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Analytical Formulas for Risk Assessment for a Class of 

Problems where Risk Depends on Three Interrelated Variables  

ABSTRACT 

We derive general analytical formulas for assessing risks in a problem domain where the 
risk depends on three interrelated variables. More specifically, we derive general analytical 
formulas for propagating beliefs in a network where three binary variables, A, B and C, are 
related to a fourth binary variable Z through an ‘AND’ relationship. In addition, we assume that 
variables A, B and C are interrelated in that a change in one variable may affect the value of each 
of the other two. The analytical formulas derived in this article determine the overall belief and 
plausibility that Z is true or not true, given that we have beliefs on variables A, B and/or C.  

To demonstrate the importance of the general results, we use the results to develop 
models applicable to three real-world situations. The first model can aid external auditors in 
assessing the quality of an audit client’s internal audit function to determine the extent to which 
the internal auditor’s work can be relied on in the conduct of a financial audit while the second 
can aid in assessing the risk of impaired auditor independence when conducting a financial 
statement audit. The third model can be used to assess the risk of management fraud in financial 
reporting. Assessment of such risks is of critical importance to external auditors, regulators, and 
the investing public. Analytical formulas to help address these types of important business and 
economic problems have not been available prior to these derivations.  

 

Key Words: Risk Assessment, Belief Propagation, Dempster-Shafer Theory of Belief Functions, 
Interacting Variables, Fraud Risk Assessment Model, Auditor’s Independent Risk Assessment 
Model, Internal Audit Function Assessment Model 
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Analytical Formulas for Risk Assessment for a Class of 
Problems where Risk Depends on Three Interrelated Variables 

 

I.  INTRODUCTION 

In the business world, failure to recognize and assess risks can result in significant costs 

to the public. In a financial statement audit, for example, it is important that the auditor assess 

the risk of financial statement fraud. However, as evidenced from the many cases of fraudulent 

financial reporting, auditors face significant challenges in assessing such risks adequately.1 The 

inability to assess fraud risk adequately has cost the auditing profession and the investing public 

billions of dollars. This is evidenced by the demise of one of the world’s largest accounting and 

auditing firms, Arthur Andersen, and the failures of companies such as Enron and WorldCom. 

According to Cotton [5], shareholders lost $460 billion in the five fraud cases of Enron, Global 

Crossing, Qwest, WorldCom, and Tyco alone. The cost is much more if the indirect costs of 

fraudulent financial reporting behaviors are considered, such as the loss of public trust in the 

auditing profession and reduced confidence in the capital market system that is the engine of the 

global economy. 

The auditing profession has been aware of the need to identify and assess the risk of 

financial statement fraud for some time. In 2002 the American Institute of Certified Public 

Accountants (AICPA) published Statement on Auditing Standards No. 99, Consideration of 

Fraud in a Financial Statement Audit [3], which requires a pre-audit assessment of the risk of 

fraud by the independent auditor as well as a continuous assessment update as a financial 

                                                 
1 For example, Enron, Global Crossing, Qwest, WorldCom, and Tyco. See [5] for more 

examples. 
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statement audit progresses. This statement indicates that three conditions generally are present 

when fraud occurs: [3, ¶7]: 

 1. management or other employees have an incentive or are under pressure which 

provides a reason to commit fraud, 

 2. circumstances exist that provide an opportunity for a fraud to be perpetrated, such as 

the absence of controls, ineffective controls, or the ability of management to override 

existing controls, and  

3. those involved are able to rationalize committing a fraudulent act.  

Logically however, if any one, two, or all of these conditions are absent then fraud should not 

occur. These three factors are known as “fraud triangle” factors [17]. 

The main purpose of this article is to derive general analytical formulas for assessing 

risks in a problem domain where the risk depends on three interrelated variables such as in the 

case of fraud. This problem context is quite general and applies to several other important 

business risk- assessment contexts such as auditor independence and the quality of the internal 

audit function. 

For example, lack of auditor independence is a critical risk requiring assessment. Auditor 

independence risk is defined as the risk that threats to auditor independence, to the extent that 

they are not mitigated by safeguards, compromise or can reasonably be expected to compromise, 

an auditor’s ability to make unbiased audit decisions about the financial statements of a specific 

client [9]. In testimony before the U.S. Securities and Exchange Commission (SEC), Ralph 

Whitworth, Managing Member, Relational Investors LLC argued that “[A]uditor independence 

goes to the very essence of our capital markets, and its linked inextricably to the efficiencies of 

our capitalist system" [18]. Turner et al. [15, 34] argue that the risk of compromised 
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independence depends on three interrelated variables: Incentives, Opportunity and Integrity. 

These three factors are similar to fraud triangle factors discussed earlier.  

Another example of the general three-variable problem is assessing the risk of the 

internal audit function not being of high quality. Internal auditing is a key function within most 

large organizations that is intended to monitor and improve the operating effectiveness and 

efficiencies of the organization it serves. Krishnamoorthy [10] has analyzed the quality 

[‘strength’] of the internal audit function as a function of three interrelated variables: 

Competence, Work Performance, and Objectivity. Again, one can use the general formulas 

developed in this article to assess the risk of the internal audit function not being of high quality. 

Usually, the degree to which factors affecting a specific type of risk are present or absent 

is not known with certainty. Thus, we use the Dempster-Shafer (D-S) theory of belief functions 

to model the uncertainties associated with the items of evidence pertaining to these variables [19, 

36]. Under the D-S theory of belief functions, risk is defined by the plausibility function [32]. In 

this article, we derive analytical formulas for propagating beliefs in a network of four interacting 

binary variables; a risk variable and three other interrelated variables that can affect the risk 

variable. As part of our derivation, we use the Shenoy and Shafer [23, 24] approach for 

propagating beliefs through the network to derive the general formulas. 

To illustrate our solution for this class of risk assessment problems, we derive general 

analytical formulas for propagating beliefs in a network where three binary variables, A, B and 

C, are related to a fourth binary variable Z through a logical ‘AND’ relationship. In addition, we 

assume that variables A, B and C may be interrelated in that a change in one variable may affect 

the value of each of the other two. The analytical formulas derived determine the overall beliefs 

and plausibilities that Z is true or not true, given that we have beliefs about variables A, B and C. 
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As noted above, such formulas provide analytical models for assessing risks in several important 

real world problems as discussed in Section IV.  

The remainder of this paper is divided into four sections. The next section introduces belief 

functions while Section III develops the analytical formulas by combining seven sets of belief 

functions using Shenoy and Shafer [24]. Section IV discusses three real world applications of the 

general formulas in assessing fraud risk in financial reporting, assessing the auditor’s 

independence risk in assurance services, and assessing the strength or quality of the internal 

audit function by the external auditor. Section V provides the overall study conclusions. Finally, 

Appendix A provides the proof of Theorem 1, and Appendix B provides the proof of Corollary 1 

proposed in Section III. 

II. INTRODUCTION TO THE DEMPSTER-SHAFER THEORY OF BELIEF 

FUNCTIONS 

The D-S theory of belief functions is based on the work of Dempster [6] during the 1960s 

and the work of Shafer during the 1970s [19, see also 20, 21, 22, 23]. In fact, the D-S theory of 

belief functions is a generalization of Bayesian theory. To clarify the distinction between the two 

frameworks, let us consider a variable X with q possible mutually exclusive and exhaustive sets 

of values2: x1, x2, …, xq. This set of values defines the frame of X. Let us denote this frame by 

the symbol ΘX = {x1, x2, … xq}. Suppose we do not know the true state of variable X, i.e., we do 

not know what value X will take. In such a situation, under probability framework we assign 

probability mass, P(xi),  to each single element, xi, of the frame  ΘX in such a way that sum of 
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these probability masses equals one, i.e., 
q

i
i =1

P(x )∑ =1, where 1≥P(xi)≥0. Under the DS theory, we 

assign belief mass to all the possible subsets of the frame, ΘX, i.e., to all the singletons, all the 

subsets of two, all the subsets of three, and so on to the entire frame ΘX. The belief mass 

assigned to a subset, say Y, can be denoted by m(Y), and the sum of these belief masses equals 

one, i.e., 
XY

m(Y) = 1
⊆Θ
∑ , where 1≥m(Y)≥0. By definition, the belief mass on the empty set is 

zero. i.e., m(∅) = 0. Shafer [19] calls this set of belief masses the basic probability assignment 

function; we will call it the m-values or belief mass function or simply the mass function. As one 

can see from the above definition of the mass function, the D-S theory reduces to a probability 

framework if m-values for all the subsets except the singletons are zero. 

In more conceptual terms, the basic algebra of belief functions is relatively simple and 

begins with developing beliefs about an assertion or issue based on items of evidence pertaining 

to that assertion or issue. For example, when evaluating a general assertion, say assertion A, 

evidence E1 may provide, in general, some support that assertion A is true, i.e., ‘a’ is true, and 

some support that A is not true, i.e., ‘~a’ is true. In terms of the mass function we can write these 

assessments as mE1({a}) and mE1({~a}) respectively. Lack of knowledge about whether A is true 

or not true is represented by mE1({a,~a}), such that the sum of the three m-values is one. i.e., 

mE1({a}) + mE1({~a}) + mE1({a,~a}) = 1.  

                                                                                                                                                             
2 We use the upper case letter for the name of the variable and lower case letter for its values. 
For example, if Z is the name of a binary variable then ‘z’, and ‘~z’, respectively, represent the 
two possible values of Z being true or false. The frame of a variable is denoted by the symbol Θ 
with the variable as a subscript. For example, the frame of variable Z is denoted by ΘΖ = {z, ~z}. 
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Belief Functions 

The belief in a subset, say Y, represents the total belief that Y is true and is the sum of the 

m-values defined at Y and the m-values defined on any subsets contained in Y. Mathematically, 

it can be expressed as: 

G Y
Bel(Y) = m(G)

⊆
∑ . 

 For our example above, the belief that assertion A is true based on evidence E1 is given 

by BelE1({a}) = mE1({a}), the belief that assertion A is not true is given by BelE1({~a}) = 

mE1({~a}), and the lack of belief about assertion A is given by BelE1({a,~a}) = mE1({a,~a}) . A 

belief of one in a statement represents certainty similar to a value of one for probability in a 

statement. However, a belief of zero in a statement represents ignorance while a zero probability 

represents impossibility. 

Plausibility Functions 

The plausibility in a subset, say Y, determines the maximum possible belief one could 

assign to Y based on the current evidence and the assumption that all the future evidence will be 

in favor of supporting the subset Y. In mathematical terms, this definition can be written as: 

G Y
Pl(Y) = m(G)

∩ ≠∅
∑ . 

For our example of assertion A described earlier, the plausibility that ‘a’ is true based on 

the evidence E1 is given by PlE1({a}) = mE1({a}) + mE1({a,~a}), and the plausibility that ‘~a’ is 

true is given by PlE1({~a}) = mE1({~a}) +  mE1({a,~a}). 
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Dempster’s Rule of Combination 

Dempster’s rule [19] is used to combine independent items of evidence from multiple 

sources. For combining two sets of mass functions defined on the same frame, one can write 

Dempster’s rule as: 

1 2 1 2

1 1 2 2 1 1 2 2
Y Y Y Y Y= =

m(Y) = m (Y )m (Y ) / K, where K = 1  m (Y )m (Y )
∅∩ ∩

−∑ ∑ . 

K represents the renormalization constant defined above as one minus the conflict. 

To illustrate the concepts, let us consider our example of assertion A and the evidence E1 

that yield a set of m-values represented by mE1({a}), mE1({~a}), and mE1({a,~a}). Consider a 

second source of evidence, E2, with the following mass function: mE2(a), mE2(~a), and 

mE2({a,~a}). The combined mass function using Dempster’s rule is given as:  

 mE12({a})= [mE1({a})mE2({a}) + mE1({a})mE2({a,~a}) + mE1({a,~a})mE2({a})]/KE12, 

 mE12({~a}) = [mE1({~a})mE2({~a}) + mE1({~a})mE2({a,~a}) + mE1({a,~a})mE2({~a})]/KE12,  

 mE12({a,~a}) =  [mE1({a,~a})mE2({a,~a})]/KE12, 

where KE12 is the renormalization constant defined as: 

KE12 = 1 – [mE1({a})mE2({~a}) + mE1({~a})mE2({a})]. 

The second term in KE12 represents conflict between the two sets of beliefs pertaining to 

assertion A. 

III. ANALYTICAL FORMULAS 

In this section, we develop the analytical formulas for propagating beliefs in the network 

of binary variables shown in Figure 1 from variables A, B and C to the variable Z. Variables A, 

B and C are related to Z through a logical ‘AND’ relationship. In addition, in our derivation of 
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the general formula we consider two-way relationships among the variables A, B and C. In other 

words, variable A is connected to B through a relationship depicted by R1, B is connected to C 

through a relationship depicted by R2, and C is connected to A through a relationship depicted by 

R3. These relationships are bidirectional and are elaborated later in this section. We consider one 

item of evidence for each variable A, B and C as depicted in Figure 1. However, one can extend 

the present approach to the case where there is more than one item of evidence for each variable 

by using Dempster’s rule to combine the multiple items of evidence for each variable as 

described in [28]. 

-----   Figure 1 about here   ----- 

As mentioned earlier, we use the Dempster-Shafer theory of belief functions to represent 

the uncertainties in the strength of evidence pertaining to individual variables A, B and C. Let us 

consider the following set of mass functions to represent the beliefs at these variables: 

The beliefs at variable A:   mA({a}) = +
Am , mA({~a}) = Am− , mA({a,~a}) = AmΘ . (1) 

The beliefs at variable B:   mB({b}) = +
Bm , mB({~b}) = Bm− , mB({b,~b}) = BmΘ . (2) 

The beliefs at variable C:   mC({c}) = +
Cm , mC({~c}) = Cm− , mC({c,~c}) = CmΘ . (3) 

The interrelationships between A and B, between B and C, and between A and C, are 

assumed to be of the following form: 

Relationship between A and B: mAB({ab,~a~b}) = r1, mAB({ab,a~b,~ab,~a~b}) = 1− r1. (4) 

Relationship between B and C: mBC({bc,~b~c}) = r2, mBC({bc,b~c,~bc,~b~c}) = 1− r2. (5) 

Relationship between A and C: mAC({ac,~a~c}) = r3, mAC({ac, a~c, ~ac, ~a~c}) = 1− r3. (6) 

Various m-values and the interrelationships are defined in Table 1. 

-----   Table 1 about here   ----- 
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These relationships imply that if one variable, say A, is true then variable B also is true 

with a belief given by the corresponding strength of the relationship represented by r1 and 

variable C is true with a belief given by the corresponding strength of the relationship 

represented by r2, assuming there is no other belief defined for variables B and C. In addition, if 

one variable is false then the other variables also are false, again with a belief given by the 

corresponding strength of the relationships. The values of the strength of each of the 

relationships, ri’s, lie between zero and 1 where a zero value means there is no relationship 

between the two variables. A value of one for a relationship implies that if one variable is true 

with a given degree of belief then the related variable also is true with the same degree of belief 

assuming that there is no other belief defined for the related variable. For example, if A is true 

with a belief of, say 0.9 (i.e., Bel({a}) = 0.9) and we assume that there is no relationship between 

B and C (i.e., r2 = 0) and there are no beliefs from any other source at B and C, then B will be 

true with a belief of 0.9 and C will be true with a belief of 0.9 if r1= 1 and r3= 1. Also, under the 

above condition (i.e., r1= 1 and r3= 1), if A is not true with a belief of, say 0.9 (i.e., Bel(~a) = 

0.9) then B will also be not true with a belief of 0.9, and C will not be true with a belief of 0.9. 

Such relationships are quite common in real world situations as discussed in Section IV 

in detail. For example, even though management of a company may appear to have high 

integrity, if incentives exist for management to benefit from misrepresenting financial 

information, their ethics may be compromised to the point of committing financial statement 

fraud to achieve those incentives. Similarly, if management’s integrity is compromised, then 

incentives and/or opportunities may be created to benefit from committing fraud. On the other 

hand, if there are no incentives to benefit from committing fraud or no opportunities available, 
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then management will behave appropriately and not commit fraud. These interrelationships can 

be modeled using the above relationships.   

The logical relationship ‘AND’ between Z and the variables A, B and C is expressed in 

terms of the following mass function (see [30] for details): 

 mZABC(ΘZABC) = 1.0. (7) 

where ΘZABC = {zabc, ~zab~c, ~za~bc, ~z~abc, ~za~b~c, ~z~ab~c, ~z~a~bc, ~z~a~b~c}. 

In the present problem, we have seven mass functions, three corresponding to the 

variables A, B and C, (i.e., mA, mB and mC) and four representing the interrelationships, mAB, 

mBC, mAC and mZABC, as given in (4)-(7). To derive the analytical formulas for the mass function 

at variable Z, we need to combine all seven mass functions and marginalize3 the result to 

variable Z: 

 mZ←ABC = (mA⊕mB⊕mC⊕mAB⊕mAC⊕mBC⊕mZABC)
↓Z

,  (8) 

where mZ←ABC represents the mass function at Z propagated from variables A, B and C, the 

symbol ⊕ denotes the combination of beliefs, i.e., mass functions, using Dempster’s rule, and the 

symbol ↓Z represents the process of marginalization of the combined mass function within the 

parenthesis to the frame of variable Z. We express these results through the following theorem. 

                                                 
3 The marginalization process in D-S theory is similar to the marginalization process in 
probability theory. For example, suppose we have a probability distribution over two variables A 
and B and we want the distribution over just one variable, say A. The second variable B can be 
eliminated by summing the probabilities over variable B to obtain the probability distribution 
over A. Similarly, under D-S theory, if we have a mass function defined over the joint space of 
variables A and B, then we can obtain the mass function defined just over variable A by 
summing the mass function over the variable B. 
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Theorem 1:  For a binary variable Z that is related to three other binary variables, A, B and C, 
through the logical relationship ‘AND’, and where the variables A, B and C are 
interrelated, the mass function propagated to Z from variables A, B and C is given 
by the following expressions: 

mZ←ABC({∅}) = [r2 + r1r3(1− r2)] AmΘ ( Bm+
Cm− + Bm−

Cm+ ) + [r3+ r1r2(1− r3)] BmΘ ( Am+
Cm− + Am−

Cm+ ) 

 + [r1 + r2r3(1− r1)] CmΘ ( Am+
Bm− + Am−

Bm+ ) + (r1+ r2− r1r2)( Am+
Bm−

Cm+ + Am−
Bm+

Cm− ) 

 + (r2+ r3– r2r3)( Am+
Bm+

Cm− + Am−
Bm−

Cm+ ) + (r1+ r3 - r1r3)( Am−
Bm+

Cm+ + Am+
Bm−

Cm− ), (9) 

mZ←ABC({z}) = Am+
Bm+

Cm+  + (r1+ r2 – r1r2) Am+
BmΘ

Cm+  

 + (r1+ r3 – r1r3) AmΘ
Bm+

Cm+  + (r2+ r3– r2r3) Am+
Bm+

CmΘ  

 + (r1r2 + r2r3 + r1r3 – 2r1r2r3)( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ + AmΘ

BmΘ
Cm+ ), (10) 

mZ←ABC({~z}) = 1− mZ←ABC({∅}) − ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ ), (11) 

mZ←ABC({z, ~z}) = AmΘ
BmΘ

CmΘ  + (1−r
1
) (1− r2) Am+

BmΘ
Cm+   

 + (1−r
1
) (1− r3) AmΘ

Bm+
Cm+  + (1− r

2
) (1− r3) Am+

Bm+
CmΘ  

 + (1− r1r2− r2r3− r1r3+ 2r1r2r3) ( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ  + AmΘ

BmΘ
Cm+ ). (12) 

Proof of Theorem 1: See Appendix A for the proof. 

By definition, the beliefs in ‘z’ and ‘~z’, i.e., Bel({z}) and Bel({~z}), are respectively 

equal to the normalized m-values, m({z}) and m({~z}). The normalization constant K is defined 

as: 

 K = 1 – mZ←ABC(∅), (13) 

Using (9) and (13), one can obtain the following expression for K: 

K = 1− [r2 + r1r3(1− r2)] AmΘ ( Bm+
Cm− + Bm−

Cm+ ) − [r3 + r1r2(1− r3)] BmΘ ( Am+
Cm− + Am−

Cm+ ) 

 − [r1+ r2r3(1− r1)] CmΘ ( Am+
Bm− + Am−

Bm+ ) − (r1+ r2 −r1r2)( Am+
Bm−

Cm+ + Am−
Bm+

Cm− ) 

 − (r2+ r3– r2r3)( Am+
Bm+

Cm− + Am−
Bm−

Cm+ ) − (r1+ r3 −r1r3)( Am−
Bm+

Cm+ + Am+
Bm−

Cm− ). (14) 

Using the definitions of BelZ←ABC({z}) and BelZ←ABC({~z}), and (10)-(12) and (14), we 

obtain the following expressions for the beliefs: 
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 BelZ←ABC({z}) = mZ←ABC({z})/K = [ Am+
Bm+

Cm+  + (r1+ r2 – r1r2) Am+
BmΘ

Cm+  

 + (r1+ r3 – r1r3) AmΘ
Bm+

Cm+  + (r2+ r3– r2r3) Am+
Bm+

CmΘ  

 + (r1r2 + r2r3 + r1r3 – 2r1r2r3)( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ + AmΘ

BmΘ
Cm+ )]/K. (15) 

BelZ←ABC({~z}) = mZ←ABC({~z})/K = 1− ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ )/K, (16) 

By definition, the plausibility in ‘z’ is given by PlZ←ABC(z) = 1 − BelZ←ABC(~z), which 

yields the following expression:  

PlZ←ABC({z}) = 1 − BelZ←ABC({~z}) = ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ )/K.  (17) 

The plausibility in ‘~z’ is expressed as: 

  PlZ←ABC({~z}) = 1− [ Am+
Bm+

Cm+  + (r1+ r2 – r1r2) Am+
BmΘ

Cm+  

 + (r1+ r3 – r1r3) AmΘ
Bm+

Cm+  + (r2+ r3– r2r3) Am+
Bm+

CmΘ  

 + (r1r2 + r2r3 + r1r3 – 2r1r2r3)( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ + AmΘ

BmΘ
Cm+ )]/K (18) 

Since the plausibilities in ‘a’, ‘b’, and ‘c’ are defined as: PlA(a) = ( Am+ + AmΘ ), PlB(b) = 

( Bm+ + BmΘ ), and PlC(c) = ( Cm+ + CmΘ ), we obtain from (18): 

PlZ←ABC({z}) = PlA(a)PlB(b)PlC(c)/K. (19) 

Discussion of Theorem 1 Results 

The results of Theorem 1 are comprehensible. For example, the conflict term, 

mZ←ABC(∅) in (9) consists of 12 components. The first six components arise from situations 

where one variable has non-zero m-values on its frame; the second variable has non-zero m-

values in its support; and the third variable has a non-zero m-value for its negation, hence the 

conflict. The conflict is clear in the other six components also. Three components are such that 

two variables have non-zero m-values in their support and the third has an m-value for its 

negation, while in the case of other three components, one variable has a non-zero m-value in its 

support and the other two have non-zero m-values against them being true. 
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  The belief in ‘~z’, i.e., BelZ←ABC(~z), also is comprehensible. Since the three variables, 

A, B and C, are related to variable Z through a logical ‘AND’, one expects ‘~z’ to be true when 

‘~a’ is true, or ‘~b’ is true, or ‘~c’ is true. In probability framework, one can write this as: 

P(~z) = P(~a or ~b or ~c) = 1 – P(a)P(b)P(c) = 1 – (1−P(~a))(1−P(~b))(1−P(~c)), 

which is equivalent to Bel({~z}) = 1– (1−m({~a}))(1−m({~b}))(1−m({~c}))/K in (16). This 

reasoning also supports the formula for plausibility in ‘z’ as the product of three plausibilities, 

PlA(a), PlB(b), and PlC(c) in (19). As discussed later, plausibility Pl(z) determines the risk 

associated with Z that it is true, even though there may not be any belief that Z is true [32]. 

The expressions in Equations (15), (16), and (19) are important results. As shown in the 

application section, these expressions can be used to model risks and beliefs in the following 

situations. 1) The belief and plausibility that fraud exists in a financial audit, 2) the belief and 

plausibility that the auditor is not independent from an audit client, and 3) the belief and 

plausibility that the internal audit function does not produce high quality work. In the rest of this 

section, we discuss special cases of Theorem 1. 

Special Cases 
 
Case 1. No Interrelationships, i.e., r1 = r2 = r3 = 0 

Here we discuss a case where all the interrelationships among the three variables, A, B 

and C are assumed not to exist, i.e., r1 = r2 = r3 = 0. First, we express the beliefs in ‘z’ and ‘~z’ in 

terms of Corollary 1 given below and then discuss the results. 

Corollary 1:  For r1 = r2 = r3 = 0, the beliefs propagated to Z from variables A, B and C are 
given by the following formulas given that variable Z is related to variables, A, B 
and C, through the logical relationship ‘AND’: 

 BelZ←ABC({z}) = Am+
Bm+

Cm+ , (20) 
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 BelZ←ABC({~z}) = 1 – ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ ), (21) 

Proof of Corollary 1: See Appendix B 

Equations (20)-(21) are a special case of Equations (15) and (16), where there are no 

interrelationships among the variables A, B and C, (i.e.,  r1 = r2 =  r3 = 0). It can be seen from 

(14) that the normalization constant K, reduces to 1 under this condition and the expressions for 

beliefs in (15) and (16) reduce to (20) and (21), respectively. From (20), one can write the belief 

in ‘~z’ that it is true in the following form:4 

BelZ←ABC({~z}) = 1 – (1−ΒelA({~a}))(1−ΒelB({~b}))(1−ΒelC({~c})).  

The above relationship is intuitive and as discussed earlier, is equivalent to the following 

relationship among the variables under the probability framework: 

P(~z) = P(~a or ~b or ~c) = 1 – P(a)P(b)P(c) =  1 – (1−P(~a))(1−P(~b))(1−P(~c)).  

The belief that ‘z’ is true, i.e., BelZ←ABC({z}) is non-zero, results only under the condition 

that Am+ , Bm+ , and Cm+  are non-zero simultaneously. This is an intuitive result. Since A, B and C 

are related to Z through the logical ‘AND’, ‘z’ is true under only one condition that ‘a’, ‘b’, and 

‘c’ are true at the same time. This means that the belief that ‘z’ is true is equal to the product of 

the three beliefs, BelA({a}), BelB({b}) and BelC({c}). However, as one can see from (15), if the 

interrelationships are non-zero, then BelZ←ABC({z}) is non-zero even if only one variable has a 

non-zero ..m+ . This result has practical implications, as we will show in the next section. For 

example, it is argued and supported empirically [3, 11] that the presence of the following three 

factors: Incentive, Attitude, and Opportunity, must exist for management to commit fraud. 
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However, under strong interrelationships among the three factors, even if only one factor is 

present, the belief that fraud may exist can be high. 

Case 2. All Interrelationships are of the Same Strength 

Here we assume that r1 = r2 = r3 = r. For this case the normalization constant K, and the 

beliefs propagated to Z from variables A, B and C are given by the following expressions using 

(14)-(16): 

 K = 1− [r + r2− r3)][ AmΘ ( Bm+
Cm− + Bm−

Cm+ )+ BmΘ ( Am+
Cm− + Am−

Cm+ ) 

 + CmΘ ( Am+
Bm− + Am−

Bm+ )] −(2r −r2)[ Am+
Bm−

Cm+ + Am−
Bm+

Cm−  

 + Am+
Bm+

Cm− + Am−
Bm−

Cm+ + Am−
Bm+

Cm+ + Am+
Bm−

Cm− ], (22) 

 BelZ←ABC({z}) = [ Am+
Bm+

Cm+  + (2r – r2)[ Am+
BmΘ

Cm+ + AmΘ
Bm+

Cm+ + Am+
Bm+

CmΘ ] 

 + r2(3 – 2r)( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ + AmΘ

BmΘ
Cm+ )]/K, (23) 

 BelZ←ABC({~z}) = 1 – ( Am+ + AmΘ )( B Bm m+ Θ+ )( Cm+ + CmΘ )/K,. (24) 

From (22) we can see that the normalization constant K starts with a value of 1 at r = 0, 

decreases as r increases, and is smallest at r =1. However, if we choose any two variables, say B 

and C, to have no knowledge about their presence or absence, i.e.,  BmΘ =1 and CmΘ =1, then the 

normalization constant K equals 1 for all values of r, and the beliefs reduce to: 

 BelZ←ABC({z}) = r2(3 – 2r) Am+ , and BelZ←ABC({~z}) = Am− . 

This is an interesting result. Usually, under an ‘AND’ relationship and in the absence of any 

interrelationships (i.e., r = 0), when Bm+ = 0, and Cm+ = 0, one expects BelZ←ABC({z}) = 0, which 

                                                                                                                                                             
4 Since A A(m m )+ Θ+ = 1 − Am− = 1 − BelA({~a}), B B(m m )+ Θ+ = 1 − Bm− = 1 − BelB({~b}), 

C C(m m )+ Θ+ =  1 − Cm− = 1 − BelC({~c}), we obtain 
BelZ←ABC({~z}) = 1 − (1 − BelA({~a}))(1 − BelB({~b})) (1 − BelC({~c})). 
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is what we get from the above result. However, if we assume strong interrelationships (say, r = 

1) among the variables A, B and C, BelZ←ABC({z}) = Am+ , which makes logical sense. Because 

of the strong interrelationship, even though two of the three factors, say B and C, have zero 

belief masses in support of the corresponding variables, the belief in ‘z’ is simply equal to the m-

value for ‘a’. This result has important practical implications in assessing fraud risk as we show 

in the next section. 

Let us consider another situation where we have no knowledge about the presence or 

absence of just one variable, say C, i.e., CmΘ = 1. The normalization constant K, and the beliefs 

are given by the following expressions (see (22) – (24)): 

 K = 1− (r + r2− r3)( Am+
Bm− + Am−

Bm+ ), (25) 

 BelZ←ABC({z}) = [(2r – r2) Am+
Bm+ + r2(3 – 2r)( Am+

BmΘ
+ AmΘ

Bm+ )]/K, (26) 

 BelZ←ABC({~z}) = 1 – ( Am+ + AmΘ )( Bm+ + BmΘ )/K. (27) 
 

Equations (26) and (27) again show that if the interrelationships are non-zero, even if we 

have no information about the presence or absence of one of the variables, but do have beliefs 

about the presence or absence of the other two variables, a non-zero belief for ‘z’ is provided 

because of the interrelationships.  

Case 3. No Knowledge about the Presence of All the Three Factors but Partial Knowledge 
About Their Absence 

In this case, we assume that we have no belief that the three factors A, B and C are 

present, i.e., A B Cm  m  m 0+ + += = = , and Am− , Bm−  and Cm−  are greater than zero. For these values, 

there is no conflict and thus, the renormalization constant K in (14) becomes 1 for any strength 

of the interrelationships and the beliefs and plausibilities for Z from (15) and (16) reduce to: 

 BelZ←ABC({z}) = 0, BelZ←ABC({~z}) = 1− (1− Am− )(1− Bm− )(1− Cm− ), 



 17

 PlZ←ABC({z}) = (1− Am− )(1− Bm− )(1− Cm− ) = Pl({a})Pl({b})Pl({c}), and PlZ←ABC({~z}) = 1. 

Again, the above results make intuitive sense. Since the mass values in support of all the 

three factors are zero, the m-value for ‘z’ is zero also even if the interrelationships are strongest, 

i.e., all r’s = 1. The plausibility that Z is true is simply a product of three plausibilities for ‘a’, ‘b’ 

and ‘c’. Such a result is of a great value to the auditor because of its simplicity, especially when 

the auditor is planning an audit where fraud is suspected as briefly discussed in the next section. 

Case 4. No Information on One Variable and No Relationship with the Other Two Variables 

 For this case, let us assume that we do not have any information on variable B, i.e., BmΘ  

= 1, and also assume that there is no relationship between variables A and B, or between B and 

C, i.e., r1= r2= 0. Substituting the above values in (14-18), we obtain the following expressions 

for belief and plausibility in z and ~z: 

 BelZ←ABC({z}) = 0, 

BelZ←ABC({~z}) = 1− (1− Am− )(1− Cm− )/K, 

 PlZ←ABC({z}) = (1− Am− )(1− Cm− )/K = Pl({a})Pl({c})/K, 

PlZ←ABC({~z}) = 1, 

  where K = 1 – r3( Am+
Cm−  + Am−

Cm+ ). 

The above results are logical. Since we do not have any knowledge about the presence or 

absence of variable B and since there is no relationship between A and B or B and C, knowing 

about the presence or absence of either A or C or both, does not affect B. Thus, the belief in z, 

i.e., BelZ←ABC({z}), should be zero because of the logical ‘AND’ relationship: z = a∧b∧c. This is 

what we get for this case for BelZ←ABC({z}) as shown above. 
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Case 5. No Information on One Variable and No Relationship between the Other Two 
Variables 

For this case, let us assume we have no information on variable B, i.e., BmΘ  = 1, and also 

assume there is no relationship between variables A and C, i.e., r3= 0. Substituting the above 

values in (14-18), we obtain the following expressions for belief and plausibility in z and ~z: 

Z A,B,C 1 2 1 2 A C 1 2 A C A CBel ({ }) = [(r + r  r r )m m  + r r (m m  + m m )]/ Kz + + + Θ Θ +
← − , 

BelZ←ABC({~z}) = 1− (1− Am− )(1− Cm− )/K, 

PlZ←ABC({z}) = (1− Am− )(1− Cm− )/K = Pl({a})Pl({c})/K, 

 PlZ←ABC({~z}) = 1 – 1 2 1 2 A C 1 2 A C A C[(r + r  r r )m m  + r r (m m  + m m )]/ K+ + + Θ Θ +− , 

  where K = 1 – r1r2( Am+
Cm−  + Am−

Cm+ ). 

This case is more interesting than the previous case. Since variable B is related to both A 

and C ( r1>0 and r2>0), knowing about the presence or absence of A and C tells us about the 

presence or absence of B. Thus, though we have no direct knowledge about the presence or 

absence of B, the knowledge of the presence or absence of A and C results in a non-zero belief in 

z and/or ~z. In fact, this belief is higher if both r1 and r2 are greater than zero and increases with 

the increase in their strengths.  

Another interesting result is that the conflict term in K arises because of the two-way 

interaction; knowledge about A gives us the knowledge about B through r1 and then tells us 

about C through r2. Similarly, knowledge about C tells us about B through r2 and tells us about A 

thought r1. Thus, even though there is no direct link between A and C (r3= 0) in the present case, 

because of the interrelationships between A and B and between B and C, we have non-zero 

conflict. 
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The above result is of a great significance in assessing fraud risk since all three fraud 

factors, an Incentive to commit fraud (I), an Attitude to commit fraud (D), and the Opportunity to 

commit fraud (O) must be present for management to commit fraud. If one assumes no 

relationship between the two factors (variables) I and O, and there is no knowledge about D 

(management attitude to commit fraud) because of the difficulties in measuring attitude, fraud 

still may be believed to be possible. That is, the belief about the risk of fraud can be greater than 

zero because knowledge that both an incentive and opportunity exist creates a belief that 

management may have an attitude to commit fraud, even through there is no direct knowledge 

about management’s attitude toward fraud.  

IV.  APPLICATIONS 

Here we illustrate three important applications of the general results presented in 

Theorem 1. The main purpose of presenting these applications is to show the importance of the 

general results derived in the present paper. The first application deals with an assessment by the 

external auditor of belief and plausibility that an audit client’s internal audit function is not of 

high enough quality to allow the external auditor to rely on the work of that internal auditor. The 

second application deals with assessing the belief and plausibility that in an audit engagement 

the auditor is not independent of the client. The third application deals with the assessment of 

belief and plausibility that a company’s management may have committed fraud in reporting 

financial results. In addition to using the general results for assessing the above beliefs and 

plausibilities by the auditing profession, regulators such as the Security and Exchange 

Commission (SEC) can assess from a regulator’s perspective the beliefs and plausibilities that 

fraud may exist or that an auditor is not independent in an engagement. 
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1. Application to Internal Audit Function Quality 

The first application of the general results of Theorem 1 deals with the assessment of the 

quality of the internal audit function. The Sarbanes-Oxley Act of 2002 (hereafter SOX), requires 

management of publicly-traded companies to document, evaluate, and report on the effectiveness 

of internal controls over financial reporting and that the independent auditor evaluate and opine 

on management’s assessment of such controls. SOX also requires companies covered by the Act 

to maintain an internal audit function. That is, each company must employ non-independent 

internal auditors whose function is the examination and appraisal of both controls and 

performance. This requirement also may increase the independent auditors’ reliance on the work 

of internal auditors when performing an integrated audit now required under Audit Standard No. 

2 [16].  

For independent auditors to rely on work performed by an internal auditor, the 

independent auditor must assess the quality of the internal audit function [16] as to whether it is 

of high quality or not.5 The Public Company Accounting Oversight Board [16] contends that the 

considerable flexibility that external auditors have in using the work of the internal auditor 

should encourage companies to develop high-quality internal audit functions, especially to 

reduce the cost of documentation and evaluation of internal controls. The external auditor will be 

able to rely more extensively on the internal audit function if they perceive the quality of the 

internal audit function to be high [16].  Even prior to SOX, Statement on Auditing Standards No. 

65 [2] outlined various ways independent auditors could enhance the efficiency and effectiveness 

of an independent audit by relying on the work of internal auditors. 

                                                 
5 We denote the variable that the internal audit function is of high quality by the symbol H and 
the two values by ‘h’ and ‘~’h, respectively, representing that H is true and not true. 
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There is a substantial body of accounting literature that focuses on the external auditor’s 

assessment of the quality of internal audit function [1, 4, 8, 10, 12, 13, 14, 25, 26, 27]. The main 

finding of these studies is that the quality of an internal audit function depends on three quality 

factors—Competence (P), Work performance (W), and Internal Auditor Objectivity (J). 

Competence deals with academic and professional qualifications. Work Performance deals with 

the quality of work, such as assessment of internal controls, risk assessment, and substantive 

procedures performed by the internal auditor. The Internal Auditor Objectivity deals with how 

independent internal auditors are in terms of evaluating and reporting weaknesses in the internal 

control systems. The presence of these three factors is found to be essential for the internal audit 

function to be of high quality. The literature also has identified interrelationships among these 

factors6 [7, 10]. Thus, the problem of assessing the quality of internal audit function is similar to 

that of assessing whether fraud is present or that an auditor is not independent.  

The three factors P, W and J, are related to the internal audit function through the logical 

“AND” relationship. The “AND” relationship between the quality of internal audit function and 

the three factors P, W and J implies that h = p∧w∧j, which implies that the quality of the internal 

audit function is high if and only if the internal auditor is competent (p), the internal auditor’s 

work performance is of high quality (w), and the internal auditor is objective (j). Thus, the 

problem of assessing the quality of audit function is equivalent to assessing whether variable Z is 

present in Figure 1, i.e., h = p∧w∧j is equivalent to the relationship z = a∧b∧c (Compare Figure 

2 with Figure 1).  

-----   Figure 2 about here   ----- 

                                                 
6 In prior research, these factors have been assumed to be binary in nature, i.e., whether the 
factor is present or absent, or whether the internal audit function is of high quality (h) or is not of 
high quality (~h). 
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Thus, we can write the belief that the internal audit function is of high quality (h) given 

that we have knowledge about the presence or absence of the factors, Competence (P), Work 

performance (W), and Objectivity (J), in terms mass functions by using (14) and (15) and 

replacing ‘a’ by ‘p’, ‘b’ by ‘w’, and ‘c’ by ‘j’:   

 Bel({h}) = [ Pm+
Wm+

Jm+  + (r1+ r2 – r1r2) Pm+
WmΘ

Jm+  

 + (r1+ r3 – r1r3) PmΘ
Wm+

Jm+  + (r2+ r3– r2r3) Pm+
Wm+

JmΘ  

 + (r1r2 + r2r3 + r1r3 – 2r1r2r3)( Pm+
WmΘ

JmΘ
+ PmΘ

Wm+
JmΘ + PmΘ

WmΘ
Jm+ )]/K. (28) 

Where K is defined as: 

K = 1− [r2 + r1r3(1− r2)] PmΘ ( Wm+
Jm− + Wm−

Jm+ ) − [r3 + r1r2(1− r3)] WmΘ ( Pm+
Jm− + Pm−

Jm+ ) 

 − [r1+ r2r3(1− r1)] JmΘ ( Pm+
Wm− + Pm−

Wm+ ) − (r1+ r2 −r1r2)( Pm+
Wm−

Jm+ + Pm−
Wm+

Jm− ) 

 − (r2+ r3– r2r3)( Pm+
Wm+

Jm− + Pm−
Wm−

Jm+ ) − (r1+ r3 −r1r3)( Pm−
Wm+

Jm+ + Pm+
Wm−

Jm− ). (29) 

Various m-values and the interrelationships are defined in Table 1. 

Equation (28) is the general expression for the belief that the internal audit function is of 

high quality. If we assume that there is no relationships among the quality factors, i.e., all r’s are 

zero, then the belief that the internal audit function is of high quality, Bel({h}), is simply equal 

to Pm+
Wm+

Jm+ . This implies that the internal audit function will be of high quality under only 

one condition—the internal auditor is competent (i.e., mP(p) ≡ Pm+ >0), the work performance is 

of high quality (i.e., mW(w) ≡ Wm+ >0), and the internal auditor is objective ((i.e., mJ(j) ≡ Jm+ >0). 

Because of the limited space in the current article, we do not discuss various scenarios of (28). 

Interested readers should see Desai et al. [7] who provide a detailed discuss of the assessment of 

the internal audit function under belief function for various scenarios. 

2.  Application to Auditor Independence Impairment 

In this section, we demonstrate the use of the general results of Theorem 1 to assess the 

belief and plausibility that an auditor is not independent from an audit client. For an auditor to be 
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independent, he/she must not exhibit bias favoring the clients representations included in 

financial statements when such representations may not be appropriate under accepted 

accounting rules or governmental regulations. Figure 3 represents a diagram of the variables that 

determine whether auditor is independent (N). This diagram is based on the auditing literature 

(see e.g., [3, 15, 35]) that suggests that an auditor may not be independent if and only if all three 

factors, Incentive (I), Attitude (D), and Opportunity (O) are present. In other words, the auditor 

will not maintain independence if and only if the auditor has an incentive to gain from being not 

independent, has an attitude to be not independent, and has an opportunity to be not independent. 

This relationship can be written as n = i∧d∧o which is equivalent to the relationship z = a∧b∧c 

(Compare Figure 2 with Figure 1).  

-----   Figure 3 about here   ----- 

As we see, Figure 3 is very similar to Figure 2 except that we have two items of evidence 

for each variable I, D and O, whereas we have only one item of evidence for each variable, P, W 

and J, in Figure 2. Of the two items of evidence pertaining to each variable in Figure 3, one 

determines the impact of threats that increase the presence of the corresponding variable and the 

other supports the negation of the related variable. The formulas for beliefs and plausibilities that 

the auditor is independent or not independent can be derived directly from (15)-(18) by 

substituting ‘N’ for ‘Z’, ‘I’ for ‘A’, ‘D’ for ‘B’, and ‘O’ for ‘C’. However, since we have two 

items of evidence for each of the three variables, I, D and O, we first need to determine the total 

belief mass function at each of the variables by combining them using Dempster’s rule. We then 

use (15)-(18) to determine the beliefs and plausibilities as to whether the auditor is independent 

or not. For a detailed discussion, we refer readers to [15]. 
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3. Application to Assessing Belief and Plausibility in Fraud 

As discussed earlier, the American Institute of Certified Public Accountants (AICPA) 

published Statement of Auditing Standards No. 99, Consideration of Fraud in a Financial 

Statement Audit (SAS No. 99) [3] requiring auditors during an audit to assess the risk of fraud in 

financial statements prepared by management. The statement provides a detailed discussion on 

factors that if present may be indicators that fraud is present. These fraud risk factors generally 

are classified into three categories known as fraud triangle factors: Incentive (I), Attitude (D), 

and Opportunity (O). In other words, management may commit fraud in financial statements if 

all of the following three conditions exist: there is an incentive for management to commit fraud, 

management lacks integrity or has an attitude conducive to committing fraud, and there is an 

opportunity to commit fraud. SAS No. 99 also indicates that safeguards may exist that reduce the 

possibility of the presence of the above fraud risk factors and that such safeguards should be 

evaluated as to effectiveness. Figure 4 represents a diagram of the interrelationship of the three 

conditions I, D and O with a fourth variable F, representing the assertion that management fraud 

is present, along with the interrelationships among themselves. 

-----   Figure 4 about here   ----- 

Although SAS No. 99 provides a detailed description of fraud risk factors associated with 

various fraud triangle factors, it does not provide any guidance on how to assess and aggregate 

the impacts of these factors on the presence or absence of fraud. To develop a complete fraud 

risk assessment model as shown in Figure 4, we consider two items of evidence for each fraud 

triangle variable similar to Figure 3 considered for the auditor independence impairment case. 

One item of evidence pertains to fraud risk factors related to the corresponding fraud triangle 

variable. For example, management may have bonus plans and other perquisites tied to financial 

performance. This factor may create an incentive for management to commit fraud. Such pieces 
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of information are treated in our model as one item of evidence as fraud risks pertaining to the 

corresponding variable. In Figure 4, ETI, ETD, and ETO represent evidence about threat factors 

pertaining to incentive (I), attitude (D), and opportunity (O), respectively. The other item of 

evidence depicts preventative controls or safeguards related to the fraud triangle variable. For 

example, the organization may have an active board of directors and an effective audit 

committee to control management behavior related to incentives to commit fraud or there may be 

strong internal accounting controls in place to reduce opportunities for management to commit 

fraud. Such factors can reduce the likelihood of the presence of the corresponding fraud triangle 

variable. In Figure 4, ESI, ESD, and ESO, respectively, represent evidence about safeguard factors 

pertaining to incentive (I), attitude (D), and opportunity (O).  

For the fraud variable (F) we consider three items of evidence. One item of evidence 

represented by EPI is based on prior information known to the auditor. The second item of 

evidence, EOP, depends on traditional, non-fraud-oriented audit procedures termed ‘Other 

Procedures’. The third, EFP, represents any fraud-specific forensic procedures performed by the 

auditor. Each of these items of evidence provides some degree of belief about whether the 

corresponding variable is present or absent.  

Again, we assume that each variable takes two values; the variable is either present or not 

present. For example, F represents the variable that fraud exists in the financial statements and 

‘f’ represents its value that fraud is present and ‘~f’ represents that fraud is not present. As 

discussed earlier, according to SAS No. 99, variable F is related to the three variables, I, D and O 

through a logical ‘AND’ relationship. In other words, fraud is present if and only if all the three 

factors, I, D and O are present, i.e., f = i∧d∧o, or ~f = ~i∨~d∨~o. These relationships are similar 

to the relationships considered in the derivation of the beliefs and plausibilities for variable Z 

propagated from three variables A, B and C in Figure 1. In fact, ‘z’ is equivalent to ‘f’, and ‘a’, 
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‘b’, and ‘c’ are equivalent to ‘i’, ‘d’ and ‘o’, respectively. Thus, we can write the normalized 

mass function propagated from the three variables, I, D and O directly from (9-12) as: 

  mF←IDO({f}) = [ Im+
Dm+

Om+  + (r1+ r2 – r1r2) Im+
DmΘ

Om+  

 + (r1+ r3 – r1r3) ImΘ
Dm+

Om+  + (r2+ r3– r2r3) Im+
Dm+

OmΘ  

 + (r1r2 + r2r3 + r1r3 – 2r1r2r3)( Im+
DmΘ

OmΘ
+ ImΘ

Dm+
OmΘ + ImΘ

DmΘ
Om+ )]/KF, (30) 

 mF←IDO({~f}) = 1− ( Im+ + ImΘ )( Dm+ + DmΘ )( Om+ + OmΘ )/KF, (31) 

mF←IDO({f, ~f}) = [ ImΘ
DmΘ

OmΘ  + (1−r
1
) (1− r2) Im+

DmΘ
Om+   

 + (1−r
1
) (1− r3) ImΘ

Dm+
Om+  + (1− r

2
) (1− r3) Im+

Dm+
OmΘ  

 + (1− r1r2− r2r3− r1r3+ 2r1r2r3) ( Im+
DmΘ

OmΘ
+ ImΘ

Dm+
OmΘ  + ImΘ

DmΘ
Om+ )]/KF. (32) 

Where KF is given below: 

KF = 1− [r2 + r1r3(1− r2)]
+

I D O D Om (m m m m )− − +Θ +  − [r3 + r1r2(1− r3)]
+

D I O I Om (m m m m )− − +Θ +  

 − [r1+ r2r3(1− r1)]
+

O I D I Dm (m m m m )− − +Θ +  − (r1+ r2 −r1r2) I D O I D O(m m m m m m )− + − + −+ +  

 − (r2+ r3– r2r3) I D O I D O(m m m m m m )+ − − − ++ + − (r1+ r3 −r1r3) I D O I D O(m m m m m m )+ + + − −− + . (33) 

Various m-values and the interrelationships are defined in Table 1. 

The relationships r1, r2 and r3, respectively, represent the relationships between Incentives 

(I) and Attitude (D), between Attitude (D) and Opportunities (O), and between Incentive (I) and 

Opportunities (O). As seen in Figure 4, the mass function at each variable, I, D and O, is the 

combination of two mass functions; one from the fraud risk factors, and the other from the 

safeguard factors. Thus, the following expressions define the three mass functions:7 

                                                 
7 We use Dempster’s rule to combine the two sets of mass functions, one from the threat factors 
denoted by mT and the other from the safeguard factors denoted by mS. In general, we assume 
that fraud risk factors may provide non-zero values for m+, m− and mΘ, for the corresponding 
variable. However, for the safeguard factors, we assume that they yield non-zero values for only 
m− and mΘ. In other words, the safeguard factors only negate the presence of the corresponding 
fraud triangle factor. 
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 Im+ = TIm+ (1− SIm− )/KI, Im− = ( TIm− + SIm−
TImΘ )/KI, 

Θ
Im = TImΘ (1− SIm− )/KI,  (34) 

where KI = 1− TIm+
SIm− . 

 +
Dm = TDm+ (1− SDm− )/KD, Dm− = ( TDm− + SDm−

TDmΘ )/KD, DmΘ = TDmΘ (1− SDm− )/KD,  (35) 

where KD=1 − TDm+
SDm− . 

 +
Om =  TOm+ (1− SOm− )/KO, Om− = ( TOm− + SOm−

TOmΘ )/KO, OmΘ = TOmΘ (1− SOm− )/KO,  (36) 

where KO=1− TOm+
SOm− .  

The three mass functions defined at variable F due to the three items of evidence, EPI, EOP 

and EFP depicted in Figure 4, are represented by mPI({f}), mPI({~f}), mPI({f,~f}); mOP({f}), 

mOP({~f}), mOP({f,~f}); and mFP({f}), mFP({~f}), mFP({f,~f}), respectively. To determine the 

overall belief and plausibility that fraud exists, we combine the four sets of mass functions at 

variable F, three directly defined at F as defined above by mPI, mOP, and mFP, and the fourth 

denoted by mF←IDO, propagated from variables I, D and O, as defined in (30)-(30). We use again 

Dempster’s rule to combine the above four sets of mass functions and obtain the following 

expressions8 for the total belief and total plausibility in fraud (f):  

 BelT({f}) = 1 – [1−mPI({f})][1−mOP({f})][1−mFP({f})][1− mF←IDO({f})]/KT, (37) 

 PlT({f}) = [1−mPI({~f})][1−mOP({~f})][1−mFP({~f})][1−mF←IDO({~f})]/KT. (38) 

The symbol KT is given by:  

 T i i i
i i i

K  = 1 m ({ }) 1 m ({~ }) m ({ , ~ })( ) ( )f f f f− + − −∏ ∏ ∏ , (39)  

where i∈{PI, OP, FP, F←IDO}. 

                                                 
8 For binary variables, Dempster’s rule can be simplified yielding directly the expressions in (37) 
and (38) (see Srivastava [28] for details).  
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The total belief that fraud exists in (37) and the total plausibility of fraud in (38) are of 

interest when investigating fraud. Srivastava and Shafer [32] argue that the plausibility of 

financial statements containing serious misstatements is the appropriate measure of overall audit 

risk. Similar to Srivastava and Shafer, we define the total plausibility of fraud to be the fraud 

risk. Thus, the expression in (38) represents the overall fraud risk after combining all the 

evidence. To express the overall fraud risk formula in (38) in terms of individual risks or 

plausibilities that incentives are present, attitude is present, and opportunities are present, we 

need to make the following simplifications. 

We know from (31) that [1− mF←IDO({~f})] = ( Im+ + ImΘ )( Dm+ + DmΘ )( Om+ + OmΘ )/KF, which 

by definition equals to PlI(i)PlA(a)PlO(o)/KF. Also, we know from (34)-(36) that there are two 

items of evidence pertaining to each variable I, A and O, and thus the plausibility that each 

variable present is given by the product of two plausibilities that the variable is present, one due 

to the threat factors and other due to the failure of safeguards. In other words,  PlI(i) = 

PlTI(i)PlSI(i)/KI,  PlA(a) = PlTA(a)PlSA(a)/KA, and PlO(o) = PlTO(o)PlSO(o)/KO. In addition, we 

know that 

(1-mPI({~f}))(1-mOP({~f}))(1-mFP({~f}))/KT = PlPI({f})PlOP({f})PlFP({f})/KT. 

Thus, using (38) and the above simplifications, we can express the fraud risk (FR) 

formula in terms of the individual plausibility functions as:  

PI OP FP TI SI TD SD TO SO

T F I D O

Pl ({ })Pl ({ })Pl ({ }) Pl ({ })Pl ({ }) Pl ({ })Pl ({ }) Pl ({ })Pl ({ })]
. . .

K K K K K
FR

f f f i i d d o o
=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎟⎟ ⎟ ⎟ ⎜⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟ ⎜⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (40) 

The above expression represents the overall fraud risk given all the evidence in Figure 4. 

Srivastava et al. [31] discuss this risk model in detail and contrast it with a Bayesian-based 
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model to demonstrate the usefulness of the belief function model. We do not plan to discuss all 

the special cases of (40) here; rather we refer readers to Srivastava et al. [31]. 

V.  CONCLUSION 

In conclusion, we have derived analytical formulas for the overall beliefs on a binary 

variable Z resulting from beliefs on three binary variables A, B and C that are related to variable 

Z through an ‘AND’ relationship under the assumption that these three variables are interrelated. 

The general results are presented in Theorem 1 along with a special case presented in Corollary 

1. Several other special cases are presented to demonstrate the importance of the results in 

Theorem 1.  

Importantly, under the assumption that there are no interrelationships between the three 

variables, A, B and C, we show that the general formulas (see Corollary 1) reduce to the results 

obtained directly from Proposition 1 of Srivastava et al. [33]. In addition, we demonstrate 

applications of the general formulas in three important areas. 1) assessment of the quality of the 

internal audit function by the external auditor to determine the appropriate level of reliance on 

the work of internal auditor, 2) assessment of the auditor’s independence risk in a financial 

statement audit, and 3) assessment of fraud risk in financial reporting.  
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Appendix A 

Proof of Theorem 1 

The proof of Theorem 1 is straightforward but computationally very cumbersome. 

Basically, we want to combine seven mass functions as given in (8) and marginalize (see 

footnote 3) the resulting mass function (i.e., m-values) to variable Z. Since the combination of 

mass functions is known to be commutative and associative (see, e.g., Shafer [19]), one can 

chose any order to combine the above mass functions. We chose the following sequence for 

combining the mass functions: 

 mZ←ABC = ((((((mAB⊕ mAC)⊕mBC)⊕mZABC)⊕mA)
↓ZBC

⊕mB)
↓ZC

⊕mC)
↓Z

 (A1) 

In other words, we first combine the two mass functions, mAB and mAC, defined in (4) and 

(6), respectively, and denote the resulting mass function by m1, i.e., m1 = (mAB⊕mAC). Next, we 

combine m1 with mBC given in (5) and obtain the following mass function denoted by m2 = (m1⊕ 

mBC) = ((mAB⊕ mAC)⊕mBC). In the third step, we combine m2 with mZABC given in (7) and obtain 

the mass function denoted by m3 = (m2⊕ mZABC) = (((mAB⊕ mAC)⊕mBC)⊕mZABC). In the fourth 

step, we combine m3 with mA given in (1), and marginalize the resulting mass function to the 

frame of ZBC by eliminating variable A. This process yields the following mass function 

denoted by m4 = ((((mAB⊕ mAC)⊕mBC)⊕mZABC)⊕mA)
↓ZBC

. Next, we combine m4 with mB given 

in (2) and marginalize the resulting m-values to the frame of ZC by eliminating variable B. This 

process yields the following mass function: m5 = (m4⊕ mB)
↓ZC

. Finally, we combine m5 with mC 

given in (3) and marginalize the resulting mass function to the frame of Z by eliminating C to 
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obtain the desired result: mZ←ABC = (m5⊕ mC)
↓Z

 = ((((((mAB⊕ 

mAC)⊕mBC)⊕mZABC)⊕mA)
↓ZBC

⊕mB)
↓ZC

⊕mC)
↓Z

. These steps are described below in detail. 

Step 1:  

In this step, we want to compute m1 = (mAB⊕ mAC), i.e., combine mAB with mAC. This is 

achieved by first extending mAB and mAC to the frame, ΘABC = {abc, ab~c, a~bc, ~abc, a~b~c, 

~ab~c, ~a~bc, ~a~b~c}, through vacuous extension9 and then combine the two mass functions 

using Dempster’s rule. We obtain the following mass function after extending mAB and mAC onto 

the frame ΘABC: 

 mAB({ab,~a~b}) = mAB({abc, ab~c, ~a~bc, ~a~b~c}) =  r1,  

 mAB({ab, a~b, ~ab, ~a~b}) = mAB(ΘABC) = 1− r1, (A2) 

and 

 mAC({ac,~a~c}) = mAC({abc, a~bc, ~ab~c, ~a~b~c}) =  r3, 

 mAC({ac, a~c, ~ac, ~a~c}) = mAC(ΘABC) = 1− r3. (A3) 

By combining the above m-values, we obtain the following mass function on the frame ΘABC:  

 m1({abc, ~a~b~c}) = r1r3, 

 m1({abc, ab~c, ~a~bc, ~a~b~c}) = r1(1−r3), 

 m1({abc, a~bc, ~ab~c, ~a~b~c}) = (1−r1)r3, 

 m1(ΘABC) = (1−r1)(1−r3). (A4) 

                                                 
9 Vacuous Extension is the process through which a mass function from a smaller node (having 

fewer variables) are extended to a mass function at a larger node (having a larger number of 
variables). 
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Step 2: 

In this step, we combine m1 defined in (A4) with mBC again by first extending mBC onto 

the frame ΘABC. The vacuous extension of mBC onto ΘABC yields the following mass function: 

 mBC({bc,~b~c}) = mBC({abc,~ abc, a~b~c, ~a~b~c}) =  r2,  

 mBC({bc, b~c, ~bc, ~b~c}) = mBC(ΘABC) = 1− r2, (A5) 

The combination process of the two mass functions, one in (A4) and the other in (A5), yields the 

following mass function on the frame ΘABC: 

 m2({abc, ~a~b~c}) = r1r2 + r1r3 + r2r3−2r1r2r3, 

 m2({abc, ab~c, ~a~bc, ~a~b~c}) = r1(1−r2)(1−r3), 

 m2({abc, ~abc, a~b~c, ~a~b~c}) = (1−r1)r2(1−r3), 

 m2({abc, a~bc, ~ab~c, ~a~b~c}) = (1−r1)(1−r2)r3, 

 m2(ΘABC) = (1−r1)(1−r2)(1−r3). (A6) 

  Step 3: 

In Step 3, we combine the mass function in (A6) with mZABC. This process is straight 

forward because mZABC(ΘZABC) = 1 for ΘZABC = {zabc, ~zab~c, ~za~bc, ~z~abc, ~za~b~c, 

~z~ab~c, ~z~a~bc, ~z~a~b~c}. Combining m2 and mZABC yields the following mass function on 

the frame ΘZABC: 

 m3({zabc ,~z ~a~b~c}) = r1r2 + r1r3 + r2r3−2r1r2r3, 

 m3({zabc, ~zab~c, ~z~a~bc, ~z~a~b~c}) = r1(1−r2)(1−r3), 

 m3({zabc, ~z~abc, ~za~b~c, ~z~a~b~c}) = (1−r1)r2(1−r3), 
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 m3({zabc, ~za~bc, ~z~ab~c, ~z~a~b~c}) = (1−r1)(1−r2)r3, 

 m3(ΘZABC) = (1−r1)(1−r2)(1−r3). (A7) 

Step 4: 

In Step 4, we combine the mass function in (A7) with mA and marginalize the resulting 

mass function to the frame ΘZBC = {zbc, ~zbc, ~zb~c, ~z~bc, ~z~b~c} by eliminating variable A. 

Before we combine mA with m3 in (A7), we vacuously extend mA onto the frame ΘZABC as 

follows:  

 mA({a}) = mA({zabc, ~zab~c, ~za~bc, ~za~b~c}) = Am+ , 

 mA({~a}) = mA({~z~abc, ~z~ab~c, ~z~a~bc, ~z~a~b~c}) = Am− , 

 mA({a,~a}) = mA(ΘZABC) = AmΘ . (A8) 

Since there are five non-zero belief masses for m3 in (A7) and three non-zero belief masses for 

mA in (A8), combining the two mass functions using Dempster’s rule yields fifteen belief masses  

on the frame ΘZABC. However, when these fifteen belief masses are marginalized to the frame 

ΘZBC by eliminating variable A, we obtain the following mass function with twelve belief 

masses: 

 m4({zbc}) = (r1r2 + r1r3 + r2r3−2r1r2r3) Am+  

 m4({~z~b~c}) = (r1r2 + r1r3 + r2r3−2r1r2r3) Am− , 

 m4({zbc,~z~b~c}) = (r1r2 + r1r3 + r2r3−2r1r2r3) AmΘ + (1−r1)r2(1−r3) Am+  

 m4({zbc, ~zb~c}) = r1(1−r2)(1−r3) Am+ , 

 m4({~z~bc ,~z~b~c}) =  r1(1−r2)(1−r3) Am− , 
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 m4({zbc, ~z~bc}) = (1−r1)(1−r2)r3 Am+ , 

 m4({~zb~c, ~z~b~c}) = (1−r1)(1−r2)r3 Am− , 

 m4({~zbc, ~z~b~c}) = (1−r1)r2(1−r3) Am− , 

 m4({zbc, ~zbc, ~z~b~c}) = (1−r1)r2(1−r3) AmΘ , 

 m4({~zbc, ~zb~c, ~z~bc, ~z~b~c}) = (1−r1)(1−r2)(1−r3) Am− , 

 m4({zbc, ~zb~c, ~z~bc, ~z~b~c})=[r1(1−r2)(1−r3)+(1−r1)(1−r2)r3] AmΘ + (1−r1)(1−r2)(1−r3) Am+ , 

 m4({zbc, ~zbc, ~zb~c, ~z~bc, ~z~b~c}) = (1−r1)(1−r2)(1−r3) AmΘ . (A9) 

Step 5: 

In this step, we combine the mass function in (A9) with mB and marginalize the resulting 

mass function to the frame ΘZC = {zc, ~zc, ~z~c} by eliminating variable B. In order to combine 

mB with m4, we vacuously extend mB onto the frame ΘZBC = {zbc, ~zbc, ~zb~c, ~z~bc, ~z~b~c} 

as follows:  

 mB({b}) = mB({zbc, ~zbc, ~zb~c}) = Bm+ , 

 mB({~b}) = mB({~z~bc, ~z~b~c}) = Bm− , 

 mB({b,~b}) = mB(ΘZBC) = BmΘ . (A10) 

Combining mB in (A10) with m4 in (A9) using Dempster’s rule10 yields 36 belief masses, 

which is the result of multiplying 12 belief masses in (A9) with three belief masses in (A10). 

However, out of 36 belief masses, 32 are defined over the frame ΘZBC = {zbc, ~zbc, ~zb~c, 

~z~bc,~z~b~c} and four pertain to the empty set representing the conflicts among the two mass 

                                                 
10 We do not re-normalize the m-values at this stage. This is done at the end after combining all 
the m-values. 
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functions denoted by m5(∅). Next, we marginalize the above 32 belief masses to the frame ΘZC = 

{zc, ~zc, ~z~c} by eliminating variable B. This process yields the following mass function: 

 m5({zc}) = (r1r2 + r1r3 + r2r3−2r1r2r3)( Am+
Bm+ + Am+

BmΘ + AmΘ
Bm+ ) 

 + [(1−r1)r2(1−r3) + (1−r1)(1−r2)r3] Am+
Bm+ , 

 m5({~z~c}) = (r1r2 + r1r3 + r2r3−2r1r2r3)( Am−
Bm− + Am−

BmΘ + AmΘ
Bm− ) 

 + (1−r1)(1−r2)r3( Am−
Bm− + Am−

Bm+  + Am−
BmΘ ) 

 + (1−r1)r2(1−r3)( Am−
Bm− + Am+

Bm− + AmΘ
Bm− ), 

 m5({zc, ~z~c) = (r1r2 + r1r3 + r2r3−2r1r2r3) AmΘ
BmΘ  + (r1 + r2− 2r1r2)(1−r3) Am+

BmΘ  
 + (r1 + r3− 2r1r3)(1−r2) AmΘ

Bm+  + (1−r2)(1−r3) Am+
Bm+ , 

 m5({~zc, ~z~c) =  (1−r1)(1−r2)(1−r3)( B B B B BA A A A A(m m m m m m m m m m )− − − + − Θ + − Θ −+ + + +  
 + r1(1−r2)(1−r3) Am−

Bm−  + [r1(1−r2)(1−r3) + (1−r1)r2(1−r3)] Am−
BmΘ  

 + [r1(1−r2)(1−r3) + (1−r1)(1−r2)r3] AmΘ
Bm− , 

 m5(~zc) = (1−r1)(1−r2)r3 Am+
Bm−  + (1−r1)r2(1−r3) Am−

Bm+ , 

 m5({zc, ~zc}) = (1−r1)(1−r2)r3 Am+
BmΘ  + (1−r1)r2(1−r3) AmΘ

Bm+ , 

 m5(ΘZC) = [r1(1−r2)(1−r3) + (1−r1)r2(1−r3) + (1−r1)(1−r2)r3+ (1−r1)(1−r2)(1−r3)] AmΘ
BmΘ  

 + (1−r1)(1−r2)(1−r3)( AmΘ
Bm+  + Am+

BmΘ ).  

 m5(∅) =  (r1 + r2r3 − r1r2r3)( Am+
Bm−  + Am−

Bm+ ) (A11) 

Step 6: 

In Step 6, we combine the mass function in (A11) with mC and marginalize the resulting 

mass function to the frame ΘZ = {z, ~z} by eliminating variable C. Here again, in order to 

combine mC with m5 in (A11), we vacuously extend mC onto the frame ΘZC = {zc, ~zc,~z~c} as 

follows:  

 mC({c}) = mC({zc, ~zc}) = Cm+ , 

 mc({~c}) = mC({~z~c}) = Cm− , 
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 mc({c,~c}) = mC(ΘZC) = CmΘ . (A12) 

Combining mC in (A12) with m5 in (A11) using Dempster’s rule yields 24 belief masses. 

Seven out of twenty-four belief masses pertain to the empty set or the conflict. The 

marginalization process of the above 24 m-values onto the frame ΘZ = {z, ~z} by eliminating 

variable C, yields the following mass function11 along with the conflict term denoted by m6(∅):  

 m6({∅}) = [r2 + r1r3(1− r2)] AmΘ ( Bm+
Cm− + Bm−

Cm+ ) + [r3 + r1r2(1− r3)] BmΘ ( Am+
Cm− + Am−

Cm+ ) 

 + [r1 + r2r3(1− r1)] CmΘ ( Am+
Bm− + Am−

Bm+ ) + (r1+ r2− r1r2)( Am+
Bm−

Cm+ + Am−
Bm+

Cm− ) 
 + (r2+ r3– r2r3)( Am+

Bm+
Cm− + Am−

Bm−
Cm+ ) + (r1+ r3 - r1r3)( Am−

Bm+
Cm+ + Am+

Bm−
Cm− ), 

 m6({z}) = Am+
Bm+

Cm+  + (r1+ r2 – r1r2) Am+
BmΘ

Cm+   

 + (r1+ r3 – r1r3) AmΘ
Bm+

Cm+  + (r2+ r3 – r2r3) Am+
Bm+

CmΘ  

 + (r1r2 + r2r3 + r1r3 – 2r1r2r3)( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ  + AmΘ

BmΘ
Cm+ ), 

 m6({~z}) = 1− m6({∅}) − ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ ), 

  m6({z, ~z}) = AmΘ
BmΘ

CmΘ  + (1−r1) (1− r2) Am+
BmΘ

Cm+   

 + (1−r1) (1− r3) AmΘ
Bm+

Cm+  + (1− r2) (1− r3) Am+
Bm+

CmΘ  

 + (1− r1r2− r2r3− r1r3+ 2r1r2r3) ( Am+
BmΘ

CmΘ
+ AmΘ

Bm+
CmΘ  + AmΘ

BmΘ
Cm+ ). (A13) 

The above mass function is not normalized and represents the desired result at variable Z, 

which we express as mZ←ABC, the mass function propagated from the variables A, B, and C to Z. 

Q.E.D. 

                                                 
11 The marginalization process yields m6(~z) = Am−

Bm−
Cm− + Am−

Bm−
CmΘ + Am−

BmΘ
Cm− + 

AmΘ
Bm−

Cm− + Am−
BmΘ

CmΘ + AmΘ
Bm−

CmΘ + AmΘ
BmΘ

Cm−  + (1− r2– r1r3+ r1r2r3) AmΘ ( Bm+
Cm−  + 

Bm−
Cm+ ) + (1− r3– r1r2+ r1r2r3) BmΘ ( Am+

Cm−  + Am−
Cm+ ) + (1− r1– r2r3+ r1r2r3) CmΘ ( Am+

Bm−  + 

Am−
Bm+ ) + (1− r1– r2+ r1r2)( Am+

Bm−
Cm+  + Am−

Bm+
Cm− ) + (1− r2– r3+ r2r3)( Am+

Bm+
Cm−  + 

Am−
Bm−

Cm+ ) + (1− r1– r3+ r1r3)( Am−
Bm+

Cm+  + Am+
Bm−

Cm− ), which can be simplified with some 

efforts to the expression: m6(~z) = 1− m6({∅}) − ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ ). 
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Appendix B 

Proof of Corollary 1 

By definition, the beliefs in ‘z’ and in ‘~z’ are equal to m-values for ‘z’ and ‘~z’, 

respectively. These m-values can be obtained directly from Proposition 1 of Srivastava et al. 

[33]. Their Proposition 1 provides formulas to combine m-values propagated from sub-

objectives to the main objective in an ‘AND’ tree. This situation is equivalent to our situation 

where Z is related to three variables, A, B and C, through the logical ‘AND’, i.e., z = a∧b∧c. 

Their Proposition 1 states that “The resultant m-values propagated from n sub-objectives (Oi, i = 

1, 2, . . . n) to the main objective X in an AND-tree are given as follows (their Equations 1, 2, 

and 3). 

 
i

n

X all O's i
i=1

om ( ) = m ( )ox← ∏ , 

 
i

n

X all O's i
i=1

om (~ ) = 1- [1- m (~ )]ox← ∏ , 

and 
 mX←all O’s({x, ~x}) = 1 – mX←all O’s(x) – mX←all O’s(~x). 

In the present case, we have three sub-objectives, A, B, and C, with Z being the main 

objective and thus, x, is z, and oi’s are a, b and c. The above formulas yield the following m-

values for our case: 

 mZ←ABC(z) = mA(a)mB(b)mC(c) = Am+
Bm+

Cm+ , (B1) 

 mZ←ABC(~z) = 1–(1-mA(~a)) (1-mB(~b))(1- mC(~c))  

 = 1- ( Am+ + AmΘ )( Bm+ + BmΘ )( Cm+ + CmΘ ), (B2) 

These m-values yield: 

 BelZ←ABC(~z) = 1 – ( Am+ + AmΘ )( Bm+ + BmΘ )( C Cm  + m+ Θ ) (B3)  

 BelZ←ABC(z) = A B Cm m m+ + +  (B4) 

These are exactly the same beliefs given in Equations (20) and (21). Q.E.D.  
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Figure 1: Network of Variables* 

 

 

 

 

 

    

 

 

 

 

 

 

 

* A rounded box represents a variable, a rectangle represents an item of evidence, and a 
hexagonal box represents a relationship. These relationships are defined in Table 1. 
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Figure 2:  Diagram Representing Network of Variables for Internal Audit Function 
Evaluation with Associated Items of Evidence* 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

* Similar to Figures 2 and 3, a rounded box here represents a variable, a rectangle represents an 
item of evidence, and a hexagonal box represents a relationship. These relationships are defined 
in Table 1 similar to the relationships in Figure 1. 
 
 
 
 
 

 

Competence (P) 

Work Performance 
(W)

Internal Auditor 
Objectivity (J) 

Internal Audit 
Function 

(H)  

Evidence pertaining to 
Competence (EP) 

Evidence pertaining to Work 
Performance (EW) 

Evidence pertaining to Internal 
Auditor Objectivity (EJ) 

AND 

R1 

R2 

R3 



 43

Figure 3:  Diagram Representing Network of Variables for Auditor Independence Risk with 
Associated Items of Evidence* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* A rounded box represents a variable, a rectangle represents an item of evidence, and a 
hexagonal box represents a relationship. These relationships are defined in Table 1 similar to the 
relationships in Figure 1. 
 

 
 
 
 
 
 
 
 

 
 

Incentive (I) 

Attitude (D) 

Opportunity (O) 

Auditor is not 
Independent 

(N) 

Evidence of Safeguards 
That Impact Incentives (ESI) 

Evidence of Threats that Impact
 Incentives (ETI) 

Evidence of Safeguards 
That Impact Attitude (ESD) 

Evidence of Threats that Impact
Attitude (ETD) 

Evidence of Safeguards 
that Impact Opportunity (ESO)

Evidence of Threats that Impact 
Opportunity (ETO) 

AND 

R1 

R2 

R3 



 44

 
 
 

Figure 4:  Diagram Representing Network of Variables with Associated Items of Evidence* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* A rounded box represents a variable, a rectangle represents an item of evidence, and a 
hexagonal box represents a relationship. These relationships are defined in Table 1 similar to the 
relationships in Figure 1. 
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Table 1: List of Symbols and Their Descriptions 

Symbol Description 

General Analytical Formula 

Z {z,~z} Binary variable Z that is related to three binary variables, A, B and C, through the logical 
relationship ‘AND’ where z and ~z represent that Z is true and not true, respectively. 

A {a,~a} Binary variable A where a and ~a represent that A is true and not true, respectively. 
B {b,~b} Binary variable B where b and ~b represent that B is true and not true, respectively. 
C {c,~c} Binary variable C where c and ~c represent that C is true and not true, respectively. 

R
1
, r

1
 R

1
 denotes the relational node between A and B and r

1
 represents its strength 

R
2
, r

2
 R

2
 denotes the relational node between B and C and r

2
 represents its strength 

R
3
, r

3
 R

3
 denotes the relational node between A and C and r

3
 represents its strength 

..m (..)  The basic belief mass (m-value) for the value of the variable in the parenthesis from the 
evidence represented by the subscript. 

Θ .. 
This symbol represents the frame of a variable denoted by the subscript. For example, 
the frame of variable ‘A’ is represented as AΘ = {a, ~a}. 

+ + +
A B Cm ,  m  and m  m-values supporting the presence of the factors A, B and C, respectively.  

A B Cm ,  m  and m− − −  m-values negating the presence of the factors A, B and C, respectively. 

A B Cm ,  m  and mΘ Θ Θ  m-values representing the basic beliefs on the entire frame of the variables represented 
by the sub-script. 

Bel..(..) The belief that the argument in the parenthesis is true  
Pl..(..) The plausibility that the argument in the parenthesis is true. 

K A normalization constant 
Bel

Z←ABC
({z}) The belief that Z is true after all beliefs from variables A, B, and C have been propagated 

to Z and combined.  
Bel

Z←ABC
({~z}) The belief that Z is not true after all beliefs from variables A, B, and C have been 

propagated to Z and combined. 
Pl

Z←ABC
({z}) The plausibility that Z is true after all beliefs from variables A, B, and C have been 

propagated to Z and combined. 
Pl

Z←ABC
({~z}) The plausibility that Z is not true after all beliefs from variables A, B, and C have been 

propagated to Z and combined. 

Application to Assessing Belief and Plausibility in Fraud  

F {f,~f} F represents the variable ‘Fraud’. Values  f and ~f represent that F is true, and not true, 
respectively. In other words, ‘f’ represents that fraud is present and ‘~f ’that fraud is not 
present. 

I {i,~i} I represents the variable ‘Incentive’. Values i and ~i represent that I is true and not true, 
respectively. In other words, i represents that there is an incentive and ~i represents that 
there is no incentive. 

D {d,~d} D represents the variable ‘Attitude’. Values d and ~d represent that D is true and not 
true, respectively. In other words, d represents that management’s attitude rationalizes 
the commitment of fraud, and ~d the opposite of d. 

O {o,~o} O represents the variable ‘Opportunity’. Values o and ~o represent that O is true and not 
true, respectively. In other words, o represents that there is an opportunity and ~o 
represents that there is no opportunity. 

+ + +

I D Om , m , m  m-values supporting the presence of the factors I, D and O, respectively.  
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I D Om , m , m− − −  m-values negating the presence of the factors I, D and O, respectively. 

I D Om ,  m ,  and mΘ Θ Θ  m-values representing the basic beliefs on the entire frame of the variables represented 
by the sub-script. 

ETI, ETD, ETO Evidence about threat factors pertaining to Incentive (I), Attitude (D), and Opportunity 
(O) 

ESI, ESD, ESO Evidence about safeguard factors pertaining to Incentive (I), Attitude (D), and 
Opportunity (O) 

EPI Evidence related to whether fraud (F) is present or not based on prior information (PI), 

EFP Evidence related to whether fraud (F) is present or not obtained from forensic procedures 
EOP Evidence related to whether fraud (F) is present or not from procedures other than 

forensic procedures 
PlPI(f), PlFP(f), PlOP(f) Plausibility of fraud based on prior information (PI), evidence from forensic procedures 

(FP), and evidence from other procedures (OP), respectively 
PlTI(i), PlTD(d), PlTO(o) The plausibility that an incentive exists (i), management may have an attitude (d) 

rationalizing fraud, and opportunities exist (o) because of the corresponding threat 
factors. 

PlSI(i), PlSD(d), PlSO(o) The plausibility that an incentive exists (i), management may have an attitude (d) 
rationalizing fraud, and opportunities exist (o) because of ineffective safeguards. 

KT, KF, KI, KD, KO, Normalization constants 

Application to Auditor Independence Impairment 

N {n,~n} N represents the variable ‘Independence Risk’. Values  n and ~n represent that N is true, 
and not true, respectively. In other words, n represents that independence has been 
impaired and ‘~n ’that independence has not been impaired. 

I {i,~i} I represents the variable ‘Incentive’. Values i and ~i represent that I is true and not true, 
respectively. In other words, i represents that a threat to independence exists in the form 
of an incentive and ~i represents that there is no threat. 

D {d,~d} D represents the variable ‘Attitude’. Values d and ~d represent that D is true and not 
true, respectively. In other words, d represents that the auditor’s attitude rationalizes the 
impairment of independence, and ~d the opposite of d. 

O {o,~o} O represents the variable ‘Opportunity’. Values o and ~o represent that O is true and not 
true, respectively. In other words, o represents that a threat to independence exists in the 
form of an opportunity and ~o represents that there is no opportunity. 

Application to Internal Audit Function Quality 

H {h,~h} H represents the quality of the internal audit function. Values  h and ~h represent that H 
is true, and not true, respectively. In other words, h represents that the quality of the 
internal audit function is high and ~h  that quality is low. 

P {p,~p} P represents the variable ‘Competence’. Values p and ~p represent that P is true and not 
true, respectively. In other words, p represents that the internal auditor is competent and 
~p represents that the auditor is not competent. 

W {w,~w} W represents the variable ‘Work Performance’. Values w and ~w represent that W is true 
and not true, respectively. In other words, w represents that the work performance of the 
auditor is high and ~w represents that the work performance is low. 

J {j,~j} J represents the variable ‘Internal Auditor Objectivity’. Values j and ~j represent that J is 
true and not true, respectively. In other words, j represents that the internal auditor is 
objective and ~j represents that the auditor is not objective. 

 


