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Abstract

Feedbacks between the land and the atmosphere can play an important role in the water cycle and 

a number of studies have quantified Land-Atmosphere (L-A) interactions and feedbacks through 

observations and prediction models. Due to the complex nature of L-A interactions, the observed 

variables are not always available at the needed temporal and spatial scales. This work derives the 

Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the 

resultant CDI against in-situ data and reanalysis products. NASA’s AQUA satellite and retrievals 

of soil moisture and lower tropospheric temperature and humidity properties are used as input. 

Overall, the AQUA-based CDI and its inputs perform well at a point, spatially, and in time (trends) 

compared to in-situ and reanalysis products. In addition, this work represents the first time that in-

situ observations were utilized for the coupling classification and CDI. The combination of in-situ 

and satellite remote sensing CDI is unique and provides an observational tool for evaluating 

models at local and large scales. Overall, results indicate that there is sufficient information in the 

signal from simultaneous measurements of the land and atmosphere from satellite remote sensing 

to provide useful information for applications of drought monitoring and coupling metrics.
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1. Introduction

In the absence of strong advective influences, land-atmosphere (L-A) coupling (Seneviratne 

et al. 2010) drives the diurnal cycle of clouds and precipitation that can greatly impact the 

water cycle. As a result, there has been a great deal of work to quantify L-A interactions and 

feedbacks through observations and prediction models. Much of this work has been carried 

out by the Global Energy and Water Exchanges Project (GEWEX) Global Land/Atmosphere 

System Study (GLASS) local land-atmosphere coupling (LoCo; Santanello et al. 2011) 

working group. As part of this work a suite of diagnostics has been developed, ranging in 
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applicability from observations to models and spanning a broad range of spatiotemporal 

scales (Ferguson and Wood 2011; Lintner et al. 2014; Dirmeyer et al. 2014; Tawfik et al. 

2015). For example, mixing diagrams (Betts 1992; Santanello et al. 2009; Stommel 1947) 

are recommended to analyze entrainment into clouds and boundary layer processes at a point 

scale. In contrast, the rainfall triggering feedback strength (TFS) of (Findell et al. 2011) 

quantifies how rainfall frequency changes with surface evaporative fraction and requires 

model data over a period of 90-days or longer. Perhaps most well-known is the model-based 

coupling strength of the Global Land Atmosphere Coupling Experiment (GLACE) (Koster 

et al. 2006): coherence among members (Ω) is computed for two model ensembles - one 

with prescribed soil moisture and the other with freely evolving soil moisture - and the 

difference (ΔΩ) is deemed the coupling strength. The overall applicability of these respective 

L-A coupling metrics is inherently limited by the ability to observe the variables required by 

each, which for most remains only at the point scale or during short term field experiments 

due to the simultaneous soil moisture, surface flux, boundary layer, and precipitation 

measurement requirements.

Satellite data offers the ability to obtain some of these variables globally and routinely (and 

thus has the most promise for GCM and model development applications), but has been 

limited to date (Ferguson and Wood 2011; Roundy et al. 2013a; Taylor et al. 2012). In order 

to make satellite observations useful for informing and improving the L-A interactions with 

in the models requires further development of satellite-based metrics. The Coupling Drought 

Index (CDI) developed by Roundy et al. (2013a), is such a metric since it has application to 

L-A interactions and drought and can be calculated entirely from satellite remote sensing. 

The CDI is based on a classification of L-A interactions into regimes built off of the work of 

Findell and Eltahir (2003a,b), who demonstrated the preferential tendency for convective 

rainfall over wet (i.e., wet-advantage) versus dry soils (i.e., dry advantage), depending on 

low-level atmospheric humidity (HI) and instability (i.e., convective triggering potential, 

CTP). The CTP is a measure of atmospheric stability defined as the area between the 

temperature profile and a moist adiabat from 100 mb to 300 mb above the surface. The HI is 

a measure of low-level boundary layer moisture given by the sum of the dew point 

depression at 50mb and 150 mb above the surface. Thus, the regimes are strictly a function 

of lower troposphere temperature profiles and moisture condition.

The two dimensional space comprised of the CTP and HI relationship can then be classified 

into regimes based on the ability of the soil moisture (SM) state to initiate convection 

(Findell and Eltahir 2003b). Later work by Ferguson and Wood (2011) applied this 

classification approach to different datasets and regions, and showed that the classified space 

presented by Findell and Eltahir was too stringent. Roundy et. al (2013a) developed a 

method of using local statistics of top layer soil moisture to classify the wet-advantage and 

dry-advantage sub-spaces within the CTP-HI space regionally. This approach separates the 

CTP-HI space into bins and uses the Two-Sample Kolmogorov–Smirnov to compare the 

distribution of SM in each bin against the climatological SM. Bins of the CTP–HI space 

with predominantly wetter soils are considered wet coupling and bins that are predominantly 

drier are dry coupling. Bins that are neither dry nor wet (in a climatological sense) are 

classified transitional and bins with few samples are considered atmospherically controlled. 

The rational for this approach is that there is an inherent connection between the soil 
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moisture and heat flux partitioning that causes a persistence into the dry and wet coupling 

regimes that is driven by the feedback between the land and the atmosphere. Due to the 

sensitivity of bin size and the significance level of the KS test, the classification uses an 

ensemble approach where each ensemble member utilizes a different bin size and 

significance level. This accounts for the sensitivity of these classification parameters and 

provides a means to quantify the uncertainty. The final discrete classification is determined 

based on the uncertainty in each bin (see Roundy et al. (2013a) for more details). Although 

there is similarity between the Findell and Eltahir (2003b) and Roundy et al. (2013a) 

classification, the latter is based on soil moisture and includes days with and without 

convective precipitation. To denote this difference, the regime names in Roundy et al. are 

referred to simply as ‘dry coupling’ and ‘wet coupling’ to indicate the persistent nature of 

the overall dry and wet events, respectively.

A schematic of the three variables used in the classification (CTP, HI, and SM) and the 

classified CTP-HI space for a grid cell in the Southern Great Plains (SGP) using the 

MERRA reanalysis is given in Fig. 1a. As illustrated in Fig. 1a, the CTP is calculated by 

integrating the area between the moist adiabat and the temperature profile. The CTP in Fig. 

1a is positive and indicates an unstable atmosphere. If the moist adiabat is cooler than the 

temperature profile, then the CTP is negative and indicates a stable atmosphere. The HI is a 

measure of the atmospheric humidity and is calculated as the sum of the dew point 

depression at 50 and 150 mb above the surface. A large value of HI, as shown in Fig 1a, is 

indicative of a dry atmosphere. As the dew point temperature approaches the temperature 

profile, the atmosphere moves closer to saturation and the HI decreases. A climatological 

sample of daily CTP, HI and SM are then used to create the classification of the CTP-HI 

space. To do this the CTP-HI space is broken up into bins and each is classified based on the 

soil moisture values that fall into that bin by the method described above. Once the CTP-HI 

space is classified it is used to generate a daily coupling classification based on the location 

of the CTP and HI for that day. For example, given the classified CTP-HI space in Fig. 1, a 

day with CTP of 400 J/kg and a HI of 30° C would be classified as dry coupling.

Multiple days with the same coupling classification are considered to be an event and are 

called dry or wet coupling events. These events can persist for days to weeks. An example of 

a persistent dry and wet coupling event that occurred in the same year (2000) for a grid cell 

in the SGP is given in Fig. 1b based on the MERRA reanalysis. Vertical dashed lines denote 

the beginning and ending of the event as determined by the daily classification, where the 

start of the event is the first day with a daily classification of dry or wet coupling 

respectively and the end of the event is the last day of the consistent daily classification of 

dry or wet coupling. Persistent events, such as those depicted in Fig. 1b, can have large 

impacts the local water and energy cycle. To demonstrate this, timeseries of daily average 

SM, Evaporative Fraction (EF, ratio of latent heat flux to available energy), Boundary Layer 

Height (BLH), the Lifting Condensation Level (LCL, the level to which a parcel of air can 

be lifted adiabatically before it becomes saturated) deficit (difference between the LCL and 

BLH) and the nighttime and daytime precipitation are also included. The dry coupling event 

is typified by low soil moisture, a small surface EF, a large boundary layer height and a large 

LCL deficit. Toward the end of the dry coupling event the BLH increases and the LCL 

deficit decreases due to an increase in BLH. In contrast, the wet coupling event has high soil 
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moisture, a large EF, small BLH and a small LCL deficit. The wet coupling event also shows 

a decrease in the LCL towards the end of the event, however BLH also decreases which 

indicates that the decrease in the LCL deficit is due to a decrease in the LCL due to the large 

latent heat flux. Daytime precipitation occurs during both dry and wet coupling events, 

however, the precipitation is less frequent and of a smaller in magnitude during the dry 

coupling event. Although the persistence in these coupling regimes can be explained by L-A 

feedbacks, it is important to note that advected moisture into the region also plays a key role 

(Song et al. 2015) and any dry or wet coupling event is ultimately a combination of local 

feedback mechanism and large-scale circulation patterns.

The cumulative negative (dry coupling→drying) and positive feedback (wet coupling→ 
wetting) of these events is the foundation of the Coupling Drought Index (CDI), which is 

simply the number of dry coupling days minus the wet coupling days, divided by the total 

number of days over a period of time. CDI has a range from −1 (all wet coupling) to +1 (all 

dry coupling) and gives an average measure of coupling over the chosen time window. The 

CDI has been successfully applied in the evaluation of reanalysis and seasonal forecasts 

(Roundy et al. 2013a,b; Roundy and Wood 2014).

One of the unique characteristics of metrics based on the CTP, HI and SM is that these 

variables can be derived from simultaneous measurements from instruments onboard 

NASA’s AQUA satellite. Specifically, the Atmospheric Infrared Sounder (AIRS) provides 

temperature and moisture profiles that can be used to estimate the CTP and HI while 

measurements from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

instrument can be used to derive soil moisture. The simultaneous measurement of both land 

and atmospheric variables from the AQUA satellite provides a unique large-scale and 

observationally-based dataset for developing coupling metrics suited for evaluating weather 

and climate models. This work aims to assess the utility and uncertainty of the satellite data 

for application to the coupling classification. This is done by first introducing the in-situ, 

satellite and reanalysis datasets and methods utilized in this study (section 2). Next, a 

comparison of the measurements and the derived variables (CTP, HI and SM) across datasets 

is made (section 3.1) followed by an evaluation of utilizing these variables to the coupling 

classification and CDI in section 3.2. The CDI from remote sensing is then compared to 

other common surface and boundary layer variables from reanalysis in section 3.3 and is 

followed by discussion and conclusions in section 4.

2. Datasets and Methods

2.1 Datasets

In this work, four different datasets are used to calculate the CTP, HI and SM needed for the 

CDI classification and includes satellite remote sensing, reanalysis and in-situ data. Table 1 

provides a summary of the datasets used, the type of data and temporal range of the dataset 

that was utilized in this study. The satellite remote sensing data is from the NASA AQUA 

satellite, which includes the Atmospheric Infrared Sounder (AIRS) as well as the Advanced 

Microwave Scanning Radiometer-EOS (AMSR-E). The AIRS data used in this study is from 

the Level 3 Version 6 data product and provides 12 vertical levels of consistent 

measurements of temperature and humidity (Susskind et al. 2011). These AIRS observations 
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are provided twice daily at 1:30AM and 1:30PM local time on a 1° × 1° global grid from 

August 2002 to present. Only the 1:30 AM (descending overpass) data is used in this study, 

as it provides a better measure of the atmosphere in early morning before the impact of the 

daytime surface heat fluxes. These observations of atmospheric temperature and humidity 

enable the calculation of the CTP and HI. The measurements from the Advanced Microwave 

Scanning Radiometer-EOS (AMSR-E) aboard AQUA are used to derive soil moisture from 

the Land Surface Parameter Model (LPRM) (Owe et al. 2008) and is representative of the 

top 2-cm soil layer. Unfortunately, the AMSR-E instrument failed in 2011 and limits the 

availability of soil moisture data from 2002–2011.

Reanalysis products are also used in this study as they provide global, continuous and long-

term records of the climate system constructed by combining observations and models. 

Reanalysis data sets also provide a means for initializing forecasts models with the best 

temporally and spatially continuous estimates of earth system variables for weather and 

climate forecasts. It is important to remember that although reanalysis assimilates 

observations, there is still a large component that is based on the parameterizations and 

assumptions inherent in the model. Therefore, while reanalysis may assimilate a similar set 

of observations, they may provide different representations of the climate due to the 

differences in the assimilation technique and modeling.

Two different reanalysis datasets are considered, NASA’s Modern-Era Retrospective 

analysis for Research and Applications (MERRA; Rienecker et al. 2011) and the National 

Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR; 

Saha et al. 2010). These datasets were chosen due to their global coverage and availability. 

MERRA is based on NASA’s Goddard Earth Observing System (GEOS-5; Rienecker et al. 

2011), which utilizes the Catchment LSM (Koster et al. 2000). The top soil layer in 

Catchment represents the uppermost 0–2cm layer. MERRA has a 0.5 × 0.667 degree 

horizontal resolution over the globe with 72-layer vertical resolution and the assimilated data 

is provided at 6-hourly increments from 1979-present. CFSR includes the GFSv2 

atmospheric component with 64-layers in the vertical with a horizontal resolution of T382 

(0.313°), a coupled ocean model MOM4 with 40 vertical layers, and the Noah land surface 

model (Ek et al. 2003), which has four soil layers that cover 0–10cm, 10–40cm, 40–100cm 

and 100–200cm respectively. Although CFSR has a T382 horizontal resolution, the 

atmospheric data is archived at a 0.5° resolution, while the land surface data is archived at 

the T382 resolution. The original CFSR has a record length from 1979 through March of 

2011, however in April 2011 an updated version of CFSv2 was put into operation to produce 

real-time CFSR data through the present (Saha et al. 2014). These combined datasets make 

up the whole of the CFSR data used in this study that provides 6-hourly analysis data from 

1979 to present.

The last type of data utilized in this study is in-situ data and provides direct measurements of 

the atmosphere and the land surface as part of the Department of Energy’s (DOE’s) 

continuous record of observational data from ARM-SGP (covering a large part of OK and 

KS). Because of this unique dataset that includes atmospheric and surface variables, the SGP 

has been the test site for a number of studies (Santanello et al. 2013, 2015). Specifically, 

radiosonde profiles (http://dx.doi.org/10.5439/1021460) and top layer soil moisture from the 
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Soil Water and Temperature Profiling System (SWATS; http://dx.doi.org/10.5439/1150274) 

from the ARM central facility (36.610°N, 97.4899°W) near Lamont Oklahoma were 

utilized. The SWATS provides 6 levels of soil moisture measurements for two soil profiles 

(east and west) that are separated by a distance of 1 meter. Only the measurements at 5cm 

are utilized and are calculated as the average of the two profile measurements. The 

radiosonde data provides high vertical resolution measurements of atmospheric temperature 

and humidity that can be utilized for calculating the CTP and HI. The radiosonde data is 

routinely collected four times a day at approximately 5:30, 11:30, 17:30 and 23:30 UTC and 

the soil moisture is collected hourly.

2.2 Methods

One of the challenges of comparing all the datasets is the different spatial resolution, 

domains and temporal ranges. To make consistent comparisons all the datasets are up-scaled 

to the 1° × 1° global grid of the AIRS data through bin averaging. To make a comparison to 

the SGP site (36.610°N, 97.4899°W), the containing grid cell (36.5°N, 97.5°W) from the 1° 

× 1° global grid of the AIRS is used. In addition to spatial differences, there is also a 

temporal inconsistency between the datasets. The AQUA satellite data is acquired around 

1:30 AM (07:30 UTC) local time, where the reanalysis data is provided every 6 hours (00, 

06, 12, 18 UTC) and the in-situ is also available approximately every six hours (05:30, 

11:30, 17:30, 23:30 UTC) which is a 1.5 hour and 2-hour difference for the reanalysis and 

in-situ measurements respectively. To account for this difference in time, the SM and 

atmospheric profile data from in-situ and reanalysis are linearly interpolated to correspond 

with the satellite overpass. This temporal linear interpolation in time is done before 

calculating the CTP and HI. This temporal interpolation provides a reasonable estimate since 

the nighttime profiles of temperature and humidity are typically slowly varying in the early 

morning hours (e.g. 12:00–6:00 AM local time) in terms of their bulk structure in the lower 

troposphere, while SM evolves on much slower timescales overall.

These spatially and temporally consistent estimates of CTP, HI and SM are used to classify 

the CTP-HI space and give a daily coupling classification following the procedures outlined 

in Roundy et al. (2013a). Due to the spatial consistency of the coupling regimes, earlier 

work used all the grid cells in the entire Southeast United States for the classification 

(Roundy et al. 2013a). While there is general consistency in the classification over regions 

with similar climate, a regional classification leads to abrupt spatial changes in when moving 

across regional boundaries. To overcome this limitation, Roundy et al. (2013b) included the 

local classification of each grid cell while maintaining regional consistency by utilizing the 

surrounding grids cells to provide a spatially consistent classification. As compared to 

utilizing the grid data only, incorporating the surrounding grid cells provides an increased 

sample size that leads to a robust ensemble that accounts for the uncertainty in the 

classification. This technique results in a classification with weakened spatial heterogeneity 

as compared to the raw atmospheric profiles and SM, but still represents the larger spatial 

patterns. This methodology of using the surrounding grid cells is used to provide the 

coupling classification for the reanalysis and remote sensing datasets.
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As this is the first time that in-situ observations have been used in the classification 

methodology, the classification of point data presents some challenges. One major challenge 

is producing a unique classification for the in-situ data given the absence of surrounding grid 

cells to incorporate in the classification. One of the key aspects of the classification 

methodology is to quantify the uncertainty in the CTP-HI space by using an ensemble of bin 

sizes and significance levels. The ensemble parameters (i.e. number of bin sizes, significance 

levels and uncertainty thresholds) were developed by Roundy et al. (2013b) for gridded data 

that incorporate the nearest grid cells and have been used for a number of studies (Roundy et 

al. 2013b; Roundy and Wood 2014; Santanello et al. 2015; Song et al. 2015). Applying the 

ensemble parameters from the gridded data to a single point drowns out the signal due to the 

impact of small bin sizes and strict significant levels for the smaller sample size. To account 

for this difference in the in-situ data, a series of test were performed with the AQUA data to 

adjust the ensemble parameters to achieve a consistent classification between utilizing a 

single grid cell only and the grid cell with the surrounding grid cells. This resulted in bin 

sizes ranging from 7–17 and significance levels from 10% to 15%, as compared to bins 

ranging from 10–35 and significance levels from 1% to 5%. The lower significance level 

indicates more uncertainty in the classification and that resulted in a point classification with 

a smaller regime classification. This is consistent with the results from Roundy et al. (2013a) 

that showed that a smaller sample size resulted in a consistent yet smaller regime 

classification. Notwithstanding the smaller regime classification, the point specific 

classification parameters yield a consistent classification and are used for the in-situ data.

To produce a unique classification that accounts for the characteristics of a dataset requires a 

training period that must be consistent across all the datasets due to the sensitivity of training 

period on the classification. The maximum consistent training period across all datasets is an 

9-year period from 2003–2011. Although the classification of the CTP-HI space is only done 

for 2003–2011, the daily coupling classification only requires daily values of CTP and HI 

once the CTP-HI space is classified. Therefore, the analysis will focus on the full period of 

data availability from 2003–2015 for all datasets (see Table 1). In this sense the period from 

2012–2015 acts as a cross validation period as the CDI is being applied for period that is 

different from the training period.

3. Results

3.1 Derived Variable Intercomparison

Observations from AQUA are first compared with in-situ measurements of the three 

variables used in the CDI, the CTP, HI and SM. A comparison of the atmospheric profiles of 

temperature and humidity (given as dew point temperature) for the in-situ observations and 

the satellite data are given in Fig. 2 for a day in a dry year (2006) and wet year (2007) in the 

SGP. In comparing these datasets, the higher level of vertical detail in the radiosonde data is 

evident. Notwithstanding the low resolution in the vertical, the satellite profiles of 

atmospheric temperature show a good agreement with the in-situ observations. In contrast, 

the lack of vertical resolution in the satellite observations is more damaging in terms of dew 

point temperature. These characteristics directly translate to the CTP and HI. For the CTP, 

there is good agreement between the in-situ and satellite observations, with small relative 
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differences. The HI on the other hand shows a larger disagreement between the in-situ and 

satellite observations due to the lack of vertical detail in the dew point temperature from 

AIRS. These results are consistent for both the dry and wet year. The number of 

observations in the CTP-HI range (50mb to 300mb above the surface) varies by day and 

location. For the examples shown in Fig. 2, the satellite observations have 3 and 2 

measurements in the CTP-HI range compared to the 516 and 411 measurements from in-

situ. This represents a substantial difference in the vertical that is noticeable in Fig. 2 and is 

likely one of the main causes for the discrepancy between the CTP and HI.

The above analysis only considers two days chosen at random during a dry and wet year, but 

comparing the CTP and HI over a larger time period and extending the comparison to 

include the comparison of in-situ observations with reanalysis can yield further insights. 

This comparison is given in Fig. 3 for the same location in the SGP but covering all available 

data from 2003–2015. For each variable, only days that have data from in-situ, satellite and 

reanalysis are shown in Fig. 3. This results in a CTP and HI comparison that includes data 

from 2003–2015, while the SM comparison only includes 2003–2011 due to the short record 

of AMSR-E data. For the CTP, the satellite observations show the largest scatter with in-situ 

observations with a Pearson and Spearman correlation of 0.71 and 0.78 as compared to 0.94 

and 0.96 for MERRA and 0.92 and 0.94 for CFSR. A similar relationship can be seen for the 

HI, with the reanalysis datasets showing a strong correlation with in-situ, while the satellite 

data shows much more scatter with a Pearson and Spearman correlation of 0.74 and 0.73. 

Although the two days shown in Fig. 2 indicate that the HI is dry compared to the in-situ 

observations , the regression line matches well with the one-to-one line with a slope of 0.97 

and x-intercept of 1.26 that indicates that there is a wet bias (AQUA HI too low), particularly 

for the driest HI values from in-situ. The larger scatter between satellite CTP and HI and in-

situ is likely due to the low resolution of the vertical levels from satellite that fails to capture 

the fine details (see Fig. 2).

Fig. 3c shows the in-situ SM at the ARM site compared against the AQUA/AMSR-E SM 

retrieval and the reanalysis products. The SM for each dataset is normalized by the 

maximum and minimum value (essentially resulting in a moisture availability) in order to 

account for the difference in the dynamic ranges of SM in each product. CFSR shows the 

highest correlation with in-situ SM with a Pearson and Spearman correlation of 0.66 and 

0.69. MERRA and AQUA/AMSR-E SM have slightly lower correlations, of 0.58–0.63 and 

0.56–0.6 respectively. Overall, the SM datasets show a greater spread and much lower 

correlations than the CTP or HI. There are three main reasons why the soil moisture data 

does not compare as well as the CTP and HI across the datasets. First, the inconsistency is 

likely partially due to the nature of soil moisture heterogeneity at a single site versus that of 

a large grid cell. While there is a similar difference in scale for the CTP and HI, the 

atmosphere is more homogeneous over the grid scale compared to the SM. Second, there are 

linear features present in the in-situ data that show little sensitivity to changes in SM from 

the reanalyses and satellite. This is a known limitation of the SWATS instrument where it is 

insensitive to soil moisture variations at certain thresholds (and is being rectified by the 

installation of new SM instruments at the SGP sites). The third reason for the inconsistency 

is the difference in the depth of each of the measurements. The in-situ observations are at 

5cm, while MERRA and AQUA cover the 0–2cm layer and CFSR covers the 0–10cm layer. 
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This could be the reason that the CFSR matches better with the in-situ since the average 

point of the top-layer matches with the in-situ measurement. Notwithstanding the spatial 

scale, measurement errors and vertical difference in the measurements, there is still a 

reasonable amount of consistency that can capture larger regimes of SM that makes it useful 

application with the CDI.

3.2 Coupling Classification and CDI

This section extends the previous comparisons to the classification of the CTP-HI space and 

the CDI. As described above, the classification identifies areas in the two-dimensional space 

made up of the CTP and HI that have consistent statistics of soil moisture. Thus, the 

classified CTP-HI space is an integration of the three variables previously compared that 

identifies a connection or “coupling” of these variables. The classified CTP-HI space from 

in-situ, satellite and both reanalysis datasets is given in Fig. 4 for the SGP. All datasets show 

areas classified as dry coupling and wet coupling and show relative consistency between wet 

and dry coupling locations within the CTP-HI space. The in-situ classification has smaller 

regions of wet and dry coupling and a boxier shape due to the smaller sample size that 

necessitated and adjustment of the ensemble parameters as part of the classification 

algorithm.

The overlap of dry coupling and wet coupling regimes within the CTP-HI space with in-situ 

classification is quantified as the number of bins in the CTP-HI space with the same 

coupling regime classification as in-situ relative to the total number of bins defined as that 

coupling regime from the in-situ and given as a percentage. MERRA shows a consistency of 

100% and 96% for wet and dry coupling respectively. CFSR has a consistency for both wet 

and dry coupling at 100%. The AQUA classification is 82% consistent with in-situ 

classification for the wet coupling regime and 87% consistent for the dry coupling regime. 

Given this measure, there are two reasons that consistency could be less than 100%; first a 

difference in size of the regime space and second a difference in location. Given the small 

size of the in-situ regimes, the lower consistency between in-situ and satellite is due to the 

location, not the size. The AQUA classification shows a translation down the CTP dimension 

for both the wet and dry coupling regime. Consistency in wet coupling is highest for both 

MERRA and CFSR, which also have the highest correlation with in-situ data for CTP and 

HI. CFSR has the highest consistency with dry coupling and showed the highest correlation 

with SM. It is not surprising that the AQUA classification has a lower consistency with in-

situ compared to the reanalysis, given the difference in the CTP, HI and SM shown in Fig. 3. 

Even though the difference in the location of the regimes results in a lower consistency for 

the AQUA dataset, the overall patterns across the datasets are comparable. This difference in 

the location of the coupling regimes in the CTP-HI space across datasets was one of the 

main reasons that a local-dataset specific classification of the CTP-HI space was developed 

by Roundy et al. (2013).

Although there are inconsistences among the datasets in terms of the coupling classification 

and the input, the coupling classification and resultant CDI are based on the temporal 

persistence in dry or wet coupling regime and it is arbitrary if the actual location of the 

regimes (i.e. in Fig. 4) are consistent. Furthermore, once the CTP-HI space is classified 
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using the soil moisture data, only the CTP and HI are needed to produce a daily 

classification and calculate the CDI. This is particularly fortunate for the AQUA satellite and 

allows the calculation of the CDI beyond 2011 even though soil moisture data is no longer 

available. A comparison of the timeseries of the monthly CDI from 2003 to 2015 is given in 

Fig. 5a and shows consistency in the temporal variability the datasets. This is partially due to 

the CDI capturing consistent temporal relationships within coupling regimes that are not 

impacted by the inconsistencies previously discussed.

Notwithstanding the consistency in the CDI among the datasets there are some noticeable 

differences. First, the in-situ CDI has a lower magnitude than the reanalysis. This is 

particularly noticeable for the extremely dry months (positive) and wet months (negative). 

This is likely due to the smaller area classified as dry and wet coupling in the CTP-HI space 

(Fig. 4). The satellite CDI magnitude is also smaller in amplitude as compared to reanalysis. 

This is consistent with AQUA not being able to capture the extremes of HI (as discussed 

earlier). However, the satellite and in-situ CDI does capture the relative peaks of dry (2011, 

2012) and wet (2007) regimes well. In comparing the two reanalysis datasets, CFSR has a 

higher CDI than MERRA for most months. This is likely due to the larger boundary layer 

growth as a result of a persistent dry bias in the PBL (Santanello et al. 2015).

The consistency between the CDI of the datasets is primarily seen in the summer months 

(May-Sep), while the winter months generally have a low magnitude and there is more 

scatter across the datasets. This is not surprising given the dominate nature of the coupling 

regimes in the summer time. Since the summer months are more relevant to land-atmosphere 

interactions and the CDI, the monthly CDI is compared in Fig. 5b for the summer months. 

The dark gray points are for the training period (2003–2011) while the light gray points are 

from 2012–2015. The overall correlations for reanalysis and satellite with in-situ CDI are 

significant at a 99% confidence level across, with a Pearson and Spearman correlation of 

0.85 and 0.83 for MERRA, 0.8 and 0.7 for CFSR and 0.68 and 0.68 for AQUA. There is also 

no noticeable degradation in the relationship with the in-situ data outside of the training 

period. The relative rankings are consistent with the previous analyses that examined the 

variables and classification that goes into the CDI (Fig. 3 and Fig. 4). Specifically, MERRA 

is more consistent with in-situ data at the SGP site, followed by CFSR and then AQUA.

Even though the MERRA reanalysis is more consistent with the in-situ data then the other 

datasets, it is important to remember that up to this point the analysis has only considered a 

single point and may or may not be representative of other locations. In fact, the ability to 

have observations over the globe is one of the major advantages of using satellite remote 

sensing to estimate the CDI. The CDI over the Contiguous United States is shown in Fig. 5c 

for MERRA, CFSR and AQUA for June of 2007. There is overall consistency across the 

datasets with the dominate spatial patterns evident in both reanalysis and satellite CDI and 

show the wet conditions in the Northwest, and the Southern Great Plains, as well as the 

drought in the intermountain region and in the Southeast. The spatial patterns are weaker for 

the satellite CDI, particularly for the magnitude and extent of the wet coupling area. Despite 

the weaker spatial patterns and limitations of the satellite data (vertical resolution, short 

record, course spatial scale), it still captures the primary signals and has potential to yield 

useful information as a large-scale observation.
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3.3 CDI relationship to other variables

The CDI captures the intensification, persistence and recovery of drought through the 

persistence in the dry coupling and wet coupling regime. While it is clear from Fig. 1 that 

there is a connection between variables typically associated with L-A interactions and the 

coupling regimes, the relationships between CDI and these variables has never been 

quantified. Since these variables have different means and variance, each one is normalized 

to a standardized index by subtracting the mean and dividing by the standard deviation. In 

this manner, the CDI from satellite remote sensing is compared with other L-A associated 

variables from reanalysis. The monthly-standardized anomalies of Precipitation (P), Total 

Soil Moisture (TSM), Daily Average Temperature (DAT) and Vapor Pressure Deficit (VPD), 

EF, BLH, CTP and HI are compared to the monthly anomaly of CDI. The correlations of the 

AQUA CDI with the aforementioned variables from MERRA and CFSR are given in the 

first two panels of Fig. 6 and the MERRA CDI compared to MERRA variables are given in 

panel three. Because AQUA itself is limited in terms of observing the majority of these 

individual variables, we compare AQUA CDI to the reanalysis products which are assumed 

to capture the bulk behavior of these coupling-related properties of the L-A system. Each 

panel includes the correlation of the spatial average standard anomaly for six climate regions 

(colors) and the entire U.S (grey and white boxes reflected around zero) for months in the 

May-Sep season (open shapes) and the full year (filled shapes).

For all three comparisons, the CDI and precipitation show a higher correlation in the western 

portion of the U.S. that only shows a minor increase during the summer months. The spatial 

difference in the correlation between the CDI and precipitation is less pronounced in the 

AQUA-CFSR comparison as compared to the AQUA-MERRA or MERRA-MERRA 

comparison. This suggests that the MERRA precipitation (which is known to have major 

limitations in timing and intensity over much of CONUS) may be the cause of this spatial 

difference. There is also less of a seasonal difference in the MERRA-MERRA comparisons, 

suggesting a greater seasonal difference in the AQUA CDI compared to MERRA. Total soil 

moisture shows a similar relationship with CDI and precipitation in that it has a higher 

correlation in the west and a relatively small seasonal difference. In fact, for the AQUA-

MERRA and MERRA-MERRA comparison the correlations are nearly the same. This 

suggests that there is a high correlation between precipitation and TSM in MERRA, as 

would be expected within the same reanalysis system. In contrast, the AQUA-CFSR 

comparison for TSM shows a much lower correlation and little spatial difference.

The daily average temperature and vapor pressure deficit show a higher correlation with the 

CDI and a greater seasonal difference as compared to precipitation and soil moisture. The 

AQUA CDI correlation with DAT and VPD nearly doubles during the summertime 

compared to the full year and is more spatially homogeneous. The MERRA CDI and the 

MERRA VPD has less of a seasonal difference in correlation and there is consistency in the 

correlation across the different regions of the country, with a higher correlation in the west 

for both the DAT and VPD that is consistent with P and TSM. This same relationship is 

weaker for AQUA-CFSR as compared to AQUA-MERRA and MERRA-MERRA. This 

suggests a consistent spatial relationship between the CDI and MERRA variables that may 

be a unique attribute to MERRA and not CFSR.
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The evaporative fraction has one of the lowest correlations with the CDI across all 

comparisons and also shows little difference in the seasonal correlation. The CDI is not well 

correlated with evaporative fraction for Midwest and especially the Northeast, while the 

highest correlations are generally seen in the South and High Plains. BLH shows similar 

spatial patterns, however CDI shows an overall higher correlation with BLH and an increase 

in the seasonal variability as compared to the evaporative fraction. This indicates that the 

CDI is more strongly correlated with the atmospheric side of L-A coupling and shows the 

greatest strength in the areas that are considered hotspots (Koster et al. 2006). However, 

since the BLH is highly correlated with the sensible heat flux, it may be that the energy 

cycle side of the land surface plays an important role in the CDI evolution. The AQUA CDI 

is also more strongly correlated with the BLH from CFSR compared to MERRA BLH, 

which is consistent with Santanello et al. (2015) who found the MERRA BLH to be 

underestimated and lacking sensitivity to extremes.

The correlation of the CDI to the CTP and HI is among the strongest and is not surprising 

given that the CTP and HI are used to derive the CDI. The CTP has a larger seasonal 

difference in its correlation to the CDI as compared to the HI. In contrast the HI shows more 

spatial variability in its correlation with the CDI. Overall the satellite based CDI shows 

slightly lower correlations with other reanalysis variables then those seen internally within 

the MERRA reanalysis. This is not surprising given that reanalysis variables should be more 

consistent, while the satellite observations are more independent.

4. Discussion and Conclusions

The aim of this study is to assess the utility of CDI-based variables and metrics derived from 

satellite remote sensing for global applications by comparing them with in-situ observations 

and reanalysis datasets. Overall, the AQUA CDI performs well at a point, spatially, and in 

time (trends) compared to in-situ and reanalysis products. This is especially promising given 

the inherent limitations in vertical profile resolution and soil moisture retrieval, as advances 

in satellite-based profiles (e.g. improved AIRS retrievals) and soil moisture retrievals (e.g. 

SMAP) will provide improved estimates of L-A and CDI related quantities in the future. The 

satellite observations of atmospheric temperature and humidity profiles and the derived 

metrics compare well with in-situ observations, although differences exist, mainly due to the 

limitation of vertical resolution of the satellite data (Fig. 2).

Although the lower vertical resolution of the atmospheric satellite data resulted in lower 

correlations of the CTP and HI from satellite with in-situ data, the satellite data has 

sufficient correlation with in-situ data to capture the main signal (Fig. 3). Both reanalysis 

datasets show an equally strong correlation with the in-situ observations for CTP and HI, 

while the satellite data shows a lower correlation with in-situ HI as compared to the CTP. It 

should be noted that to date there has been very little focus or evaluation of AIRS L3 profile 

retrievals over land due to inherent difficulties in retrieving lower troposphere and PBL 

thermodynamics (due to factors such as limited weighting functions and surface emissivity; 

Susskind pers. communication). Moisture retrieval is inherently more difficult than 

temperature, and thus the results are not unexpected in that temperature (and CTP) performs 

better than moisture (and HI) against this small sample. The AIRS support product (L2) has 
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a finer vertical (100-levels) and spatial (45km) resolution that may improve somewhat on the 

retrieval of lower tropospheric humidity and temperature. In addition, the latest version of 

AIRS (V6.28, to be released publically in V7 in 2017) shows some improvements related to 

humidity retrieval that are due to improved IR channel sampling. However, any major 

improvements in space-based CTP-HI retrieval and vertical resolution must come with next-

generation satellite missions dedicated to retrieving PBL profiles.

Given the large sample of days required by the CDI, it is likely that the bulk signal of the 

CTP and HI and its relative variability over the 9+year period will still provide a self-

consistent representation of dry and wet coupling regimes and variability. Figure 3 bears this 

out, and suggests that despite the scatter, there are still decent correlations in CTP and HI 

that can be exploited to represent dry vs. wet regimes. Likewise, the large scatter in SM 

should not prohibit the SM data from being representative of dry vs. wet regimes and surface 

conditions. Combining the CTP, HI and SM to identify areas of dry and wet coupling, the in-

situ classification has a high consistency with the reanalysis while satellite observations have 

the lowest consistency (Fig. 4). This is not surprising given that MERRA and CFSR showed 

the highest correlations with in-situ data of CTP, HI and SM (Fig. 3). Although there is a 

lack of consistency in the exact location of the dry and wet coupling regimes within the 

CTP-HI space across all the datasets, all the datasets, including satellite, indicate similar 

shapes and relative locations of the regimes. This indicates that all datasets show the 

existence of these regimes. This is particularly a novel finding of this study since this work 

represents the first time that in-situ observations have been applied to the Roundy et al. 

coupling classification. The in-situ and satellite remote sensing CDI provides a unique 

combination of observations that allows for an evaluation of model data at local and large 

scales that could be exploited in future studies. It is important to note that the in-situ 

comparisons are only valid at a single point over the SGP. While the SGP is an ideal location 

to have such in-situ observations, it would be ideal to compare in-situ data from other areas 

with satellite remote sensing. It is expected that in mountainous, perpetually cloudy, and 

cold regions it is unlikely to retrieve profiles as well down to the surface. However, this is a 

promising start, and indicates that satellite data (despite its limitations) can provide the 

information needed for such complex metrics as the CDI.

Applying the classification of the CTP-HI space to daily classification of the coupling state 

and the calculation of the CDI indicated similar results in that the in-situ CDI showed the 

strongest consistency with MERRA, however the monthly CDI from satellite still had a 

temporal correlation of 0.68 with the in-situ observations (Fig. 5a and b). Furthermore, the 

spatial patterns of CDI for satellite remote sensing are consistent with the reanalysis for June 

2007 over the U.S. This indicates that both temporal and spatial patterns are largely captured 

by the CDI from satellite remote sensing and further demonstrates the potential of the 

AQUA dataset. There is however, a smaller magnitude both in space and in time in the CDI 

compared to the reanalysis. The lower magnitude CDI is especially noticeable during wet 

coupling as indicated in Fig. 5a and c. This limitation could be partially due to missing 

values in the record, particularly during the wet coupling regime when there is more cloud 

cover that can limit the satellite observations. Missing values make the CDI move closer to 

zero, since it has the potential to reduce the numerator but not change the denominator in 

calculating the CDI. Future work will explore a revised CDI that would be less impacted by 
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cloud cover and more relevant for satellite application. The limitation in the CDI magnitudes 

could also be partially due to the lack of resolution in the vertical from the atmospheric 

observations from satellite as shown in Fig. 2 along with difficulties in observing 

atmospheric humidity. It is hoped that through improvements in instruments and algorithms 

the quality of the satellite data will be increased and this limitation can be overcome.

Notwithstanding the shortcomings of the satellite data, it still has the potential to yield useful 

information as a large-scale observational record. As compared to other variables the CDI 

has the strongest correlation with the CTP and HI, from which it is derived, but also has 

strong correlation with VPD and DAT. These correlations are the highest over the U.S. 

during the summertime when land-atmosphere feedbacks play a stronger role in the 

evolution of the daytime temperature and humidity. The CDI also has a reasonable 

correlation with BLH. The correlations between CDI and the various variables were also 

lower when comparing satellite CDI to reanalysis variables as compared to reanalysis CDI. 

This is not surprising as there should be a level of consistency between the variables from 

the same reanalysis product. The results indicate that the CDI has the strongest relationship 

with atmospheric variables (DAT and VPD) that are greatly influenced by the land surface 

heat fluxes, e.g. sensible and latent heat fluxes, however it is not extensively correlated with 

any one variable and has its own unique characteristics. These unique characteristics could 

make it a useful drought-monitoring tool as it has the potential to integrate multiple drivers 

and impacts of drought that may be missed by indices typically utilized for drought 

monitoring.

Overall this work demonstrates that there is sufficient information in the simultaneous 

measurements of the land and atmosphere from satellite remote sensing to provide useful 

information to the applications of drought monitoring and coupling metrics that can be used 

to evaluate GCMs. While it is recognized that the variables and metrics currently available 

through satellite remote sensing are not always the optimal choice for L-A coupling metrics, 

it is hoped that through further development, satellite based CDI can be utilized to provide 

new insights and application relevant for drought monitoring and prediction.
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Figure 1. 
The basis for the coupling regime classification method (Roundy et al., 2013) where a) is an 

example of the three variables (CTP, HI, SM) used in the coupling classification and the 

resulting classification of the CTP-HI space based on Soil Moisture (SM) with b) an 

example of a dry and wet coupling event for a point (36.5°N, 97.5°W) in the Southern Great 

Plains in the U.S based on data from the MERRA reanalysis.
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Figure 2. 
The atmospheric profile and corresponding CTP and HI at 07:30 UTC AQUA (peach) and 

05:30 UTC in-situ (red) for a day during a) a dry year (2006-06-07) and b) a wet year 

(2007-06-03) for the Southern Great Plains location (36.5°N, 97.5°W).
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Figure 3. 
Comparison of the a) CTP, b) HI and c) SM from satellite remote sensing (AQUA) and 

reanalysis (MERRA, CFSR) with in-situ observations for a point in the Southern Great 

Plains (36.5°N, 97.5°W) for the available data from 2003–2015. The regression line (red), 

Pearson correlation (rp) and Spearman correlation (rs) are also given.
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Figure 4. 
The classified CTP-HI space from in-situ observations, satellite (AQUA) and reanalysis 

(MERRA, CFSR) for a point in the Southern Great Plains (36.5°N, 97.5°W). The percent 

consistent of each coupling regime as compared to in-situ observations is also given.
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Figure 5. 
Comparison of In-situ CDI with reanalysis (MERRA and CFSR) and satellite remote 

sensing (AQUA) for a point in the Southern Great Plains (36.5°N, 97.5°W) for a) Monthly 

Timeseries from 2003–2015, b) scatter plots of the monthly values for May through 

September with the dark gray points from 2003–2011 and the light gray from 2012–2015 

and c) the spatial variability of the CDI in June 2007. The regression line (red), Pearson 

correlation (rp) and Spearman correlation (rs) are also given in b).
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Figure 6. 
The monthly standardized anomaly Spearman correlation (2003–2015) of the CDI with 

Precipitation (P), Total Soil moisture (TSM), Daytime Average Temperature (DAT), Vapor 

Pressure Deficit (VPD), Evaporative Fraction (EF), Boundary Layer Height (BLH), 

Convective Triggering Potential (CTP) and Humidity Index (HI) for CDI from AQUA and 

other variables from MERRA (Top), AQUA CDI and CFSR variables (Middle) and MERRA 

CDI and MERRA variables (Bottom) for climate regions of the U.S. (colored shapes) and 

the average over the U.S. plotted as boxes reflected around zero. The horizontal red dashed 

lines indicate statistical significance at p = 0.05 for the monthly values from May-Sep (r = 

0.24) and all the monthly values significance (r = 0.16).
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