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Abstract

Background—Current therapies for HNSCC, especially platinum agents, are limited by their 

toxicities and drug resistance. This study evaluates a novel C-terminal Hsp90 inhibitor (CT-Hsp90-

I) for efficacy and toxicity in vitro and in vivo in an orthotopic HNSCC model. Our hypothesis is 

that C-terminal inhibitors exhibit improved toxicity/efficacy profiles over standard therapies and 

may represent a novel group of anticancer agents.

Methods—MDA-1986 HNSCC cells were treated with doses of 17-AAG or KU363 (a CT-

Hsp90-I) and compared for antiproliferation by GLO-Titer and trypan blue exclusion and for 

apoptosis by PARP cleavage and caspase-3 inactivation by Western analysis. In vivo studies in 

Nu/Nu mice examined an orthotopic model of MDA-1986 cells followed by drug dosing 

intraperitoneally for a 21-day period (mg/kg/dose: cisplatin = 3.5, low-dose KU363 = 5, high-dose 

KU363 = 25, 17-AAG = 175). Tumor size, weight, and toxicity (body score) were measured 3×/

week.

Results—The IC50 levels for KU363 = 1.2–2 μM in MDA-1986. KU363 induces apoptosis at 1 

μM with cleavage of PARP and inactivation of caspase-3 levels after 24 h. Client proteins Akt and 

Raf-1 were also downregulated at 1–3 μM of drug. In vivo, 100% of controls had progressive 

disease, while 100% of cisplatin animals showed some response, all with significant systemic 

toxicity. High-dose KU363 showed 88% of animals responding and low-dose KU363 showed 75% 

responding. KU363 animals showed significantly less toxicity (P < 0.01) than cisplatin or 17-

AAG.

Conclusion—This novel CT-Hsp90-I KU363 manifests potent anticancer activity against 

HNSCC, showing excellent in vivo efficacy and reduced toxicity compared with standard agents 

justifying future translational evaluation.

Head and neck cancer accounted for more than 36,000 new cases in 2010 with nearly 8000 

deaths in the United States, making it the 8th leading cause of new cancer cases among men.
1 Worldwide, an estimated 644,000 new cases of head and neck cancers are diagnosed each 
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year.2 Of these, head and neck squamous cell carcinoma (HNSCC) accounts for more than 

90% of cases, with a median age for diagnosis in the 6th decade and a male predominance 

with a M:F incidence ratio of 3:1. Most patients with HNSCC present with advanced-stage 

locoregional disease, for which the standard of treatment is a multidisciplinary approach 

involving combinations of surgery, chemotherapy, and radiation.3 However, the overall 5-

year survival rate from HNSCC is less than 50%, which has remained relatively unchanged 

for the past 2 decades.4 Also, the effectiveness of systemic chemotherapy, which is primarily 

platinum-based regimens, is limited by its toxicity and platinum-drug resistance in HNSCC 

patients.5,6 This indicates a need for additional treatment options that target the cancer more 

effectively and with reduced toxicity.

Heat shock protein 90 (Hsp90) is a molecular chaperone that has emerged in the last decade 

as a promising target for cancer therapy. While most current monotherapies, such as 

cisplatin, work by disrupting a single molecular function, Hsp90 is unique in that it 

modulates multiple oncogenic pathways simultaneously. As a molecular chaperone, it 

promotes the conformational maturation of “client” proteins, protecting them from 

degradation.7 Many of these “clients” are protein kinases (tyrosine kinases, Bcr-Abl, 

epidermal growth factor receptor [EGFR] family members, and serine/threonine kinases, 

Akt, Raf-1) and transcription factors (p53, Stat3) that are involved in multiple signal 

transduction pathways in HNSCC.8 Furthermore, Hsp90 is overexpressed in many human 

malignancies, such as HNSCC, and inhibition of Hsp90 allows for the development of small 

molecules that exhibit high differential selectivity.9–12 Therefore, inhibition of Hsp90 

disrupts multiple signaling pathways that contribute to malignancy.13–15

Inhibitors of Hsp90 have been studied previously against HNSCC. Multiple studies have 

demonstrated that Hsp90 inhibition leads to degradation of client proteins and enhances 

tumor cell death. A geldanamycin (GA) derivative, 17-allylamino-17-

demethoxygeldanamycin (17-AAG), is the most prevalent Hsp90 inhibitor used in 

preclinical studies and functions by binding to the N terminus of Hsp90.16–18 Recent clinical 

trials, however, have demonstrated that N-terminal HSP90 inhibitors were not 

therapeutically effective and that 17-AAG displays dose-limited toxicity and is somewhat 

difficult to formulate.19–21 In recent years, inhibitors that interact with the C terminus of 

Hsp90 have been investigated in several cancer models.22,23 Novobiocin, a member of the 

coumermycin family of antibiotics, has been shown to exhibit antitumor activity through 

inhibition of Hsp90 at the C terminus.24 KU363 and KU135, novobiocin-derived C-terminal 

Hsp90 inhibitors (CT-Hsp90-I) synthesized at the University of Kansas-Lawrence, have been 

shown to manifest antiproliferative activity against different cancer models.25,26 The aim of 

the present study is to investigate the efficacy of the novel C-terminal Hsp90 inhibitor 

KU363 against HNSCC both in vitro and in vivo for improved efficacy with reduced toxicity 

over N-terminal Hsp90 inhibitors and standard chemotherapeutic agents.

MATERIALS AND METHODS

Bioassay Materials

Culture media, fetal bovine serum (FBS), penicillin G, streptomycin, MEM-nonessential 

amino acids, ribonuclease A, and propidium iodide (PI) were obtained from Sigma-Aldrich 
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(St. Louis, MO). MEM-vitamin solution was purchased from Life Technologies, Inc. (Grand 

Island, NY). Annexin V-FITC was from BD Bioscience (Bedford, MA). Primary antibodies 

against β-actin and secondary antibodies against mouse and rabbit antibodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Primary antibodies against 

phospho-Akt, total-Akt, Raf-1, ErB2b/Her2, Caspase-3, and PARP were obtained from Cell 

Signaling Technologies (Beverly, MA). BCA protein assay reagents were obtained from 

Pierce (Rockford, IL). Protease inhibitor mixture set II was obtained from Calbiochem (San 

Diego, CA). Novobiocin and 17-AAG were obtained from Sigma-Aldrich (St. Louis, MO), 

and KU363 was synthesized by the Department of Medicinal Chemistry at the University of 

Kansas (Lawrence, KS).

Cell Culture

The invasive oral squamous carcinoma cell lines JMAR and MDA-1986 were a gift from Dr. 

Jeffrey Myers (University of Texas, M.D. Anderson Cancer Center, Houston, TX), JHU-011 

was a gift from Dr. Josef Califrano (Johns Hopkins University, Baltimore, MD), UM-SCC-2 

was a gift from Dr. Scott Weed (University of West Virginia, Morgantown, WV), and the 

fibroblast cell line MRC-5 was purchased from the ATCC (Manassas, VA). Cell lines 

MDA-1986, JMAR, UM-SCC-2, and MRC-5 were grown in DMEM (Sigma-Aldrich), and 

JHU-011 was grown in RPMI (Sigma-Aldrich). Both media were supplemented with 10% 

FBS (Sigma-Aldrich), sodium pyruvate, nonessential amino acids, L-glutamine, a 2-fold 

MEM-vitamin solution, and 1% penicillin/streptomycin (100 IU/ml/100 μg/ml; Sigma-

Aldrich). Adherent monolayer cultures were maintained in T-75 culture flasks and incubated 

at 37°C with 5% CO2 until they achieved 85% confluency. The cells were then trypsinized 

using 0.25% trypsin (Sigma-Aldrich) and passaged into T-75 flasks at a density of 1 × 106 

cells. On the day of experiments, cells were trypsinized and counted via hemocytometer to 

determine the number of viable cells.

Cell Viability and Proliferation Assays

JMAR, MDA-1986, JHU-011, UM-SCC-2, and MRC-5 were plated in growth media on 

384-well microtiter plates at a concentration of 2 × 103 cells/well and on 6-well plates at a 

concentration of 2 × 104 cells/well. Cells were incubated for 24 h at 37°C with 5% CO2. 

Cells were then treated with varying concentrations of 17-AAG (Sigma-Aldrich), 

Novobiocin (Sigma-Aldrich), or experimental drug KU363 (University of Kansas, 

Lawrence, KS) for 24 or 72 h. All drugs were dissolved in 100% dimethylsulfoxide (DMSO) 

(Sigma-Aldrich). The 384-well plates were analyzed according manufacturer’s directions for 

the CellTiterGlo Luminescent Cell Viability Assay (Promega, Madison, WI) to obtain IC50 

values and were analyzed using a plate reader (Synergy 4, BioTek Instruments Inc., 

Winooski, VT) at an absorbance wavelength of 490 nM. The potency (IC50 value) and the 

efficacy (area under the dose-response curve [AUC]) of each drug were used as the response 

measures to compare the treatment groups. The IC50 is defined as the concentration of drug 

at which 50% of the cells are inhibited by the drug, and AUC was determined using data 

points bounded by the highest and lowest concentrations and the highest and lowest percent 

viability for each curve. Nonlinear regression and sigmoidal dose-response curves 

(GraphPad Prism, La Jolla, CA) were used to calculate IC50 values, and AUC was calculated 

using the trapezoid rule before normalizing the data. The 6-well plates were counted on a 
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hemocytometer with trypan blue staining to determine cell proliferation under different 

levels of drug treatment. All samples were analyzed in triplicate.

Fluorescence-Activated Cell Sorting Analysis

MDA-1986 cells in T-75 flasks were treated with varying concentrations of KU363 for 24 h. 

Cells were trypsinized, washed with 0.9% NaCl, and fixed with 70% cold ethanol for 30 min 

at room temperature. They were then collected by centrifugation (700g for 5 min) and 

stained with PI (50 mg/ml in phosphate-buffered saline [PBS]) for 30 min and then treated 

with DNAse-free RNAse (1 mg/ml) for 30 min and analyzed by flow cytometry. Evaluation 

for induction of apoptosis was performed using Annexin V/PI costaining with flow 

cytometry (BD LSRII, Becton Dickerson, San Diego, CA). An analysis of 

phosphatidylserine (PS) on the outer leaflet of apoptotic cell membranes was performed 

using Annexin V-FITC and PI to distinguish between apoptotic and necrotic cells. After 

treatment, 1 × 105 cells/ml were washed with 1× PBS and trypsinized. They were then 

stained with Annexin-V/PI according to the manufacturer’s instruction (BD-Pharmingen, 

San Diego, CA) and analyzed by flow cytometry.

Western Blot Analysis

MDA-1986 cells were treated for 24 h in T-75 flasks with varying concentrations of KU363. 

After treatment, cells were lysed (0.5% Nonidet P-40,100 mM, 10 mMTris [pH 7.5], 1:500 

protease inhibitor mixture set II, 1 mMNaF, and 1 mM sodium orthovanadate), and lysates 

were placed on ice for 20 min. Clear lysates were obtained by centrifugation (14,000g for 20 

min). Equal amounts of protein were separated by SDS-PAGE and electrotransferred onto a 

Hybond nitrocellulose membrane (Amersham). The membranes were blocked and probed 

with the appropriate dilution of primary antibody overnight at 4°C. The blots were washed 

three times in PBS–Tween-20 for 10 min and then incubated in horseradish peroxidase-

conjugated secondary antibody in PBS–Tween-20 at room temperature for 1 h. After 

washing in PBS–Tween-20, the proteins were visualized by enhanced chemiluminescence 

reagent (Amersham) and captured on Kodak XAR-5 film (Eastman Kodak, Rochester, NY). 

Where indicated, the blots were reprobed with antibody against β-actin to ensure equal 

loading and transfer of proteins.

In Vivo Tumor Model

All animal studies were done in accordance with IACUC guidelines. MDA-1986 cells were 

prepared in a 1× PBS solution at a concentration of 1 × 106 cells/100 μl. Cells (100 μl) were 

injected under isoflurane anesthesia into the retromandibular buccal mucosa of 4- to 6-week-

old Nu/Nu mice using a 25G needle (20–25 g, Charles River Laboratories, Wilmington, 

MA). Tumor size was measured three times weekly using a digital caliper. Tumor volume 

was calculated using:

When tumors reached a minimum volume of 50 mm3, mice were randomized into control 

(PBS) or 1 of 4 treatment groups (17-AAG at 175 mg/kg/dose, cisplatin at 3.5 mg/kg/dose, 
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high-dose KU363 at 25 mg/kg/dose, and low-dose KU363 at 5 mg/kg/dose). All drugs were 

administered intraperitoneally (ip). Controls, low-dose, and high-dose KU363 and 17-AAG 

treatment groups were treated every other day, and the cisplatin group received daily 

injections. All mice were treated for a total of 21 days. Mice were euthanized prior to 

completion of the experiment if the tumor reached >20 mm in any direction or body score 

fell below 2.

Statistical Analysis

Comparisons of differences between 2 or more means were determined by unpaired t test (2 

means) and Fisher exact test. More than 2 means were analyzed by 2-way ANOVA followed 

by Duncan’s multiple range test (2+ means) and Bonferroni post hoc testing via a standard 

statistical analysis software package (SPSS version 17.0, SPSS Inc., Chicago, IL). 

Significance was defined for P < 0.05.

RESULTS

KU363 Reduces Cell Viability and Proliferation in HNSCC Cells

To investigate the biological effect of Hsp90 inhibition by KU363 in HNSCC cells, we 

incubated 4 HNSCC cell lines (JMAR, MDA-1986, JHU-011, and UM-SCC-2) and MRC-5, 

a fibroblast cell line as a comparison for normal cells with increasing concentrations of 

KU363, novobiocin, and 17-AAG. Viability was determined by the CellTiterGlo 

Luminescent Cell Viability Assay. KU363 inhibited cell viability in a dose-dependent 

manner in all 4 HNSCC cell lines (Fig. 1a). KU363 IC50 was determined to be 1.42, 1.24, 

0.89, 1.11, and 3.91 μM for MDA-1986, JMAR, UM-SCC-2, JHU-011, and MRC-5 cells, 

respectively, at 72 h, which are comparable to the 17-AAG IC50 values and are 30-fold lower 

than those of novobiocin (Fig. 1b). Also, KU363 was noted to manifest an IC90 of <5 μM. 

Trypan blue staining was used to investigate cell proliferation and cell death. MDA-1986, 

JMAR, UM-SCC-2, and JHU-011 cells were treated with varying concentrations of KU363 

at 24- and 72-hour time points. KU363 was shown to reduce cell proliferation and induces 

cell death in MDA-1986 in a concentration-dependent manner. Treatment of MDA-1986 

cells with KU363 reduced cell proliferation by 3- and 7-fold, respectively, at IC50 and 2 × 

IC50 concentrations. In addition, the percentage of trypan blue positive cells increased from 

5% in untreated cells to approximately 30% at IC50 and 70% at 2 × IC50 concentrations of 

HNSCC cells treated with KU363 (raw data not shown).

KU363 Induces Apoptosis and Inhibition Through Hsp90 Pathways

In order to evaluate induction of apoptosis, we examined MDA-1986 cells treated with 

KU363 by flow cytometry using AnnexinV/PI staining. After treatment with 3 μM 

concentration of KU363, the MDA-1986 show a shift of cells staining with AnnexinV, 

indicating that the majority of the cells are in an apoptotic state (Fig. 2a). To confirm the 

induction of apoptosis, we evaluated the activation of caspase-3 upon treatment of HNSCC 

cells with KU363. MDA-1986 cells were treated with increasing concentrations of KU363. 

The activation of caspase was observed by increased cleavage of the caspase-3 substrate 

PARP as well as an increase in the levels of cleaved caspase-3 (Fig. 2b). PARP cleavage was 

detected at concentrations as low as 1 μM after 24 h of KU363 treatment. Caspase-3 
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activation was also observed starting at 1 μM, which is consistent with KU363 IC50 data. 

These results demonstrate that caspase-3 activation begins as early as 24 h after treatment 

with KU363.

We next examined the effect of KU363 on the PI3 kinase/Akt signaling pathway as well as 

on the Hsp90 client protein pathway of Raf-1 and ErbB2/Her2. These results showed that 

KU363 reduced Ser473 phosphorylation of Akt and total Akt levels in HNSCC cells after 24 

h of treatment in a dose-dependant manner (Fig. 2c, d). Densitometry was performed on 

these blots, indicating a quantitative reduction in p-Akt and total Akt levels with KU363 

treatment (p-Akt expression is downregulated starting at 2.5 μM KU363 [approximately 

twice IC50], while total Akt levels are downregulated at only 1 μM of drug). Treatment of 

MDA-1986 cells with KU363 also showed reduction of ErbB2/Her2 and Raf-1 in a 

concentration-dependent fashion starting as low as 1 μM for the reduction of ErbB2/Her2, 

again confirmed by densitometry. With regard to 17-AAG treatment, although there was a 

reduction noted in levels of total Akt, no reduction was seen in the Hsp90 client proteins 

ErbB2/Her2 and Raf-1 (Fig. 2d).

In Vivo Efficacy of KU363

To examine the efficacy of KU363 in vivo, an orthotopic tumor model of HNSCC was 

created through injection of the buccal mucosa of female 4- to 6-week Nu/Nu mice. When a 

tumor volume of 50 mm3 was obtained, the mice were randomized into 1 of 5 groups 

(control, 17-AAG, cisplatin, high-dose KU363, and low-dose KU363). There were eight 

animals placed in each group for a total of 40 animals. The mice were monitored for tumor 

volume, weight, and body score 3 × /week for 6 weeks. Tumor volume growth curves of the 

mice can be seen in Fig. 3.

The cisplatin treatment group demonstrated the best overall tumor response rate, with 100% 

of the mice showing some level of response (six complete response [CR] and two partial 

responders [PR]; >30% reduction). The next most efficacious therapy was the high-dose (25 

mg/kg/dose) KU363 group, which had 88% of the animals with some response to treatment 

(three CR [37%], four PR [50%], and one with stable disease [SD]). Next came the low-dose 

(5 mg/kg/dose) KU363 treatment group, in which 75% of the animals had a response to 

therapy (one CR [12%], five PR [63%], and two SD [25%]). Following this was the 17-AAG 

treatment group, which had 5 of 8 animals (63%) showing a partial response to therapy. In 

this group there were no CRs, two SDs (25%), and one animal with progressive disease (PD) 

(12%). Finally, the control group had the worst outcomes with 0% of animals showing a 

response and 100% of animals showing PD (Table 1). Upon completion of 3 weeks of 

treatment, the tumor size in the control group compared with the complete response in the 

KU363 high dose group can easily be seen (Fig. 4).

Although cisplatin had an overall better efficacy than KU363 or 17-AAG, it also resulted in 

a significantly worse toxicity profile. Overt signs of drug toxicity were seen in 100% of the 

animals as evidenced by a 20% or greater weight loss at the end of the 3-week treatment 

period that was sustained throughout the duration of the trial. In comparison, only one 

animal each in the low-dose and high-dose KU363 groups (12%) showed any significant 

sustained weight loss, which was statistically significant (P = 0.0003 for high dose and P = 
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0.0067 for low dose) (Fig. 5). It should be noted, however, that the KU363 high-dose group 

did have transient weight loss around the time of treatment that was recovered once the 

treatment was concluded. This was not seen in the cisplatin group. With regard to body 

score, the cisplatin animals all had body scores of two at the completion of the study 

compared with only one animal in the KU363 high-dose group and no animals in the KU363 

low-dose group. Upon gross pathologic analysis of the mice at the completion of the study, it 

was seen that there was some evidence of intra-abdominal adhesion development in three of 

the mice that were treated in the high-dose KU363 group. This was not seen in the low-dose 

KU363 group or in the cisplatin or 17-AAG groups.

DISCUSSION

Small-molecule kinase-targeted drugs have been at the forefront of a new class of cancer 

therapeutics. However, cancer cells routinely develop drug resistance to these targeted 

therapies. Therefore, there is a need to be able to identify novel targets that regulate multiple 

proteins and signal transduction pathways, such Hsp90. In recent pre-clinical studies, N-

terminal Hsp90 inhibitors have been used to target HNSCC; however, these inhibitors have 

been shown to be less successful in other cancer lines in human clinical trials.16,17,20,21

KU363, however, functions by binding at the C terminus of Hsp90, thus resulting in 

inhibition of its chaperone activity. In vitro, it was observed to reduce cell viability and 

proliferation in four different HNSCC cell lines. It also triggered significant induction of 

apoptosis that was seen with flow cytometry and confirmed by caspase-3 activation. The 

Western data also revealed downregulation of Hsp90 client proteins ErbB2/Her2 and Raf-1. 

In recent studies, it has been shown that ErbB2/Her2 is one of the more sensitive client 

proteins of Hsp90.27

In the in vivo experiments, KU363 was shown to be efficacious. Although cisplatin 

demonstrated a higher level of efficacy than KU363, it also had a significantly worse toxicity 

profile that was observed in the decreased body scores and substantial weight loss of the 

mice. It is also important to note that the low-dose KU363 displayed comparable levels of 

efficacy with that of the high dose but without the overt evidence of systemic toxicity that 

was observed on gross pathology in some of the high-dose mice. Both groups, however, 

were noted to be more efficacious than 17-AAG, which has been used in clinical trials in 

cancer patients.

Overall, KU363, a novel C-terminal Hsp90 inhibitor, exhibited potent anticancer activity 

against HNSCC. These early data indicate that C-terminal Hsp90 inhibitors, such as KU363, 

are a viable chemotherapeutic alternative to N-terminal Hsp90 inhibitors. Although KU363 

as a monotherapy was not superior to cisplatin in this study, its lower toxicity profile and 

comparable efficacy provide support to incorporate its use as an adjunct to current 

treatments, allowing for antitumor activity through a different, complementary pathway. 

Although the results obtained were significant, future studies examining larger numbers of 

mice in vivo with longer treatment schedules would provide a more complete evaluation of 

the drug’s efficacy and long-term toxicity profile. These data, however, provide early 

preclinical support for the development of CT-Hsp90-Is, such as KU363, as novel agents for 
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the treatment of HNSCC, especially in cases where cisplatin resistance warrants the use of 

alternatives with comparable efficacy.
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FIG. 1. 
a GLO-titer cell-viability curve for KU363 in JMAR, UMSCC-2, MDA-1986, and JHU-011 

head and neck squamous cell cancer cells in vitro. KU363 is cytotoxic with IC50 levels 0.8–

2 μM and KU363 with IC90 level <5 μM. b Comparison of in vitro cell viability with C- and 

N-terminal Hsp90 inhibitors using GLO-titer assay with IC50 levels reported in μM 

concentrations
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FIG. 2. 
a Annexin V/PI staining of MDA-1986 cells untreated (top) versus treated with KU363 

(bottom) for 24 h. b Western Blot analysis of MDA-1986 cells at 24-hour treatment with 

KU363 for PARP, cleaved PARP, cleaved caspase 3, and β-actin. c Western Blot analysis of 

MDA-1986 cells at 24-hour treatment with KU363 for p-Akt and β-actin with densitometry 

measurements in blue. d Western Blot analysis of MDA-1986 cells at 24-hour treatment 

with KU363 or 17-AAG for Raf-1, total Akt, ErbB2/Her2, and β-actin with densitometry 

measurements in blue
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FIG. 3. 
Tumor volume and survival curves of the MDA-1986 Nu/Nu mice for a the control group 

(PBS ip), b cisplatin (3.5 mg/kg/dose ip), c 17-AAG (175 mg/kg/dose ip), d low-dose 

KU363 (5 mg/kg/dose ip), and e high-dose KU363 (25 mg/kg/dose ip)
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FIG. 4. 
Tumor response in Nu/Nu mice
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FIG. 5. 
Average weight loss per treatment group of MDA-1986 Nu/Nu mice. P values are calculated 

in comparison to cisplatin
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