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Abstract

Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial 

and the tooth structure contribute to recurrent decay and failure of the composite restoration. The 

inability of the material to increase the pH at the composite/tooth interface facilitates the 

outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers 

promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this 

problem by designing a dental adhesive composed of hybrid network to provide buffering and 

autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-

morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-

(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free 

radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel 

reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were 

characterized with regard to real-time photo-polymerization, water sorption, leached species, 

neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies 

indicated that ethoxy was less reactive than methoxy substituent. The neutralization results 

demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. 

The mechanical properties of synthetic copolymers tested in dry conditions were improved via 

condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing 

copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent 

reaction in wet condition-performance that offers potential for reducing secondary decay and 

increasing the functional lifetime of dental adhesives.
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1. Introduction

Resin-based dental composite is the most widely used material for direct restorative 

dentistry [1–3]. In spite of this popularity, posterior composite restorations do not 

characteristically provide the durability associated with dental amalgam [4,5]. The primary 

reason that amalgam and composite restorations fail is recurrent decay, i.e. decay on the 

margins of existing restorations, but recurrent decay is 3.5 times greater for composite [6–

12].

A clear difference between amalgam and composite is corrosion-the corrosion products seal 

defects at the tooth/amalgam interface but composite materials do not corrode. The adhesive 

that is used to bond the composite to the tooth is intended to seal discrepancies at the 

composite/tooth interface, but methacrylate-based dental adhesives/composites are 

vulnerable to hydrolytic and enzymatic degradation [4,13–16]. This degradation leads to 

gaps at the interface between the composite and tooth [17,18].

Another determining factor related to the failure of composite restorations is associated with 

bacterial adhesion and growth at the restorative material/tooth interface. Streptococcus 
mutans (S. mutans) is a gram-positive, facultative anaerobic microorganism that has been 

implicated as the major causative agent of dental caries [19–21]. Adhesion of S. mutans to 

the material/tooth interface creates an environment that supports the subsequent attachment 

and growth of other bacterial species, ultimately this activity leads to a micro-ecosystem 

known as a biofilm. In addition to its role as a “pioneer” organism in biofilm formation, S. 
mutans produces lactic acid; the lactic acid damages the adjacent tooth surface by 

demineralization [22]. With the degradation of dental adhesive and the formation of biofilm 

on the surface of restorative materials, enzymes, oral fluids and bacteria permeate the 

interfacial defects, undermining the composite restoration and bacteria destroy the adjacent 

tooth structure [23,24].

Various strategies have been developed to prevent or slow down the degradation of dental 

adhesives/composites [25–27]. However, due to the inherent water-absorption of 

methacrylate-based synthetic biomaterials, the degradation process in the oral environment 

is unavoidable and irreversible [4,13,28,29]. At the same time, the inability of the material to 

increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic 

and aciduric bacteria [30–32]. Research has shown that successful restorative treatment does 

not alter the numbers of S. mutans [20,33]. Therefore, more effective methods for reducing 

the cariogenic challenge at the tooth/composite interface are needed. Materials that could 

neutralize the micro-environment at the tooth/composite interface offer the potential of 

protecting tooth structure and reducing the negative impact of bacteria at the margins of 

composite restorations [30]. With the emphasis on less invasive operative techniques, there is 
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a pressing need to develop functionalized dental adhesives/composites capable of 

neutralization [34–36], bioactivity [37–39], or mineralization [40–42].

In our previous work, 2-N-morpholinoethyl methacrylate (MEMA) as amine-containing 

monomer (pKa = 6.2) has been used to develop dental adhesive with neutralization 

capability [34]. MEMA-containing resin formulations showed good storage stability and 

MEMA-based copolymers showed low toxicity when used as a controlled drug-delivery 

system [43–45]. However, MEMA-functionalized copolymers showed fast neutralization 

behavior when loosely crosslinked network was formed, which would potentially limit the 

long-term performance of these materials under clinical conditions. Recently, we have 

developed a self-strengthening dental adhesive by introducing photoacid-induced sol-gel 

reaction together with the free radical photo-polymerization of methacrylate [46,47]. The 

results indicated that whether in wet conditions (pH ~ 5.5 @25 °C) or in acidic conditions 

(pH ≤ 3.5 @25 °C), the sol-gel reaction is a suitable and novel approach to enhance the 

mechanical properties of the newly developed dental adhesive copolymers [46,47].

In this study, two amino functional alkoxysilanes were synthesized and incorporated in a 

dental adhesive formulation to provide a hybrid material with neutralization capabilities and 

self-strengthening characteristics. We first evaluated the effect of different alkoxy groups of 

silane on the hydrolysis/condensation of the sol-gel reaction. We next investigated the 

neutralization behavior and mechanical properties of the hybrid copolymers following 

prolonged aqueous storage. The present study tests the hypothesis that: i) the amine group 

built-in to the dental adhesive network by photoacid-induced sol-gel reaction can neutralize 

lactic acid, and ii) the mechanical properties of dental adhesive can be improved in wet 

conditions. By combining neutralization capacity and self-strengthening characteristics, the 

developed hybrid copolymers are postulated to serve as dental adhesives that provide better 

long-term performance in the oral environment.

2. Materials & methods

2.1. Materials

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (BisGMA), 2-hydroxyethyl 

methacrylate (HEMA), camphoroquinone (CQ), ethyl-4-(dimethylamino) benzoate 

(EDMAB), diphenyliodonium hexafluorophosphate (DPIHP), L(+)-lactic acid (LA), 

dibutyltin dilaurate (DBTL), 3-morpholino-1,2-propanediolb (MPD), and (3-

isocyanatopropyl) triethoxysilane (IPTES), were obtained from Sigma-Aldrich (St. Louis, 

MO) and used as received without further purification. (3-isocyanatopropyl) 

trimethoxysilane (IPTMS, 95%) was purchased from Gelest Inc., (Morrisville, PA). 2-

hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate (SNE), 2-hydroxy-3-

morpholinopropyl (3- (trimethoxysilyl)propyl) carbamate (SNM) were synthesized in our 

laboratory and used as co-monomers (see SI Scheme 1). All other chemicals were used as 

received without further purification.
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2.2. Synthesis of co-monomer SNE/SNM

The new co-monomers, SNE/SNM, were synthesized based on the following procedures 

[48]. Briefly, to a 250–mL, round bottom flask, fitted with a magnetic stirrer and N2–

purging, MPD (4.20 g, 25 mmol), DBTL (20 µL) and tetrahydrofuran (THF, 50 mL) were 

added. When the temperature was cooled to 0 °C with an ice-water bath, IPTES (6.38 g, 25 

mmol, for SNE) or IPTMS (5.13 g, 25 mmol, for SNM) dissolved in 40 mL THF was added 

stepwise over a 2 h period. Next, the reaction mixture was kept at 0 °C for 4 h and raised to 

23 ± 2 °C for another 20 h. The progress of the reaction was followed by FTIR (Spectrum 

400 Fourier transform infrared spectrophotometer, Perkin-Elmer, Waltham, MA) to monitor 

the disappearance of isocyanate (_NCO) at 2266 cm−1. After the reaction was completed, 

THF was removed by rotary evaporation and ethyl acetate (100 mL) was added to dissolve 

residual liquid. Then 100 mL saturated NaCl solution was added to wash the unreacted 

starting materials. The EA oil-phase was dried over anhydrous MgSO4 and followed by 

removing the solvent with a rotary evaporator at 40 °C to obtain as colorless oil SNE (7.65 

g, 75% theory). THF was removed from SNM after the reaction was completed by rotary 

evaporation to obtain viscous colorless oil (8.06 g, 88% theory).

2.3. Preparation of adhesive formulations

Neat methacrylate resin made by mixing 45 wt% HEMA and 55 wt% BisGMA was used as 

the control (C0) [15]. CQ (0.5 wt%), EDMAB (0.5 wt%), and DPIHP (0.5 wt%) were used 

as 3-component photoinitiators (PIs) system [49–51] with respect to the total amount of 

monomers. The composition of the neat resin and the experimental resin formulations are 

listed in Table 1. Mixtures of the monomers/PIs were prepared in brown glass vials under 

amber light. The preparation of adhesive formulations and their polymer beams have been 

reported [49,50].

2.4. Water miscibility of adhesive formulations

The protocol for determining water miscibility of adhesive formulations has been reported in 

detail [52,53]. In brief, about 0.5 g of each neat resin was weighed into a brown vial with 

water added in increments of approximately 0.005 g until the mixture was visually observed 

to be turbid. The percentage of water in the mixture was noted (w1). The mixture was then 

back-titrated using the neat resin until the turbidity disappeared, and the percentage of water 

in the mixture was noted (w2). Then the water miscibility (Wwm, %) of the liquid 

formulation was calculated as the average of w1 and w2. Three specimens of each 

formulation were measured.

2.5. Specimens preparation

The prepared resins were injected into a glass-tubing mold (Fiber Optic Center, Inc., part 

no.: ST8100, New Bedford, MA) and light-cured for 40 s at 23 ± 2 °C with an LED light 

curing unit (LED Curebox, 100 mW/cm2 irradiance, Proto-tech, Portland, OR). The 

polymerized samples were stored in the dark at 23 ± 2 °C for at least 48 h before being used. 

The resultant rectangular beam specimens of cross section 1 mm × 1 mm and length 15 mm 

were used to determine the dynamic mechanical properties.
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2.6. Real-time conversion and maximum polymerization rate

The degree of conversion (DC) and polymerization behavior were determined by FTIR as 

reported [47]. A time-based spectrum collector (Spectrum TimeBase, Perkin-Elmer) was 

used for continuous and automatic collection of spectra during polymerization. A minimum 

of three measurements were carried out for each adhesive formulation. Methacrylic double 

bond conversion was monitored by the band ratio profile-1637 cm−1 (C=C)/1608 cm−1 

(phenyl). The maximum polymerization rate (Rp
max/[M]) was determined using the maximum 

slope of the linear region of the DC vs. time plot [50,54,55].

2.7. Dynamic mechanical analysis (DMA)

In the current study, DMA tests were performed using a TA instruments Q800 DMA (TA 

Instruments, New Castle, USA) with a three-point bending clamp. The dynamic mechanical 

properties of polymethacrylate-based dental adhesives have been described [49,56]. 

Rectangular beam specimens were used for DMA measurements and a minimum of three 

specimens were tested for each formulation. For dry testing, the following testing parameters 

were used: displacement amplitude of 15 µm, frequency of 1 Hz and preload force of 0.01 N 

[57]. In addition to this, temperature was ramped at the rate of 3 °C/min from 20 to 200 °C. 

For wet testing, specimens were first submerged in 1 M LA solution at 37 °C for 4 or 8 

weeks with tests being obtained using the three-point submersion clamp [54]. The test 

temperature was varied from 10 to 75 °C with a ramping rate of 1.5 °C/min.

2.8. Neutralization measurements

The neutralization measurements for both dry and hydrated samples were performed with a 

Mettler Toledo (Columbus, OH) Accument® AP110 pH meter equipped with a micro-probe. 

Dry disc specimens (~20 mg) were soaked directly in the lactic acid (LA) solution (1 mM, 2 

mL). For the hydrated samples, prior to the neutralization experiment, the disc specimens 

(~20 mg) were prewashed in water at 37 °C for 7 days. Then, the hydrated specimens were 

soaked in the LA solution (1 mM, 2 mL). The pH values of solution were measured at fixed 

time intervals. A minimum of four specimens for each formulation were measured.

2.9. Leachable study by high-performance liquid chromatography (HPLC)

Round disc samples (~4 mm diameter and ~1.2 mm thickness) were used for the leachable 

study [46,58]. Two disc samples were soaked in 2 mL ethanol (HPLC grade) at 23 ± 2 °C for 

1 to 56 days. The storage solutions were collected at various time intervals, i.e. 1, 2, 4, 7, 10, 

14 days and every week after the 14-day time point. Fresh ethanol was added after each 

collection. The concentration of leachate in the collected storage solutions was determined 

using high performance liquid chromatography (HPLC). HPLC analysis was completed 

using a system (Shimadzur® LC-2010C HT, software EZstart, version 7.4 SP2) equipped 

with a 250 × 4.6 mm column packed with 5 µm C-18 silica (Luna®, Phenomenex Inc., 

Torrance, CA) under the following conditions: mobile phase made with acetonitrile/water 

(70/30, v/v); 0.5 mL/min flow rate; 20 µL sampling loop; UV detection at 208 nm; 40 °C 

column temperature. The column was calibrated with known concentrations of compounds, 

e.g., HEMA and BisGMA ethanol solutions. The calibration curves with the linear fittings of 

BisGMA (5–250 mg/L, R2 = 0.999) and HEMA (5–500 mg/L, R2 = 0.999), were used to 
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calculate the concentration of each monomer in the eluent based on the intensity of the 

chromatographic peaks at the corresponding retention times.

2.10. Statistical analysis

The results (degree of conversion measured by FTIR, rubbery moduli and glass transition 

temperature values obtained from DMA) were analyzed statistically using one-way analysis 

of variance (ANOVA), together with Tukey’s test at α = 0.05 (Microcal Origin Version 8.0, 

Microcal Software Inc., Northampton, MA) to identify significant differences in the means.

3. Results

3.1. Water miscibility

We first test the water miscibility of the experimental and control adhesives at 23 ± 2 °C 

(Table 1). The water miscibility (Wwm) of the control (C0), which is used as a commercial 

analog, is recorded as 10.5 ± 0.1%. When we increased the SNE (2-hydroxy-3-

morpholinopropyl (3-(triethoxysilyl)propyl) carbamate) concentrations from 5, 10, 15, 20, 

35, to 50 wt%, the Wwm increased from 10.8 ± 0.1, 11.1 ± 0.1, 11.3 ± 0.1, 11.5 ± 0.0, 12.5 

± 0.1, to 14.2 ± 0.0 wt%, respectively. With increasing SNM (2-hydroxy-3-

morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate) concentration from 5, 10, 15, to 

20 wt%, the Wwm increased from 10.5 ± 0.2, 10.7 ± 0.3, 11.0 ± 0.1, to 11.4 ± 0.2 wt%, 

respectively.

3.2. Polymerization kinetic

Real-time photo-polymerization behavior of the C0 and experimental adhesives is shown in 

Fig. 1 (A and B). The experimental formulations that contain SNE or SNM co-monomers, 

exhibit significantly higher DC than that of the C0 (p < .05). The maximum polymerization 

rates (Rp
max/[M]) of the experimental formulations were higher than that of the C0, and 

reached the highest values when the SNE or SNM concentration was 10 wt% (results see 

Table 1). Fig. 1C and D show the characteristic peaks of FTIR spectra of SNE-containing 

adhesive formulation (HBSN-50) at different times after visible-light irradiation. In the C—

H stretching region, the intensity of the band at 2972, 2928, and 2880 cm−1 remained 

constant over 8 h. At the same time, the intensity of the broad band at 340 cm−1 (hydrogen 

bonded OH stretching mode) was almost unchanged. This result indicated that even over 8 h, 

the hydrolysis of ethoxy group is barely observable after visible light-irradiation is 

terminated.

3.3. Neutralization

The pH of LA solution, as a function of storage time, for the non-prewashed/prewashed 

control or experimental copolymer specimens is shown in Fig. 2. Whether the C0 is non-

prewashed or prewashed in water, the pH values of LA solution increased from 3.5 to about 

3.8 and finally equilibrated at 4.0–4.2. When the non-prewashed HBSN or HBSM 

specimens were soaked in the LA solution, the pH values increased at different levels 

according to the SNE/SNM concentration. When alkoxysilane monomer was at a higher 

concentration (SNE is 35 or 50 wt%, SNM is 20 wt%), the pH value rapidly increased and 
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reached a plateau within several days. When SNE/SNM concentration was lower than 20 wt

%, the pH values slowly increased and took 4–6 weeks to reach a plateau. When the 

prewashed HBSM specimens were soaked into LA solution, the pH values increased from 

3.5 to about 3.8, and then slowly increased with storage time. When SNM is 20 wt%, the pH 

value took about 6 weeks to reach equilibrium at about 6.0, which is lower than that of non-

prewashed specimen at equilibrium (about 6.7). Compared with the results obtained from 

non-prewashed experimental specimens, there was a significant increase in the time required 

to reach equilibrium.

3.4. Mechanical properties in dry and wet conditions

The dynamic mechanical properties of the SNM-containing copolymers in dry conditions 

and tested at various temperatures are shown in Fig. 3. Two cycles of temperature-ramp 

analysis up to 200 °C were run for these specimens. In the first cycle, with the increase of 

SNM concentration, the rubbery moduli for the experimental copolymers were comparable 

(SNM = 5 wt%) or significantly higher than that of the C0 (p < .05). However, Tg values 

determined by the tan δ peak of the experimental were significantly lower than that of the 

C0 (p < .05). The storage modulus at 37 °C, rubbery modulus, and the Tg of the C0 obtained 

in the second DMA cycle were comparable with that measured in the first cycle. However, 

corresponding values of the experimental specimens in second cycle were significantly 

higher than that in the first cycle (p < .05, details are shown in SI Table 1).

Fig. 4 shows the mechanical properties of the C0 and the SNM-containing experimental 

specimens stored in 1 M LA for 4 or 8 weeks. With the increase in storage time from 4 to 8 

weeks, the storage moduli of the C0 and the experimental specimens at 37 °C did not show 

significant dependence on the storage time. The moduli at 37 °C of the experimental 

specimens were significantly lower than that of the C0 (p < .05) whether they were soaked 

for 4 or 8 weeks. In contrast, the Tg of HBSM-20 specimen soaked over 8 weeks was 

significantly higher than that of the C0 (p < .05).

3.5. HPLC results

Fig. 5 shows the results of cumulative monomers released from the SNM-containing 

copolymers as a function of incubation time in ethanol for 8 weeks at 23 ± 2 °C. With the 

increase of SNM concentration from 0, 5, 10, 15, and to 20 wt% in the formulations, the 

cumulative release of HEMA decreased from 1107, 924, 631, 420, to 292 µg/mL, and the 

percentage of leached HEMA based on the total HEMA used in the corresponding adhesive 

formulation decreased from 12.0, 10.4, 7.6, 5.4, to 4.0 wt% (calculated method see SI); the 

cumulative release of BisGMA decreased from 549, 486, 411, 372, and to 349 µg/mL, and 

the percentage of leached BisGMA slightly decreased from 4.9, 4.5, 4.0 to 3.8 wt%.

4. Discussion

4.1. Effects of alkoxy substituent

In our previous study, an autonomic, self-strengthening, Si-based (γ-methacryloxyproyl 

trimethoxysilane, MPS) hybrid system was developed for potential application as a dental 

adhesive [47]. The methoxy groups of MPS are hydrolyzed to form silanol-containing 
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species, which are highly reactive intermediates and can generate Si—O—Si or Si—O—C 

covalent bonds. In the current study, we investigated the reactivity of alkoxy substituent in 

organosilane during visible light-induced photo-polymerization. Usually the reaction rate of 

acid-catalyzed hydrolysis of organosilane is significantly greater than that of the base-

catalyzed hydrolysis [59], and is minimally affected by other carbon-bonded substituents. 

The hydrolysis is preceded by protonation of the alkoxy groups and the hydrolysis rates of 

alkoxy groups are generally related to their steric bulk, such as CH3O > C2H5O [59,60], a 

methoxysilane hydrolyzed at 6–10 times the rate of an ethoxysilane. In the previous MPS 

study, the degree of hydrolysis of methoxysilane was found to be ~50% within 8 h [47]. 

From the real-time FTIR spectroscopic study (Fig. 1C and D), it can be observed that the 

intensity of the characteristic peak of SNE-containing specimens remained constant, which 

indicated that the hydrolysis of ethoxy group was too slow to be observed during the limited 

time scale of this investigation. At the same time, with the increase of SNE concentration 

from 5, 10, 15, 20, 35, to 50 wt% in the formulations, the weight loss of copolymer 

specimens soaked in water for 7 days increased from 2.0 ± 0.1, 2.8 ± 0.3, 3.9 ± 0.1, 5.5 

± 0.1, 12.9 ± 0.2, to 32.6 ± 1.2%. These results indicate that most of the SNE was gradually 

leached from the specimens. Meanwhile, with the increase of SNM concentration from 5, 

10,15, to 20 wt%, the weight losses increased from 1.8 ± 0.2, 2.9 ± 0.1, 4.6 ± 0.2, to 6.2 

± 0.1%, which were comparable or slightly higher than the SNE-containing specimens. This 

phenomenon was mainly attributed to the faster hydrolysis rate of methoxy group as 

compared to the ethoxy group. The FT-IR result indicates that none of ethoxy functional 

groups (SNE-containing samples) could be hydrolyzed. Meanwhile, the methoxy groups 

(SNM-containing specimens) could be hydrolyzed and the copolymers became more 

hydrophilic with the increase of silanol groups [46,47]. The complicated pathway for 

hydrolysis and condensation of SNM has inhibited our ability to simultaneously determine 

the kinetics of silanol formation and reaction. Due to the limited condensation reaction of 

silanol groups in the highly crosslinked polymethacrylate-based network, part of the 

hydrolyzed SNM may tend to leach during aging in aqueous solution.

4.2. Neutralization behavior

The results related to the buffering potential of the non-prewashed/prewashed copolymer 

specimens are presented in Fig. 2. With the control formulation, whether the non-prewashed 

or prewashed specimens, the pH values of the LA solution are similar, i.e. about 4.0–4.2 

after 9 weeks. When the non-prewashed SNE-containing copolymer specimens were soaked 

in LA solution, the pH values showed a gradually increasing trend, except in the case of 

higher SNE concentrations (35 and 50 wt%), where an acute change in pH occurred. The 

acute neutralization response to the HBSN-35/50 specimens could be attributed to release of 

the SNE monomer from the specimens. The weight loss of the HBSN-35/50 specimens was 

12.9 ± 0.2 and 32.6 ± 1.2%, which was significantly higher than that of the control (1.5 

± 0.2%). The higher weight loss is likely related to leaching of the SNE co-monomer. When 

the SNE concentration was varied from 5 to 20 wt%, the pH values increased gradually and 

exhibited an increasing trend after 9 weeks. There are two primary reasons for these results. 

First, SNE co-monomer could be leached since it cannot be polymerized into the network 

structure via the relatively slow sol-gel reaction. Second, due to the highly crosslinked and 

dense polymethacrylate-based network structure, it could take much longer for the entrapped 
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SNE molecules to diffuse out and for the protons to diffuse into the polymer, which may 

depress the neutralization behavior.

When the non-prewashed SNM-containing specimens were soaked into the LA solution, the 

pH showed a similar trend with that of the SNE-containing samples. The difference was the 

neutralization rate with the SNM-containing samples was relatively fast as compared to the 

SNE-containing samples. When the SNM/SNE concentration was 20 wt% in the formulation 

(HBSM-20 or HBSE-20, Fig. 2A and B), the pH value reached equilibrium after 3–4 weeks 

for the HBSM-20 sample, however, it is almost 9 weeks for the HBSN sample. These results 

are likely due to the difference in reactivity of SNM and SNE co-monomer. Most of the 

methoxy groups could be hydrolyzed to generate silanol groups after the light-cured 

specimen was stored for 48 h in the dark. When the SNM-containing specimens were soaked 

in the LA solution, the hydrolyzed SNM molecules became more hydrophilic and preferred 

to diffuse out, thus quickly neutralizing the acid. In contrast, due to the less reactivity and 

increased hydrophobicity of the ethoxy group, it took longer for the SNE monomer to be 

hydrolyzed and leached from the polymer.

It has been reported that the higher localized pH (around 6.0– 6.5) could inhibit the growth 

of aciduric organisms, such as S. mutans [61]. Furthermore, with the fluctuations in pH that 

occur in vivo, fast neutralization of tooth restoration materials would be beneficial under 

clinical conditions [32,61]. To date, most of the buffering function was provided by the 

decomposition or ion releasing compounds [35,40,61,62]. Biomaterials that achieve 

buffering via leaching of ions typically provide this capability for a relatively short time 

(hours to days) and may experience a gradual deterioration of physical properties.

In our previous study, amine-functionalized co-monomers have been introduced into the 

dental adhesive resin and the copolymers showed a long-term neutralization capacity 

[34,53,63,64]. In the present work, with the incorporation of amine functionalized poly-

merizable component (SNM), the copolymers showed promising neutralization capacity, 

which could offer the benefit of maintaining the neutral pH at the localized micro-

environment of the restorative material/tooth interface. Therefore, the hypothesis (i) that the 

amine group built-in to the dental adhesive network by photoacid-induced sol-gel reaction 

can neutralize acid, was accepted.

4.3. Mechanical properties

Dynamic mechanical analysis (DMA) is suitable to characterize the viscoelastic behavior of 

materials and has been suggested as a valuable tool for obtaining information such as 

crosslinking density and heterogeneity of polymer networks [65,66].

With the increase of the SNM concentration in the formulations (Fig. 3), the rubbery moduli 

of the experimental in dry condition were significantly higher than that of the C0 (p < .05), 

which indicated that a higher crosslink network was obtained with the addition of SNM. 

However, the rubbery moduli of SNE-containing specimens were significantly lower than 

that of the C0 (p < .05), except for HBSN-5 (See SI Fig. 3A). These results indicated that the 

more reactive SNM improved the crosslink density of the hybrid polymer network. 

Meanwhile, it was observed that the Tg of experimental copolymers, such as HBSM-20 
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(118.5 ± 1.2 °C) was significantly lower than that of C0 (149.0 ± 0.7 °C). This phenomenon 

could be attributed primarily to the plasticization of the hydrolyzed SNM. The same trend 

was observed in the SNE-containing samples (See SI Fig. 3C).

One of the advantages of photopolymerization is that it can be carried out at room 

temperature. Nevertheless, due to the relatively slow reaction rate of the sol-gel reaction, 

when the liquid resin is irradiated by visible-light, a polymethacrylate-based matrix network 

is formed by simultaneous free radical cross-linking polymerization of methacrylate 

monomers while the alkoxysilane shows limited hydrolysis and condensation. As mentioned 

above, the condensation reaction of the silane was very limited in the highly crosslinked 

polymethacrylate-based network. In the present study, the heated samples (done by first 

DMA cycle –ramp from 20 °C up to 200 °C) were run for a second time to verify the effect 

of the condensation reaction. In the first DMA cycle, the samples were heated up to 200 °C, 

which was above the Tg of copolymers. The mobility of the polymer chains at high 

temperature was significantly improved, thus the condensation reaction would be promoted 

and the crosslink density of hybrid network should be improved, as evident from the results 

of the secondary DMA cycle.

When the SNE/SNM-containing specimens were run under DMA testing for a second cycle, 

the storage moduli at the rubbery region were improved significantly as compared to that of 

the first cycle (see Fig. 3C and SI Table 1). These results further confirmed that the limited 

sol-gel reaction occurred after the visible light irradiation and can be promoted by heating 

processes. At the same time, it can be observed that the Tg values of the control were similar 

in the first and second cycles, which indicated that the further free radical polymerization 

was very limited and that there was minimal change in the polymethacrylate-based network 

structure during the heating process. In comparison, the Tg values of the SNM-containing 

specimens were improved about 8–22 °C in the second cycle. Due to the fast rate of free 

radical polymerization, the transition from liquid to solid state in the resin occurs within a 

couple of seconds. With the formation of the polymethacrylate-based matrix, the mobility of 

the polymer chains and functional groups (−SiOCH3) were restrained, which depressed the 

further free radical polymerization to the un-reacted C=C bond, and also the sol-gel reaction 

(hydrolysis and condensation). When the sample was heated during the first DMA cycle, the 

mobility of the copolymer chains was significantly enhanced, especially at the rubbery 

region. Therefore the further free radical polymerization and the sol-gel reaction were 

promoted. Our previous study showed that the degree of hydrolysis of methoxysilyl groups 

can reach at ~70% after the visible light-irradiation is terminated and the specimen is stored 

for 48 h [47]. During the heating process in the first DMA cycle, the condensation reactions 

between silanol-silanol, silanol-methoxy or silanol-hydroxyl were prompted and highly 

crosslinked hybrid networks were obtained. Therefore, the significant increase of Tg values 

of the SNM/SNE-containing specimens was observed.

The three-point bending submersion clamp method is expected to simulate the wet 

environment of the mouth. The storage moduli of the C0 and experimental samples were 

significantly lower than those of the dry samples. The difference is caused by water 

plasticization. The water miscibility of the experimental formulation was higher than that of 

the C0. This means that the experimental formulation was more hydrophilic than that of the 
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C0 and thus, the experimental specimens were able to absorb more water. With the extension 

of storage time from 4 to 8 weeks in LA solution, whether the C0 or the experimental 

samples, the storage modulus at 37 °C showed a slight increase. However, the Tg values of 

the experimental samples showed a significant increase when the SNM concentration was 15 

and 20 wt%. This result was attributed to the further crosslinking reaction (via the 

condensation reaction between silanol/silanol or silanol/hydroxyl groups) in a wet condition. 

As a results, the hypothesis (ii) that the mechanical properties of dental adhesive can be 

improved in wet conditions, was accepted.

A schematic illustration of the hybrid network formation after visible-light irradiation is 

given in Scheme 1. FTIR results have confirmed the free radical polymerization rate is much 

faster than that of the photoacid-catalyzed sol-gel reaction [47]. When the liquid resin is 

irradiated by visible-light, the polymethacrylate-based network is formed first by free radical 

polymerization of co-monomers, e.g., HEMA and BisGMA. Simultaneously, the 

methoxysilyl groups of SNM are hydrolyzed, which is catalyzed by the photoacid (Brønsted 

acid, H+PF6
−) produced during the visible-light irradiation [67–69]. Our previous studies 

have shown that the degree of hydrolysis and condensation of methoxysilyl group is very 

limited (<5%) during 40 s visible-light irradiation, and the newly formed Si–O–Si bonds are 

limited even after 24 h post curing [46,47]. The increased rubbery moduli obtained from the 

DMA in dry condition (secondary cycle) supported this proposed mechanism. During the 

heating process, the increased mobility of polymer chains promote the condensation 

reactions, which contribute to the highly crosslinked network. However, due to the mono-

type functional group of SNM and the relatively slow rate of condensation reactions, partial 

SNM or low molecular weight oligomer tend to leach when soaked in water, which accounts 

for the acute neutralization phenomenon (Fig. 2B). Meanwhile, most of the SNM has been 

trapped into the polymethacrylate-based network and grafted onto the polymer chains via 

sol-gel reaction, which contributes to the delayed neutralization behavior (Fig. 2C).

4.4. Leaching properties

To accelerate the diffusion of the hydrophobic compounds, i.e., BisGMA and EDMAB from 

the copolymers, ethanol was used as the solvent for the leaching study. With the increase of 

SNM concentration, the amount of HEMA and BisGMA that was leached decreased 

significantly. As reported previously [47] the main reason was the further crosslinked 

network formed through the condensation reactions between silanol/silanol or silanol/

hydroxyl groups. With the addition of 20 wt% SNM in the formulation, the cumulative 

amounts of leached HEMA and BisGMA were reduced by about 68 and 22%, respectively. 

Due to the lack of UV absorption, it is hard to determine the leaching behavior of SNM co-

monomer by HPLC. From the weight loss result (see SI Fig. 2), it can be roughly estimated 

that the percentage of leached SNM was about 20%. This result was significantly higher 

than the MPS-containing copolymers (percentage of leached MPS to total MPS in the 

formulation was less than 3%) [47]. The main difference between SNM and MPS was the 

functionality. MPS has two types of functional groups, i.e., the methacrylate C=C bond and 

the methoxysilyl group. However, SNM has only a methoxysilyl functional group. During 

the light-irradiation, the dual functional MPS can be copolymerized with HEMA/BisGMA 

via free radical polymerization and polymerized into the network via sol-gel reaction. Due to 
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the relatively slow rate of the sol-gel reaction, even stored in dark for 2 days, there is still a 

lot of un-polymerized SNM or low-molecular-weight oligomers. Consequentially, the 

amount of leached SNM was significantly higher than that of MPS. Meanwhile, the release 

rates of HEMA or BisGMA in the experimental samples in this study were depressed, which 

could be attributed to the higher crosslink density network formed through the hetero-

condensation between silanol and hydroxyl groups.

It must be noted that the immersing media, ethanol, is not a clinically relevant solvent. We 

used ethanol to accelerate the leachable study. Due to the good solubility and compatibility 

of ethanol, the concentration of the leached HEMA plateaued within 14 days. However, the 

concentration of the leached BisGMA has not plateaued even after 56 days. When 

considering the oral aqueous environment, hydrophilic component, HEMA, in the polymer 

would be the major leachable. All in all, HPLC data obtained from specimens stored in 

ethanol would be expected to yield a higher cumulative concentration of leachates as 

compared to clinical conditions and therefore the results should be interpreted with caution.

The significantly reduced leachate amounts in SNM-containing copolymers indicated that 

the experimental adhesive could maintain the integrity of the network structure. These 

promising results suggest a design strategy for biocompatible dental adhesive with improved 

durability and lower toxicity. Future work will focus on improving the mechanical properties 

and minimizing the leachable species by exploring the structure-property relationships of the 

developed hybrid biomaterial. The potential for buffering the local environment and the 

autonomic self-strengthening characteristics could offer a more durable adhesive and a 

concomitant improvement in the lifetime of composite restorations. Our attempt towards the 

establishment of structure-property-function relationships in the hybrid system could 

promote the development of next-generation dental restorative products. At the same time, it 

is tempting to speculate the advantages that the developed hybrid system could offer 

additional applications beyond dental restorations, including their use as wound/

postoperative sealing materials and developing gradient interfaces at the implantable 

material tissue interfaces [70–72].

5. Conclusion

We designed a dental adhesive composed of hybrid network that can simultaneously provide 

buffering capabilities and autonomous strengthening characteristics. The amino functional 

organosilane monomers showed potential application in developing dental adhesive with 

neutralization capability. The ethoxy substituent showed relative lower reactivity than 

methoxy during and after the visible light-irradiation. The higher reactivity of methoxy 

groups led to more hydrophilic silanol species, which promoted the diffusion and 

condensation of SNM and provided acute and delayed neutralization. Dynamic mechanical 

analysis, carried out in dry condition, indicated that the condensation reaction could be 

promoted at high temperatures resulting in more densely cross-linked hybrid networks. The 

persistently improved mechanical properties of copolymers in wet conditions indicated that 

the photoacid-induced sol-gel reaction could strengthen these biomaterials in the oral 

environment. The HPLC results indicated that the cumulative amounts of unreacted HEMA 

and BisGMA were reduced significantly from the SNM-containing copolymers. The SNE/

Song et al. Page 12

Acta Biomater. Author manuscript; available in PMC 2018 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNM-containing copolymers showed a fast neutralization rate at much higher 

concentrations; this finding demonstrates the significant potential of this approach for 

providing buffering capacity in the hybrid dental adhesive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

The interfacial gaps between the restorative composite biomaterial and the tooth structure 

contributes to recurrent decay and failure of the composite restoration. The inability of 

the material to increase the pH at the composite/tooth interface facilitates the outgrowth 

of more cariogenic and aciduric bacteria.

This paper reports a novel, synthetic resin that provides buffering capability and 

autonomous strengthening characteristics. In this work, two amino functional silanes 

were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel 

reaction was investigated. We evaluated the neutralization capability (monitoring the pH 

of lactic acid solution) and the autonomous strengthening property (monitoring the 

mechanical properties of the hybrid copolymers under wet conditions and quantitatively 

analyzing the leachable species by HPLC). The novel resin investigated in this study 

offers the potential benefits of reducing the risk of recurrent decay and prolonging the 

functional lifetime of dental adhesives.
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Fig. 1. 
Real-time conversion of C=C bond of the C0 and experimental adhesives (A) SNE-

containing formulations and (B) SNM-containing formulations, and FTIR characteristic 

peaks of SNE-containing formulation (HBSN-50) before and after visible-light irradiation, 

selective ranges of FTIR spectra for (C) alkoxyl group and (D) hydrogen bond. (The 

adhesives were light-cured for 40 s at 23 ± 2 °C using a commercial visible light lamp: 

Spectrum® 800, Dentsply, Milford, DE. Intensity is 550 mW/cm2.)
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Fig. 2. 
Plots of the pH values of 1 mM LA solution containing the C0 and experimental specimens 

versus storage time, (A) HBSN specimens without prewash, (B) HBSM specimens without 

prewash, and (C) prewashed and hydrated HBSM specimens. (Volume of LA is 2 mL, initial 

pH is 3.50, and temperature is 23 ± 2 °C).
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Fig. 3. 
Representative storage modulus (A and B), derivative storage modulus (C and D), and tan δ 
(E and F) vs. temperature curves of the SNM-containing specimens in dry conditions for the 

first DMA cycle (Top) and second DMA cycle (Bottom).
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Fig. 4. 
Representative storage modulus (A and B) and tan δ (C and D) vs. temperature curves, the 

storage moduli at 37 °C bar figure (E), and Tg values (F) of the C0 and HBSM experimental 

copolymers soaked in 1 M LA solution for 4 and 8 weeks (Tg was obtained from the 

position of maximum peak on the tan δ vs. temperature plots, * # Significantly (p < .05) 

different from the control soaked for 4 or 8 weeks in LA solution, respectively.
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Fig. 5. 
Cumulative monomers release from the SNM-containing copolymers as a function of 

incubation time in ethanol: (A) HEMA and (B) BisGMA.
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Scheme 1. 
Proposed polymethacrylate-based matrix network structure and the self-strengthening 

process of SNM-containing adhesive. (A) Neat resin (before irradiation); (B) 

Polymethacrylate-based network formed by free radical polymerization (during 40 s visible-

light irradiation); (C) limited photoacid-induced sol-gel reaction after 40 s irradiation 

(minutes to hours); (D) hybrid polymethacrylate/polysiloxane crosslinked network (few 

hours to days).
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