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The Belief-Function Approach to Aggregating Audit Evidence 

 

ABSTRACT 

 In this article, we present the belief-function approach to aggregating audit evidence.  The 

approach uses an evidential network to represent the structure of audit evidence.  In turn, it 

allows us to treat all types of dependencies and relationships among accounts and items of 

evidence, and thus the approach should help the auditor conduct an efficient and effective audit.  

Aggregation of evidence is equivalent to propagation of beliefs in an evidential network.  The 

paper describes in detail the three major steps involved in the propagation process.  The first step 

deals with drawing the evidential network representing the connections among variables and 

items of evidence, based on the experience and judgment of the auditor.  We then use the 

evidential network to determine the clusters of variables over which we have belief functions.  

The second step deals with constructing a Markov tree from the clusters of variables determined 

in step one.  The third step deals with the propagation of belief functions in the Markov tree.  We 

use a moderately complex example to illustrate the details of the aggregation process. 
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The Belief-Function Approach to Aggregating Audit Evidence 

I.  INTRODUCTION 

In recent years, there has been a considerable interest in the application of belief functions 

to auditing.  Akresh, Loebbecke and Scott (1988) have mentioned that belief functions provide a 

flexible and adaptable way to combine evidence from a variety of sources.  Shafer and Srivastava 

(1990) contend that uncertainty in the audit evidence cannot be fully described in terms of proba-

bility; the belief-function theory provides a better framework.  Recently, Srivastava and Shafer 

(1992) have discussed the problems with interpreting audit risk as probabilities and have 

provided a belief-function interpretation of the risk that makes intuitive sense.  They have also 

derived belief-function formulas for audit risk.  However, they derive these formulas under the 

assumptions that (1) the evidential structure is a tree1, (2) all the items of evidence are 

affirmative2, (3) the relationships among accounts and audit objectives are all 'and' 

relationships3, and (4) all the variables in the tree are binary.  (The variables in the tree represent 

various audit objectives, accounts, and the financial statements as a whole.) 

It is important to point out that, in the 'real world,' auditors deal with situations where the 

above assumptions are not necessarily valid.  The question is how do we aggregate various items 

of evidence in auditing to make decisions under such conditions?  The answer lies partly in the 

work of Shenoy and Shafer (1986) on propagating beliefs in a Markov tree (see, also, Shafer, 

Shenoy and Mellouli 1987; Shenoy and Shafer 1990) and partly in the work of Kong (1986) on 

constructing a Markov tree from a 'hypergraph.'  However, we are faced with several other ques-

tions:  (1) What is a Markov tree?  (2)  What is a hypergraph?  (3)  How do we construct a hyper-

graph from an evidential network?  (4) How do you construct a Markov tree from a hypergraph?  

The purpose of this paper is to provide answers to these questions and demonstrate how to com-

bine audit evidence in a network in the belief-function formalism.  

Aggregation of evidence in a network, in fact, is equivalent to propagation of beliefs in the 

network.  In this paper, we will simplify the propagation process by directly constructing a 
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Markov tree from the evidential network, without talking about hypergraphs.  In general, the 

propagation scheme involves three major steps.  The first step is to draw the evidential network 

representing the connections among variables and items of evidence, based on the experience and 

judgment of the auditor.  We then use the evidential network to determine the clusters of vari-

ables over which we have belief functions.  The second step is to construct a Markov tree from 

the clusters of variables determined in step one.  The basic concepts related to a Markov tree, and 

the process for constructing such a tree from an evidential network, are discussed in Appendix A.  

The third step deals with the propagation of belief functions in the Markov tree developed in step 

two.  The aggregation of evidence in an actual audit would become very complex without the aid 

of a computer.  Shafer, Shenoy and Srivastava (1988) have developed such a program that 

automates the aggregation process (also, see Srivastava, Shenoy and Shafer 1990).  Recently, 

Srivastava (1993), and Srivastava and Johns (1992) have demonstrated the use of the software in 

audit planning and evaluation.  However, neither of these papers demonstrate the mechanism of 

combining audit evidence in an evidential network which is the main purpose of this paper. 

In this article, we plan to demonstrate, in detail, the steps involved in the aggregation pro-

cess starting from constructing the evidential network appropriate in a given audit to propagating 

strengths of various items of evidence, i.e., beliefs, in the network, using a moderately complex 

example.  We want to point out that the process described here is valid in all situations whether 

the variables are binary or not, the items of evidence are affirmative or not, and the relationships 

among accounts or audit objectives are 'and' or not.  However, for simplicity of exposition and 

for numerical tractability, we have considered in our numerical example only binary variables, 

affirmative items of evidence, and 'and' relationships.  Since we have limited space in the paper, 

we will not discuss the other cases. 

We should also point out that the approach discussed here allows us to combine items of 

evidence at all levels of the account (the audit objective level, the class of transactions' level, the 

account level, and the financial statement level).  Furthermore, it allows us to treat 
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interrelationships among accounts, among audit objects, and among items of evidence.  In turn,  

we believe that the approach should help the auditor conduct an efficient and effective audit. 

The efficiency in the audit process will be achieved because the assurance from the positive 

items of evidence in the network would be combined at its full strength.  For example, suppose 

the auditor determines that the confirmation procedure of accounts receivable provides 0.9 

degree of support to both 'Valuation' and 'Existence' objectives of the account.  It may appear that 

the auditor is performing only one procedure for confirmations, but, in fact, he or she is 

processing two separate pieces of information: one for 'Valuation' and the other for 'Existence.'  If 

we assume that the two pieces are independent, as done in the traditional approach (see, i.e., 

Leslie, Aldersley, Cockburn, and Reiter 1986), the combined degree of support that the account 

is fairly stated (i.e., the two objectives are met simultaneously, assuming only two audit 

objectives of the account) is 0.81 (= 0.9x0.9).  However, since the two pieces of information are 

coming from the same source, the confirmation, the assumption that they are independent is not 

valid.  When we treat the two pieces as interdependent, the total degree of support for both the 

objectives becomes 0.9.  Thus, ignoring interdependencies among the items of evidence will lead 

to under utilization of the strength of evidence and hence inefficiency in the audit process. 

Similarly, the effectiveness will be achieved due to the reason that the negative items of 

evidence would be considered at its full strength and would force the auditor to perform more of 

the same procedure or perform certain other procedures to achieve the desired overall belief that 

the account is fairly stated.  If the auditor is not able to achieve the desired level of overall belief 

that the account is fairly stated then he or she will either propose an adjusting entry to the account 

or refuse to give an unqualified opinion on the account. 

The remainder of the paper is divided into six sections.  In Section II, we discuss how to 

construct an evidential network for an audit and identify clusters of variables over which we have 

belief functions.  In Section III, we illustrate the approach of constructing a Markov tree for an 

evidential network.  In Section IV, we discuss the results.  In Section V, we provide a summary 

and conclusion of our study, consider the limitations of the study, and discuss the problems for 
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future research.  Finally, in Appendix A, we briefly discuss the concepts related to a Markov tree 

and describe Kong's (1987) algorithm for constructing a Markov tree from a set of clusters of 

variables over which we have belief functions.  

II. EVIDENTIAL NETWORK AND CLUSTER OF VARIABLES  

We want to construct an evidential network in an audit to identify the relationship among 

the variables, and between the variables and the items of evidence.  The variables in the network 

represent various audit objectives, accounts, and the financial statements.  As discussed by Dutta 

and Srivastava (1992), such a network allows one to treat all types of dependencies such as 

dependency between the items of evidence, dependency between accounts, and dependency 

between errors.   

Figure 1 represents an evidential network for the audit of accounts receivable.  For simplic-

ity, we assume that the accounts receivable account (AR) has only two relevant audit objectives: 

Existence (E) and Valuation (V).  This means that the accounts receivable balance is not 

materially misstated if existence and valuation objectives of the account have been met.  Next, 

we relate these objectives with the transaction stream objectives.  We know that the accounts 

receivable existence objective is met4 when sales have occurred (SO) and cash receipts are 

complete (CC) (Leslie, Aldersley, Cockburn, and Reiter 1986).  Similarly, valuation objective of 

accounts receivable is met when cash receipts are properly valued (CV) and sales are properly 

valued (SV).  Thus, in our example, we are interested in the following set of variables: X = {AR, 

E, V, CC, CV, SO, SV}. 

Figure 1 here 

As the first step in drawing the evidential network, we represent the seven variables, AR, E,  

V, CC, CV, SO, and SV, as ellipses in Figure 1.  Next, we connect the variables to each other 

through appropriate relational nodes.  As discussed in the previous paragraph, we know that AR 

is not materially misstated when variables E and V have been met.  We will express such a 

relationship through an 'and' node.  An 'and' node in a network implies that the variable on its left 
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is met if and only if the variables on its right are met.  We use 'and' nodes to relate CC and SO to 

E, and CV and SV to V in Figure 1.  However, we can connect the variables through some other 

relationships such as 'or,' 'nor,' or 'exclusive or,' especially in the case of three variables, if we 

consider these relationships to be appropriate.  These are categorical relationships.  However, one 

can develop relationships among the variables that may involve uncertainties.  Such relationships 

are more common in the medical field.  For example, certain symptoms may relate to a given 

disease or a set of diseases with a given level of uncertainty and to another set of diseases with 

another level of uncertainty.  The nature of the relationship determines the frame of the relational 

node and the m-values for the node (see Section IV and also the second note in Table 2).  In 

auditing, however, the use of 'and' relationship is quite common (see, e.g., Leslie, et. al 1986). 

Next, we connect all the items of evidence to the nodes on which they directly bear.  We 

represent an item of evidence by a rectangular box.  An item of evidence may consist of one or 

more than one audit procedures.  We use the audit procedures described by Arens and Loebbecke 

(1991) to construct the network in Figure 1 (see Table 1 for details).  However, we have 

somewhat simplified the mapping for computational simplicity.  It is not critical here to argue 

whether we have mapped the network correctly; we are simply using the network as an example 

to illustrate the general approach. 

Table 1 here 
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The next step is to determine the clusters of variables over which we have belief functions.  

This step is easy once we have drawn the network.  We simply identify the variable or the set of 

variables to which an item of evidence is connected.  For example, we have five one-variable 

subsets of X, {AR}, {CC}, {CV}, {SO}, and {SV}, for which we have at least one item of evi-

dence directly bearing on each variable, i.e., we have at least one belief function on each variable.  

Next, we know that Evidence 11 bears directly on variables E and V, and Evidence 7 directly 

bears on CC and CV, therefore we have two two-variable clusters or subsets of X: {E,V}, and 

{CC,CV}, over which we have belief functions. 

For the variables that are related through a relational node, we simply put them in one 

cluster and use the definition of the relationship to determine the belief function for the cluster.  

Based on the relationships discussed above, we have three clusters of variables: {AR,E,V}, 

{E,CC,SO}, and {V,CV,SV}.  The belief functions for these clusters are determined by the 

corresponding relationships.  This completes the process of identifying clusters of variables over 

which we have belief functions.  We will denote this set of clusters by H = {{AR}, {CC}, {CV}, 

{SO}, {SV}, {E,V}, {CC,CV}, {AR,E,V}, {E,CC,SO}, {V,CV,SV}} and use it to construct a 

Markov tree in the next section. 

III.  CONSTRUCTION OF A MARKOV TREE 

Since the concepts of a Markov tree may not be familiar to readers of this article, we have 

discussed them in Appendix A and have provided Kong's one-step-look-ahead algorithm (Kong 

1986) for constructing a Markov tree from an evidential network.  In this section, we show step 

by step how to construct such a tree from the set of clusters of variables, H, for which we have 

belief functions.  As discussed in Section II,   for the evidential network in Figure 1, we have H = 

{{AR}, {CC}, {CV}, {SO}, {SV}, {E,V}, {CC,CV}, {AR,E,V}, {E,CC,SO}, {V,CV,SV}}.  

We now use Kong's algorithm to construct a Markov tree (see Appendix A for details). 
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Iteration One, i = 1 

We have U0 = {AR, E, V, CC, CV, SO, SV}, H0 = {{AR}, {CC}, {CV}, {SO}, {SV}, 

{E,V}, {CC,CV}, {AR,E,V}, {E,CC,SO}, {V,CV,SV}}, N = Ø, and E = Ø, where N stands for 

the set of nodes in the tree and E stands for the set of edges.  In the beginning N and E are empty.  

We choose one variable at a time from U0 and obtain the corresponding G1 by determining the 

union of all the elements of H0 that contain the variable.  We pick the variable to be X1 for which 

G1 has the least number of variables.  In the case of a tie we choose5 the variable that comes first 

in the alphabetical order. 

Exhibit 1 here 

In the present case, we start with variable AR as an element of U0.  We have only two ele-

ments {AR}, and {AR,E,V} of H0 that contain AR.  We construct the union of these elements 

which yields G1 = {AR,E,V} with three variables.  Let us consider another element of U0, say E.  

We form the union of the elements {E,V}, {AR,E,V}, and {E,CC,SO} of H0 that contain E.  

This yields G1 = {AR,E,V, CC,SO} with five variables.  We repeat this process for all the 

elements in U0.  All such G1's are given in column 2 in Exhibit 1 for i =1.  We notice that there is 

a three way tie between AR, SO, and SV for the least number of variables in G1.  As mentioned 

earlier, we pick the variable AR because it comes first in the alphabetical order.  Thus, X1 = AR, 

G1 = {AR,E,V}, and F1 = G1 - X1 = {AR,E,V} - {AR} = {E,V}.  These are listed in the first row 

of column 4 in Exhibit 1 for i =1. 

The next step is to determine the set of nodes N and the set of edges E.  In the first iteration, 

N contains G1 and F1 as nodes and any other element of H0 that contains X1 and not equal to G1.  

In our case, we have only one element {AR} in H0 that contains AR, and thus N contains three 

nodes G1, F1, and {AR}, i.e., N = {{AR}, {E,V}, {AR,E,V}}.  These nodes are drawn in Figure 

2 as ellipses with a thin boundary. 

Figure 2 here 
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According to the algorithm, we form an edge between G1 and F1 and also between G1 and 

any other element of H0 that contains X1 and is not equal to G1.  Graphically it means that we 

connect F1 to G1 and all other elements of H0 containing X1 (that is not equal to G1) to G1.  In 

our case, we connect {E,V} to {AR,E,V} and connect {AR} to {AR,E,V}.  These edges are 

drawn in Figure 2 in thin lines.  Next, we determine U1 and H1 for the next iteration.  We have 

U1 = U0 - X1, and H1 is the union of F1 and all the elements of H0 that do not contain X1.   In the 

present case, we obtain U1 = {E,V,CC,CV,SO,SV}, and H1 = {{CC}, {CV}, {SO}, {SV}, 

{E,V}, {CC,CV}, {E,CC,SO}, {V,CV,SV}}.  These are listed in column 4 of Exhibit 1 for i=1. 

Iteration Two, i = 2 

We repeat the above process for the second iteration.  We again choose one variable at a 

time from U1 = {E,V,CC,CV,SO,SV} and determine the corresponding G2.  As before, we 

obtain G2 by determining the union of all the elements of H1 that contain the variable.  We pick 

the variable as X2 for which G2 has the least number of variables.  In our case, if we choose E 

then G2 = {E,V,CC,SO}, and if we choose V then G2 = {E,V,CV,SV}.  All G2's are given in 

column 2 in Exhibit 1 for i = 2.  We have a two way tie between SO and SV for the least number 

of variables in G2.  We choose SO because it is ahead of SV in the alphabetical order.  Thus, X2= 

{SO}, G2 = {E,CC,SO}, and F2 = {E,CC}. 

The new nodes to be added in the second iteration are G2, F2 and any element of H1 that 

contains X2 and is not equal to G2.  In our case, the new nodes to be added are {E,CC,SO}, 

{E,CC}, and {SO}.  These nodes are drawn in Figure 2 as ellipses with a boundary of medium 

thickness.  The new edges to be added in this iteration are the edges between G2 and F2 and be-

tween G2 and elements of H1 that contain X2 but not equal to G2.  Again, graphically it means 

that we connect F2 to G2, and the elements of H1 containing X2 (that are not equal to G2) to G2.  

These edges are drawn in Figure 2 with lines of medium thickness. 

For the next iteration, we need U2 and H2.  We know that U2 = U1 - X2, and H2 is obtained 

by determining the union of F2 with all the elements of H1 that do not contain X2.  Thus, we have 
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U2 = {{E,V,CC,CV,SV}} and  H2 = {{CC}, {CV}, {SV}, {E,V}, {CC,CV}, {V,CV,SV}, 

{E,CC}}. 

We repeat the above process five more times for i=3, to i=7.  We stop at i=7 because U7 

and H7 become empty (see column 4 of Exhibit 1 for i=7).  The results of all seven iterations are 

given in Exhibit 1.  The new nodes and edges added in each iteration are shown in Figure 2 with 

different kinds of lines for each iteration.  Figure 2 represents one Markov tree for the evidential 

network in Figure 1.  In the next section, we will describe the process of propagating beliefs in 

such a tree. 

  IV. PROPAGATION OF BELIEFS IN A MARKOV TREE 

Shenoy and Shafer (1986) have discussed the general approach for propagating beliefs (i.e., 

m-values) in a Markov tree using local computations (see, also, Shafer, Shenoy and Mellouli 

1987; Shenoy and Shafer 1990).  In this section, we illustrate the process using the Markov tree 

just constructed in Figure 2.      

Before we describe the propagation process, we need to (1) define the frame of a variable, 

(2) discuss certain concepts, and (3) define some new symbols.  A frame of a variable is defined 

to be the exhaustive and mutually exclusive set of possible values of the variable.  We will use Θ 

to represent the frame.  For example, the frame of the variable 'AR' representing the accounts 

receivable balance is ΘAR = {ar,~ar} where 'ar' represents that the accounts receivable balance is 

not materially misstated and '~ar' represents that the balance is materially misstated.  As a general 

notation, we use the upper-case letter(s) to denote the name of a variable and lower-case letter(s) 

to denote its values. 

The two concepts that are important for the propagation process are vacuous extension6, 

and marginalization7.  When m-values are sent from a smaller node (i.e., a node with fewer 

variables) to a bigger node (a node with more variables), the m-values are vacuously extended 

onto the frame of the bigger node.  When m-values are sent from a bigger node to a smaller node, 

the m-values are marginalized onto the frame of the smaller node. 
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Regarding symbols, we will use m with an appropriate subscript to denote the m-values at a 

node.  For example, the m-values at node 4 in Figure 3 based on Evidence 3 which is a test of 

controls will be denoted by m4TC.  For the m-values being sent from one node to another node, 

we will use a subscript with two numbers.  The first number denotes one node and the second 

number denotes the other node, and an arrow in the middle denotes the direction of propagation.  

One should note that, in general, the m-values being sent from one node to another node are the 

combination of m-values defined at the sending node and the m-values received from the 

neighboring nodes except from the one to which the resulting m-values are being sent.  For 

example, in Figure 3, m14∅ 13 denotes the m-values being sent from node 14 to node 13 and their 

values represent the combination of the m-values coming from nodes 15 and 16 to node 14 and 

the m-values defined at node 14. 

Figure 3 here 

Figure 3 represents the Markov tree constructed in Figure 2 with the items of evidence con-

nected to the respective nodes.  In fact, Figure 3 is a Markov tree representation of the evidential 

network in Figure 1.  We will use numerical examples to illustrate the propagation process.  

Since we are interested in determining the overall belief in 'ar' that the accounts receivable 

balance is not materially misstated, we follow the arrows in Figure 3 for propagating m-values.  

Once we have constructed a Markov tree, the propagation process is straight forward but 

cumbersome.  We will use the following sequence8 of steps to illustrate the propagation process.  

We begin from the top of the tree, node 4 in Figure 3.  We bring all the m-values from the top of 

the tree to node 7, and bring all the m-values from the bottom of the tree to node 7, combine all 

the m-values at node 7, and propagate the resultant to node 3.  Combine the m-values obtained 

from node 7 with the m-values at node 3 and propagate the resultant to node 2.  Next, combine 

the m-values obtained from node 3 with the m-values at node 2, and propagate the resultant to 

node 1.  This completes the propagation process of all the m-values in the Markov tree to node 1 

(see Figure 3).  Combine the m-values obtained from node 2 with the m-values at node 1.  This 
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process yields the total m-values at node 1 as a result of aggregating all the m-values in the 

network.  Tables 2-6 give the details of the computations. 
Table 2 here 

Table 2 shows the steps involved in propagating the m-values from node 4 to node 6.  The 

details of these steps are given below in the same order as the panels in Table 2 for each node. 

�  Combine the two sets of m-values at node 4, i.e., combine m4TC, and m4STT using 

Dempster's rule9.  This process yields mt4.  Using the numerical values for m4TC, and 

m4STT as given in Table 2, we obtain (see the first panel that corresponds to node 4 in 

Table 2): 

mt4(so) = 0.88, mt4(~so) = 0, and mt4({so,~so}) = 0.12.   

�  Propagate m-values from node 4 to 5.  Since node 5 is a bigger node than node 4, we vac-

uously extend mt4 onto the frame of node 5 to obtain m4∅ 5 (see Footnote 6 for vacuous 

extension).  As discussed in Table 2, the frame of node 5 is Θ5 = {(e,cc,so), (~e,cc,~so), 

(~e,~cc,so), (~e,~cc,~so)} (see the second footnote of Table 2).  The non-zero values of 

m4∅ 5 are given as: 

    m4∅ 5({(e,cc,so), (~e,~cc,so)}) = mt4(so) = 0.88, 

m4∅ 5(Θ5) = mt4({so,~so}) = 0.12. 

We combine the above m-values with the m-values defined at node 5 which is a vacuous 

belief function (i.e., m5(Θ5) = 1.0).  The resultant10 non-zero m-values are: 

mt5({(e,cc,so), (~e,~cc,so)}) =  0.88, and mt5(Θ5) =  0.12. 

�  Propagate mt5 to node 6.  Since the frame of node 6, Θ6 = {(e,cc), (e,~cc), (~e,cc), 

(~e,~cc)}), is smaller than the frame of node 5, we marginalize mt5 onto Θ6 for propaga-

tion (see Footnote 7 for marginalization).  Thus, the non-zero values of m5∅ 6 are: 

  m5∅ 6({(e,cc), (~e,~cc)}) = mt5({(e,cc,so), (~e,~cc,so)}) = 0.88, 

m5∅ 6(Θ6) = mt5(Θ5) = 0.12. 
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We combine the above m-values with the m-values defined at node 6 which is a vacuous 

belief function (i.e., m5(Θ6) = 1.0).  The resulting non-zero m-values are (see Footnote 

10): 

mt6({(e,cc), (~e,~cc)}) =  0.88, and mt6(Θ6) =  0.12. 

Table 3 here 

Table 3 presents the computations involved in propagating m-values from the lower end of 

the Markov tree in Figure 3 to node 12.  We do not present the details of these computations be-

cause they are similar to what we have already discussed for Table 2 above.  However, we do de-

scribe the steps involved in the propagation process; one can compute the numbers from these 

details as given in Tables 3.  The steps described below are in the same order as the panels in 

Table 3 for each node.  

�  First, combine the two sets of m-values, m16TC and m16STT, at node 16.  m16TC comes 

from Evidence 9 and m16STT from Evidence 10.  This process yields the total m-values, 

mt16, at node 16 (see the first panel of Table 3 corresponding to node 16). 

�  Determine the total m-values at node 15.  In the present case, we have only one set of m-

values coming from Evidence 8.  This yields mt15. 

�  Propagate mt16 to node 14 by vacuously extending it onto the frame of node 14.  This 

process yields m16∅ 14.  Propagate mt15 to node 14, again, by vacuously extending it onto 

the frame of node 14.  This process yields m15∅ 14.  Combine all the m-values at node 14, 

i.e., combine m16∅ 14,  m15∅ 14, and m14.  Since m14 is a vacuous belief function, the 

above combination is simply the combination of m16∅ 14 and m15∅ 14 which yields mt14. 

�  Propagate mt14 to node 13 by vacuously extending it onto the fame of node 13.  Combine 

m14∅ 13 with m13 and obtain mt13.  Again, since m13 is a vacuous belief function, mt13 is 

simply m14∅ 13. 
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�  Propagate mt13 to node 12 by marginalizing it onto the frame of node 12.  This yields 

m13∅ 12.  Now, we combine m13∅ 12 with m12 to obtain mt12 for the next step.  Again, 

m12 is a vacuous belief function, therefore mt12 is the same as m13∅ 12. 

Table 4 here 

Table 4 represents the propagation of the m-values from nodes 10, 11 and 12 to node 9.  

The following steps explain the propagation process.  Again, we present the steps below in the 

same order as the panels in Table 4 for each node. 

�  Determine the total m-values at node 11, mt11, by combining the two m-values at node 

11, one from Evidence 5 (m11TC) and the other from Evidence 6 (m11STT). 

�  Determine the total m-values at node 10.  Since we have only one set of m-values, 

m10STT, at node 10 corresponding to Evidence 7, mt10 is simply m10STT. 

�  Propagate mt11, mt10 and mt12 to node 9.  As we know, node 9 is a bigger node than any 

of the nodes 10, 11 or 12.  Therefore, we vacuously extend mt11, mt10 and mt12 onto the 

frame of node 9.  This process yields m10∅ 9, m11∅ 9, and m12∅ 9.  Next, combine m10∅ 9, 

m11∅ 9, and m12∅ 9 with m9 to obtain mt9 at node 9.  Since m9 is a vacuous belief func-

tion, we need to combine only m10∅ 9, m11∅ 9, and m12∅ 9.  This step yields mt9. 

Table 5 here  

Table 5 deals with the computations involving propagation of m-values from nodes 6 and 8 

to node 7.  The first panel of Table 5 provides the values of m9∅ 8 and mt8.  Since node 8 is a 

smaller node compared to node 9, we marginalize mt9 onto Θ8 to obtain m9∅ 8.  We combine 

m9∅ 8 with m8 to obtain mt8.  The second panel of Table 5 represents the propagation of m-

values from nodes 8 and 6 which yields mt7.  

Table 6 here  

Table 6 presents the computations relevant to the propagation of m-values from node 7 to 

node 1.  The steps described below are in the same order as the panels in Table 6 for each node: 
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�  Propagate mt7 to node 3 by marginalizing it onto Θ3.  This process yields m7∅ 3.  

Combine m7∅ 3 with m3 to obtain mt3. 

�  Propagate mt3 to node 2 by vacuously extending it onto Θ2.  Combine the resulting m-

values with m2 to yield mt2. 

�  Propagate mt2 to node 1 by marginalizing it onto the frame of node 1.  This yields m2∅ 1.  

Combine m2∅ 1 with m1IF (Evidence 1) and m1AP (Evidence 2).  This yields mt1 which 

represents the combination of all the evidence in the network in Figure 1 at node 1. 

The above process completes the aggregation of all the evidence in the network in Figure 1.  

In the present article, we have illustrated the propagation of beliefs in only one direction; the 

direction that yields the overall belief for node 1.  However, one can use the same procedure of 

propagating beliefs if we were interested in the overall belief in any other variable.  For example, 

if we want to find the overall belief in variable SO then all the m-values in the Markov tree in 

Figure 3 will have to flow towards node 4.  It is extremely cumbersome to calculate the overall 

belief for each variable in the network in Figure 1 without the help of a computer.  As mentioned 

earlier, Shafer, Shenoy, and Srivastava (1988) have developed such a computer system that 

automates the propagation process (also, see Srivastava, Shenoy, and Shafer 1990). 
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V.  DISCUSSION OF THE RESULTS   

We have used numerical inputs for the strength of each item of evidence in Figure 1 as 

given in Tables 2-6.  These inputs are based on the auditor's judgment.  We believe that the 

auditor is more comfortable in thinking of the strength of evidence in terms of belief functions.13  

Of course, an empirical study is needed to find out how an auditor thinks. 

After aggregating all the evidence in the network in Figure 1, the overall m-values at node 

1  is given by (see the last panel of Table 6): 

 mtAR(ar) = 0.95307, mtAR(~ar) = 0, and mtAR({ar,~ar}) = 0.04693. 

The corresponding beliefs and plausibilities are given by (see Srivastava and Shafer 1992 for def-

initions): 

 BeltAR(ar) = 0.95307, BeltAR(~ar) = 0, and BeltAR({ar,~ar}) = 1, 

and 

 PLtAR(ar) = 1 - BeltAR(~ar) = 1, and PLtAR(~ar) = 1 - BeltAR(ar) = 0.04693. 

The above results indicate that we have an overall belief of 0.95307 that the accounts 

receivable balance is not materially misstated and a plausibility 0.04693 that the account is 

materially misstated.  As discussed by Shafer and Srivastava (1992), plausibility in '~ar' is 

equivalent to the audit risk.  Thus, we have 0.04693 risk that the account is materially misstated.  

The plausibility that the account is not materially misstated is 1 because we have no belief in 

support of material misstatement of the account.  An intuitive interpretation of this is that if we 

had to collect more evidence then the belief in 'ar' could increase to 1 from 0.95307. 

VI.  SUMMARY AND CONCLUSION 

We have illustrated the belief-function approach to aggregating audit evidence.  In general, 

aggregating evidence in the belief-function framework is essentially propagating beliefs in the 

evidential network.  We have discussed the three steps involved in the aggregation process.  The 

first step deals with constructing the evidential network for the audit and identifying the clusters 

of variables over which we have belief functions.  The second step deals with constructing a 



 

  17 

Markov tree from the evidential network.  The third step deals with propagating beliefs (i.e., m-

values) from all other nodes in the Markov tree to the node in which we are interested.  We have 

used a moderately complex example to show the details of the aggregation process. 

There are several questions related to assessment of beliefs in the audit evidence which are 

not dealt with in this article.  For example, what is the level of belief the auditor assigns to a sub-

jective item of evidence such as analytical procedures or inherent factors related to the client or 

the industry?  What are the factors that determine the strength of evidence in such cases?  What 

is the level of belief obtained from statistical evidence?  What should be the sample size for a 

statistical test to obtain a desired level of belief?  These questions are important and require 

further research. 

Further, we should point out that the use of 'and' relationships in our numerical example is 

purely for simplicity of computations.  The approach discussed here is a general approach and it 

is valid for other relationships too.  There is no difference in the mechanics of the propagation 

process.  We will have the same cluster of variables and the same Markov tree.  The only 

difference will be in the belief function that defines the relationship.  We have two major 

concerns regarding using the 'and' relationship in an evidential network.  One, that the 'and' 

relationship treats all the variables on the right of the node in the network with equal importance.  

For example, if an account is connected to all its audit objectives through an 'and' node then each 

audit objective is equally important.  But this may not be true, in general, in the auditing context; 

one audit objective may be more important than the other. 

The second concern is that the 'and' relationship is symmetric and may not very well repre-

sent the relationship between a balance sheet item and items on the income statement.  For exam-

ple, if we know with certainty that sales have occurred and cash receipts are complete then we 

definitely know that the existence objective of accounts receivable has been met (see Footnote 4).  

But the reverse is not necessarily true.  That is, if we know with certainty that the existence 

objective of accounts receivable has been met then we are not able to conclude with the same 
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level of confidence that sales have occurred and cash receipts are complete.  We need both 

theoretical and empirical study to model these relationships in belief functions. 
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FOOTNOTES 

1.   The evidential structure is a tree when each item of evidence relates to only one account or 
only one audit objective of an account.  This structure changes into a network when an item 
of evidence relates to more than one account or audit objective of an account.  An example of 
such an item of evidence is the confirmation of accounts receivable which relates to both 
valuation and existence objectives of the account. 

2.   An affirmative item of evidence means that we have assurance in favor of the account being 
not materially misstated or the audit objective being met and no assurance for the negation. 

3.   An example of the 'and' relationship is that the accounts receivable account is not materially 
misstated if and only if all the audit objectives of the account have been satisfied.  This 
relationship makes all the audit objectives equally important.  Similarly, an 'and' relationship 
between the financial statements and the accounts implies that the financial statements are 
fairly presented if and only if all the accounts are not materially misstated.  This relationship 
again makes all the accounts equally important. 

4.   We have assumed that sales returns and cash discounts are not material. 

5.   The choice based on the alphabetical order is purely a personal preference, one can choose 
any variable that yields the appropriate G.  The Markov tree may look different but the final 
propagation of beliefs will be the same in all cases (Shenoy and Shafer 1990).  It should be 
noted that in the case of a tie we have chosen a variable with a one-letter name over a 
variable with a two-letter name. 

6. Vacuous Extension:  Whenever a set of m-values is propagated from a smaller node (fewer 
variables) to a bigger node (more variables), the m-values are said to be vacuously extended 
onto the frame of the bigger node.  As an illustration, suppose we have the following m-
values on node E with frame ΘE = {e, ~e}. 
  mE(e) = 0.75, mE(~e) = 0, mE({e,~e}) = 0.25 
We want to vacuously extend them to a bigger node consisting of objectives E and V.  The 
entire frame of this combined node is obtained by multiplying the two individual frames, ΘE 
= {e, ~e} and ΘV = {v, ~v}.  The resulting frame is ΘE,V = ΘExΘV =  {(e,v), (e,~v), (~e,v), 
(~e,~v)}.  The vacuous extension of the above m-values from frame ΘE = {e, ~e} to frame 
ΘE,V is as follows: 
     m({(e,v), (e,~v)}) = mE(e) = 0.75 
     m(ΘE,V) = mE(ΘE) = 0.25 
and m-values for other subsets of ΘE,V are zero. 

7.  Marginalization:  Propagating m-values from a bigger node to a smaller node is called 
marginalization.  Let us consider the above example of Footnote 6 with slightly different m-
values.  Suppose we have the following m-values at ΘE,V which is the frame of the combined 
nodes E and V: 
   m(e,v) = 0.4, 
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  m({(e,v), (e,~v)}) = 0.2, 
     m(ΘE,V) = 0.4, 
all other m-values are zero. 
 Let us first marginalize onto the frame ΘE = {e,~e}.  Similar to marginalization of 
probabilities, we will sum all the m-values over the elements of frame ΘV = {v,~v} for a 
given set of elements of frame ΘE = {e, ~e}, i.e., 
  m(e) = m(e,v) + m({(e,v), (e,~v)}) = 0.4 + 0.2 = 0.6, 
  m(~e) = 0, 
  m({e,~e}) = m(ΘE,V) = 0.4. 
Marginalizing onto the frame ΘV = {v, ~v} yields the following values: 
  m(v) = m(e,v) = 0.4, 
  m(~v) = 0, 
 m({v,~v}) = m({(e,v),(e,~v)}) + m(ΘE,V) 
  = 0.2 + 0.4 = 0.6. 

8.  There are several sequences of the same steps.  One could begin from the lower end of the tree 
in Figure 3, propagate all the m-values to node 7, and bring all the m-values from the top of 
the tree to node 7, combine all these m-values at node 7.  Finally, propagate the m-values 
from nodes 7, 3, and 2 to node 1.  The final result will be the same irrespective of the starting 
point. 

9.   If we have two independent items of evidence with m1 and m2 representing the m-values on 
a frame Θ then by Dempster�s rule (Shafer 1976) we obtain the combined m-value for a 
subset A of frame Θ as 

 m(A) = K-1Σ{m1(B1)m2(B2)|B1↔B2 = A, A ≠ Ø},  
where the renormalization constant, K, is given by 

K = 1 - Σ{m1(B1)m2(B2)|B1↔B2 = }. 
The second term in K represents the conflict between the two items of evidence.  If the two 
items of evidence exactly contradict each other, i.e., if K = 0 then the two items of evidence 
are not combinable.  In other words, we cannot use Dempster�s rule when K = 0.   See Shafer 
(1976) for more than two independent items of evidence. 

10. When a belief function on a frame is combined with a vacuous belief function on the frame, 
the combined belief function is the same as the original belief function.  For example, if we 
have a belief function on the frame ΘAR ={ar, ~ar} as: m1(ar) > 0, m1(~ar) > 0, and m1({ar, 
~ar}) > 0. Suppose we have a vacuous belief function on the same frame, i.e., m2(ar) = 0, 
m2(~ar) = 0, and m2({ar, ~ar}) = 1.  Using Dempster's rule to combine the two beliefs, we 
obtain the resultant belief to be: m(ar) = m1(ar), m(~ar) = m1(~ar), and m({ar,~ar}) = 
m1({ar, ~ar}) which implies that the original belief has been unaffected by combining a 
vacuous belief function. 
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11. We want to combine m16∅ 14, m15∅ 14 and m14 to obtain mt14 using Dempster's rule.  Since 
m14 is a vacuous belief function, mt14 will be simply the combination of m16∅ 14 and 
m15∅ 14.  We have the following non-zero values of m16∅ 14 and m15∅ 14 as (see Table 3): 

m16∅ 14({(cv,sv), (~cv,sv)}) = 0.88, 
m16∅ 14(Θ14) =  0.12, 

and 
m15∅ 14({(cv,sv), (cv,~sv)}) = 0.6, 

m15∅ 14(Θ14) = 0.4. 

Using Dempster's rule (see Footnote 9), we find that there is no conflict between the two m-
values, i.e., K = 1.  Therefore, we obtain: 
mt14(cv,sv) = m16∅ 14({(cv,sv), (~cv,sv)})m15∅ 14({(cv,sv), (cv,~sv)})=0.88x0.6 = 0.528, 
mt14({(cv,sv),(~cv,sv)}) = m16∅ 14({(cv,sv), (~cv,sv)})m15∅ 14(Θ14) = 0.88x0.4 = 0.352, 
mt14({(cv,sv),(cv,~sv)}) = m16∅ 14(Θ14)m15∅ 14({(cv,sv), (cv,~sv)}) = 0.12x0.6 = 0.072, 

mt14(Θ14) = m16∅ 14(Θ14)m15∅ 14(Θ14) = 0.12x0.4 = 0.048. 

12. We want to combine m10∅ 9, m11∅ 9, and m12∅ 9 to obtain mt9.  We have the following val-
ues for them (see Table 4):  

m11∅ 9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) = 0.88, and m11∅ 9(Θ9) = 0.12, 
m10∅ 9({(v,cc,cv), (~v,cc,cv)}) = 0.7, and m10∅ 9(Θ9) = 0.3, 

 m12∅ 9({(v,cc,cv), (v,~cc,cv)}) = 0.528, (1)  
 m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,~cv), (~v,~cc,~cv)}) = 0.352, (2) 
 m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,cv), (~v,~cc,cv)}) = 0.072, (3) 
 m12∅ 9(Θ9) = 0.048. (4) 
It is easier to combine three sets of m-values in steps.  First, we combine m10∅ 9 and m11∅ 9 
which yields, say m'9.  Next, we combine m'9 with m12∅ 9 that yields mt9.  Using Dempster's 
rule to combine m10∅ 9 and m11∅ 9, we obtain the following non-zero values: 
m'9({(v,cc,cv), (~v,cc,cv)}) = m10∅ 9({(v,cc,cv), (~v,cc,cv)}) 
 x[m11∅ 9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) + m11∅ 9(Θ9)] 
 = 0.7(0.88 + 0.12) = 0.7, (5) 
m'9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) 
 = m10∅ 9(Θ9)m11∅ 9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) 

 = 0.3x0.88 = 0.264, (6) 
m'9(Θ9) = m10∅ 9(Θ9)m11∅ 9(Θ9) = 0.3x0.12 = 0.036. (7) 
We now combine m'9 and m12∅ 9.  The following are the non-zero values of mt9 (in terms of 
the above equations): 
mt9(v,cc,cv) = (1)(5) + (1)(6) +(2)(5) 

 = m12∅ 9({(v,cc,cv), (v,~cc,cv)})m'9({(v,cc,cv), (~v,cc,cv)}) 
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 + m12∅ 9({(v,cc,cv), (v,~cc,cv)})m'9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) 

 + m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,~cv), (~v,~cc,~cv)})m'9({(v,cc,cv), (~v,cc,cv)}) 

  = 0.528x0.7 + 0.528x0.264 + 0.352x0.7 = 0.75539, 
mt9({(v,cc,cv), (v,~cc,cv)}) = (1)(7) = m12∅ 9({(v,cc,cv), (v,~cc,cv)})m'9(Θ9) = 0.528x0.036 = 0.01901, 

mt9({(v,cc,cv), (~v,cc,~cv)}) = (2)(6) 

 = m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,~cv), (~v,~cc,~cv)})m'9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) 

 = 0.352x0.264 = 0.09293, 
mt9({(v,cc,cv), (v,~cc,cv), (~v,cc,~cv), (~v,~cc,~cv)}) = (2)(7) 

 = m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,~cv), (~v,~cc,~cv)})m'9(Θ9) = 0.352x0.036 = 0.01267, 

mt9({(v,cc,cv), (~v,cc,cv)}) = (3)(5) + (3)(6) + (4)(5) 

 = m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,cv), (~v,~cc,cv)})m'9({(v,cc,cv), (~v,cc,cv)}) 

 + m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,cv), (~v,~cc,cv)})m'9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) 

 + m12∅ 9(Θ9)m'9({(v,cc,cv), (~v,cc,cv)}) 

 = 0.072x0.7 + 0.072x0.264 + 0.048x0.7 = 0.10301,  
mt9({(v,cc,cv), (v,~cc,cv), (~v,cc,cv), (~v,~cc,cv)}) = (3)(7) 

 = m12∅ 9({(v,cc,cv), (v,~cc,cv), (~v,cc,cv), (~v,~cc,cv)})m'9(Θ9) = 0.072x0.036 = 0.00259, 

mt9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) = (4)(6) 

 = m12∅ 9(Θ9)m'9({(v,cc,cv), (v,cc,~cv), (~v,cc,cv), (~v,cc,~cv)}) =  0.048x0.264 = 0.01267, 

mt9(Θ9 )  = (4)(7) = m12∅ 9(Θ9)m'9(Θ9) = 0.048x0.036 = 0.00173. 

13. Although it is an empirical question, our experience with talking to several experienced audi-
tors of various accounting firms suggests that the auditors feel that when dealing with audit 
evidence, it is more intuitive to think in terms of belief functions than to think of 
probabilities.  For example, suppose the auditor has been involved with the client for several 
years and has very positive feelings about the management, and also does not see any 
problem with the industry.  Hence, a positive feeling about the fair presentation of the overall 
financial statements.  But, he is not willing to put too much weight on this evidence (or 
combination of evidence).  It is more intuitive for him to say that he believes that the 
financial statements are fairly presented with a low level of assurance, say 0.3, and for the 
remaining belief of 0.7 he does not know what to do; it is definitely not in support of the 
material misstatement.  He will have to gather more evidence to reallocate 0.7.  Representing 
the above evidence in probability terms does not quite express the auditor's feeling. 
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Figure 1 

Evidential Network for Accounts Receivable*. 
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*  An ellipse represents a variable and a rectangle represents an item of evidence.  A circle with 
'&' in it represents an 'and' node which implies that the variable on the left of it is met if and 
only if the variables on its right are met.  An item of evidence may consist of one or more than 
one audit procedure (see Table 1). 
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Figure 2 

Markov Tree of the Evidential Network in Figure 1. 
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Figure 3 

Markov tree of the evidential network in Figure 1 with the items of evidence attached to the 
relevant nodes*.   

AR E, VAR, E, V
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*A rounded box represents a node and a rectangular box represents an item of evidence.  All the 
items of evidence presented here are given in Table 1.  The shaded boxes represent 'and' nodes 
which implies that the left most variable in the node is related to the next two variables through 
an 'and' relationship.  For example, Node 2 is an 'and' node; it implies that the accounts 
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receivable balance (AR) is not materially misstated if and only if the existence (E) and valuation 
(V) objectives have been met.  
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Exhibit 1 

Markov tree construction for the evidential network in Figure 1.  X represents the set of 
variables in the evidential network, and H represents the set of subsets of variables over 
which we have belief functions.  The subset of variables in bold faces in Hi represents the 

new element (Fi) that has been added to Hi-1.  
 

X = {AR, E, V, CC, CV, SO, SV} 
H = {{AR}, {CC}, {CV}, {SO}, {SV}, {E,V}, {CC,CV}, {AR,E,V}, {E,CC,SO}, {V,CV,SV}} 
Initialization:  U0 = X, H0 = H, N = Ø, E = Ø. 
Iteration Xi and Gi, where No. of  Xi, Gi, Fi, N, E, Ui and Hi with the smallest number of  

number Gi = ∪ {N∈ Hi-1 |Xi∈ N} elements  elements in Gi using the algorithm in Appendix A 
 i  in Gi  
 1 AR:  {AR, E, V} 3♦ * X1 = AR, G1 = {AR,E,V}, F1 = G1 -  X1 = {E,V}. 
 E:     {AR, E, V, CC, SO} 5 N = {{AR}, G1, F1 },  
 V:    {AR, E, V, CV, SV} 5 E = {{{AR}, G1}, {G1, F1 }}, 
 CC:  {E, CC, CV, SO} 4 U1 = U0 - X1 = {E, V, CC, CV, SO, SV},  
 CV:  {V, CC, CV, SV} 4 H1={{CC}, {CV}, {SO}, {SV}, {E,V}, {CC,CV},  
 SO:  {E, CC, SO} 3  {E, CC, SO}, {V,CV, SV}}. 
 SV:  {V, CV, SV} 3 The above nodes and edges are drawn in Figure 2 using  

       
 
 2 E:     {E, V, CC, SO} 4 X2 = SO, G2 = {E, CC, SO}, F2 = G2 -  X2 = {E, CC}. 
  V:     {E, V, CV, SV} 4 The new nodes to be added to N  are: {SO}, G2, F2 . 
  CC:  {E, CC, CV, SO} 4 The new edges to be added to E are:   
  CV:  {V, CC, CV, SV} 4  {{{SO}, G2}, {G2, F2}}. 
  SO:  {E, CC, SO} 3♦  U2 = U1 - X2 = {E, V, CC, CV, SV},  
  SV:  {V, CV, SV} 3 H2 = {{CC}, {CV}, {SV}, {E,V}, {CC, CV},  
     {V, CV, SV}, {E, CC}}. 
    The above nodes and edges are drawn in Figure 2 using 

      
     
 3 E:    {E, V, CC} 3♦ X3 = E, G3 = {E, V, CC}, F3 = G3 -  X3 = {V, CC}. 
  V:    {E, V, CV, SV} 4 The new nodes to be added to N are:  G3 and F3 . 
  CC:  {E, CC, CV} 3 The new edges to be added to E are:  
  CV:  {V, CC, CV, SV} 4  {{{E,CC}, G3}, {{E,V}, G3}, {F3 , G3}}. 
  SV:  {V, CV, SV} 3 U3 = U2 - X3 = {V, CC, CV, SV},  
    H3 = {{CC}, {CV}, {SV}, {CC, CV}, {V, CV, SV},  
     {V, CC}}. 
    The above nodes and edges are drawn in Figure 2 using 
     
 
*  An arrow indicates that the corresponding Gi has the least number of variables.  If there are 

more than one element with the same (least) number of variables in the corresponding Gi then 
we choose the element that comes first in the alphabetical order (also, see Footnote 5). 
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Exhibit 1 (Continued) 
 

Markov tree construction for the evidential network in Figure 1.   
 

X = {AR, E, V, CC, CV, SO, SV} 
H = {{AR}, {CC}, {CV}, {SO}, {SV}, {E,V}, {CC,CV}, {AR,E,V}, {E,CC,SO}, {V,CV,SV}} 
Initialization:  u = X, H0 = H, N = Ø, E = Ø. 
Iteration Xi and Gi, where No. of  Xi, Gi, Fi, N, E, Ui  and Hi with the smallest number of  

number Gi = ∪ {N∈ Hi-1 |Xi∈ N} elements  elements in Gi using the algorithm in Appendix A 
 i  in Gi  
 4 V:    {V, CC, CV, SV} 4 X4 = CC, G4 = {V, CC, CV}, F4 = G4 -  X4 = {V, CV}, 
  CC:  {V, CC, CV} 3♦ The new nodes to be added to N are:  
  CV:  {V, CC, CV, SV} 4 {CC}, {CC,CV}, G4, F4.  
  SV:   {V, CV, SV} 3 The new edges to be added to E are: 
    {{{CC},G4}, {{CC,CV},G4}, {{V,CC},G4}, {F4,G4}}. 
    U4 = U3 - X4 = {V, CV, SV}, 
    H4 = {{CV}, {SV}, {V, CV, SV}, {V, CV}}. 
    The above nodes and edges are drawn in Figure 2 using 

      
 
5 V:    {V, CV, SV} 3♦ X5 = V, G5 = {V, CV, SV}, F5 = G5 -  X5 = {CV, SV}. 
 CV:  {V, CV, SV} 3 The new nodes to be added to N are G5 and F5.  
 SV:  {V, CV, SV} 3 The new edges to be added to E are: 
   {{{V,CV}, G5}, {F5, G5}} 
   U5 = U4 - X5 = {CV, SV}, 
   H5 = {{CV}, {SV},  {CV, SV}}. 
   The above nodes and edges are drawn in Figure 2 using  

     
 
 6 CV:  {CV, SV} 2♦  X6 = CV, G6 = {CV, SV}, F6 = G6 -  X6 = {SV}. 
  SV:  {CV, SV} 2 The new nodes to be added to N are {CV} and F6 
    The new edges to be added to E are: 
    {{{CV}, G6}, {F6, G6}}. 
   U6 = U5 - X6 = {SV}, 
   H6 = {SV}. 
   The above nodes and edges are drawn in Figure 2 using  

     
 
 7 SV:  {SV} 1 X7 = SV, G7 = {SV}, F7 = G7 -  X7 = {Ø}. 
    No new nodes to be added to N. 
    No new edges to be added to E. 
    U7 = U6 - X7 = {Ø}, 
    H7 = {Ø}. 
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Table 1 

The Audit Procedures used in Figure 1 (Arens and Loebbecke, 1991: 391-393).  

Evidence   
Number and    Audit Procedure 
the associated 
Node No. 
in Figure 3  

1 (Node 1)  Inherent Factors (IF) -  Prior years' experience with the account, related accounting system, and 
the control environment.  Also, the knowledge about the competence and trustworthiness of ac-
counting personnel working in the sales and collection cycle, and other relevant inherent factors. 

2 (Node 1) Analytical Procedures (AP) - (i)  Review accounts receivable trial balance for large and unusual 
receivables.  (ii) Calculate ratios indicated in carry-forward working papers (not included here) and 
follow up any significant changes from prior years.     

3 (Node 4) Test of Controls (TC) - (i) Account for a sequence of sales invoices in the sales journal.  (ii) For 
selected duplicate invoice numbers from the sales journal, examine underlying documents for indi-
cation of internal certification that the total amount recorded in the journal, date, customer name, 
pricing, extension, and footings have been checked.   

4 (Node 4) Substantive Test of Transactions (STT) - (i)  Review the sales journal and ledger for unusual 
transactions and amounts.  (ii)  Trace recorded sales from the sales journal to the file of supporting 
documents, which includes a duplicate sales invoice, bill of lading, sales order, and customer 
order. 

5 (Node 11) Test of Controls (TC) - Observe whether a restrictive endorsement is used on cash receipts. 

6 (Node 11) Substantive Test of Transactions (STT) - Obtain the prelisting of cash receipts, and trace 
amounts to the cash receipts journal, testing for name, amount, and date. 

7 (Node 10) Substantive Test of Transactions (STT) - Compare the prelisting of cash receipts with the dupli-
cate deposit slip, testing for names, amounts, and dates.  Trace the total from the cash receipts 
journal to the bank statement, testing for dates, amounts of deposit, and delay in deposit. 

8 (Node 15) Test of Controls (TC) - Observe whether the accountant reconciles bank account. 

9 (Node 16) Test of Controls (TC) - For selected duplicate invoice numbers from the sales journal, examine 
underlying documents for indication of internal certification that the total amount recorded in the 
journal, date, customer name, pricing, extension, and footings have been checked.   

10 (Node 16) Substantive of Test of Transactions (STT) - Trace selected duplicate invoice numbers from the 
sales journal to (a) Duplicate sales invoice, and test for the total amount recorded in the journal, 
date, customer name.  Check the pricing, extensions, and footings.  (b) Bill of lading, and test for 
customer name, product description, quantity, and date.  (c) Duplicate sales order, and test for cus-
tomer name, product description, quantity, date, and internal approval.  (d) Customer order, and 
test for customer name, product description, quantity, date, and credit approval by the credit 
manager. 

11 (Node 3) Test of Details of Balance (TDB) - Confirm accounts receivable using positive confirmations 
above a given amount and perform alternative procedures for all confirmations not returned on the 
first and second request. 
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Table 2 
Propagation of m-values from Node 4 to Node 6 in the Markov tree in Figure 3. 

Only non-zero m-values are given in this table. 
 

Node Frame m-values m-values at the node The total m-values at the node 
 of defined  from the neighboring (Obtained from combining m-values 
 the node at the node node(s) in columns 3 and 4 using Dempster's rule) 
4 Θ4 = {so,~so} m4TC(so) = 0.6 none mt

4(so) = 0.88* 

  m4TC(Θ4) = 0.4  mt
4(Θ4) = 0.12 

  m4STT(so) = 0.7  
  m4STT(Θ4) = 0.3  
  
5 Θ5

#
 = {(e,cc,so),  m5(Θ5) = 1.0 m4∅ 5({(e,cc,so), (~e,~cc,so)})  mt

5({(e,cc,so), (~e,~cc,so)}) = 0.88 

            (~e,cc,~so),    = mt
4(so)  = 0.88 mt

5(Θ5) = 0.12 

            (~e,~cc,so),  m4∅ 5(Θ5) = mt
4(Θ4) = 0.12 

            (~e,~cc,~so)} 
 
6 Θ6 = {(e,cc),  (e,~cc), m6(Θ6) = 1.0 m5∅ 6({(e,cc), (~e,~cc)}) mt

6({(e,cc), (~e,~cc)}) = 0.88 

          (~e,cc), (~e,~cc)}   = mt
5({(e,cc,so), (~e,~cc,so)}) = 0.88 mt

6(Θ6) = 0.12 

   m5∅ 6(Θ6) = mt
5(Θ5) = 0.12 

 
* Since there is no conflict between the two items of evidence, the renormalization constant in Dempster's rule (Footnote 9) is 1 and the combined m-values are: 

mt
4(so) = m4TC(so)m4STT(so) + m4TC(so)m4STT(Θ4) +  m4TC(Θ4)m4STT(so) = 0.6x0.7 + 0.6x0.3 + 0.4x0.7 = 0.88,  mt

4(~so) = m4TC(~so)m4STT(~so) + 
m4TC(~so)m4STT(Θ4) +  m4TC(Θ4)m4STT(~so) = 0, and mt

4(Θ4) =  m4TC(Θ4)m4STT(Θ4) = 0.4x0.3 = 0.12. 
#  In general, the frame of Node 5 contains the following eight elements: {(e,cc,so), (e,cc,~so), (e,~cc,so), (e,~cc,~so), (~e,cc,so), (~e,cc,~so), (~e,~cc,so), 

(~e,~cc,~so)}.  Since this node is an 'and' node, that is, e is true if and only if cc and so were true, the corresponding non-zero m-value is m({(e,cc,so), 
(~e,cc,~so), (~e,~cc,so), (~e,~cc,~so)}) = 1.0.  The effect of this m-value is that the frame of Node 5 is effectively reduced to a four-element set:  {(e,cc,so),  
(~e,cc,~so), (~e,~cc,so), (~e,~cc,~so)} with a vacuous belief function over this set. 
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Table 3 
Propagation of m-values from Nodes 15 and 16 to Node 12 in the Markov tree in Figure 3. 

Only non-zero m-values are given in this table. 
 

Node Frame m-values m-values at the node Total m-values at the node 
 of defined  from the neighboring (Obtained from combining m-values  
 the node at the node node(s) in columns 3 and 4 using Dempster's rule) 
16 Θ16 = {sv, ~sv} m16TC(sv) = 0.6 none mt

16(sv) = m16TC(sv)m16STT(sv) 
  m16TC(Θ16) = 0.4  + m16TC(sv)m16STT(Θ16) 
  m16STT(sv) = 0.7    + m16TC(Θ16) m16STT(sv) = 0.88  
  m16STT(Θ16) = 0.3   mt

16(Θ16) = m16TC(Θ16)m16STT(Θ16) = 0.12 
15 Θ15 = {cv, ~cv} m15TC(cv) = 0.6 none mt

15(cv) = 0.6 
  m15TC(Θ15) = 0.4  mt

15(Θ15) = 0.4 
14 Θ14 = {(cv,sv), m14(Θ14) = 1.0 m16∅ 14({(cv,sv), (~cv,sv)}) = mt

16(sv) = 0.88  mt
14(cv,sv)  =  0.528#  

            (cv,~sv),   m16∅ 14(Θ14) = mt
16(Θ16) = 0.12 mt

14({(cv,sv), (~cv,sv)}) = 0.352 
             (~cv,sv),  m15∅ 14({(cv,sv), (cv,~sv)}) = mt

15(cv) = 0.6 mt
14({(cv,sv), (cv,~sv)}) = 0.072 

           (~cv,~sv)}  m15∅ 14(Θ14) = mt
15(Θ15) = 0.4 mt

14(Θ14) = 0.048 
13 Θ*

13 ={(v,cv,sv),  m13(Θ13) = 1.0 m14∅ 13(v,cv,sv) = mt
14(cv,sv) = 0.528 mt

13(v,cv,sv) = 0.528 
       (~v,cv,~sv),  m14∅ 13({(v,cv,sv), (~v,~cv,sv)}) mt

13({(v,cv,sv), (~v,~cv,sv)}) = 0.352 
       (~v,~cv,sv),  = mt

14({(cv,sv), (~cv,sv)}) = 0.352  mt
13({(v,cv,sv), (~v,cv,~sv)}) = 0.072  

      (~v,~cv,~sv)}  m14∅ 13({(v,cv,sv), (~v,cv,~sv)}) mt
13(Θ13) = 0.048 

   = mt
14({(cv,sv), (cv,~sv)}) = 0.072 

   m14∅ 13(Θ13) = mt
14(Θ14) = 0.048  

12 Θ12 ={(v,cv),  m12(Θ12) = 1.0 m13∅ 12(v,cv) =mt
13(v,cv,sv)=0.528 mt

12(v,cv) = 0.528  
            (v,~cv),  m13∅ 12({(v,cv), (~v,~cv)}) mt

12({(v,cv), (~v,~cv)}) = 0.352 
            (~v,cv),  = mt

13({(v,cv,sv), (~v,~cv,sv)}) = 0.352  mt
12({(v,cv), (~v,cv)}) = 0.072 

           (~v,~cv)}  m13∅ 12({(v,cv), (~v,cv)}) mt
12(Θ12) = 0.048 

   = mt
13({(v,cv,sv), (~v,cv,~sv)}) = 0.072   

   m13∅ 12(Θ12) = mt
13(Θ13) = 0.048 

#  See Footnote 11 for computations. 
* Node 13 is an 'and' node by assumption, it implies that v is true if and only if cv and sv are true.  Also, see the second footnote in Table 2. 



 

  35 

 



 

  36 

Table 4 
Propagation of m-values from Nodes 10, 11 and 12 to Node 9 in the Markov tree in Figure 3. 

Only non-zero m-values are given in this table.  Values of mt12 are given in Table 3 
Node Frame m-values m-values at the node Total m-values at the node 
 of defined  from the neighboring (Obtained from combining m-values 
 the node at the node node(s) in columns 3 and 4 using Dempster's rule) 
11 Θ11 = {cc, ~cc} m11TC(cc) = 0.6 none mt

11(cc) = m11TC(cc)m11STT(cc)  
  m11TC(Θ11) = 0.4   + m11TC(cc)m11STT(Θ11) 
  m11STT(cc) = 0.7   + m11TC(Θ11) m11STT(cc) = 0.88 
  m11STT(Θ11) = 0.3   mt

11(Θ11) = 0.12 
10 Θ10 = {(cc,cv),  m10STT(cc,cv) = 0.7 none mt

10(cc,cv) = 0.7 
          (cc,~cv), m10STT(Θ10) = 0.3  mt

10(Θ10) = 0.3 
          (~cc,cv) 
          (~cc,~cv)} 
9 Θ9 = {(v,cc,cv), m9(Θ9) = 1.0 m11∅ 9({(v,cc,cv), (v,cc,~cv),  mt

9(v,cc,cv) = 0.75539*  

          (v,cc,~cv),    (~v,cc,cv), (~v,cc,~cv)})  =  mt
11(cc) = 0.88 mt

9({(v,cc,cv), (v,~cc,cv)}) = 0.01901  

          (v,~cc,cv),  m11∅ 9(Θ9) = mt
11(Θ11) = 0.12 mt9({(v,cc,cv), (~v,cc,~cv)}) = 0.09293  

        (v,~cc,~cv),   mt
9({(v,cc,cv), (v,~cc,cv),            

 (~v,cc,cv),  m10∅ 9({(v,cc,cv), (~v,cc,cv)}) =  mt
10(cc,cv) = 0.7   (~v,cc,~cv), (~v,~cc,~cv)}) = 0.01267 

        (~v,cc,~cv),  m10∅ 9(Θ9) = mt
10(Θ10) = 0.3 mt

9({(v,cc,cv), (~v,cc,cv)}) = 0.10301  

         (~v,~cc,cv),   mt
9({(v,cc,cv), (v,~cc,cv),         

 (~v,~cc,~cv)}  m12∅ 9({(v,cc,cv), (v,~cc,cv)}) =  mt
12(v,cv) = 0.528     (~v,cc,cv), (~v,~cc,cv)}) = 0.00259    

                m12∅ 9({(v,cc,cv), (v,~cc,cv), mt
9({(v,cc,cv), (v,cc,~cv),      

    (~v,cc,~cv), (~v,~cc,~cv)}) (~v,cc,cv), (~v,cc,~cv)}) = 0.01267 
   = mt

12({(v,cv,) (~v,~cv)}) = 0.352 mt
9(Θ9 )  = 0.00173 

   m12∅ 9({{(v,cc,cv), (v,~cc,cv), 
     (~v,cc,cv), (~v,~cc,cv)}) 
   = mt

12({(v,cv), (~v,cv)}) = 0.072  

   m12∅ 9(Θ9) = mt
12(Θ12) = 0.048  

*  See Footnote 12 for details. 
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Table 5 
Propagation of m-values from Nodes 6 and 8 to Node 7 in the Markov tree in Figure 3.  Only non-zero m-values are 

given in this table.  Values of mt6 and mt9 are given in Tables 2 and 4, respectively. 
Node Frame m-values m-values at the node Total m-values at the node 
 of defined  from the neighboring (Obtained from combining m-values 
 the node at the node node(s) in columns 3 and 4 using Dempster's rule) 
8 Θ8 = {(v,cc),  m8(Θ8) = 1.0 m9∅ 8(v,cc) = mt

9(v,cc,cv) = 0.75539 mt
8(v,cc) = 0.75539 

           (v,~cc),  m9∅ 8({(v,cc), (v,~cc)}) mt
8({(v,cc), (v,~cc)}) = 0.01901 

          (~v,cc),  = mt
9({(v,cc,cv), (v,~cc,cv)}) = 0.01901 mt

8({(v,cc), (~v,cc)}) = 0.20861 
         (~v,~cc)}  m9∅ 8({(v,cc), (~v,cc)}) = mt

9({(v,cc,cv), (~v,cc,cv)}) mt
8(Θ8) = 0.01699 

   + mt9({(v,cc,cv), (~v,cc,~cv)})  
   + mt

9({(v,cc,cv), (v,cc,~cv),  
   (~v,cc,cv), (~v,cc,~cv)}) 
   = 0.10301+ 0.09293 +  0.01267 = 0.20861 
   m9∅ 8(Θ8)  
   = mt

9({(v,cc,cv), (v,~cc,cv), (~v,cc,cv), (~v,~cc,cv)})  
   + mt

9({(v,cc,cv), (v,~cc,cv), (~v,cc,~cv), (~v,~cc,~cv)}) 
   + mt

9(Θ9 )  = 0.00259 + 0.01267 + 0.00173 = 0.01699 
7 Θ7 = {(e,v,cc),  m7(Θ7) = 1.0 m8∅ 7({(e,v,cc), (~e,v,cc)}) = mt

8(v,cc) = 0.75539 mt
7(e,v,cc) = 0.66474*  

 (e,v,~cc),  m8∅ 7({(e,v,cc), (~e,v,cc), (e,v,~cc), (~e,v,~cc)})  mt
7({(e,v,cc), (~e,v,~cc)}) = 0.01673  

 (e,~v,cc),  = mt
8({(v,cc), (v,~cc)}) = 0.01901 mt

7({(e,v,cc), (e,~v,cc)}) = 0.18358 
 (e,~v,~cc),  m8∅ 7({(e,v,cc), (~e,v,cc), (e,~v,cc), (~e,~v,cc)}) mt

7({(e,v,cc), (~e,v,cc)}) = 0.09065 
 (~e,v,cc),  = mt

8({(v,cc), (~v,cc)}) = 0.20861 mt
7({(e,v,cc), (e,~v,cc),  

 (~e,v,~cc),  m8∅ 7(Θ7) = m'8(Θ8) = 0.01699 (~e,v,~cc), ~e,~v,~cc)}) = 0.01495 
 (~e,~v,cc),   mt

7({(e,v,cc), (~e,v,cc), 
 (~e,~v,~cc)}   (e,v,~cc), (~e,v,~cc)}) = 0.00228 
    m6∅ 7({(e,v,cc), (e,~v,cc), (~e,v,~cc), (~e,~v,~cc)}) mt

7({(e,v,cc), (~e,v,cc), 
   = mt

6({(e,cc), (~e,~cc)}) = 0.88 (e,~v,cc), (~e,~v,cc)}) = 0.02503 
   m6∅ 7(Θ7) = mt

7(Θ7)  = 0.12 mt
7(Θ7) = 0.00204 

* Dempster's rule yields mt
7(e,v,cc) = m8∅ 7({(e,v,cc), (~e,v,cc)})m6∅ 7({(e,v,cc), (e,~v,cc), (~e,v,~cc), (~e,~v,~cc)}).  We obtain all values of mt

7 by 
multiplying each term in m8∅ 7 with each term in m6∅ 7. 
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Table 6 
Propagation of m-values from Node 7 to Node 1 in the Markov tree in Figure 3. 

Only non-zero m-values are given in this table.  Values of mt
7 are given in Table 5. 

 
Node Frame m-values m-values at the node Total m-values at the node 
 of defined  from the neighboring (Obtained from combining m-values 
 the node at the node node(s) in columns 3 and 4 using Dempster's rule) 
3 Θ3 = {(e,v), (e,~v), m3(e,v) = 0.75 m7∅ 3(e,v) = mt

7(e,v,cc) = 0.66474 mt
3(e,v) = m3(e,v)  

        (~e,v), (~e,~v)} m3(Θ3) = 0.25 m7∅ 3({(e,v), (~e,v)}) = mt
7({(e,v,cc), (~e,v,~cc)}) + m3(Θ3) m7∅ 3(e,v)   

            + mt
7({(e,v,cc), (~e,v,cc)}) = 0.91619 

           + mt
7({(e,v,cc), (~e,v,cc), (e,v,~cc), (~e,v,~cc)}) mt

3({(e,v), (~e,v)}) 
   = 0.01673 + 0.09065 + 0.00228 = 0.10966 = m3(Θ3)m7∅ 3({(e,v), (~e,v)}) 
   m7∅ 3({(e,v), (e,~v)}) = mt

7({(e,v,cc), (e,~v,cc)}) = 0.18358 = 0.02741   
   m7∅ 3(Θ3)=mt

7({(e,v,cc), (e,~v,cc),(~e,v,~cc), (~e,~v,~cc)}) mt
3({(e,v,) (e,~v)})     

   +  mt
7({(e,v,cc), (~e,v,cc), (e,~v,cc), (~e,~v,cc)})  = m3(Θ3)m7∅ 3({(e,v), (e,~v)}) 

    + mt
7(Θ7)  =0.04589 

   = 0.01495 + 0.02503 +0.00204 = 0.04202 mt
3(Θ3) = m3(Θ3)m7(Θ7) = 0.01051 

2 Θ*
2 = {(ar,e,v),  m2(Θ2) = 1.0 m3∅ 2(ar,e,v) = mt

3(e,v) = 0.91619 mt
2(ar,e,v) = 0.91619   

 (~ar,e,~v),   m3∅ 2({(ar,e,v), (~ar,~e,v)})    mt
2({(ar,e,v), (~ar,~e,v)})= 0.02741  

 (~ar,~e,v),   = mt
3({(e,v), (~e,v)}) = 0.02741 mt

2({(ar,e,v), (~ar,e,~v)}) = 0.04589  
 (~ar,~e,~v)}  m3∅ 2({(ar,e,v), (~ar,e,~v)})  mt

2(Θ2) = 0.01051 
   = mt

3({(e,v), (e,~v)}) = 0.04589  
   m3∅ 2(Θ2) = mt

3(Θ3) = 0.01051  
1 Θ1 = {ar, ~ar} m1IF(ar) = 0.2 m2∅ 1(ar) = mt

2(ar,e,v) = 0.91619 mt
1(ar) = 0.95307#   

  m1IF(Θ1) = 0.8 m2∅ 1(Θ1) = mt
2({(ar,e,v), (~ar,~e,v)}) mt

1(Θ1) = 0.04693 
   + mt

2({(ar,e,v), (~ar,e,~v)})   
  m1AP(ar) = 0.3 + mt

2(Θ2)     
  m1AP(Θ1) = 0.7 = 0.02741 + 0.04589 + 0.01051 = 0.08381   
* Node 2 is an 'and' node by assumption, this implies that ar is true if and only if e and v are true.  Also, see the second footnote in Table 2. 
# Since mt

1(Θ1) =  m1IF(Θ1) m1AP(Θ1) m2∅ 1Θ1) = 0.04693, and mt
1(~ar)  = 0, we have  mt

1(ar) = 1-  mt
1(~ar)  - mt

1(Θ1)  = 0.95307. 



 

  39 

 
APPENDIX A 

Markov Tree 

A Markov tree is a topological tree, whose nodes are subsets of variables, with the property 

that if a variable belongs to two distinct nodes, then every node lying on the path between these 

two nodes contains the variable (Shenoy 1991).  The properties of Markov trees and how to con-

struct such trees have been studied and discussed by Kong (1986) and Mellouli (1987).  Also, 

Markov trees are discussed in the computer science literature under the name "join trees" (e.g., 

see Maier 1983).  The purpose of this appendix is to summarize the algorithm for constructing a 

Markov tree from an evidential network. 

In order to describe the algorithm, we need to present a formal definition of a Markov tree.    

A Markov tree is characterized by a set of nodes N and a set of edges E where each edge is a two-

element subset of N such that: 

(i)  (N,E) is a tree. 

(ii) If N and N' are two distinct nodes in N, and {N, N'} is an edge, i.e., {N, N'}∈ E, , then 
N∩N'≠∅ .  

(ii) If N and N' are distinct nodes of N, and X is a variable in both N and N', then X is in  
every node on the path from N to N'. 

In order to construct a Markov tree from an evidential network, we first need to determine 

the set H of subset of variables that have belief functions associated.  As discussed in Section I, 

understanding how various items of evidence bear on different variables of interest and knowing 

the logical relationships between different variables provide the set H.  We will use Kong's 

algorithm (1986) as discussed below to construct a Markov tree from H. 

Let us define X to be the set of variables in H.  Shenoy (1991) describes the Markov tree 

construction process in terms of pseudo-Pascal as: 
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  U0:= X {Initialization} 
  H0:=H  {Initialization} 

  N:=∅   {Initialization} 

  E:=∅   {Initialization} 

 For i = 1 to n do (n is the number of variables in X) 

 begin 

 Pick a variable from set Ui-1 and call it Xi 

 Gi:= ∪ {N∈ Hi-1 |Xi∈ N}.  

 Fi:= Gi - {Xi}.  

 N := N  ∪ {N∈ Hi-1 |Xi∈ N}∪ {Fi}∪ {Gi}.  

  E:= E ∪ {{N, Gi}|N∈ Hi-1 , N≠Gi, Xi∈ N}∪ {{Fi,Gi}} 

 Ui:= Ui-1 - {Xi} 

 Hi:= {N∈ Hi-1|Xi∉ N}∪ {Fi} 

 end. 
 

In the above algorithm, every sequence gives a Markov tree.  Our objective in constructing 

a Markov tree is to have the nodes in the tree as small as possible.  The reason for constructing 

such a Markov tree is that computations for propagating beliefs in such a tree becomes very 

efficient.  Kong (1986) has proposed the one-step-look-ahead heuristic that selects a variable Xi 

in each iteration which yields a Gi with the least number of variables.  Such an approach 

provides a "good" Markov tree, i.e., a tree whose nodes will contain as few variables as possible. 


