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Abstract

Mitochondria are well-known cellular organelles that play a vital role in cellular bioenergetics, 

heme biosynthesis, thermogenesis, calcium homeostasis, lipid catabolism, and other metabolic 

activities. Given the extensive role of mitochondria in cell function, mitochondrial dysfunction 

plays a part in many diseases, including diabetes and Alzheimer’s disease (AD). In most cases, 

there is overwhelming evidence that impaired mitochondrial function is a causative factor in these 

diseases. Studying mitochondrial function in diseased cells vs healthy cells may reveal the 

modified mechanisms and molecular components involved in specific disease states. In this 

chapter, we provide a concise overview of the major recent findings on mitochondrial 

abnormalities and their link to synaptic dysfunction relevant to neurodegeneration and cognitive 

decline in AD and diabetes. Our increased understanding of the role of mitochondrial perturbation 

indicates that the development of specific small molecules targeting aberrant mitochondrial 

function could provide therapeutic benefits for the brain in combating aging-related dementia and 

neurodegenerative diseases by powering up brain energy and improving synaptic function and 

transmission.

1. INTRODUCTION

Emerged evidence suggests that the deleterious and advanced cellular changes in aging and 

diabetes are linked to mitochondrial dysfunction.1,2 Brain aging is often characterized by 

neuronal loss and synaptic alteration, which are associated with mitochondrial 

abnormalities, energy failure, respiratory chain impairment, generation of reactive oxygen 

species (ROS), and neuronal perturbation.3 Further, various evidences suggest that 

mitochondrial dysfunction is a prominent and early oxidative stress-associated factor that 

produces neuronal abnormalities in aging and diabetes, resulting in susceptibility to aging-

related neurodegenerative diseases.4 In the neurons, mitochondria are distributed throughout 

the length of the axons, presynaptic terminals, and dendrites. Mitochondria play active roles 

in regulating synaptogenesis and morphological/functional responses to synaptic activity; 

thus, mitochondrial dysfunction can lead to a stark neuronal energy deficit and, in the long 

run, to modifications in neuronal synapses and neurodegeneration in the aging brain.1

Alzheimer’s disease (AD) is a chronic aging-related disease with two pathological features: 

abnormal accumulations of amyloid beta peptide (Aβ) and phosphorylation of tau protein in 
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the brain. Increased evidence indicates that mitochondrial and synaptic dysfunction is an 

early pathological feature of AD.5 Aβ has deleterious effects on mitochondrial function and 

structure and contributes to energy failure, respiratory chain impairment, ROS generation, 

induction of mitochondrial permeability transition pore (mPTP), imbalance of calcium 

homeostasis, disruption of mitochondrial dynamics, and mitochondrial DNA/RNA 

mutations.6 Although Aβ directly and indirectly causes abnormal mitochondrial and 

neuronal function, recent studies have highlighted the association between early 

mitochondrial dysfunction and the accumulation of Aβ in mitochondria, implicating 

mitochondrial Aβ in AD pathogenesis.7–28 These observations provide a better 

understanding of the relationship between mitochondria and AD pathogenesis.

Mitochondrial malfunction, synaptic damage, and the resultant impairment in cognitive 

function are pathological features of diabetes-affected brains.2 Diabetes adversely affects the 

brain and increases the risk for depression and dementia.29–39 In neurons, synaptic 

mitochondria are vital for the maintenance of synaptic function and transmission through 

normal mitochondrial dynamics, distribution, and trafficking as well as energy metabolism 

and synaptic calcium modulation. Imbalance of mitochondrial dynamics contributes to 

oxidative stress and hyperglycemia-induced alterations in mitochondrial morphology and 

function.38,40,41 Diabetes elicits AD-like brain changes linked with cognitive decline and 

neurodegeneration, such as elevated tau expression and phosphorylation and accumulation 

of Aβ,42–46 mitochondrial dysfunction, disruption of mitochondrial dynamics,37,38,41,47–51 

oxidative stress,40,49 neuroinflammation, loss of synapses, impaired learning and memory, 

and synaptic plasticity deficits.29,35,36,44,52–55 The underlying mechanisms and strategies to 

rescue such injury and dysfunction are not well understood. Studies have identified several 

cellular and mitochondrial cofactors that are directly or indirectly involved in AD- and 

diabetes-mediated alterations in mitochondrial and synaptic structure and function. Such 

factors include cyclophilin D (CypD), presequence protease (PreP), Aβ, mPTP, N-methyl-D-

aspartate, and the receptor for advanced glycation endproducts (RAGE).

This chapter addresses several aspects of AD- and diabetes-induced mitochondrial 

dysfunction with a special focus on mitochondrial molecular mechanisms underlying 

synaptic pathology and cognitive dysfunction.

2. MITOCHONDRIAL FUNCTION

Mitochondria are essential organelles for cell survival, playing a crucial role in calcium 

homeostasis, energy metabolism, detoxification of ROS generation, and induction of cell 

death, including apoptosis and necrosis. Mitochondria in different types of cells or in 

different subcompartments of one cell differ significantly in their morphology and function 

and can be divided into multiple subgroups within one cell.56 The recent recognition of 

mitochondrial heterogeneity facilitates our understanding of mitochondrial biology.

Mitochondria are the major site of ATP synthesis and are also the site of amino acid 

biosynthesis, fatty acid oxidation, steroid metabolism, calcium homeostasis, and ROS 

production and detoxification. The inner mitochondrial membrane is largely impermeable 

and contains a variety of enzymes, including those responsible for making ATP, and forms 
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the major barrier between the cytosol and the mitochondrial matrix. The five complexes of 

the respiratory chain [complex I (NADH ubiquinone oxidoreductase), complex II (succinate 

ubiquinone oxidoreductase), complex III (ubiquinone-cytochrome c reductase), complex IV 

(cytochrome oxidase), and complex V (ATP synthase)] are embedded in the inner 

mitochondrial membrane. The transmission of electrons along the respiratory chain provides 

the energy to pump protons from the matrix into the intermembrane space, thereby 

generating the electrochemical gradient required to drive ATP synthesis.56

3. SYNAPTIC MITOCHONDRIAL PATHOLOGY IN AD

Synapses are the neuronal contact sites through which neurons receive and send information.
57,58 Energy provision and calcium fluctuation in synapses are prerequisite for interneuronal 

communication.59 To meet the high energy demands and to cope with constant calcium flux, 

synapses are enriched with mitochondria for on-site energy provision and calcium 

modulation.60

Although the detrimental impacts of Aβ on synapses and synaptic function are extensive, 

multiple studies demonstrate that mitochondrial structure and function are particularly 

susceptible to the effects of mitochondrial Aβ accumulation.7–28 Further, synaptic 

mitochondria serve as a reservoir for Aβ accumulation in aging and AD1,5,61–64; thus 

mitochondrial dysfunction is a major player in the synaptic alterations seen in AD and 

diabetes.3,56,65

First, mitochondrial and neuronal malfunction in AD is linked to the progress accumulation 

of Aβ in the mitochondria of both human AD and transgenic AD mouse brains.
1,7–9,11,15–18,66–68 Aβ can directly import into mitochondria via the translocase of the outer 

membrane machinery,67 RAGE,69 or other unknown mechanisms. Aβ may also be locally 

produced in mitochondria via gamma-secretase that is localized in mitochondria.70–72 

Notably, accumulation of mitochondrial Aβ precedes extracellular Aβ deposition in AD 

brains, increases with age, and associates with early onset synaptic loss, synaptic damage, 

and mitochondrial oxidative damage,5,7,10,11,22,73–83 suggesting that early accumulation of 

Aβ in mitochondria may be an initiating pathological event, leading to mitochondrial and 

neuronal perturbation. Second, interaction of Aβ with mitochondrial matrix proteins such as 

amyloid-binding alcohol dehydrogenase (ABAD)7,10,11,84 and CypD23,85–87 exacerbates 

Aβ-induced mitochondrial and neuronal stress. Increasing PreP activity by antagonizing the 

Aβ-ABAD interaction decreases mitochondrial and cerebral Aβ accumulation in AD mice 

overexpressing Aβ and improves mitochondrial function.88 Third, increasing neuronal PreP 

expression and activity in Aβ-enriched synaptic mitochondria of mAPP mice greatly reduces 

mitochondrial accumulation. Accordingly, synaptic function and learning and memory are 

significantly improved in PreP-overexpressed mitochondria.28 These data strongly indicate 

that PreP is critical for maintaining mitochondrial integrity and function by clearance of 

mitochondrial Aβ. Strategies that reduce Aβ levels in mitochondria in addition to the brain 

by increasing PreP expression and activity are critical to consider as new avenues for both 

preventing and halting AD progression at the early stage. One such therapeutic strategy 

involves the development of a small-molecule agonist of PreP in order to safely decrease 

mitochondrial and cerebral Aβ accumulation by accelerating Aβ clearance.
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These recent studies highlight the significant role of Aβ in synaptic mitochondrial pathology 

and significantly advance our understanding of the mechanisms underlying mitochondrial 

dysfunction in AD, especially in the early stage when the presence of Aβ has not yet set in 

motion the devastating cognitive impairments often associated with AD. Ameliorating 

alterations in mitochondrial function could improve synaptic function and reverse cognitive 

decline in AD.

In AD and non-AD cell and animal models, treatment of mitochondria-targeted molecules 

mitoQ and SS31 significantly reverses Aβ-induced CypD elevation, mitochondrial fusion/

fission proteins imbalance, and neurite growth.89 MitoQ and SS31 also reduce mutant 

huntingtin-induced mitochondrial toxicity and synaptic damage.90 Additionally, antioxidants 

attenuate mitochondrial transport and function in cybrid cells containing AD-derived 

mitochondria.4,91 These results suggest a close relationship between neuronal mitochondrial 

dysfunction and synaptic perturbation and the value of eliminating neuronal mitochondrial 

oxidative stress in the treatment of neuronal/synaptic alterations in AD.1,90

4. IMPACT OF CypD-DEPENDENT mPTP ON MITOCHONDRIAL DEFECTS

CypD is a crucial component of the mPTP. CypD released from matrix can bind to the 

adenine nucleotide translocase in the inner mitochondrial membrane and the voltage-

dependent anion channel in the outer mitochondrial membrane to trigger the opening of 

mPTP, a nonselective, high conductance pore allowing the transport not only calcium but 

any solute below the pore size. The opening of mPTP results in osmotic swelling, dissipation 

of the mitochondrial membrane potential, reduced mitochondrial calcium retention capacity, 

decreased membrane potential, increased ROS production, and eventually, cell death (Fig. 

1).92 Increased expression of CypD occurs in neurodegenerative diseases including AD, 

Parkinson’s disease (PD), Huntington’s disease (HD),23,87,93–97 and diabetes, and con 

tributes to mitochondrial perturbation.5,23,65,98

Studies from in vitro cellular and in vivo animal models have demonstrated that blockade of 

CypD significantly attenuates mPTP-related mitochondrial dysfunction and cell death, 

which are relevant to the pathogenesis of stroke, AD, and diabetes.23,65,87,98–102 

Furthermore, blockade of mPTP by genetic depletion or pharmacological inhibition of CypD 

rescues axonal mitochondrial trafficking and protects synapses from Aβ toxicity. The 

potential mechanisms underlying the protective effect of CypD deficiency on axonal 

mitochondrial trafficking include the reduction of Aβ-induced calcium perturbation, the 

suppression of axonal ROS accumulation, and the activation of the downstream P38/MAPK 

signaling pathway.

The protein kinase A/cAMP regulatory element-binding (PKA/CREB) signaling pathway, a 

crucial regulator of synaptic plasticity and learning memory, is adversely affected by an Aβ-

rich environment, leading to dendritic spine architecture changes in an AD mouse model.102 

Aβ reduces phosphorylation of PKA, thus disrupting PKA/CREB signal transduction and 

causing synaptic and cognitive dysfunction.100,102 Notably, neurons lacking CypD reverse 

Aβ-induced synaptic dysfunction and are protected against Aβ-induced alterations in PKA 

and CREB phosphorylation. These results indicate the involvement of CypD in Aβ-induced 
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abnormalities in signal transduction including PKA/CREB signaling. Sustained CypD-

induced neuronal/synaptic mitochondrial stress is a potential mechanism underlying synaptic 

failure in the pathogenesis of AD.

Recently, Wang et al. demonstrated that CypD expression levels were significantly elevated 

in the hippocampi of streptozotocin-induced diabetic mice.56 The CypD expression levels 

are further elevated in Aβ-enriched diabetic brain compared to nondiabetic mAPP mice.56 

These results suggest that CypD expression is increased in diabetes mellitus and further 

enhanced in an Aβ-rich environment. Increased levels of CypD in mitochondria trigger/

enhance the mPTP opening, leading to colloidal osmotic swelling of the mitochondrial 

matrix, dissipation of the inner membrane potential, generation of ROS, and release of many 

proapoptogenic proteins and procaspases.99 Hence, blockade of CypD may be a potential 

therapeutic strategy for preventing and halting synaptic and mitochondrial pathology in AD. 

Specifically, the development of small-molecule CypD inhibitors could hold therapeutic 

potential for the treatment of neurodegenerative diseases including AD and diabetes.103,104

5. EFFECT OF NEURONAL PreP ACTIVITY AND RAGE SIGNALING ON 

MITOCHONDRIAL DYSFUNCTION

PreP is a mitochondrial peptidasome that is localized in the mammalian mitochondrial 

matrix.105 It is the key for maintenance of mitochondrial health and integrity. PreP 

proteolytic activity is significantly reduced in AD-affected brain mitochondria and 

transgenic AD mouse models106 and is negatively correlated to mitochondrial Aβ 
accumulation. Du et al. demonstrated that increased expression and activity of neuronal PreP 

significantly reduced mitochondrial Aβ load and the production of proinflammatory 

mediators, improved mitochondrial function and synaptic plasticity, and attenuated cognitive 

decline in AD mice.28 Furthermore, PreP proteolytic activity is required for degradation and 

clearance of mitochondrial Aβ. Mitochondrial Aβ accumulation may interfere with normal 

mitophagy and release of mitochondria-derived damage-associated molecular patterns from 

the injured neurons, leading to increased production of TNF-α, IL-1β, and MCP1, the 

cytokines known to be involved in the inflammatory process of AD.107 Thus, dysfunctional 

or damaged mitochondria can produce excessive inflammation and tissue damage possibly 

via overproduction of cytokines and ROS.

RAGE-dependent signal transduction via Aβ-RAGE interaction plays an important role in 

mitochondrial dysfunction. RAGE serves as an important cell-surface receptor mediating 

chemotactic and inflammatory reaction to Aβ and other proinflammatory ligands.69,108–113 

RAGE signaling in neurons and microglia is known to promote induction of 

proinflammatory mediators, including cytokines and chemokines, and activation of 

microglia by increased expression of microglial markers (CD4 and CD11).107,110 

Additionally, over-expression of neuronal PreP in mAPP mice not only reduces Aβ 
accumulation in the brain but also remarkably suppresses RAGE expression as compared 

with mAPP mice,69 suggesting a possible connection between mitochondrial defects and 

RAGE signaling relevant to the activation of transcription and the proinflammatory 
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response.28,69,107,109,110,112 Further investigation is required to elucidate the role of RAGE 

in mitochondrial dysfunction relevant to the pathogenesis of AD and diabetes.

6. EFFECTS OF METHIONINE SULFOXIDE REDUCTASE ON Aβ SOLUBILITY 

AND MITOCHONDRIAL FUNCTION

Accumulation of oxidized proteins, especially Aβ, is thought to be one of the common 

causes of AD. Induced ROS generation is one of the earliest consequences of toxic insults 

mediated by soluble Aβ oligomers.81 Mitochondria are particularly sensitive to ROS, and 

reduced metabolic activity resulting from oxidative damage to vital mitochondrial 

components has been demonstrated in AD.10

Methionine (Met) is highly susceptible to oxidation in vivo, particularly under conditions of 

oxidative stress. The sulfoxide form comprises 10%–50% of Aβ in amyloid plaques of AD 

brain.114 Oxidation of Met to Met(O) is reversible and the reverse reaction is catalyzed in 

vivo by the methionine sulfoxide reductase (Msr) system, composed of peptide-methionine 

(S)-S-oxide reductase (MsrA) and peptide-methionine (R)-S-oxide reductase (MsrB), which, 

respectively, reduce the S and R enantiomers of the sulfoxide group. These enzymes provide 

both an efficient repair mechanism for oxidative damage to Met residues and general 

protection against oxidative stress by scavenging ROS through the recycling of Met.

Studies from primary hippocampal and cortical neurons show increased total Msr activity, 

ascribed to increased activity in both MsrA and MsrB, in conjunction with protection against 

cell death induced by the sulfoxide forms of Aβ40 or Aβ42. Exposure of wild-type and 

MsrA knockout mouse cortical neurons to Aβ42 and Met(O)-Aβ demonstrated that lack of 

MsrA abolishes the protective effect induced by Met(O)-Aβ.115 Furthermore, lack of MsrA 

promotes a shift from aggregated forms of Aβ toward soluble oligomers. Given that soluble 

oligomer Aβ are thought to be more toxic to neurons and synapses than aggregated Aβ 
forms,115 enhancing MsrA activity by regulating transcription may have therapeutic 

applications. Alterations in MsrA expression levels and Aβ structure during normal aging 

might be a cofactor in AD-related mitochondrial malfunction.115

7. IMPACT OF MITOCHONDRIAL DYNAMICS IN MCI AND AD

Mitochondria are highly dynamic organelles that undergo continuous fission and fusion, 

which are regulated by the GTPase hydrolysis activity mitochondrial fission proteins (DLP1 

and Fis1) and mitochondrial fusion protein [mitofusin 1 and 2 (Mfn1 and 2) and optic 

atrophy (Opa1)]. Mitochondrial dynamics are important for the proper distribution of 

mitochondria within cells, which is particularly critical for morphologically complex cells 

such as neurons.116 Alterations in mitochondrial dynamics significantly impact almost all 

aspects of mitochondrial function including energy metabolism, calcium buffering, ROS 

generation, and apoptosis regulation.117,118 Unbalanced fusion and fission lead, respectively, 

to mitochondrial elongation and excessive mitochondrial fragmentation, both of which 

impair the function of mitochondria. It has been shown that exchange of mitochondrial 

contents is important for mitochondrial function as well as organelle distribution in neurons. 

Mitochondrial fusion, in particular that mediated by Mfn2, is required for proper 
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development and maintenance of the cerebellum.119 Mutations in the Mfn2 gene cause 

neurodegenerative diseases, such as Charcot–Marie–Tooth type 2A, and mutations in OPA1 

cause dominantly inherited optic atrophy. Increasing evidence implicates altered 

mitochondrial trafficking and fusion–fission dynamics in aging-related AD, PD, HD, and 

amyotrophic lateral sclerosis.

7.1 Effect of Mfn2 on Mitochondrial Function

Mitofusins Mfn1 and Mfn2 are outer membrane GTPases that mediate outer mitochondrial 

membrane fusion. Mfn2 expression is crucial for maintaining the morphology and operation 

of the mitochondrial network and mitochondrial metabolism. Recent studies demonstrate 

that markedly reduced mitochondrial mass and transport may contribute to neuronal loss due 

to the specific loss of Mfn2 but not Mfn1.120 Du et al. examined the role of Mfn2 in the 

human-induced pluripotent stem cells (hiPSCs) differentiation system and reported that 

knockdown of Mfn2 results in mitochondrial dysfunctions and defects in neurogenesis and 

synapse formation.119 By contrast, Mfn2 overexpression in neural progenitor cells directs 

differentiation and maturation into neurons with enhanced mitochondrial functions, 

suggesting that Mfn2 is crucial for mitochondrial development, and thereby essential to 

hiPSCs differentiation. Importantly, this also provides a novel neurophysiologic model of 

mitochondrial development in neurogenesis, which enhances our understanding of the 

involvement of dysfunctional mitochondria in aging and neurodegenerative diseases.119 

Under pathological conditions, Mfn2 expression levels are increased such as mild cognitive 

impairment (MCI)-derived mitochondria, leading to aberrant mitochondrial fusion and 

fission event evidenced by abnormal mitochondrial morphology and function.

7.2 Oxidative Stress and MCI- and AD-Related Mitochondrial Dynamics

MCI is characterized by a decline in cognitive abilities that is noticeable yet not severe 

enough to completely disrupt an individual’s daily activity. MCI is generally considered to 

be a transitional phase between normal aging and early dementing disorders, especially AD.
121

In cybrid model, MCI-induced mitochondrial defects manifest as alterations in 

mitochondrial dynamics, function, and morphology. These dysfunctional MCI cybrid 

mitochondria exhibit impaired fission/fusion events, impaired mitochondrial respiratory 

chain enzyme activity, decreased membrane potential, increased mitochondrial and 

intracellular ROS, and impairment in energy metabolism with decreased ATP levels when 

compared to non-MCI cybrid mitochondria. Given that mitochondrial Mfn2 is involved in 

mitochondrial fusion,119 increased mitochondrial Mfn2 levels in MCI cybrids suggest that 

altered Mfn2 expression likely contributes to enhanced mitochondrial fusion. Accordingly, 

changes in MCI mitochondrial morphology display as elongated mitochondria. Interestingly, 

suppression of Mfn2 overexpression by inhibiting oxidative stress-mediated activation of 

extracellular signal-regulated kinases (ERK) reverses abnormalities in mitochondrial 

structure and function.122 Thus, generation of Mfn2 antagonist may hold potential for 

prevention and treatment at the early stage of AD.123
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In contrast to MCI-derived mitochondria, AD mitochondria exhibit fragmentation as shown 

by overabundant fission, elongate, and aggregated mitochondria, compared to cybrid cells 

containing mitochondria from normal age-matched subjects with the relatively normal 

cognitive function. DLP1, which plays a key role in balancing mitochondrial dynamics by 

regulating mitochondrial fission, was significantly increased in AD mitochondria.123 

Additionally, the abnormal interaction of DLP1 with hyperphosphorylated tau was found in 

AD neurons.124 Interaction of DLP1 with glycogen synthase kinase-3 (GSK3β) mediates 

changes in mitochondrial morphology and dynamics.125–127 Mitochondrial dynamics 

modulates the induction of proinflammatory mediators in microglial cells.128,129 ROS-

induced activation of the mitogen-activated protein (MAP) kinase family appears to play a 

key role in mediating cellular responses to multiple stresses. ERK signaling is involved in 

mitochondrial function and neuronal stress.123,130 Taken together, this suggests that 

oxidative stress-induced activation of MAP kinase via upregulation of DLP1 or Mfn2 

expression contributes to mitochondrial dysfunction and abnormal mitochondrial 

dynamics122,123 by disrupting the balance of mitochondrial fission and fusion and promoting 

translocation of DLP1 to mitochondria, leading to mitochondrial fragmentation in AD. Most 

importantly, suppression of ERK signaling and inhibition of mitochondrial fission or fusion 

pathways rescues defective mitochondrial morphology and function induced by AD or 

MCI123 (Fig. 2). Antioxidant treatment attenuates AD mitochondrial defects, leading to 

improvements in axonal mitochondrial transport and mitochondrial bioenergy and function.
4,91

8. DRP1-MEDIATED MITOCHONDRIAL ABNORMALITIES IN DIABETES

Mitochondria are dynamic organelles that undergo continuous fission and fusion. Fission 

events are regulated by dynamin-related protein (Drp1), while fusion events are regulated by 

the large dynamin-related GTPases known as Mfn1 and Mfn2 as well as optic atrophy 1 

(OPA1).131 Alterations in mitochondrial dynamics affect mitochondrial numbers and shape, 

respiratory enzyme activity, and ATP production. Imbalance between mitochondrial fission 

and fusion in diabetes results predominantly from upregulation of Drp1, which induces 

mitochondrial dysfunction (impaired respiration and ATP production) in a variety of cell 

types, including dorsal root ganglion neurons and β cells.41 Mitochondrial dysfunction has 

been implicated in the development of insulin resistance in skeletal muscle cells and 

hyperglycemia.132

A novel and pivotal role of mitochondrial dysfunction in diabetes-induced synaptic 

impairment involves a GSK3b/Drp1-dependent connection between mitochondrial 

dysfunction in diabetic neurons and synaptic dysfunction including decline in long-term 

potentiation. These findings are consistent with diabetic neuropathy as shown by increased 

Drp1 expression and mitochondrial fission in dorsal root ganglion neurons of 6-month-old 

type II diabetes (db/db) mice.2 In contrast to the greater numbers of mitochondria in dorsal 

root ganglion neurons, hippocampal neurons in 5- to 6-month-old db/db mice displayed 

smaller numbers of mitochondria, such a decrease was not seen in mice younger than 3 

months. Between 3 and 6 months of age, complex I enzyme activity significantly declined 

by 15%–35% and ATP content was significantly altered. Pharmacologic or genetic 

inactivation of Drp1 prevented changes in mitochondrial morphology and function in db/db 
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mouse hippocampus or human neuronal cells under hyperglycemic conditions, indicating the 

role of Drp1 in diabetes-induced mitochondrial dysfunction.2 Furthermore, genetic 

activation of GSK3β without high glucose treatment can also promote mitochondrial 

fragmentation, while inactivation of GSK3β prevents high glucose-induced mitochondrial 

dysfunction. Taken together, these data suggest that GSK3β likely acts as an upstream 

signaling mechanism for Drp1 upregulation in diabetes-induced mitochondrial dysfunction.2

9. CONCLUSION

Several lines of evidence suggest that age-related AD and diabetes are predominantly 

associated with mitochondrial dysfunction. Mitochondrial defects result in increased ROS 

generation, abnormal protein–protein interactions, and decreased mitochondrial ATP 

production. Overproduction of ROS and mPTP formation with attendant compromised 

mitochondrial function contribute importantly to neuronal perturbation. Several other factors 

including intracellular Ca2+, Aβ, and CypD also play an important role in mPTP formation, 

leading to mitochondrial dysfunction. In addition, disruption of mitochondrial dynamics by 

altered mitochondrial fusion and fission events contributes to mitochondrial and synaptic 

injury and cognitive decline relevant to the pathogenesis of AD and diabetes (Fig. 3). Thus, 

inhibition of mPTP opening by blocking CypD and regulation of mitochondrial dynamics 

are rational targets for potential therapeutic strategies for AD and diabetes.
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Fig. 1. 
Effect of Aβ on CypD-involved mPTP formation. Aβ-cyclophilin D interaction mediates 

impairments in axonal mitochondrial transport due to an increase in the opening of CypD-

mediated mitochondrial permeability transition pore (mPTP). This leads to the disruption of 

Ca2+ balance and increases the production/accumulation of reactive oxygen species (ROS). 

Elevation of Ca2+ and oxidative stress activates the downstream p38 MAP kinase signaling 

pathway, thus contributing to mitochondrial dysfunction.
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Fig. 2. 
Effect of AD on mitochondrial dynamics. AD-induced mitochondrial respiratory function 

abnormality orchestrates ROS generation and accumulation and subsequently activates ERK 

signal transduction. Activation of ERK signaling disrupts mitochondrial dynamics and 

results in altered DLP1 and Mfn2 expression, which eventually leads to mitochondrial 

dysfunction. Inhibition of DLP1 or Mfn2 expression attenuates AD- or MCI-derived 

mitochondrial and neuronal dysfunction (Mdivi-1, an inhibitor for DLP1).
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Fig. 3. 
The cellular factors and related pathways contribute to Aβ-mediated mitochondrial defects 

and synaptic damage. Aβ accumulation perturbs mitochondrial transport and dynamics, cell 

signaling, synaptic mitochondrial structure and function, leading to decreased energy 

metabolism/ATP production, deregulation of calcium homeostasis, perturbed cell signaling 

cascades, altered key enzymes associated with mitochondrial respiratory chain, induced 

oxidative stress, and, eventually, synaptic injury and cognitive decline.
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