10 min on ice. One ml IP Dilution Buffer (20 

mM Tris-HCl, pH 8.1, 2 mM EDTA, 150 mM NaCl, 1% Triton X-100, and 0.01% SDS) was 

added, and chromatin was sheared by sonication at 80% power for 10 cycles of 15 s pulse and 1 

min rest. Sonicated samples were centrifuged to remove debris, and the supernatant was split 

aliquots. Antibody (2.5 µg) was added to each aliquot, and the mixtures were incubated 

overnight at 4°C. For each sample, 10 µg of yeast tRNA was added to 40 µl of cold PBS-

prewashed Protein A/G beads (Gold BioTechnology, Inc., St Louis, MO), and this mixture was 

added to the sample containing antibody and incubated with rocking for 6 h. Beads were 

collected by centrifugation  and washed with IP Wash-1 (20 mM Tris, pH 8.1, 2 mM EDTA, 50 

mM/500mM NaCl, 1% Triton X-100, 0.1% SDS) three times (first at low salt of 50 mM and then 

twice at 500 mM) for 10 min each at 4°C, followed by one wash with IP Wash-2 (10 mM Tris, 

pH 8.1, 1 mM EDTA, 0.25 M LiCl, 1% NP-40, and 1% deoxycholic acid) for 10 min at 4°C. The 

beads were then washed with cold TE, and protein-DNA complexes were eluted twice using 200 

µl of Elution Buffer (100 mM sodium bicarbonate and 1% SDS) for 10 min at room temperature. 

Crosslinking was reversed by addition of 16 µl of 5 M NaCl and incubation at 65°C. DNA was 

purified with a Qiagen PCR purification kit (Qiagen, Hilden, Germany), and ChIP product was 

recovered in 50 µl of H2O, and used for PCR or quantitative PCR (qPCR) analysis. 

 PCR or qPCR analysis. 

Immunoprecipitated viral DNA from ChIP assay was subjected to PCR analysis using 

either F1 and R1 or F1 and R2 primers spanning the viral origin region: F1 (nt 5036-5053), 5’-
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CCT GCC CCC TCC TAT ACC-3’, R1 (nt 5308-5285), 5’-CAG GAA ATG ACG TAA TTG 

TCC GCC-3’, and R2 (nt 5393-5376), 5’-ACG TCA ACC CCA AGC GCT-3’. q-PCR analysis 

was done as described previously (17), using the following primers: F (nt 353-378), 5’-GCA 

TCT GAT TTG GTG TCT TCT TTT AA-3’, R (421-403), 5’-TGG CTG CCC ATT TGC ATA 

A-3, and probe (nt 386-401), 5’ FAM-CGG GCT TTT TTC CCG C/IABkFQ-3’.   

Colony formation assay.  

The colony formation assay was performed with methyl cellulose-based medium (R&D 

Systems, Minneapolis, MN) according to the manufacturer’s instructions, with modifications. 

Briefly, CD36+ EPCs were cultured in Wong expansion medium and were treated with pimozide 

at various concentrations on Day 7. After 48 hours, ≥3 × 104 cells from each well were cultured 

in semi-solid methyl cellulose-based medium for 10-12 days, at which time colony counts were 

assessed by someone who was blinded to the experimental conditions. 

Immunoprecipitation assay and Western blotting. 

Co-immunoprecipitation (Co-IP) assay was performed as previously described (154,157). 

Briefly, UT7/Epo-S1 cells were collected, washed with PBS, and lysed in 

radioimmunoprecipitation assay (RIPA) buffer. After centrifugation at 12,000 rpm for 20 min at 

4°C, supernatant was taken and split into aliquots. Each aliquot was incubated with 3 µg of an 

antibody of interest overnight at 4°C, and then 40 µl of Protein A/G beads (washed with ice-cold 

PBS three times beforehand) was added, followed by incubation for 6 h. The beads were 

collected by centrifugation and washed three to five times with 1 × PBS, and then resuspended in 

1 × Laemmli sample buffer. Samples were boiled for 10 min and run on 10% SDS-

polyacrylamide gels for Western blot analysis, which was performed as described previously 
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(18,68,158). Pull-down assay was performed similarly to Co-IP, except that anti-Flag-conjugated 

beads or control beads were used.  

Antibodies.   

The following primary antibodies were purchased: mouse anti-STAT5 (cat# sc-74442), 

rabbit anti-STAT5 (cat# sc-835), anti-STAT5A (cat# sc-271542) and anti-STAT5B (cat# sc-

1656), anti-BrdU (IIB5) (cat# sc-32323) were from Santa Cruz (Dallas, TX); anti-MCM2 (cat# 

12079), and anti-pSTAT5(Y694) (cat# 4322) were from Cell Signaling (Danvers, MA); anti-

STAT5a/b pan-specific antibody (cat # AF2168) and normal IgG rabbit (cat# AB-105-C) were 

from R&D Systems Inc (Minneapolis, MN); anti-MCM5 antibody (cat# 2380-1) was from 

Epitomics (Burlingame, CA);  anti-B19V capsid (cat# Mab8293) was from Millipore (Billerica, 

MA); anti-BrdU (clone B44) was from BD (Franklin Lakes, NJ); and anti-β-actin (cat# A5441) 

was from Sigma; anti-MCM3 (cat# A300-124A), anti-MCM5 (cat# A300-195A; for ChIP), and 

MCM7(cat#A300-128A) were from Bethyl Laboratories (Montgomery, TX); anti-ATM(pS1981) 

(cat#ab81292) were from Abcam (Cambridge, MA); and anti-ATR(pT1989) (cat#GTX128145) 

from GeneTex (Irvine, CA). Rat anti-NS1 polyclonal antibody was prepared in our lab as 

previously reported (18).    

Horseradish peroxidase (HRP)-conjugated anti-mouse and anti-rabbit secondary 

antibodies were purchased from Sigma, and fluorescein isothiocyanate (FITC)-, Texas Red-, and 

Dylight405-conjugated anti-mouse, anti-rat, and anti-rabbit secondary antibodies were all 

purchased from Jackson ImmunoResearch (West Grove, PA). 

Statistics. 

Statistical analysis was performed using GraphPad Prism Version 7.0. Statistical 

significance was determined by using 1-way ANOVA analysis, followed by Tukey-Kramer post-
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test for comparison of three or more groups and unpaired (Student) t-test for comparison of two 

groups. Error bars show mean and standard deviation (Mean ± SD) unless otherwise specified 
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Results 

Inhibition of STAT5 phosphorylation completely inhibited B19V DNA replication. 

Our results previously demonstrated that pSTAT5A has a critical role in B19V infection 

of human EPCs cultured under hypoxic conditions (18), leading us to consider in this study 

whether specific inhibition of STAT5 phosphorylation affects B19V replication. This possibility 

was tested by treating cells with a specific inhibitor of STAT5 phosphorylation, pimozide (149). 

At a final concentration of 15 µM, pimozide abolished >90% of the STAT5 phosphorylation in 

CD36+ EPCs, without altering the total expression of STAT5 (Fig 2-1A, lane 4). CD36+ EPCs 

were incubated with pimozide 6 h prior to infection, and, at 48 h post-infection, numbers of 

B19V-infected (capsid-expressing) cells were reduced by 4.7-fold and 18.5-fold at 15 μM and 25 

μM pimozide, respectively, compared with DMSO-treated cells (Fig 2-1B). Pimozide abolished 

viral DNA replication at both concentrations (Fig 2-1C). STAT5 dephosphorylation was 

confirmed in pimozide-applied infected cells (Fig 2-1D). These results suggested that inhibition 

of STAT5 phosphorylation abolishes viral DNA replication in B19V-infected CD36+ EPCs. 

Notably, treatment with pimozide at 15 µM did not significantly inhibit cell proliferation, as 

assessed by the BrdU incorporation assay (Fig 2-1E&F).  

Pimozide treatment, at a concentration as low as 10 μM, also abolished DNA replication 

of the B19V RF genome M20 in transfected UT7/Epo-S1 cells (Fig 2-10A, lane 3), and inhibited 

STAT5 phosphorylation (Fig 2-10B, lane 3). As controls, at 10 or 20 μM pimozide, cell 

proliferation was not significantly affected (2-10C&D Fig). Taken together, our results 

suggested that phosphorylation of STAT5 is essential for viral DNA replication. 
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Phosphorylated STAT5 interacts with a consensus STAT5-binding element in the B19V 

minimal replication origin (Ori).  

The requirement of pSTAT5 for B19V DNA replication suggested that there might be a 

direct involvement of pSTAT5 in viral DNA replication. In silico analysis of the B19V genome 

demonstrated the presence of several consensus STAT5-binding elements (STAT5BEs) 

throughout the genome. STAT transcription factor binds a GAS or GAS-like motif with a 

consensus sequence of TTCN3GAA, TTCN3TAA, or TTAN3GAA (159). TTCN3TAA binds 

STAT5 (160) and is one of the top ten STAT5BEs identified in a genome wide analysis by ChIP-

seq (161). A consensus STAT5BE is located within the previously identified 67-nt Ori in the 

B19V genome (Fig 2-2A) (77).   

Binding of pSTAT5 from nuclear lysates of UT7/Epo-S1 cells to the STAT5BE in the 

Ori was confirmed by EMSA. A shifted band, indicating binding of protein to the probe, was 

observed in the presence of wild-type (wt) Ori-derived probe wt-Ori-39, but not the mut-Ori-39 

that has the STAT5BE mutated (Fig 2-2B, and Fig 2-2C, lanes 2 vs 3). On incubation with an 

anti-pSTAT5 antibody, the level of shifted band was dramatically decreased (Fig 2-2D, lane 3). 

Because the EMSA was performed in the presence of excess amounts of non-specific competitor 

poly dI-dC, these results indicated specific binding of pSTAT5 to the B19V Ori.  

pSTAT5 was purified from UT7/Epo-S1 cells by the use of beads conjugated with high 

affinity STAT5-binding DNA oligonucleotides (Fig 2-2E). EMSA was repeated with the 

purified pSTAT5, which shifted the labeled wt-Ori-39, but not the mut-Ori-39 (Fig 2-2F, lanes 2 

vs 3). Shifting of wt-Ori-39 was abolished by addition of the STAT5-SH2 inhibitor, STAT5-

SH2i, in a dose-dependent manner (Fig 2-2G, lanes 4-6). These binding assays confirm that 

pSTAT5 specifically binds to the STAT5BE of B19V Ori in vitro.  
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Phosphorylated STAT5 is associated with replicating viral DNA in the viral DNA 

replication centers of B19V-infected EPCs.  

The association of STAT5 with B19V NS1 and the viral capsid was demonstrated by 

immunofluorescence assays (Fig 2-3A&B). STAT5 colocalized with NS1 and the viral capsid in 

the nucleus of B19V-infected CD36+ EPCs. The association of STAT5 with viral capsid was 

confirmed by the observation of fluorescent foci in B19V-infected cells in a proximity ligation 

assay (Fig 2-3C), which produces an amplified signal when two labeled molecules are within 20 

nm of one another (162).  

Proximity ligation assay (Fig 2-3D) and confocal microscopy (Fig 2-3F) both 

demonstrated that STAT5 colocalized with replicating viral DNA that was pulse-labelled with 

BrdU in B19V-infected CD36+ EPCs, which are parvovirus replication centers (163,164) as 

shown by proximity ligation assay using anti-BrdU and anti-capsid antibodies (Fig. 2-3E). 

Interaction of pSTAT5 with the viral genome in cells was confirmed by ChIP assays in B19V-

infected CD36+ EPCs and M20-transfected UT7/Epo-S1 cells. The pSTAT5-DNA complexes 

were pulled down with anti-pSTAT5(Y694) antibody, and bound viral Ori was detected by PCR. 

In the ChIP assay, cellular DNA was sheared to < 500 bp by sonication (Fig 2-4A). A specific 

PCR band was amplified in samples from B19V-infected or M20-transfected cells pulled down 

by anti-pSTAT5(Y694) (Fig 2-4B, lane 4). Moreover, in UT7/Epo-S1 cells transfected with the 

B19V RF genome (M20), we observed that application of pimozide significantly decreased the 

amount of the Ori-containing fragments of the M20, as assessed by the quantitative ChIP assay 

targeting Ori (Fig 2-13C, Pimozide). Thus, these results confirmed the association of pSTAT5 

with B19V Ori in B19V-infected CD36+ EPCs and M20-transfected UT7/Epo-S1 cells.  
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Disruption of the interaction between STAT5 and viral Ori inhibits viral DNA replication.   

A small molecule STAT5-SH2 inhibitor (STAT5-SH2i, CAS no. 285986-31-4) 

specifically targets the SH2 domain of STAT5 and inhibits STAT5 binding to DNA (148). 

EMSA was performed to determine whether STAT5-SH2i disrupts the interaction between the 

STAT5 and B19V Ori. Incubation of either UT7/Epo-S1 nuclear lysates or purified pSTAT5 

with increasing concentrations of the inhibitor showed that the STAT5-SH2i prevented 

formation of the STAT5-DNA formation in a dose-dependent manner (Fig 2-5A and Fig 2-2G). 

To examine the effect of the inhibitor on virus replication, CD36+ EPCs were pretreated with 

STAT5-SH2i 6 h prior to infection with B19V. The results showed that, at a final concentration 

of 500 μM, the inhibitor significantly decreased the virus-infected cell population by 10.7-fold 

(Fig 2-5B), and the level of viral RF DNA by ~10-fold (Fig 2-5C), but not the expression level 

of pSTAT5 (Fig. 2-5D), compared with the cells with DMSO treatment. Cell proliferation was 

not significantly affected by this level of inhibitor in mock-infected CD36+ EPCs (Fig 2-5E&F). 

The inhibition of viral DNA replication by STAT5-SH2i was also demonstrated in M20-

transfected UT7/Epo-S1 cells (Fig 2-11), and STAT5-SH2i significantly disrupted the 

interaction of pSTAT5 with the Ori of the B19V RF genome (M20) in vivo as shown by a ChIP 

assay (Fig 2-13C, STAT5-SH2i).     

Derivatives of B19V replicative form genome with mutated STAT5-binding elements do 

not replicate in UT7/Epo-S1 cells.  

The effect of mutation of the STAT5BE of the viral Ori on replication of the B19V RF 

genome was determined. The viral genome has an Ori sequence adjacent to each ITR, and the 

STAT5BE was mutated in either the left ITR (N8mOriL) or right ITR (N8mOriR) or both ITRs 

(N8mOri) of the N8 replicating RF DNA that has half ITRs at both ends, as shown in Fig 2-6A. 
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The replication capability of these mutated RF genomes was examined in UT7/Epo-S1 cells. 

Although the N8 RF DNA replicated well, much less replication occurred with N8mOriL and 

N8mOriR, and no replication was observed with N8mOri (Fig 2-6B). The mutations in the 

STAT5BEs were then introduced into both ITRs of M20 RF genome, to make the M20mOri 

mutant. No viral DNA replication was observed in M20mOri-transfected cells (Fig 2-6C, lane 2). 

Although both M20 and M20mOri RF genomes expressed NS1, viral capsid (a hallmark of B19V 

DNA replication (49) was present only in M20-transfected cells (Fig 2-6D).   

pSTAT5 interacts with the MCM complex of the pre-initiation complex of cellular DNA 

replication. 

During initiation of cellular DNA replication, the origin recognition complex (ORC) 

binds to autonomously replicating sequence sites and recruits cell division control protein 

(CDC6) and DNA replication factor CDT1 to replication origins (165). CDT1 recruits the MCM 

complex and primes replication initiation (166). Although viral DNA replicates independently of 

ORC/CDC6/CDT1, DNA viruses may require the MCM complex to initiate viral DNA 

replication (167). In the parvovirus adeno-associated virus (AAV), MCM complex is required for 

in vitro reconstitution of viral DNA replication (168). In the case of B19V, we previously found 

that MCM complex is associated with the viral DNA replication centers and has a role in B19V 

replication (68).   

Initially, to determine whether the viral NS1 protein has a role in recruitment of the 

MCM complex to the viral replication origin, we performed pull-down assays using lysates from 

NS1-expressing UT7/Epo-S1 cells. With pull-down of NS1, MCM and pSTAT5 were not 

detected (Fig 2-7A, lane 3), but the positive control transcription factor E2F5 [which interacts 

with B19V NS1 (57)] was detected, which suggested that NS1 has no role in recruitment of the 
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MCM complex. By contrast, co-immunoprecipitation (Co-IP) with an anti-pSTAT5 antibody 

pulled down MCM5 protein of the MCM complex from lysates of UT7/Epo-S1 cells (Fig 2-7B). 

Similarly, Co-IP with an anti-MCM5 antibody pulled down pSTAT5, in addition to MCM2 (Fig 

2-7C). The interaction between pSTAT5 and the MCM complex was DNA-independent, as 

DNase treatment of the lysate did not disrupt the interaction (Fig 2-7D, lane 4). Also, we show 

that MCM2, MCM3, MCM5 and MCM7 were associated with viral Ori in M20-transfected 

UT7/Epo-S1 cells, as confirmed by ChIP analyses (Fig 2-13A).   

STAT5 and the MCM complex colocalized in CD36+ EPCs, irrespective of whether the 

cells were infected (Fig 2-7E). An association of the MCM complex with STAT5 was confirmed 

in both B19V- and mock-infected cells by the proximity ligation assay (Fig 2-7F). This 

association was blocked by treatment of pimozide in CD36+ EPCs (Fig 2-7G). 

Immunofluorescence detection of the viral capsid demonstrated that, following B19V infection, 

most of the cells were infected (Fig 2-7H).  

pSTAT5 recruits MCM complex to B19V Ori to facilitate initiation of viral DNA 

replication. 

Our demonstration that pSTAT5 interacts with viral Ori as well as the MCM complex 

suggested that B19V might exploit these interactions to initiate viral DNA replication. To test 

this hypothesis, we infected CD36+ EPCs with B19V, and at 36 h post-infection (when B19V 

DNA replication was at its peak), we treated the cells with STAT5-SH2i (Fig 2-8A). At 6 h post-

treatment, the cells were collected for ChIP assay with anti-MCM2 antibody, which showed that 

MCM abundance on viral Ori decreased significantly in the presence of STAT5-SH2i, compared 

with untreated control cells (Fig 2-8B). Results with three-color confocal imaging demonstrated 

that MCM2 and STAT5 colocalized in mock-infected cells (in the absence of viral NS1) (Fig 2-
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8C, Mock). In infected cells, viral NS1 (which binds viral Ori) colocalized with both STAT5 and 

MCM, indicating that they were localized at the viral DNA replication centers (Fig 2-8C, 

B19V). These results suggested that B19V utilizes viral Ori-STAT5 and STAT5-MCM 

interactions to recruit the MCM complex to viral DNA replication origins, to initiate viral DNA 

replication. 

Pimozide is a promising candidate for the treatment of B19V infection. 

  To confirm the efficacy of pimozide as a drug, we treated primary CD36+ EPCs with 

pimozide at various concentrations, and infected them with B19V. The cells were collected 48 h 

post-infection for quantification of viral DNA replication (RF DNA) by Southern blot analysis, 

which demonstrated that the IC50 of pimozide for inhibition of viral DNA replication (the 

concentration at which 50% of viral DNA replication was inhibited) was 2.7 ± 0.69 µM (mean ± 

standard error) (Fig 2-9A). To examine the effect of pimozide on colony formation in the 

absence of virus infection, CD36+ EPCs were incubated with pimozide at increasing 

concentrations on Day 7 for 2 days, and then cultured in methyl cellulose-based medium for 

colony formation. After 10 days, numbers of colonies were counted (Fig 2-9B). Pimozide only 

moderately reduced the numbers of colonies at higher concentrations (10-25 µM), but it did not 

affect the size or morphology of the colonies formed (Fig 2-9C). 
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Discussion 

We have now demonstrated that STAT5 is directly involved in B19V DNA replication. 

Importantly, STAT5 specifically interacts with the MCM complex, the eukaryotic DNA helicase 

complex that is required for the formation and elongation of the cellular DNA replication fork 

(169). We therefore propose a novel model of B19V DNA replication in human EPCs, in which 

STAT5 functions as a mediator protein that brings the MCM complex to the viral DNA 

replication origins. Our results also identify pSTAT5 as a target for inhibition of B19V infection. 

In addition, as the STAT5-MCM interaction is independent of infection, we envisage an 

important role of this interaction in the context of cellular replication and transcription in human 

EPCs, which warrants further investigation. 

Phosphorylated STAT5A is directly involved in B19V replication.  

            STAT5 is phosphorylated at a single conserved tyrosine residue (Tyr694 in STAT5A and 

Tyr699 in STAT5B), and these phosphotyrosine motifs, upon intermolecular interaction, enable 

formation of either homodimers or heterodimers of STAT5A/B (170,171). These dimers 

accumulate in the nucleus and bind DNA, to transactivate target genes (170). EPO-activated 

JAK2 phosphorylates STAT5 in human EPCs (172). We examined the relative expression of 

STAT5A and STAT5B in UT7/Epo-S1 and CD36+ EPC lysates with a STAT5A/B pan-specific 

antibody, and found that STAT5A was predominantly expressed in both cell types (Fig. 2-12A). 

This result agrees with the observations that JAK2 kinase predominantly phosphorylates 

STAT5A in cells of erythroid lineage (89), and a constitutively phosphorylated STAT5A (1*6) 

variant enhances virus replication, whereas knockdown of STAT5A inhibits virus replication in 

B19V-infected EPCs (18).   
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STAT5B promotes viral DNA replication, but, during replication of human 

papillomavirus 16 (HPV16), STAT5B enhances viral DNA replication indirectly via regulation 

of TopBP1 expression, leading to the activation of ATR kinase (173). In a proof-of-concept 

experiment, fusion of STAT5BEs to the DNA replication origin of polyomavirus replicon DNA 

improved replication efficiency in transfected mouse lymphoid BA/F3 cells, corroborating the 

direct role of STAT5 in viral DNA replication (174). CD36+ EPCs have to be cultured in the 

presence of EPO for proliferation and differentiation (17), which dominantly leads activation of 

STAT5A (Fig. 2-12A) through the EPO-JAK2-STAT5 pathway (18); however, a DDR or 

activation of ATR is not observed in normal (uninfected) CD36+ EPCs (67,70) (Fig. 2-14A). 

Furthermore, in hydroxyurea-treated CD36+ EPCs, both ATR and ATM were activated; 

however, application of pimozide did not change the level of phosphorylated ATR or ATM 

(Fig.2-14A). As ATR activation enhances B19V replication (67), these lines of evidence suggest 

that pSTAT5 does not utilize the STAT5-ATR pathway to facilitate B19V replication in CD36+ 

EPCs. Moreover, B19V infection per se did not affect STAT5 phosphorylation (Fig. 2-14B). Of 

note, the binding of pSTAT5 to the Ori, which locates in front of the B19V P6 promoter, did not 

obviously transactivate the P6 promoter (Fig. 2-15). Thus, our results provide the first evidence 

that an authentic virus, B19V, depends on direct binding of pSTAT5 to its replication origin 

(Ori) for viral DNA replication.   

Phosphorylated STAT5 interacts with the MCM complex and recruits it to viral replication 

origins during DNA replication initiation.  

            B19V infection induces late S-phase arrest in human EPCs, and S-phase factors are fully 

utilized by the virus to replicate its genome (68). During cellular DNA replication, ORC-CDC6-

CDT1 binding to the replication origin is a priming event that takes place in G1-phase (169). 
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Furthermore, CDT1 recruits the MCM complex and subsequently the whole replisome via 

formation of the MCM-CDC45 complex (169). Notably, no such priming takes place during S-

phase, so that chromosomes are not replicated multiple times (165). However, viruses have 

evolved different mechanisms to initiate viral DNA replication. For examples, SV40 has the 

large T antigen that binds SV40 DNA replication origin and has helicase activity, and also 

recruits the replication machinery by interacting with DNA replication factors, such as 

replication factor A, DNA polymerase α and topoisomerase I (175). Parvoviruses use the large 

non-structural protein NS1, which binds directly to the viral origin and has helicase and nickase 

activities that facilitate viral DNA replication (176). In parvovirus AAV, the MCM complex is 

essential to AAV2 DNA replication in vitro (168), and is probably recruited by interaction with 

Rep78, the large viral non-structural protein (177).  

In the case of B19V, the MCM complex is localized to the viral DNA replication centers 

and is required for viral DNA replication (68). However, we did not observe any interaction 

between the B19V NS1 protein and the MCM complex, suggesting that the complex is recruited 

to the viral DNA replication centers by an alternative mechanism. Here, our results provided 

evidence that STAT5 interacts with the MCM complex in human EPCs, without involvement of 

viral or cellular DNA. These cells express STAT5A more abundantly than STAT5B (Fig. 2-

12A), but both STAT5A and STAT5B proteins interact with the MCM complex (Fig. 2-12C).   

During B19V infection, STAT5 is recruited to the viral DNA replication origin by direct 

interaction with STAT5BEs in the Ori sequences of the viral genome, thereby bringing the 

MCM complex to the viral Ori. Outside of the Ori, there are additional 6 putative STAT5BEs, 

and we tested that two of them in the capsid proteins-coding region also bound pSTAT5 (Fig. 2-

13D). Since there is no putative terminal resolution site (trs) and NS1-binding sites outside of the 
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Ori, we speculate that these STAT5BEs outside of the Ori do not contribute to B19V DNA 

replication. We hypothesize that MCM complex recruited by pSTAT5 at Ori may contribute to 

virus replication through its helicase activity or the recruitment of other DNA replication factors 

to the viral origin (169). Notably, PIF (parvovirus initiation factor), a member of the KDWK 

family of transcription factors, has been shown to bind two adjacent “ACGT” motifs in front of 

the NS1 binding site of left-hand replication origin (OriLTC) of the Protoparvoviurs minute virus 

of mice (MVM) (178,179). PIF stabilizes the binding of NS1 to the Ori, which is critical for the 

activation of NS1 nickase (180). In B19V, at least in an in vitro nicking assay, B19V NS1 is 

sufficient to cleave the Ori (62). However, whether the binding of STAT5 to B19V Ori or the 

recruited MCM complex also involves in NS1 nickase activity of the Ori at trs (Fig 2-2A) 

warrants further investigation.        

Pimozide, an FDA-approved drug, shows promise for the treatment of B19V infection.  

            To date, no specific treatment (either anti-viral or vaccine-based) exists for B19V 

infection. We have now demonstrated that pimozide, an FDA-approved anti-psychotic drug that 

is used in the treatment of a wide range of diseases (181) and could be potentially used to treat 

chronic myeloid leukemia, in which it specifically targets cancer cells, without affecting CD34+ 

hematopoietic stem cells (149). Pimozide specifically inhibits STAT5 phosphorylation without 

affecting JAK2 activation or JAK2-derived signaling pathways; however, the underlying 

mechanism is unknown yet (182). The pSTAT5 is presumably required for recruitment of the 

MCM complex to the viral Ori, and facilitates B19V replication in human EPCs. Pimozide is a 

potent inhibitor of B19V replication, with an IC50 of ~2.7 µM. At 15 μM, pimozide does not 

have a significant effect on proliferation of human EPCs expanded ex vivo, and has only 

moderate effect (~15% reduction) on colony formation of EPCs. As STAT5A phosphorylation 
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plays a key in B19V replication in human EPCs under hypoxic conditions (18), these lines of 

evidence suggest that the inhibition of B19V replication in CD36+ EPCs is not a side-effect of 

the pimozide. Antivirals such as cidofovir and ribavirin are used in the treatment of adenovirus 

infection, and have IC50 values of 15 µM for cidofovir and 25 µM for ribavirin (183). 

Importantly, when we applied both pimozide and STAT5-SH2i (at 15 and 250 µM, respectively), 

a significant synergistic inhibition of B19V infection was observed (Fig. 2-16). Therefore, we 

expect that a clinical trial should be conducted to examine pimozide as a treatment for B19V 

infection of patients with sickle-cell disease and immunocompromised patients and as anti-viral 

prophylaxis of transplant recipients. 
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Fig 2-1. Pimozide abolishes B19V replication in primary CD36+ erythroid progenitor cells 

(EPCs). 

            (A) Inhibition of phosphorylation of STAT5 by pimozide. CD36+ EPCs were treated with 

dimethyl sulfoxide (DMSO) vehicle or pimozide at various concentrations. At 48 h post-

treatment, cells were collected, washed and lysed for Western blotting with detection of pSTAT5 

by anti-pSTAT5(Y694) antibody. The blot was reprobed for total STAT5 using a mouse anti-

STAT5 antibody and for β-actin as a loading control. (B-D) Inhibition of B19V DNA replication 

by pimozide. CD36+ EPCs were pre-incubated with DMSO or pimozide at a final concentration 

of 15 µM or 25 µM 6 h prior to B19V infection. At 48 h post-infection, cells were subjected to 

(B) flow cytometry analysis for the B19V-infected cell population with an anti-B19V capsid 

antibody, (C) Hirt DNA extraction, followed by Southern blot analysis with a B19V M20 DNA 

probe, or (D) Western blotting with an anti-pSTAT5(Y694) antibody, and reprobing with an 

anti-β-actin antibody. (E&F) Evaluation of the effect of pimozide on cell proliferation. CD36+ 

EPCs were treated with either DMSO or pimozide (15 µM or 25 µM). After 48 h, treated cells 

were incubated with bromodeoxyuridine (BrdU) for 1 h to analyze cell-cycle progression by a 

BrdU incorporation assay. (E) Results of a representative cell-cycle analysis experiment. (F) 

Relative fold change in the S phase cell population of each group is shown, with means and 

standard deviations of three independent experiments. P values are calculated using one-way and 

Tukey-Kramer post-test, compared with DMSO control. * denotes P<0.05; **** denotes 

P<0.0001; and n.s. (P>0.05) denotes no statistical significance. 
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Fig 2-2. STAT5 interacts with B19V replication origins (Ori) in vitro.   

            (A) Diagram of the B19V ssDNA and replicative form (RF) DNA genome. B19V 

genomes of the single-stranded (ss) DNA form and full-length replicative form (RF) are 

depicted, along with the sequence of viral Ori that contains a consensus STAT5-binding element 

(STAT5BE), terminal resolution site (trs), two NS1-binding elements (NSBE1 and NSBE2), and 

two putative cellular factor-binding elements (CFBE) (58,62,77). (B) Probes used in 

electrophoretic mobility shift assay (EMSA). Sequences of two 39-nt probes, wt-Ori-39 and mut-

Ori-39, are shown with the consensus STAT5BE and the mutated STAT5BE (mSTAT5BE) 

highlighted. (C&D) EMSA. (C) 32P-labeled Ori probes wt-Ori-39 (lane 2) and mut-Ori-39 (lane 

3) were incubated with UT7/Epo-S1 nuclear lysate (NL) in the presence of non-specific 

competitor poly dI-dC. Products were subjected to non-denaturing 5% polyacrylamide gel 

electrophoresis (PAGE). Gels were dried and exposed to a phosphor screen. (D) Similarly, 

EMSA was performed with 32P-labeled wt-Ori probes and 5 µg of NL in the presence of 5 µg of 

anti-pSTAT5(Y694) or IgG control antibody. (E) PAGE analysis of purified pSTAT5. 20 μl of 

pSTAT5 was analyzed by SDS-10% PAGE. Gels were either stained with Coomassie brilliant 

blue (left panel/CBB staining), or transferred to a PVDF membrane for Western blotting with an 

anti-pSTAT5(Y694) antibody (right panel/Western blot). (F&G) EMSA with purified pSTAT5. 

(F) 32P-labeled wt-Ori-39 (lane 2) and mut-Ori-39 (lane 3) probes were incubated with purified 

pSTAT5 in the presence of poly dI-dC. Samples were run on 5% non-denaturing PAGE, dried, 

and exposed to a phosphor screen. (G) EMSA with wt-Ori-39 in the absence (lanes 2&3) or 

presence of STAT5-SH2i at 0.3 mM (lane 4), 0.5 mM (lane 5), and 0.8 mM (lane 6). Lane 1, wt-

Ori-39 probe only.  
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Fig 2-3. STAT5 colocalizes with B19V NS1, capsids, and the replicating B19V genome. 

            (A&B) STAT5 colocalizes with B19V NS1 and capsids. Mock- or B19V-infected CD36+ 

EPCs were co-stained and examined with rabbit anti-STAT5 and rat anti-B19V NS1 antibodies 

(A) or with rabbit anti-STAT5 and mouse anti-B19V capsid antibodies (B). (C-E) Proximity 

ligation assay. Infected cells were co-stained with rabbit anti-STAT5 and mouse anti-B19V 

capsid antibodies (C), or co-stained with rabbit anti-STAT5 and mouse anti-BrdU antibodies 

(D), or co-stained with mouse anti-B19V capsid and rabbit anti-BrdU antibodies (E), followed 

by a proximity ligation assay, which produces amplified signal for labeled molecules in close 

proximity. (F) STAT5 colocalizes with the replicating viral genome. Mock- or B19V-infected 

CD36+ EPCs were BrdU labeled to identify replicating viral ssDNA genomes. The treated cells 

were co-stained with rabbit anti-STAT5 and mouse anti-BrdU antibodies, followed by incubation 

with secondary antibodies. Images were taken with an Eclipse C1 Plus (Nikon) confocal 

microscope at 100 × magnification. Nuclei were stained with DAPI.  
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Fig 2-3 
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Fig 2-4. Chromatin immunoprecipitation (ChIP) assay.  

            ChIP assay was performed using either infected CD36+ EPCs or transfected UT7/Epo-S1 

cells, as indicated. (A) Crosslinked chromatin was sheared by sonication to sizes of ~500 bp. (B) 

An anti-pSTAT5(Y694) antibody or negative control IgG was used to pull down DNA-protein 

complexes. Recovered DNA from UT7/Epo-S1 cells or CD36+ EPCs was examined for viral 

DNA by PCR with primer sets of F1/R1 and F1/R2, respectively, which span the Ori sequences 

of the B19V genome. pM20 plasmid was used as a template for positive controls of PCR. (C) A 

diagram of the Ori-targeting PCR. The primers used for PCR are shown.      
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Fig 2-5. Blockage of interaction between STAT5 and B19V Ori DNA inhibits B19V 

replication. 

            (A) STAT5-SH2 inhibitor (STAT5-SH2i) abolishes the shift of viral Ori in EMSA. 

UT7/Epo-S1 nuclear lysate (NL) was incubated with 32P-labelled wt-Ori-39 probe (lanes 2-5) 

with the addition of DMSO (lane 3) or STAT5-SH2i at 0.4 mM (lane 4) and 0.8 mM (lane 5). 

(B&D) STAT5-SH2i significantly inhibits viral DNA replication. CD36+ EPCs were incubated 

with either DMSO or STAT5-SH2i (250 μM or 500 μM), 6 h prior to infection. At 48 h post-

infection, cells were collected and subjected either to (B) flow cytometry analysis for the B19V-

infected (B19V+) cell population, with an anti-capsid antibody, or to (C) Hirt DNA extraction 

for Southern blot analysis with a B19V M20 DNA probe (upper panel), with mitochondrial DNA 

(Mito DNA) probed as a loading control (lower panel), or to (D) protein extraction for Western 

blotting with anti-pSTAT5 and anti-β-actin. (E&F) Effect of STAT5-SH2i on cell proliferation. 

CD36+ EPCs were treated with either DMSO or STAT5-SH2i (250 µM or 500 µM), and were 

then incubated with BrdU to perform BrdU incorporation assays. (E) Results of a representative 

cell-cycle analysis. (F) Relative fold changes in the S-phase cell population of each group shown 

with means and standard deviations of three independent experiments. P values are calculated 

using one-way ANOVA and Tukey-Kramer post-test (P>0.05), compared with DMSO control. 

**** denotes P<0.0001, ** P<0.01, and n.s. no statistical significance.  
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Fig 2-5 
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Fig 2-6. Failure of B19V replicative form DNA clones with STAT5-binding element 

mutations in replication in transfected UT7/Epo-S1 cells. 

            (A) Diagram of the B19V full-length M20 RF genome and various half ITR-deleted N8 

RF genomes with mutations at STAT5-binding elements (STAT5BEs). Red squares indicate the 

position of the Ori sequences at both ITRs, and grey squares indicate mutated Ori (mOri). The 

sequence of the mOri is shown with mutated nucleotides in grey in the STAT5BE. (B&C) 

Southern blot analysis. (B) The N8 RF DNA, or derivatives with mutations in the STAT5BE of 

either the left ITR (N8OriL), right ITR (N8OriR), or both (N8mOri), were transfected into UT7/Epo-

S1 cells. (C) M20, and M20mOri, a derivative of the M20 RF DNA with STAT5BEs of both ITRs 

mutated, were transfected into UT7/Epo-S1 cells. At 48 h post-transfection, cells were collected 

for Hirt DNA extraction. And Hirt DNA samples were analyzed by Southern blotting with an 

M20 DNA probe. RF DNA (RF), ssDNA (ss), and Dpn I-digested DNA (shown with a line) are 

indicated. Mitochondrial DNA (Mito DNA) was used as a loading control (lower panels). (D) 

Viral protein expression of B19V DNA mutants. M20 or M20mOri transfected UT7/Epo-S1 cells 

were stained with anti-NS1 or anti-capsid antibodies. Confocal images were taken with an 

Eclipse C1 Plus (Nikon) microscope at 100 × magnification.   
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Fig 2-7. pSTAT5, but not NS1 interacts with the MCM complex. 

            (A) Immunoprecipitation (IP) assay. Cell lysates of NS1Flag-expressing UT7/Epo-S1 cells 

were prepared for pull-down assays with either anti-Flag-conjugated beads or control beads. 

Immunoprecipitated proteins were examined for the presence of MCM2 by Western blotting. 

Blots were reprobed with rabbit anti-pSTAT5(Y694), anti-E2F5, and anti-Flag antibodies. 

Detection of E2F5 was used as a positive control for NS1 IP. (B) Co-IP assay. UT7/Epo-S1 cells 

were collected, washed, and lysed with RIPA buffer. After centrifugation, the supernatant was 

incubated with either rabbit anti-pSTAT5(Y694) or control IgG antibody. Immunoprecipitated 

proteins were blotted for the presence of the MCM complex with an anti-MCM5 antibody and 

for pSTAT5 with rabbit anti-pSTAT5(Y694). (C) Reverse Co-IP assay. Reverse Co-IP was 

performed with an anti-MCM5 antibody. Immunoprecipitated proteins were examined for 

pSTAT5, MCM2, and MCM5, respectively. (D) Co-IP of lysates treated with DNase. UT7/Epo-

S1 cell lysates, either treated or untreated with DNase (750 units of Benzonase) were incubated 

with anti-pSTAT5(Y694) or control IgG antibodies for Co-IP assay, and immunoprecipitated 

proteins were examined for MCM2 by Western blot analysis. (E-H) Immunofluorescence 

analysis. (E&F) Mock- or B19V-infected CD36+ EPCs were co-stained with rabbit anti-STAT5 

and mouse anti-MCM2 antibodies, followed by (E) incubation with respective secondary 

antibodies, or by (F) proximal ligation assay, which produces amplified signal for labeled 

molecules in close proximity. (G) CD36+ EPCs were incubated with either DMSO or pimozide 

(at 30 µM) for 2 days. And then the cells were co-stained with rabbit anti-STAT5 and mouse 

anti-MCM2 antibodies for proximity ligation assay. (H) Infected EPCs were stained with an anti-

capsid antibody. Confocal images were taken with an Eclipse C1 Plus (Nikon) microscope at 100 

× magnification.   
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Fig 2-8. The MCM complex is loaded onto the viral Ori. 

            (A) Experimental strategy. The STAT5-MCM complex is depicted interacting with a 

DNA sequence, such as the viral Ori. The time line of B19V infection and treatment with the 

STAT5-SH2 inhibitor (STAT5-SH2i) shows time (h) post-infection or post-treatment. (B) ChIP 

assay. Cells were treated as shown in panel A. An anti-MCM2 antibody was used to pull down 

the STAT5-MCM-DNA complex, and the recovered ChIP DNA was subjected to qPCR with a 

primer set spanning the Ori region. Compared with the absence of the STAT5-SH2i, the relative 

abundance (percentage) of MCM on the viral Ori in the presence of the STAT5-SH2i is shown, 

with mean and standard deviation of three independent experiments. P values are calculated 

using a Student’s t test, ** denotes P<0.01. (C) Three color confocal microscopy. Mock- or 

B19V-infected CD36+ EPCs were co-stained with rabbit anti-STAT5, rat anti-NS1, and mouse 

anti-MCM2 antibodies, followed by staining with secondary antibodies conjugated with 

Dylight405, Texas Red, and FITC, respectively. Images were taken with an Eclipse C1 Plus 

(Nikon) confocal microscope at 100 × magnification.    
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Fig. 2-9. IC50 determination and colony formation assay.  

            (A) IC50 determination. CD36+ EPCs incubated with pimozide at different concentrations 

were infected with B19V. After 48 h post-infection, the cells were extracted for Hirt DNA. The 

DNA samples were examined for B19V DNA with Southern blot analysis using a M20 RF DNA 

probe. Viral RF DNA was quantified. RF DNA levels with pimozide relative to levels without 

pimozide are plotted against the concentrations of pimozide for the calculation of the IC50 value 

with GraphPad Prism. (B&C) Colony formation assay. CD36+ EPCs were incubated with 

pimozide at different concentrations for 48 h, and then cultured in methyl cellulose-containing 

medium. After 10 days, numbers of the colonies were counted (B). P values are calculated using 

one-way ANOVA followed by Tukey-Kramer post-test, compared with DMSO group. ** 

P<0.01; * P< 0.05; n.s. (P>0.05) denotes no statistical significance. Images of colonies were 

taken with Eclipse C1 Plus (Nikon) inverted microscope at 10 × and 40 × magnifications (C).   
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Fig 2-10. Pimozide abolishes B19V DNA replication in UT7/Epo-S1 cells. 

            (A&B) Inhibition of B19V DNA replication. UT7/Epo-S1 cells were pre-incubated with 

DMSO or pimozide (at a final concentration of 10 µM or 20 µM), 6 h prior to M20 transfection. 

Transfected cells were cultured under hypoxic conditions. (A) At 48 h post-transfection, cells 

were collected for Hirt DNA extraction. The DNA samples were subjected to Southern blotting 

with a B19V M20 probe (upper panel). Mitochondrial (mito) DNA was probed as a loading 

control (lower panel). (B) At 48 h post-transfection, cells were collected for Western blotting 

with anti-pSTAT5(Y694). The blot was reprobed for β-actin. (C&D) Evaluation of the effect of 

pimozide on cell proliferation. CD36+ EPCs were treated with either DMSO or pimozide and 

then incubated with BrdU to perform a BrdU incorporation assay. (C) Results of a representative 

cell-cycle analysis. (D) Relative fold changes of the cell population in S-phase are shown with 

means and standard deviations, which were obtained from three independent experiments. P 

values are calculated using one-way ANOVA followed by Tukey-Kramer post-test, n.s. (P> 

0.05) denotes no statistical significance.       
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Fig 2-11. Blockage of STAT5-DNA interaction inhibits B19V replication in UT7/Epo-S1 

cells. 

            (A) Southern blot analysis. UT7/Epo-S1 cells were incubated with either DMSO or 

STAT5-SH2 inhibitor (STAT5-SH2i; 250 μM or 500 μM) at 6 h prior to transfection, and then 

the cells were transfected with M20 DNA and cultured under hypoxic conditions. At 48 h post-

transfection, cells were collected for Hirt DNA extraction. The DNA samples were subjected to 

Southern blotting with an M20 DNA probe. Mitochondrial (Mito) DNA was probed as a loading 

control (lower panel). (B&C) Evaluation of the effect of STAT5 inhibitor on cell proliferation. 

UT7/Epo-S1 cells were treated with either DMSO or STAT5-SH2i (at 250 µM or 500 µM), and 

then incubated with BrdU for BrdU incorporation assays. (B) Results of a representative cell-

cycle analysis. (C) Relative fold changes of the cell population in S-phase are shown, with 

means and standard deviations shown. P values are calculated using one-way ANOVA followed 

by Tukey-Kramer post-test, compared with DMSO group. *** denotes P<0.001 and n.s. 

(P>0.05) for no statistical significance.       
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Fig 2-12. STAT5A is the major STAT5 isoform expressed in erythroid lineage cells.  

            (A&B). Differential expression of STAT5A and STAT5B. (A) Cell lysates of UT7/Epo-

S1 and EPCs were subjected to Western blotting with STAT5A/B pan-specific, STAT5A-

specific, or STAT5B-specifc antibodies. Asterisks indicate dimerized or degraded or non-

specific protein bands. (B) Purified STAT5 of UT7/Epo-S1 cells was subjected to Western 

blotting with a STAT5A/B pan-specific antibody. (C) Both STAT5A and STAT5B interact with 

the MCM2 complex. UT7/Epo-S1 cells were collected and lysed with RIPA buffer. The lysates 

were incubated with an anti-MCM2 or control IgG antibody for co-immunoprecipitation (Co-IP). 

Immunoprecipitated proteins were blotted for the presence of STAT5A, STAT5B, and MCM2 

with anti-STAT5A, anti-STAT5B, and anti-MCM2 antibodies, respectively. The precipitated 

IgG heavy chain is also shown.   
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Fig 2-13. Analyses of MCM or STAT5 binding to B19V genome by ChIP assay.  

            (A) UT7/Epo-S1 cells were transfected with M20 and allowed to replicate for 48 h under 

hypoxic conditions. Cells were collected for ChIP analysis. Anti-MCM2, anti-MCM3, anti-

MCM5, anti-MCM7, and control IgG antibodies were used to pull down DNA-protein complex. 

Recovered DNA was analyzed by qPCR targeting the viral origin (Ori-qPCR). Error bars 

represent standard deviations taken from at least three experiments. P values were calculated 

using a Student’s t test, compared to the IgG control. ** P<0.01; * P<0.05. (B) A diagram of the 

Ori-qPCR amplicon targeting the viral replication origin (Ori) at the left ITR (L-ITR). The 

starting nucleotide numbers of both forward and reverse (F and R) and the location of the probe 

are indicated. (C) UT7/Epo-S1 cells were treated with either DMSO, STAT5-SH2i inhibitor (at 

500 µM) or pimozide (at 25µM), as indicated in the figure, at 6h prior to transfection. Then, the 

cells were transfected with M20 and cultured under hypoxic conditions for 48 h. Cells were 

collected for ChIP analysis using an anti-STAT5 and Ori-qPCR. Error bars represent standard 

deviation taken from at least three experiments. P values were calculated using one-way 

ANOVA followed by Tukey-Kramer post-test, compared with the M20 group. **** denotes 

P<0.0001. (D) Mock- or M20- transfected UT7/Epo-S1 cells, cultured under hypoxic conditions 

for 48 h, were collected for ChIP assay using an anti-STAT5 antibody, followed by PCR using 

primers: forward (F, nt 3135-3156), 5’-  GGA CTG TAG CAG ATG AAG AGC T-3’, and 

reverse (R, nt 3393-3373), 5’-GTG GCC CCC TCA CTC CAC AT-3’, primes as indicated in the 

diagram. Rabbit IgG was used as a negative control of pull-down, and M20 DNA was used as 

PCR positive control.    
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Fig 2-14. Pimozide did not affect hydroxyurea-induced ATR/ATM activation, and B19V 

infection did not alter pSTAT5 expression, in CD36+ EPCs. 

            (A) CD36+ EPCs were treated with pimozide (at 15 µM). At 3 h post-treatment, cells 

were incubated with hydroxyurea at 10 mM for 24 h under hypoxic conditions. Then, the same 

numbers of the cells were collected for Western blot analysis of proteins, as indicated, using anti-

ATM(pST1981), anti-ATR(pT1989), pSTAT5, and β-actin, respectively. (B) Mock and B19V-

infected CD36+ EPCs, cultured under hypoxic conditions, were used for Western blot analysis of 

pSTAT5. The membrane was reprobed for β-actin. 
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Fig. 2-15. pSTAT5 did not transactivate viral P6 promoter.  

            (A) A diagram of lentivirus Lenti-ATF/P6-GFP. The virus was made as we reported 

previously (70). (B) UT7/Epo-S1 (S1) cells or NS1-expressing UT7/Epo-S1 (NS1-S1) cells were 

transduced with Lenti-ATF/P6-GFP at an MOI of 2–4 transduction units/cell and cultured under 

hypoxic conditions. At 24 h post-transduction, cells were incubated either with DMSO or 

pimozide (at a final concentration of 15 µM) for 48 h. Then, the cells were collected and 

subjected to flow cytometry analysis for a mean fluorescence intensity (MFI) value of GFP 

expression. P values are calculated using one-way ANOVA followed by Tukey-Kramer post-

test, compared with DMSO group. **** denotes P<0.0001 and n.s. (P>0.05) for no statistical 

significance.       
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Fig 2-15 
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Fig 2-16. Pimozide and STAT5-SH2i synergistically inhibited B19V infection.  

CD36+ EPCs were pre-incubated with DMSO or pimozide (at 15 µM), STAT5-SH2i (at 

250 µM), or pimozide plus STAT5-SH2i (at 15 and 250 µM, respectively), 6 h prior to B19V 

infection under hypoxic conditions. (A) At 48 h post-infection, cells were subjected to flow 

cytometry analysis using anti-B19V capsid antibody. Error bars represent standard deviation 

taken from at least three experiments. P values are calculated using one- way ANOVA followed 

by Tukey-Kramer post-test, compared with DMSO group. **** denotes P<0.0001. (B) Similarly, 

at 48 h post-treatment, uninfected cells were labeled with BrdU for cell cycle analysis. Numbers 

shown are percentages of cells at G1, S, and G2 phase, respectively.       
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Chapter 3:  

RNA Binding Protein RBM38 Regulates Expression of the 11-kDa Protein of Parvovirus 

B19 which Facilitates Viral DNA Replication3 

  

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 The chapter has been previously published in Journal of Virology: Ganaie, S. S., Chen, A. Y., Huang, C., Xu, P., 

Kleiboeker, S., Du, A., and Qiu, J. (2018) RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton 

Protein of Parvovirus B19, Which Facilitates Viral DNA Replication. Journal of virology 92. 

https://doi.org/10.1128/JVI.02050-17.   
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Abstract 

Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which 

undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA 

transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins 

(NS1, 7.5-kDa, and 11-kDa). Splicing at the second 5’ donor site (D2) of the B19V pre-mRNA is 

essential for the expression of VP2 and 11-kDa. We have previously identified that a cis-acting 

intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates recognition 

of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for 

expression of the 11-kDa viral non-structural protein. We found that ISE2 harbors a consensus 

RNA-binding motif protein 38 (RBM38) binding sequence–5’-UGUGUG-3’. RBM38 is 

expressed during the middle stage of erythropoiesis. We first confirmed that the RBM38 binds 

specifically with the ISE2 element in vitro. Knockdown of RBM38 significantly decreases the 

level of the spliced mRNA at D2 that encodes 11-kDa protein and, thereafter, expression of the 

11-kDa protein, but not the D2-spliced mRNA that encodes VP2. Importantly, we found that the 

11-kDa protein enhances viral DNA replication and virion release. Accordingly, knockdown of 

RBM38 decreases virus replication via downregulating 11-kDa expression. Taken together, these 

results suggest that the 11-kDa protein facilitates B19V DNA replication, and that RBM38 is an 

essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein 
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Introduction 

Human parvovirus B19 (B19V) belongs to genus Erythroparvovirus of the Parvoviridae 

family (140). B19V productive infection displays a high tropism for burst forming unit-erythroid 

(BFU-E) and colony forming unit-erythroid (CFU-E) progenitor cells in human bone marrow 

and fetal liver (3-5,115). B19V also infects non-erythroid tissues (19); however, the infection is 

not productive (1). B19V infection causes human diseases, such as erythema infectiosum or fifth 

disease in children, transient aplastic crises in sickle cell disease patients, pure red blood aplasia 

in immunocompromised patients, arthropathy, cardiomyopathy in adults, and non-immune 

hydrops fetalis in pregnant women (1,142,144).  

B19V is a small, non-enveloped virus with a single-stranded (ss) DNA genome of 5.6 kb 

(140). The B19V genome is flanked by two identical inverted terminal repeats (ITRs) at both 

ends (Fig. 3-1A) (141). The left portion of the genome encodes nonstructural proteins NS1 and 

7.5-kDa, whereas the right side encodes structural proteins VP1 and VP2, and an additional 

nonstructural protein 11-kDa (Fig. 3-1B) (43,46,47). B19V genome has a single promoter at map 

unit 6 (P6), which transcribes a single precursor mRNA (pre-mRNA) (1). B19V pre-mRNA has 

two donor sites (D1 and D2) and four acceptor sites (A1-1, A1-2, A2-1, and A2-2), which are 

used for alternative splicing to generate all species (12) of the viral mRNAs (Fig. 3-1B). There 

are two internal (proximal) polyadenylation sites, (pA)p1 and (pA)p2, and one distal (pA)d site 

(1). NS1 and 7.5-kDa mRNAs use the (pA)p1/2 sites, and VP1, VP2, and 11-kDa mRNAs utilize 

the (pA)d site for polyadenylation (Fig. 3-1B) (44). 

In absence of virus genome replication, most of the viral transcripts are polyadenylated at 

(pA)p sites in both B19V-permissive and non-permissive cells, the majority of which encode 

NS1 and 7.5-kDa proteins (48,49). However, virus genome replication overcomes the blockade 
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and enhances the read-through of the (pA)p sites, generating full-length transcripts that encode 

capsid and 11-kDa proteins (49). In the past, our group and others used a B19V replication-

competent model, where a nearly full-length B19V genome was amplified by the SV40 

replication origin in COS-7 cells, to analyze the B19V transcription profile (43,44,49,184,185). 

Using that artificial viral DNA replication system, we demonstrated that efficient splicing of the 

first intron promotes the polyadenylation at (pA)p (53). However, splicing within the second 

intron competes with polyadenylation at (pA)p and stimulates polyadenylation at (pA)d (53). We 

also showed that binding of small nuclear U1 RNA to splice donor site D2 is sufficient to inhibit 

polyadenylation at (pA)p (53). Importantly, we previously found multiple splicing enhancers that 

define the central exon, which spans A1-1/A1-2 to D2 sites, determine its inclusion (52). 

Notably, we identified an intronic splicing enhancer 2 (ISE2) after the D2 site of B19V pre-

mRNA, and demonstrated that ISE2 sequence (Fig. 3-1C) is essential for the recognition of D2 

site for splicing (52). Use of morpholino antisense oligonucleotide to ISE2 region reduced 

splicing at D2 site in B19V infected ex vivo expanded human erythroid progenitor cells (52). 

In this study, we showed that RNA-binding motif protein 38 (RBM38) protein binds to 

B19V ISE2 element, which is essential for efficient splicing of B19V pre-mRNA at D2 site. We 

showed that knockdown of RBM38 reduced the level of viral mRNA transcripts encoding 11-

kDa protein. Importantly, the 11-kDa protein augmented virus DNA replication and, thereafter, 

virion release. Overall, our results revealed that RBM38 regulates B19V DNA replication via 

enhancing B19V pre-mRNA splicing at D2 site which ensures the production of viral mRNA 

transcripts that encode the 11-kDa protein. 

 

 



91 

 

Materials and Methods 

Ethics statement. 

Primary human CD133+ hematopoietic stem cells were isolated from bone marrow of 

healthy donors according to a protocol (04-H-0179) approved by the National Heart, Lung, and 

Blood Institute institutional review board. There was no donor information associated with 

samples when we received the cells.    

Primary cells and cell lines. 

Human CD133+ hematopoietic stem cells were expanded ex vivo to CD36+ EPCs in 

Wong medium, as described previously (70,78). Briefly, CD133+ cells were cultured in Wong 

medium under normoxia (5% CO2 and 21% O2) up to day-4 and frozen in liquid nitrogen. In 

each experiment, Day-4 cells were seeded under normoxia for 2-3 days, prior to incubation under 

hypoxia (5% CO2 and 1% O2) for 2 days. 

UT7/Epo-S1, a human megakaryoblastoid cell line (14,77), was cultured in Dulbecco’s 

modified Eagle’s medium with 10% fetal bovine serum and erythropoietin (2 units/ml; Amgen, 

Thousand Oaks, CA). UT7/Epo-S1 cells were cultured at hypoxia (1% O2) for 2-3 days post-

transfection. 

UT7/Epo-S1 cells were transduced with lentiviruses expressing shRBM38-1&3. The cells 

were further selected at increasing concentration of puromycin (1 to 5 μg/ml) and passaged for 

several weeks to generate the RBM38-knocked down UT7/Epo-S1 cell line. 

Virus and infection. 

Plasma sample no. P430 containing B19V (~1 ×1012 viral genome copies (vgc)/ml) were 

obtained from ViraCor Eurofins Laboratories (Lee’s Summit, MO). CD36+ EPCs were infected 

with B19V at a multiplicity of infection (MOI) of 1,000 vgc per cell. The infected cells and the 
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media were collected after 2-3 days post-infection for Southern/Western blot analyses and for the 

quantification of the virion release, respectively. 

Plasmid constructions.  

11-kDa knockout M20 clone (pM2011KO): The three ATG’s in 11-kDa ORF of pM20 

were mutated to ACG’s using overlap PCR approach, as described previously (52,53). 

 pLKO constructs: Lentiviral vector pLKO.1 with mCherry reporter was used to clone 

shRNA sequences between Age I and EcoR I sites. pLKO.1-containing scramble shRNA 

sequence was used as control (70). Following shRNA sequences were obtained from Sigma (St. 

Louis, MO) for knocking down RBM38: shRBM38-1:5’- CCG GCG GCT TCT CTT TAA TCT 

AGG TC TCG AGA CCT AGA TTA AAG AGA AGC CGT TTT TTG-3’; shRBM38-2: 5’-

CCG GGA CGA CGA TAG TGT TTC TGT ACT CGA GTA CAG AAA CAC TAT CGT CGT 

CTT TTT TG-3’; shRBM38-3: 5’-CCG GCA ACG TGA ACC TGG CAT ATC TCT CGA GAG 

ATA TGC CAG GTT CAC GTT GTT TTT TG-3’; shRBM38-4: 5’-CCG GGA AAC CTG 

AAA GCA AGA AGT TCT CGA GAA CTT CTT GCT TTC AGG TTT CTT TTT TG-3’. 

pLenti-11-kDa construct: pLenti vector was used to clone optimized 11-kDa ORF 

between the restriction sites Xba I and Sal I, as described previously (17,70). 

Transfection.   

UT7/Epo-S1 cells were electroporated with 2 μg of B19V DNA fragments, as reported 

earlier (70,78), using solution V from Amaxa Nucleofector (Lonza, Basel, Switzerland). B19V 

infectious clone pM20 and mutant pM2011KO were digested with Sal I to release B19V duplex 

genome M20 and mutant M2011KO.   
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RNase protection assay. 

          Total RNA was extracted from infected or transfected cells, using TRIzol reagent 

(Invitrogen). RNase protection was performed as described previously (52,53). Both D1 and D2 

probes were generated using T7 in-vitro transcription kit MAXIscript® (Ambion), following 

manufacturer’s instructions. The images were captured by Typhoon FLA 9000 imager (GE 

Healthcare) and quantified using Image Quant TL software (GE Healthcare). 

Reverse transcription (RT)-quantitative (q) PCR.  

cDNA was synthesized by using Moloney murine leukemia virus (M-MLV) kit (Life 

Technologies, Carlsbad, CA). A multiplex RT-qPCR system was used to detect B19V-specific 

mRNAs, with β-actin mRNA serving as an internal control (77). For quantification of 11-kDa 

mRNA, forward primer 5’-GAA GCC TTC TAC ACA CCT TTG G-3’, reverse primer, 5’-TGG 

CTG TCC ACA ATT CTT CAG G-3’, and probe 5’-FAM-AGA CCA GTT TCG TGA 

ACT/CTA CAG ATG CA-BHQ-3’ were used (77). For quantification of VP2 mRNA, forward 

primer 5’-GAC CAG TTC AGG AGA ATC AT-3’, reverse primer 5’-TTC TGA GGC GTT 

GTA AGC-3’ and probe 5’-FAM-TCG TGA ACT GTG CAG CTG CCC CTG TG-BHQ1-3’ 

were used (77). All primers and probes were purchased from Integrated DNA Technologies 

(Coralville, IA). The primers and probe for quantification B19V genome were described 

previously (78). 

RNA pulldown assay.  

RNA pulldown assay was performed as described in previously published methods 

(186,187) with some modifications. Briefly, wild-type ISE2 (ISE2-WT) and mutant ISE2 (ISE2-

mut1/2) RNA sequences were chemically synthesized by Integrated DNA Technologies 

(Coralville, IA) with biotinylation at 5’ end. 100 μl of streptavidin slurry (Gold biotechnology 
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Inc., St Louis, MO) was used for each sample and washed three times with Wash buffer [20 mM 

Tris-HCl, pH7.5, 100 mM KCl, 2 mM EDTA, 0.5 mM DTT and 1 × protease inhibitor cocktail 

(Sigma)]. Beads were finally resuspended into 500 μl of Wash buffer and 10 μl of biotinylated 

RNA molecules (ISE2-WT or ISE2-mut1/2, 100 μM) were added to it. The mixtures were 

rotated for 3-4 hr at 4ºC. The beads were spun down and washed again with Wash buffer three 

times and resuspended into 500 μl of RNA binding buffer (20 mM Tris-HCl, pH7.5, 300 mM 

KCl, 0.2 mM EDTA, 0.5 mM DTT, poly I-C 6-10 μg/ml, proteinase inhibitors and RNase 

inhibitor) and 100 μl of nuclear lysate (at a concentration of 3-5 μg/μl) was added to each 

sample. UT7/Epo-S1 nuclear extract was prepared as described previously (70). The mixtures 

were rotated overnight, and then the beads were spun down, washed thrice with Wash buffer. 

The bound proteins were eluted using 60 μl of 2 × Laemmli loading buffer and boiled for 5 mins. 

The samples were run on SDS-PAGE either for Western blotting or Mass spectrometry. 

Electrophoretic mobility shift assay.   

ISE2-WT and ISE-mut1 RNA sequences were synthesized, using a T7 in-vitro 

transcription kit from MAXIscript® (Ambion), and further purified using RNA purification kit 

(Cat. no. R1015, Zymo Research, Irvine, CA), following the manufacturer’s instructions. 

Glutathione S-transferase (GST) and GST-RBM38 proteins were incubated with radiolabeled 

ISE2-WT RNA in presence or absence of cold ISE2-WT and cold ISE2-mut1, as indicated in 

each experiment. Gel shift assay was as performed as reported previously (78,154,188). 

Hirt DNA extraction and Southern blotting.  

Hirt DNA (lower molecule DNA) was extracted from B19V-infected CD36+ EPCs or 

B19V DNA-transfected UT7/Epo-S1 cells, as reported previously (78,189). Hirt DNA extracted 

from transfected cells were Dpn I digested before subjected to Southern blot analysis. B19V 
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M20 DNA was used as a temple for radioactive labeling to generate M20 probe. A mitochondrial 

DNA (Mito-DNA) probe was used as a control for the recovery of the Hirt DNA (190). 

Western blotting. 

Western blotting was performed as reported previously (68,78). Following primary 

antibodies were used: Anti-RBM38 antibody (#sc-365898; Santa Cruz, Dallas, TX), anti-

VP1/VP2 (#MAB8293; Millipore, Billerica, MA), anti-GAPDH (#A01622; GenScript, 

Piscataway, NJ), anti-β-actin (#A5441; Sigma Aldrich, St. Louis, MO), and anti-BrdU (#600-

401-C29; Rockland; Limerick, PA). Anti-NS1 and anti-11-kDa antibodies were produced in 

house, as described previously (67,71). HRP-conjugated anti-mouse IgG and anti-rabbit IgG 

secondary antibodies were purchased from Sigma. 

Virion release and quantification. 

For quantifying virions released from transfected UT7/Epo-S1 cells, M20 and M2011KO 

were electroporated with Sal I-linearized DNA. For quantifying virions released from B19V-

infected CD36+ EPCs, shRNA-transduced CD36+ EPCs were infected with B19V. The cells 

were washed at 3 hr post-infection and cultured under hypoxia. At 3 days post-electroporation, or 

post-infection, 200 μl of supernatant from each cell sample was collected and treated with 

Benzonase® Nuclease (250 U/ml) at 37°C for 2 hr. 10 mM EDTA was added to stop the reaction, 

followed by proteinase K treatment. The nuclease digestion resistant viral genome was extracted 

using DNeasy Blood & Tissue kit (Qiagen, Germantown, MD), following the manufacturer’s 

instructions. Finally, the recovered viral DNA was resuspended into 200 μl of DNase-free H2O, 

and was quantified by qPCR for viral genome copies (vgc), as described previously (77).   
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Biolayer interferometry. 

Biolayer interferometry was used to calculate the binding affinities of RBM38 with ISE2-

WT and ISE2-mut1 RNA sequences, as reported earlier (157,158). Briefly, biotinylated RNA 

was mounted on Streptavidin biosensors (#18-5019, Forte Bio Inc. Fremont, CA) and then 

equilibrated with RNA binding buffer (20 mM Tris-HCl, pH 7.4, 80 mM NaCl), and then dipped 

into buffer containing RBM38 protein at different concentrations to calculate the binding 

parameters; Kass(association rate constant), Kdiss(dissociation rate constant) and KD was 

calculated using Blitz Pro software. 

Cell cycle analysis.  

BrdU incorporation assay was used to determine the percentage of cell population in S-

phase, followed by flow cytometry, as described previously (70,78). 

Lentivirus production. 

Lentiviruses were produced according to the instructions provided by Addgene 

(http://www.addgene.org/tools/protocols/plko) and purified as described previously (17). Cells 

were transduced with lentiviral vector at a MOI of ~5 transduction units/cell, as described 

previously (17). 

Purification of GST- and 6×histine (His)-tagged RBM38 proteins.   

Bacterially optimized RBM38 ORF was cloned either in pGEX-4T-3 vector with GST 

encoding sequence at 5’ end or in pET30a (+) vector between Nde I and Xho I restriction sites to 

express GST-RBM38 and RBM38-His proteins, respectively. The resulting plasmids were 

transformed into bacterial strain BL21 (DE3) pLysS (Promega, Madison, WI). To induce the 

protein expression, isopropul-D-1-thiogalactopyranoside (IPTG) was added to bacterial culture at 

OD600 = 0.6 at a final concentration of 0.5 mM and the culture was grown for another 2-3 hr at 

http://www.addgene.org/tools/protocols/plko
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37ºC. GST-RBM38 protein was purified as described previously (191). For the purification of 

RBM38-His, the cells were pelleted down and resuspended into lysis buffer (50 mM Tris, pH 

7.4, 150 mM NaCl, 2 mM dithiothriotol [DTT], 5mM CHAPS, 1% Triton-X100 and 1X- 

protease inhibitor cocktail [Sigma]). The lysate was further sonicated, centrifuged and passed 

through 0.45 μM filter (Thermo). The cleared lysate was mixed with Ni-NTA beads (Qiagen) 

and loaded onto a column. The beads were equilibrated with lysis buffer and then washed with 

lysis buffer, followed by three washes of lysis buffer containing imidazole at 20, 30, and 40 mM. 

During all washing steps, NaCl concentration was raised to 500 mM. The bound protein was 

eluted with elution buffer (50 mM Tris, 500 mM NaCl, 0.05% Triton X-100 and 250 mM 

imidazole). The eluted protein was dialyzed against Tris buffer (20 mM Tris pH 7.4, 100 mM 

NaCl), concentrated, quantified, aliquoted and stored at -80ºC. 

Statistics.  

Statistical analysis was done using Graphpad Prism Version 7.0. Error bars represent 

mean and standard deviation (Mean ± SD) and statistical significance (P values) were 

determined by using student t test. p>0.05, no statistical significance (n.s.); ** denotes p<0.01, 

*** denotes p<0.001, **** denotes p< 0.0001.    
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Results 

Intronic splicing enhancer 2 (ISE2) specifically interacts with RBM38 protein.  

Our previously published results demonstrated that intronic splicing enhancer 2 is critical 

for the recognition of D2 site for splicing (52). In an in-silico analysis of the B19V ISE2 RNA 

sequence, we found that ISE2 harbors a 5’-UGUGUG-3’ motif, a consensus sequence that binds 

SUP12, an RBM38 ortholog in C. elegans (192-194). We then asked whether RBM38 interacts 

with ISE2 element of the B19V pre-mRNA. We synthesized WT ISE2 (ISE2-WT) RNA and a 

mutant ISE2 (ISE2-mut1) RNA that is identical to the ISEm3 mutation sequence and has been 

shown to abolish splicing of B19V pre-mRNA at D2 donor site (52) (Fig. 3-2A) and labeled 

them with biotin at their 5’ ends. Upon incubation of the two RNA molecules with UT7/Epo-S1 

nuclear lysates in presence of poly-I: C, we performed a pulldown assay, using streptavidin-

coated beads that bound biotinylated RNA molecules. Upon several washings, the pulled down 

proteins were run on SDS-PAGE for Western blotting. We found that ISE2-WT pulled down 

RBM38, whereas ISE2-mut1 didn’t (Fig. 3-2B, upper panel). Similarly, we mutated only the 

RBM38 binding motif within ISE2 (ISE2-mut2) (Fig. 3-2A) and performed a pull-down assay. 

Like ISE2-mut1, ISE2-mut2 also didn’t pull down RBM38 (Fig. 3-2B, lower panel). Next, we 

purified GST-tagged RBM38 for in vitro binding assays. ISE2-WT RNA was synthesized in 

vitro and radio-labelled with 32P. 32P-labelled hot RNA was incubated with either GST (Fig. 3-

2C, lane 2) or increasing concentrations of the GST-RBM38 (Fig. 3-2C, lane 3-7), and the 

mixtures were run on native gel for gel shift assay. It is evident that RBM38 bound ISE2-WT 

(Fig. 3-2C). In order to confirm whether the interaction is specific, we co-incubated GST-

RBM38 and hot ISE2-WT either with molar excess of cold ISE2-WT or cold ISE2-mut1. Our 

results showed that only ISE2-WT, but not ISE2-mut1, competed with hot-ISE2 WT (Fig. 3-2C, 
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lane 11 vs 12). Further on, to determine the binding affinity of RBM38 with ISE2, we purified 

6×histine(His)-tagged RBM38 (Fig. 3-2D). We synthesized biotinylated ISE2-WT or ISE2-

mut1, and performed in vitro binding assay using biolayer interferometry. The sensograms 

showed the binding kinetics of RBM38 with ISE2-WT at different protein concentrations (Fig. 

3-2E). Upon comparing binding affinities of RBM38 with either WT or mutant ISE2, the results 

showed that ISE2-WT bound RBM38 with a high affinity (91.5 ± 5.15 nM) as compared to 

ISE2-mut1 (597.8 ± 5.23 nM) (Fig. 3-2F). Values for association and dissociation kinetics are 

also provided (Fig. 2G). In conclusion, our results demonstrated that RBM38 binds specifically 

with the ISE2 sequence of B19V pre-mRNA, but not the ISE2-mutated sequence (ISEm3 or 

ISE2-mut1) that did not facilitate B19V pre-mRNA splicing at D2 donor site in cells (52). 

RBM38 is expressed during the middle stage of erythroid progenitor development and 

knockdown of RBM38 significantly decreases splicing of B19V pre-mRNA at the D2 donor. 

It has been reported earlier that RBM38 regulates splicing during erythroid differentiation 

process (195). We then looked into the expression levels of RBM38 during erythroid 

developmental stages. Hematopoietic stem cells were cultured from day-4 until day-14, and the 

cells were collected each day for Western blot analysis of RBM38. As shown in Fig. 3-3A, 

RBM38 expression increased from day-5 through day-12, which is highly coordinated and 

consistent with the time course of B19V infection during erythropoiesis (147).  

Next, using lentiviral system, we knocked down RBM38 in UT7/Epo-S1 cells using 

RBM38 shRNA (shRBM38-1, 2, 3, or 4) expressing lentiviruses, and in CD36+ EPCs using 

shRBM38-1&3 expressing lentiviruses (Fig. 3-3B). RBM38 was successfully knocked down 

(>90% reduction) in both types of cells. Since B19V replication is dependent on the cellular 

DNA replication machinery (68,96), we asked whether knockdown of RBM38 has any impact on 
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cell cycle progression. Using BrdU incorporation assay, we determined the percentage 

population of cells in S-phase. Our results demonstrated that RBM38 knockdown didn’t 

obviously alter the cell proliferation of CD36+ EPCs (Fig. 3-3C&E) and UT7/Epo-S1 cells (Fig. 

3-3D&F). 

 As RBM38 binds ISE2 under in vitro conditions, we next asked whether RBM38 

knockdown affects the splicing efficiency at D2 site. UT7/Epo-S1 and RBM38-knocked down 

UT7/Epo-S1RBM38KD cells were transfected with M20 B19V infectious DNA, and the cells were 

collected after 48 hr post-transfection for total RNA extraction, followed by RNase protection 

assay. Radiolabeled 234-nt long D2 probe was generated and used to detect unspliced and 

spliced RNAs at D2 site (Fig. 3-4A). The result showed that RBM38 knockdown decreased the 

efficiency of B19V pre-mRNA splicing at D2 donor site (Fig. 3-4B, lane 3). Splicing events at 

D2 decreased by 61.1% (Fig. 3-4C), while unspliced RNA remained unaffected (Fig. 3-4D). 

Since D1 donor site isn’t flanked by any RBM38 binding motif, as a control, we performed an 

additional RNase protection assay using D1 probe (Fig. 3-4E) to confirm that RBM38 

knockdown didn’t affect splicing at D1 (Fig. 3-4F). In conclusion, our results demonstrated that 

RBM38 is one of the trans-acting factors required for efficient splicing of B19V pre-mRNA at 

D2 site. 

RBM38 determines 11-kDa expression during B19V replication. 

Splicing of B19V pre-mRNA at D2 site is essential for generation of both viral mRNA 

transcripts encoding VP2 and 11-kDa proteins (Fig. 3-1B). As RBM38 knockdown decreased 

splicing efficiency of B19V pre-mRNA at D2 site, we asked whether such a decrease affects 

VP2 and/or 11-kDa expression at the protein or the mRNA level. To this end, CD36+ EPCs were 

infected with B19V, and UT7/Epo-S1 cells were transfected with M20 infectious clone. The 
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cells were collected at 48 hr post-infection or transfection for Western blot analysis. The result 

showed that 11-kDa, but not VP1 and VP2, was significantly decreased in both B19V-infected 

CD36+ EPCs and M20-transfected UT7/Epo-S1 cells upon RBM38 knockdown (Fig. 3-5A, left 

and right panels, respectively). We then followed up to analyze viral RNAs extracted as total 

RNA samples at 48 hr post-transfection, using reverse-transcription (RT)-qPCR that were 

specifically designed to detect 11-kDa and VP2 mRNAs (Fig. 3-5B), as reported earlier (77). 

The RT-qPCR analyses showed that knockdown of RBM38 in UT7/Epo-S1 cells significantly 

decreased 11-kDa mRNA levels by 6.6-fold (Fig. 3-5C) but the level of VP2 mRNA remained 

unaffected (Fig. 3-5D). Also, there was no obvious change in the levels of NS1-encoding and 

VP2-encoding mRNAs (Fig. 3-5E&F). RT-qPCR analyses of viral RNA samples extracted from 

B19V-infected cells revealed similar results (data not shown).  

RBM38 knockdown decreases B19V DNA replication and the virion release. 

Next, we asked whether RBM38 knockdown affects virus replication. To this end, CD36+ 

EPCs were transduced with scramble shRNA (shScram) and shRBM38-expressing lentiviruses, 

and were infected with B19V at 48 hr post-transduction. The cells were collected at 48 hr post-

infection for determining viral DNA replication and virion release. Surprisingly, our results 

showed that RBM38 knockdown significantly decreased both viral DNA replication (Fig. 3-

6A&B) and virion production (Fig. 3-6C). Similarly, M20-transfected RBM38 knockdown cells 

also showed a decrease in virion production (Fig. 3-8A, compare groups 1&4) and virus DNA 

replication (Fig. 3-8B, compare lanes 1&4), as compared to those from WT M20-transfected 

control UT7/Epo-S1 cells.  
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Thus, our results demonstrated that RBM38 plays an important role in viral DNA 

replication and virion release during B19V infection of CD36+ EPCs as well as in transfection of 

the B19V duplex genome in UT7/Epo-S1 cells. 

11-kDa protein enhances B19V DNA replication and the virion release. 

As knockdown of RBM38 decreases 11-kDa expression, we investigated the role of 11-

kDa in viral DNA replication and virion release. We first constructed an 11-kDa-null M20 

mutant (M2011KO) by silently mutating the three potential AUG sites in the ORF of 11-kDa (Fig. 

3-7A). We confirmed that M2011KO didn’t affect the expression of NS1, VP1, and VP2 (Fig. 3-

7B).  

To determine whether 11-kDa expression has an impact on virus replication, M20 and 

M2011KO clones were transfected into UT7/Epo-S1 cells. At 48 hr post-transfection, cells were 

collected for extraction of Hirt DNA samples which were subsequently subjected to Southern 

blot analysis. As shown in Fig. 3-7C&D, replication of M2011KO is significantly poor than that of 

the WT M20. At 72 hr post-transfection, the media of the transfected cells were collected, 

subjected to DNase I treatment, and further used to quantify the released virions. As shown in 

Fig. 3-7E, M2011KO-transfected cells had a significant decrease in the released virions, compared 

with these WT M20-transfected cells. Collectively, these results strongly supported that 11-kDa 

augments B19V DNA replication and virion release. 

Decreased 11-kDa protein expression in RBM38 knocked down cells contributes to the 

reduced viral DNA replication and virion release.  

 In order to confirm whether RBM38 knockdown decreased viral DNA replication via 

11-kDa inhibition, we generated 11-kDa expressing lentivirus to transduce UT7/Epo-S1 cells. 

UT7/Epo-S1 cells were transfected with M20 and M2011KO, and 11-kDa-expressing UT7/Epo-S1 
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cells were transfected with M2011KO. At 72 hr post-transfection, supernatant and cells were 

collected and examined for virion release and DNA replication, respectively. The results show 

that 11-kDa complementation to M2011KO-transfected cells significantly enhanced virion release 

(Fig. 3-8A, compare groups 2&3) and virus DNA replication (Fig. 3-8B, compare lanes 2&3). 

Similarly, RBM38 knocked down UT7/Epo-S1RBM38KD cells and 11-kDa-expressing UT7/Epo-

S1RBM38KD cells were transfected with M20. At 72 hr post-transfection, supernatants and cells 

were collected and examined for virion release and virus DNA replication, respectively. 

Obviously, we observed that both virion release (Fig. 3-8A, compare groups 4&5) and virus 

DNA replication (Fig. 3-8B, compare lanes 4&5) were significantly higher in 11-kDa-expressing 

UT7/Epo-S1RBM38KD cells than those in non-11-kDa-expressing UT7/Epo-S1RBM38KD cells. 

Overall, the complementation of 11-kDa in UT7/Epo-S1RBM38KD cells recovered ~60% of the 

function of 11-kDa in virion release and viral DNA replication during transfection of the M20 

clone. 

Taken together, these results confirmed that RBM38 plays an important role in B19V 

viral DNA replication and virion release through regulation of the 11-kDa expression.  
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Discussion 

           Parvoviruses with the limited genome size use alternative splicing and alternate 

polyadenylation to maximize the coding capacity of their genome. B19V pre-mRNA splicing at 

the D2 donor site is critical for the production of VP2- and 11-kDa encoding mRNAs (52). 

However, the remained unspliced mRNAs constitute NS1, 7.5-kDa and VP1 encoding mRNAs. 

B19V tightly regulates pre-mRNA splicing at D2 to maintain the variable expression levels of all 

the five viral proteins. Alternative splicing of pre-mRNA is regulated by both cis-acting elements 

and trans-acting factors that regulate splicing both positively and negatively (196). In the case of 

B19V pre-mRNA splicing at D2, we have earlier identified an ISE2, a cis-acting element that 

facilitates the recognition of D2 donor for splicing (52). In this study, we show that ISE2 is 

essential for the expression of viral 11-kDa protein. A cellular trans-acting factor, RBM38, binds 

ISE2 and regulates splicing at D2 site. Knockdown of RBM38 decreased splicing of B19V pre-

mRNA at D2, which particularly affects the splicing from D2 donor to A2-2 acceptor sites that 

decreases level of mRNAs for encoding 11-kDa protein (Fig. 3-1B, R8&R9). Importantly, we 

show that 11-kDa protein augments viral DNA replication and virion release and that RBM38 

promotes B19V replication via the 11-kDa regulation. 

RBM38 binds to ISE2 and regulates splicing at D2 site and therefore 11-kDa expression.  

            During alternative splicing, the splice donor sites are usually weak, and are regulated by 

the interplay of positive and negative cis-acting elements and trans-acting factors (196). Splicing 

of B19V pre-mRNA at D2 generates either VP2 or 11-kDa encoding mRNAs, while as unspliced 

mRNAs at D2 encode NS1, VP1, and 7.5-kDa proteins (Fig. 3-1, R1, R2, R4&R5). It is obvious 

that D2 splicing needs to be regulated in such a way that expression of all the five proteins is 

maintained at an optimal ratio. We identified at least two cis-elements: exon splicing enhancer 3 
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(ESE3) and ISE2 that regulate D2 splicing (52). While looking for other trans-acting factors, we 

observed that ISE2 carries a 5’-UGUGUG-3’ motif that binds SUP12, an RBM38 ortholog in C. 

elegans (192-194). RBM38 is expressed during middle stage of erythroid differentiation which 

coincides with the time course of B19V infection (Fig. 3-3). Using RNA pulldown assay, gel 

shift assay and biolayer interferometry (Fig. 3-2), our results showed that RBM38 specifically 

binds to ISE2 RNA under in vitro conditions, and the ISE2-mutated sequence (ISEm3 or ISE2-

mut1), which did not facilitate splicing of B19V pre-mRNA at D2 donor site (52), also did not 

specifically bind RBM38. Knockdown of RBM38 in M20-transfected UT7/Epo-S1 cells 

decreased splicing efficiency at D2 site. Surprisingly, the decrease in D2 splicing affected only 

mRNAs encoding 11-kDa, but not VP2-encoding mRNAs (Fig. 3-5), which implies that RBM38 

promotes the splicing of the second intron from D2 to A2-2 sites. It is possible that other ESE3- 

or ISE2-binding factor(s) might be responsible for the splicing of the second intron from D2 to 

A2-1 sites, which remains further investigation in the future. The complex interplay between cis-

acting elements surrounding D2 site and trans-acting factors, at least the RBM38, determine the 

splicing of the second intron and eventually the production of VP2, and 11-kDa proteins. Of 

note, there are at least other five 5’-UGUGUG-3’ motifs in B19V pre-mRNA sequence, among 

which two sites follow the D2’ cryptic donor. We have previously reported that B19V uses a 

cryptic donor D2’, when D2 site is mutated (52). The cryptic donors might also need RBM38, 

since it is followed by similar two 5’-UGUGUG-3’ motifs.  

11-kDa protein enhances B19V DNA replication and the virion release from infected cells.   

            It has been reported that 11-kDa helps in capsid production and viral infectivity (61). We 

asked whether 11-kDa plays any other roles in virus replication. Our results show that 11-kDa 

augments viral DNA replication and virion release (by ~7-10-fold). We have previously reported 
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that erythropoietin (EPO) signaling is essential for B19V replication (17). EPO binds EPO 

receptor, activates JAK2-STAT5 and MEK/ERK pathways (89). We also have demonstrated that 

ERK pathway negatively regulates B19V replication (18), whereas STAT5 phosphorylation is 

critical for viral DNA replication (78). 11-kDa protein has been shown to interact with growth 

factor receptor-bound protein 2 (Grb2) via its proline rich region, a Src homology-3 (SH3)-like 

ligand (90). Grb2 is an adaptor protein that interacts with Ras guanine exchange factor-SOS via 

its SH3 domain, thereby activates MAPK/ERK signal transduction pathway (197). Since 

MEK/ERK pathway impedes B19V replication (18), we speculate that B19V uses 11-kDa 

interaction with Grb2 to disrupt MEK/ERK signaling to promote virus replication. On the other 

hand, during B19V infection, viral DNA replication (136), NS1 (65) and 11-kDa (71) induce 

death of erythroid progenitors. In this study, we examined the role of RBM38 in 11-kDa 

production and its outcomes in context of virus replication. It is possible that the contribution of 

11-kDa to B19V induced cell death can also be modulated via RBM38 regulation. Whether 11-

kDa mediated cell death plays any role in virion release, needs further investigation.   

RBM38 functions as an essential host factor for B19V infection.  

            RBM38 is an RNA recognition motif (RRM)-containing RNA binding protein, a largest 

family of RNA binding proteins (198,199). Diverse roles have been attributed to RBM38 ranging 

from RNA stability (200), mRNA translation (201,202) to regulation of splicing during erythroid 

differentiation (195). In case of B19V, we didn’t observe any change in the expression levels of 

NS1, VP1 and VP2 upon knockdown of RBM38 (Fig. 3-5), therefore, it is less likely that 

RBM38 regulates viral mRNA stability and translation during virus infection. The RBM38 

ortholog SUP12 regulates splicing of various genes in C. elegans (192-194). Here we identified 

RBM38 as one of the trans-acting factors that binds to ISE2, promoting splicing of the second 
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intron from D2 to A2-2 sites that favors the expression of 11-kDa. We show mechanistically how 

B19V uses cellular host factor (RBM38) for its efficient replication. The RBM38 expression 

during the stages when the cells are highly susceptible to B19V infection renders it as one of the 

determinants of B19V tropism. Our hypothetical model for D2 splicing of B19V pre-mRNA is 

that RBM38 binding to ISE2 activates the recognition of the D2 site with the A2-2 acceptor site 

(Fig. 3-9). Since U2 small nuclear ribonucleoprotein (snRNP) recognizes both A2-1 and A2-2 

sites, we speculate that after binding ISE2 element, RBM38 interacts with A2-2 acceptor site via 

an unknown mediator M3 that specifically binds A2-2 acceptor site (Fig. 3-9, M3). We further 

investigated other host factors that bind ISE2 region. Our mass spectrometry analysis showed 

that ISE2 interacts with at least 20 other splicing-related factors (data not shown). These 

candidates need further to be investigated for their role in B19V pre-mRNA splicing. Our overall 

hypothesis is that the two cis-acting elements flanking D2 site, i.e., ESE3 and ISE2, with the help 

of trans-acting factors regulate the expression of at least two viral proteins (VP2 and 11-kDa) 

during B19V replication. Identification of such trans-acting factors will eventually reveal the 

entire scenario of how the D2 donor plays the central role in the processing of B19V pre-mRNA, 

which will identify new targets to check B19V infection.  
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Fig. 3-1. B19V transcription map. 

            (A) B19V genome. Linear single-stranded B19V genome is shown in negative sense with 

unpaired or mismatched bases diagramed as bulges and bubbles. ITR, inverted terminal repeat. 

(B) Transcription profile. B19V duplex genome is shown at the top. P6 represents viral 

promoter, D1 and D2 denote splice donor sites, and A1-1, A1-2, A2-1, and A2-2 denote splice 

acceptor sites. Different open reading frames are shown by different colors (Red, Green, and 

Blue). (pA)p and (pA)d represent polyadenylation sites at proximal and distal ends, respectively. 

At bottom, twelve major RNAs are shown encoding different viral proteins, as indicated. 

Question marks indicate whether the protein is expressed from the species of mRNA is 

unknown. (C) ESE3, D2 and ISE2 elements. Donor 2 site (D2) of the B19V pre-mRNA is 

flanked by exon splicing enhancer 3 (ESE3) on left and intronic splicing enhancer 2 (ISE2) on 

right. They act as cis-acting elements for splicing at D2 site.  
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Fig. 3-2. ISE2 specifically binds RBM38 protein under in vitro conditions. 

(A) ISE2 wild-type (ISE2-WT) and ISE2 mutants (ISE2-mut1/2) RNA sequence. 

These two RNAs shown were used in the following binding experiments. (B) Pulldown assay. 

Biotinylated ISE2-WT and ISE2-mut1/2 were incubated with UT7/Epo-S1 nuclear lysates in 

presence of poly-I:C and then pulled down using streptavidin beads followed by several 

washings. The RNA-bound proteins were eluted and run on SDS-PAGE for Western blotting and 

detected with an anti-RBM38 antibody, as indicated. UT7/Epo-S1 nuclear lysate was run in lane 

1 as control. (C) Gel shift assay. Radioactively labelled ISE2-WT was incubated with either 

purified GST (lanes 2 and 9) or increasing concentrations (5, 10, 50, 100, and 300 nM) of 

purified GST-RBM38 (lanes 3-7, respectively) and run on native gel and then examined for shift 

(left panel). Similarly, GST-RBM38 was incubated with hot ISE2-WT in absence (lane 10) or 

presence of excess amounts of cold ISE2-WT (lane 11) and cold ISE2-mut1 (lane 12) for 

competition assay (right panel). Only RNA was run as controls in lanes 1 and 8) (D) RBM38-

His purification. RBM38-His was purified, as described in Materials and Methods, and 6 μg of 

protein was run on SDS-10%PAGE and then stained with Coomassie brilliant blue dye. (E-G) 

Biolayer Interferometry. (E) BLI sensograms showing overtime association and dissociation of 

RBM38 protein with ISE2-WT at different concentrations. (F) Comparison of binding affinities 

of RBM38 protein (1 μM) with ISE2-WT and ISE2-mut1 RNA molecules. (G) Binding 

parameters to calculate KD values (ratio of dissociation and association rate constants). 

Experiments were repeated at least three times for calculating the means and standard deviations. 
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                                                         Fig 3-2  
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Fig. 3-3. RBM38 is expressed during middle phase of erythropoiesis and its knockdown 

doesn’t alter cell cycle progression. 

(A) RBM38 expression during erythroid differentiation process. Hematopoietic stem 

cells (HSC) were cultured from day-4 through day-14. Same numbers of cells were collected on 

each day, lysed and run for Western blot analysis. The blot was detected for RBM38 protein 

using an anti-RBM38 antibody and re-probed for β-actin. (B) RBM38 knockdown. Four 

lentiviruses expressing shRNAs against RBM38 were transduced into UT7/Epo-S1 cells. CD36+ 

EPCs were transduced with shRBM38-1&3. At 3 days post-transduction, the cells were lysed for 

Western blot analysis using an anti-RBM38 antibody. Blots were reprobed for β-actin. (C-F) 

Cell cycle analysis. Lentiviruses expressing shRBM38-1&3 were used to generate RBM38 

knocked down UT7/Epo-S1 cell line (UT7/Epo-S1RBM38KD). CD36+ EPCs were transduced with 

shScram or shRBM38-1&3. BrdU incorporation assay was used to track de novo DNA synthesis 

as described in Materials and Methods. The cells were processed and analyzed for cell cycle 

progression using flow cytometry. Representative diagrams showing cell cycle analysis in 

control and RBM38 knockdown CD36+ EPCs (C) or UT7/Epo-S1 and UT7/Epo-S1RBM38KD cells 

(D). Relative fold change of cell population in S phase were calculated for both CD36+ EPCs (E) 

and UT7/Epo-S1 cells (F). Each experiment was repeated three times for the calculation of 

means and standard deviations.    
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Fig. 3-4. RBM38 promotes splicing at D2 donor site. 

(A) Probe designing. Schematic representation of D2 probe showing the spliced and 

unspliced RNA species generated upon RNase protection assay. (B) RNase protection assay. 

Normal UT7/Epo-S1 cells and RBM38 knocked down cells (UT7/Epo-S1RBM38KD) were 

transfected with M20. At 2 days post-transfection, the cells were collected for extraction of total 

RNA. RNA samples were analyzed by RNase protection assay using the D2 probe which was 

designed to detect spliced/unspliced RNAs from the D2 site of B19V pre-mRNA, as indicated. 

RNase protection assay was performed as described in Materials and Methods. (C-D) 

Quantification. The detected spliced (C) and unspliced (D) RNA bands at D2 site were 

quantified in RBM38 knocked down cell samples and compared to normal cell samples 

(arbitrarily set as 100%). The experiment was repeated at least three times to calculate their 

means and standard deviations. (E-F) D1 splicing. Schematic representation of D1 probe 

showing the spliced and unspliced RNA species generated upon RNase protection assay (E). As 

described above, RNA samples were subjected to RNase protection assay using D1 probe to 

detect spliced/unspliced RNAs from D1 donor site (F). 
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Fig. 3-5. RBM38 regulates 11-kDa expression.  

CD36+ EPCs transduced with a scramble shRNA (shScram) and shRBM38-1&3 

(shRBM38)-expressing lentiviruses were infected with B19V at 2 days post-transduction. 

UT7/Epo-S1 and UT7/Epo-S1RBM38KD cells were transfected with M20. (A) Western blotting.   

The cells were collected at 2 days post-infection or post-transfection, lysed and run for Western 

blotting. Immunoblots were probed for NS1, VP1/2 and 11-kDa proteins, using their respective 

antibodies. Blots were re-probed for GAPDH, as a loading control. (B) Reverse Transcription 

(RT)-qPCR. Specific primers and probes detecting VP2 or 11-kDa mRNA, as diagramed, were 

used for qPCR analysis. (C-F) Detection of 11-kDa, VP2, NS1 and VP1 mRNAs by RT-

qPCR. At 2 days post-transfection, total RNA was extracted from UT7/Epo-S1 and UT7/Epo-

S1RBM38KD cells. The RNA was further used to generate cDNA for the quantification of 11-kDa 

(C), VP2 (D), NS1 (E), and VP1 (F) mRNAs, using the RT-qPCR approach. Quantified viral 

mRNAs were normalized to β-actin mRNA, and mRNAs extracted from M20-transfected control 

UT7/Epo-S1 cells were used as controls and arbitrarily set as 1. 
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Fig. 3-6. RBM38 knockdown decreases viral DNA replication and virion release.  

CD36+ EPCs were transduced with scramble shRNA (shScram) and shRBM38-1&3 

(shRBM38) lentiviruses. At 2 days post-transduction, the cells were infected with B19V. (A&B) 

Southern blotting. At 2 days post-infection, the cells were collected for Southern blot analysis. 

(A) The blots were probed with M20 probe (upper panel) and mitochondrial DNA probe (Mito-

DNA) (lower panel), respectively. dRF and mRF, double and monomer replicative forms, 

respectively; ssDNA, single-stranded DNA. (B) The replicated (mRF) DNA bands were 

quantified and plotted. (C) Virion release. At 3 days post-infection, the supernatants of infected 

cells were collected for quantification of virion released using qPCR. Results shown were 

average and standard deviations which were obtained from at least three independent 

experiments (B&C).   
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Fig. 3-7. 11-kDa protein enhances B19V DNA replication and virion release. 

(A) Diagram of M2011KO. 11-kDa knockout M20 clone (M2011KO) is diagramed and 

shown with mutations of three translation initiation codons from ATG to ACG. (B) Western 

blotting. UT7/Epo-S1 cells were transfected with M20 and M2011KO, respectively. At 2 days 

post-transfection, cells were collected, lysed and run for Western blot analysis. The blots were 

detected with anti-VP1/2, NS1, 11-kDa, and GAPDH antibodies. (C&D) Southern blotting. 

UT7/Epo-S1 cells were transfected with M20 and M2011KO. At 2 days post-transfection, Hirt 

DNA samples were extracted from transfected cells and subjected to Southern blotting. (C) The 

blots were probed using M20 probe (upper panel) and mitochondrial DNA (Mito-DNA) probe 

(lower panel), respectively. mRF, monomer replicative form DNA; ssDNA, single-stranded 

DNA. (D) mRF DNA bands were quantified, and the means and standard deviations was 

calculated from three independent experiments. (E) Virion release. At 3 days post-transfection, 

the supernatants from the transfected cells were collected and used for the quantification of 

virions. Virions released from M20-transfected cells were arbitrarily set as 1.   
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Fig. 3-8. RBM38 knockdown deceases viral DNA replication and virion release via reducing 

11-kDa expression.  

UT7/Epo-S1 cells were transfected with M20 or M2011KO, and 11-kDa-expressing 

UT7/Epo-S1 cells were transfected with M2011KO, as indicated. UT7/Epo-S1RBM38KD
 cells or 11-

kDa-expressing UT7/Epo-S1RBM38KD cells were transfected with M20. (A) Virion release. At 3 

days post-transfection, the supernatant from each transfected sample were collected and used for 

virion quantification by qPCR. (B) Southern blot analysis. At 3 days post-transfection, cells 

were collected for Hirt DNA extraction. Hirt DNA samples were subjected to Southern blotting 

using M20 and Mito-DNA probes, respectively. dRF and mRF, double and monomer replicative 

forms, respectively; ssDNA, single-stranded DNA.   
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Fig. 3-9.  Proposed model for the role of RBM38 in B19V pre-mRNA processing.  

U1 and U2 represent U1- and U2-small nuclear ribonucleoprotein (snRNP) complexes, 

and M represents protein mediators associated with U1- and U2-snRNPs. RBM38 and ISE2- 

binding proteins (ISE2-BPs) interact with ISE2 sequence, whereas ESE3-binding proteins 

(ESE3-BPs) interact with ESE3 region of the B19V pre-mRNA. Both ISE2 and ESE3 and their 

associated trans-acting factors help in the recognition of D2 site, as shown by arrows. RBM38 

interaction with ISE2 promotes splicing from D2 to A2-2 intron. Question marks indicate 

unknown factors.        
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Parvovirus B19 (B19V) is one of the few parvoviruses that is pathogenic to humans (1). 

Approximately 40-60% of the world’s population is infected with B19V (203); however, B19V 

infection mostly remains asymptomatic or manifests only with mild nonspecific symptoms, e.g. 

flu-like symptoms or arthralgia, with low levels of viremia. The viral load shoots up when the 

infected individual is under immune-suppression or when erythrocytes are at a high rate of 

turnover, such as in sickle cell disease patients. The presence of a high virus titer leads to extensive 

cell death of erythroid progenitor cells which causes anemia (115). In non-erythroid tissues, the 

B19V infection leads to inflammatory diseases like cardiomyopathy, arthopathy, etc. (19).  Upon 

B19V infection, the single-stranded DNA genome is converted to the double-stranded replicative 

form, which forms a functional origin of DNA replication (Ori) of 67-bp at both ends of the 

genome (77). The Ori contains two NS1 binding elements (NSBE1&2), a terminal resolution site 

(trs) where the DNA is nicked (58), and a STAT5 binding element (STAT5BE) (78). NS1 binds 

Ori as a multimer (5-7), opens up the double-stranded replicative form at the Ori, and then nicks 

the ssDNA form Ori at the trs (62). NS1 plays a very critical role in viral DNA replication (61). It 

is believed that B19V replicates its genome following the rolling hairpin model of DNA 

replication, as described for other parvoviruses (79). Due to the limited coding capacity of the 

genome, the virus replication depends on cellular host factors. We have previously reported that 

B19V infection stalls cells in late S-phase, where the S-phase replication factors are fully utilized 

for viral DNA replication (68). B19V infection also induces DNA damage response by activating 

ATR and DNA-PKcs, which are essential for virus replication (67). The virus has a restricted 

tropism to erythroid progenitor cells from the bone marrow and the fetal liver (17), which depend 

on erythropoietin for their survival and development (87). EPO binds the EPO receptor (EPO-R), 

which activates three major pathways, i.e., MEK/ERK, PI3K and JAK2/STAT5 (89). Our previous 
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results showed that EPO signaling is essential for B19V replication (17). On further examination 

of the EPO-signaling cascade, our results demonstrated that the MEK/ERK pathway negatively 

regulates B19V replication, whereas the PI3K pathway did not play any significant role in virus 

infection (18). However, the JAK2-STAT5 pathway is essential for B19V replication (18). We 

also showed that B19V replicates efficiently under hypoxia,  that the STAT5 signaling is 

upregulated and that the MEK/ERK signaling is downregulated during hypoxia, which in turn 

favor efficient B19V replication (18). 

            EPO-activated JAK2 phosphorylates STAT5, which undergoes dimerization and enters 

the nucleus (170). Phosphorylated STAT5 is critical for B19V DNA replication. Our results 

demonstrated that inhibition of STAT5 phosphorylation abolishes viral DNA replication (Fig. 2-

1). STAT5A is predominantly expressed in erythroid lineage cells rather than in STAT5B (Fig. 

2-12). Knockdown of STAT5A inhibits virus replication in B19V infected EPCs (18), and 

overexpression of a constitutively phosphorylated STAT5 mutant (STAT5A1*6) further 

enhances virus replication (18). Phosphorylated STAT5 is actively recruited to the viral DNA 

replication centers (Fig. 2-3). During the late S phase arrest, the virus replicates its genome using 

various S-phase replication factors, such as DNA polymerases, proliferating cell nuclear antigen 

(PCNA), replication factor A-32 (RPA32), and minichromosome maintenance (MCM) complex, 

etc. (68,80). In cellular DNA replication, the ORC-CDC-CDT1 complex binds to the replication 

origin and CDT1 recruits MCM complex to the origin, which then uses helicase activity to 

unwind the DNA or helps in the recruitment of other replication factors via CDC45 (169). 

However, parvovirus DNA replication initiation does not require the ORC-CDC6-CDT1 

complex, but rather depends on the MCM complex (68). NS1 binds B19V Ori (58), but does not 

interact with the MCM complex (Fig. 2-7). Our in-silico analysis revealed that the B19V Ori 
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contains a consensus STAT5-binding element, which binds phosphorylated STAT5 both in vitro 

as well as in vivo (Fig. 2-2, -3, -4). Our results revealed two important interactions: STAT5 with 

viral Ori, and STAT5 with the MCM complex. Of note, the interaction between STAT5 and the 

MCM complex is independent of the virus infection, implying that the interaction might be 

essential for other cellular functions, which warrants further investigation. Upon inhibition of 

STAT5 phosphorylation, the abundance of the MCM complex on viral Ori decreases 

significantly (Fig. 2-8). STAT5, MCM2 and the replicating viral genome colocalize in the nuclei 

of B19V-infected EPCs (Fig. 2-8), suggesting that B19V utilizes the STAT5-Ori interaction to 

recruit the MCM complex to the viral replication origin. In conclusion, our studies propose a 

novel model of initiation of DNA replication in parvoviruses.         

            To expand the coding capacity of the genome, the single precursor mRNA (pre-mRNA) 

transcribed from the B19V P6 promoter is post-transcriptionally processed into twelve different 

mRNA transcripts. The mRNAs encode two structural (VP1 & VP2) and three non-structural 

proteins (NS1, 11-kDa, and 7.5-kDa) (43-45). However, it is unclear how B19V precisely 

regulates pre-mRNA processing to maintain varying levels of mRNAs encoding different 

proteins. We have previously demonstrated that the expression of all mRNAs encoding capsid 

proteins and the 11-kDa protein depends on viral DNA replication (49). In the absence of virus 

DNA replication, all mRNAs polyadenylate at the (pA) p sites, and therefore only express NS1 

and the 7.5-kDa proteins (49). However, replication of the viral genome facilitates read-through 

of the (pA)p sites and overcomes the blockage to produce full-length mRNA transcripts. 

Importantly, splicing at the D2 donor site is crucial for the expression of the three important viral 

proteins (VP1, VP2, and 11-kDa) (52). The D2 site is a weak splice donor site and the cis-acting 

elements flanking the D2 site play a key role in processing different mRNA transcripts (52). The 
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D2 site is flanked by exon splicing enhancer 3 (ESE3) and intronic splicing enhancer 2 (ISE2), 

that regulate the expression of three important viral proteins (VP1, VP2, and 11-kDa) (52). In in-

silico analysis, we identified a motif of 5’-UGUGUG-3’, a potential binding site for RBM38, in 

the ISE2 region of the viral pre-mRNA flanking the D2 site (Fig. 3-2). Our results demonstrate 

that RBM38 specifically binds to ISE2 under in-vitro conditions (Fig. 3-2). Interestingly, 

erythroid progenitor cells express RBM38 during the middle stages of erythropoiesis (Fig. 3-3), 

when cells are also highly susceptible to B19V infection. Upon knockdown of RBM38 in M20-

transfected UT7/Epo-S1 cells, the splicing efficiency at the D2 site decreased significantly (Fig. 

3-4), which, however, only affects the 11-kDa encoding mRNA (Fig. 3-5). Also, RBM38 

knockdown affected only 11-kDa expression in both M20-transfected UT7/Epo-S1 cells and 

B19V-infected CD36+ EPCs (Fig. 3-5).  

Further on, our result revealed that the 11-kDa protein facilitates B19V DNA replication 

(~10 fold) and thereby also affects virion release (Fig. 3-7). The facts that RBM38 knockdown 

affected virus replication (Fig. 3-6) and that the complementation with 11-kDa rescued the 

phenotype (Fig. 3-8) indicate that RBM38 regulates B19V replication by promoting the 

expression of the 11-kDa protein. The underlying mechanism of 11-kDa mediated augmentation 

of virus replication is unclear; however, we speculate that 11-kDa interaction with Grb2 (90) 

may disrupt the MEK/ERK pathway to promote virus replication. We have previously 

demonstrated that the MEK/ERK pathway negatively regulates B19V replication (18). Since 

both ISE2 and ESE3 elements are critical for splicing at the D2 site, we hypothesize that ISE2 

and ESE3 interact with other host factors, and that the interplay of cis-acting elements and trans-

acting factors regulates splicing at D2, thereby determining the expression of VP1, VP2, and 11-

kDa proteins (Fig. 3-9). In conclusion, RBM38 is an essential factor for B19V pre-mRNA 
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processing that ensures the expression of the 11-kDa protein, which in turn facilitates viral DNA 

replication and regulates the virion release. 

            There is neither specific treatment nor a vaccine for B19V infection and B19V-related 

pathologies. Our current studies identified two key host factors which can be targeted to prevent 

B19V infection. Importantly, phosphorylation of STAT5 is a pre-requisite for B19V replication. 

We showed that pimozide, a STAT5-phosphorylation inhibitor, abolishes virus replication in ex-

vivo expanded CD36+ EPCs (Fig. 2-1). Our results show that pimozide inhibits virus replication 

with an IC50 of 2.7 µM (Fig. 2-9). Pimozide doesn’t significantly alter the cell cycle progression 

and colony formation of EPCs up to 15 µM (Fig. 2-1 & Fig. 2-9). Thus, pimozide, an FDA-

approved anti-psychotic drug, holds promise as a new treatment for B19V related pathologies in 

the future. 
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