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An Introduction to Evidential Reasoning for Decision Making under 

Uncertainty: Bayesian and Belief Functions Perspectives 

 

ABSTRACT 

 

The main purpose of this article is to introduce the evidential reasoning approach, a research 

methodology, for decision making under uncertainty. Bayesian framework and Dempster-Shafer 

theory of belief functions are used to model uncertainties in the decision problem. We first 

introduce the basics of the DS theory and then discuss the evidential reasoning approach and 

related concepts. Next, we demonstrate how specific decision models can be developed from the 

basic evidential diagrams under the two frameworks. It is interesting to note that it is quite 

efficient to develop Bayesian models of the decision problems using the evidential reasoning 

approach compared to using the ladder diagram approach as used in the auditing literature. In 

addition, we compare the decision models developed in this paper with similar models developed 

in the literature.   
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1. INTRODUCTION 

The main purpose of this paper is to introduce a general research methodology called 

evidential reasoning for decision making under uncertainty. We use the following two 

frameworks for managing uncertainties in the evidence: Bayesian framework and the framework 

of Dempster-Shafer (DS) Theory of Belief-Functions (Shafer 1976). Evidential reasoning 

basically means reasoning with evidence. Such situations are quite common in the real world 

whether we deal with the medical domain, legal domain, or business domain such as auditing 

and information systems. Srivastava and his co-researchers have applied this approach to 

auditing and information systems domains. They have used this approach to develop models for 

assessing risks such as audit risk, fraud risk, information security risk, information quality risk, 

information assurance risk, auditor independence risk, risks associated with sustainability 

reports, and many others (see. e.g., Srivastava and Shafer 1992; Srivastava and Mock 2010; 

Srivastava, Mock and Turner 2007; Gao, Mock, Srivastava 2010; Sun, Srivastava and Mock 

2006; Srivastava and Li 2008, Bovee, Srivastava, and Mak 2003, Srivastava and Mock 2000; 
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Srivastava, Mock and Turner 2009a, 2009b; Rao, Srivastava, and Mock 2010; and Mock, Sun, 

Srivastava, and Vasarhelyi 2009). Of particular interest to information systems researchers 

would be the work of Sun et. al (2006) on information security, and of Srivastava and Li (2008) 

on systems security and systems reliability. Recently, Yang, Xu, Xie, and Maddulapalli (2010) 

have used evidential reasoning approach in multiple criteria decisions. 

We first introduce the basics of the DS theory of belief functions in Section 2. We discuss 

the evidential reasoning approach and related concepts in Section 3. We demonstrate how 

specific decision models can be developed from the basic evidential diagrams under the two 

frameworks, Bayesian and DS theory of belief functions, in Sections 4 and 5, respectively.  

Finally, Section 6 provides a conclusion and discusses potential research opportunities. 

2. DEMPSTER-SHAFER THEORY OF BELIEF FUNCTIONS 

Here we briefly introduce the DS theory and illustrate the use of Dempster's rule to 

combine several independent items of evidence pertaining to a variable or objective. The DS 

Theory is based on the work of Dempster during the 1960’s and of Shafer during 1970’s (Shafer 

1976, see also Dempster, Yager, and Liu 2008). There are three basic functions in the DS theory 

that we need to understand for modeling purposes. These are discussed below. 

m-values, Belief Functions and Plausibility Functions 

The basic difference between probability theory and DS theory of belief functions is the 

assignment of uncertainties, the probability mass. In the probability framework, we assign 

uncertainties to each state of nature. These states are assumed to be mutually exclusive and 

collectively exhaustive. The sum of all these uncertainties assigned to individual state of nature 

is one.  For example, consider a variable X. It has two values: “x,” and “~x”. Under the 

probability framework, we will have P(x)  0 and P(~x)  0, and P(x) + P(~x) = 1. However, in 
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the DS theory of belief functions, we assign uncertainties not only to each state of nature, but 

also to all its proper subsets. These assigned uncertainties are called basic belief masses or m-

values and they all add to one. These m-values are also known as the basic probability 

assignment function (Shafer 1976). For the variable X, we can have m(x)  0, m(~x)  0, and 

m({x,~x})  0, such that m(x) + m(~x) + m({x,~x)} = 1. In general, if the variable has n-values, 

then m-values could exist for all the singletons, all the subsets with two elements, three elements, 

and so on, to the entire frame. The entire frame consists of all the elements, i.e., all possible 

values of the variable. 

Let us consider the following set of m-values pertaining to variable X based on a piece of 

evidence, say, E
1
:  m

 1
(x) = 0.6, m

 1
(~x) = 0.1, and m

1
({x, ~x}) = 0.3. These m-values represent a 

mixed piece of evidence; 0.6 level of support that variable X is true; 0.1 level of support that 

variable X is not true; and 0.3 level of support is assigned to the entire frame {x,~x}, 

representing partial ignorance. A positive evidence means that we have only support for ‘x’ and 

no support for its negation, i.e., 1>m
1
(x)>0 and m

1
(~x) = 0. A negative evidence means we have 

support only for the negation, i.e., m
1
(x) = 0, and 1>m

1
(~x)>0. 

Two other functions are important for our purpose in the current discussion, belief 

functions and plausibility functions. By definition, belief in a subset or a set of elements, say O, 

is equal to the sum of all the m-values for the subsets of elements, say C, that are contained in or 

equal to the subset O. Mathematically, we can depict it as:
C O

Bel(O) = m(C)


 . Also, we know 

that Bel(O) + Bel(~O)  1, i.e., belief in O and belief in ~O may not necessarily add to one, 

whereas in probability theory P(O) + P(~O) = 1; i.e., the probability that O is true and the 

probability that O is not true always add to one. A belief of zero simply means that we lack the 
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evidence, whereas a zero probability means impossibility. Ignorance in probability framework 

simply means assigning equal probability to all the state of nature. For example, if there are only 

two possible values of a variable X, say {x, ~x}, then ignorance means assigning 0.5 to each 

state, i.e., P(x) = 0.5, and P(~x) = 0.5. Under the DS theory, a complete ignorance is represented 

by a belief of zero in “x” and in “~x”, i.e., Bel(x) = 0, and Bel(~x) = 0. 

In addition, we can easily model partial ignorance under DS theory, whereas it is not 

possible to express partial ignorance under probability theory. For example, suppose the auditor 

wants to assess the effectiveness of a security system pertaining to a client’s information system. 

One piece of evidence the auditor could collect would be to review the policies and procedures 

established by the company for the security of the information system. Suppose, based on the 

evaluations of the company’s policies and procedures related the systems security, the auditor 

decides to assign a low level of support, say 0.3 on a scale of 0-1, that the information system is 

secure, represented by ‘x’, and a zero level of support that the system is not secure, represented 

by ‘~x’. This assessment can be expressed in terms of belief masses as: m(x) = 0.3, m(~x) = 0, 

and m({x, ~x}) = 0.7. The value 0.7 assigned to the entire frame {x,~x} represents the partial 

ignorance. However, under probability theory, once you assign 0.3 to the state that x is true, i.e., 

P(x) = 0.3, then by definition the result is P(~x) = 0.7.  There is no way to represent partial 

ignorance under probability theory. 

Consider the earlier example of evidence E
1
 with the corresponding m-values:  m

1
(x) = 

0.6, m
1
(~x) = 0.1, and m

1
({x, ~x}) = 0.3. Based on this evidence alone, we have 0.6 degree of 

support that “x” is true, 0.1 degree of support that “~x” is true, and 0.3 degree of support 

uncommitted. Using the definition of belief functions, we can write: Bel
1
(x) = m

1
(x) = 0.6, 

Bel
1
(~x) = m

1
(~x) = 0.1, and Bel

1
({x, ~x}) = m

1
(x) + m

1
(~x) + m

1
({x, ~x}) = 0.6+0.1+0.3 = 1. 
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Plausibility in a subset, O, is defined to be the sum of all the m-values for the subsets, C, 

that have non-zero intersections with O. Mathematically this can be express as:

O C

Pl(O) = m(C)
 
 . Also, one can show that Pl(O) = 1 - Bel(~O), i.e., plausibility in O is one 

minus the belief in not O. Using the above example of evidence E
1
, we have m

1
(x) = 0.6, m

1
(~x) 

= 0.1, and m
1
({x, ~x}) = 0.3. Thus, based on the evidence E

1
, we have the plausibility in “x” to 

be 1 1 1 1

x C

Pl (x) = m (C) = m (x) + m ({x,~x})
 

 =0.6+0.3 = 0.9, and the plausibility in “~x” to be 

Pl
1
(~x) = m

1
(~x) + m

1
({x,~x}) = 0.1 + 0.3 = 0.4. 

Srivastava and Shafer (1992) tie the plausibility function to the audit risk. More precisely, 

plausibility that an account is materially misstated is the belief function interpretation of the audit 

risk. In the above example, a plausibility of 0.4 that “~x” is true (Pl
1
(~x) = 0.4) can be 

interpreted as the maximum risk that the variable X is not true, based on what we know now 

from evidence E
1
. Using Srivastava and Shafer definition of risk, Srivastava and Li (2008) define 

the systems security risk = Pl(~s) and the systems security reliability = Bel(s), were ‘s’ and ‘~s’, 

respectively, represent that the system is secure and is not secure.  

Dempster's Rule of Combination 

Dempster's rule is used to combine various independent items of evidence bearing on one 

variable. For simplicity let us consider just two items of evidence with the corresponding m-

values represented by m1, and m2. Using the Dempster's rule the combined m-values can be 

written as (Shafer 1976): 

1 2

O = C1 C2

m(O ) = m (C1)m (C2) / K


  , 
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where K is the renormalization constant and is given by: 1 2

C1 C2 = 

K = 1 m (C1)m (C2)
 

  . The 

second term in K represents the conflict between the two items of evidence. If the conflict term is 

one, i.e., when the two items of evidence exactly contradict each other, then K = 0 and, in such a 

situation, the two items of evidence are not combinable. In other words, Dempster’s rule cannot 

be used when K = 0. One can easily generalize Dempster's rule for n items of evidence (see 

Shafer 1976 for details).  

Let us consider the following sets of m-values based on the two items of evidence 

pertaining to the variable X: m
1
(x)=0.6, m

1
(~x)=0.1, and m

1
({x, ~x})=0.3; and m

2
(x)=0.4, 

m
2
(~x)=0.2, and m

2
({x, ~x})=0.4. The renormalization constant K for this case is:  K=1-

[m
1
(x)m

2
(~x)+ m

1
(~x)m

2
(x)]=1-[0.6x0.2+0.1x0.4]= 0.84 and thus the combined m-values are: 

m'(x)  = [m
1
(x)m

2
(x)+ m

1
(x)m

2
({x,~x})+ m

1
({x,~x})m

2
(x)]/K 

 = [0.6x0.4 + 0.6x0.4 + 0.3x0.4]/0.84 = 0.6/0.84 = 0.71428 

m'(~x) = [m
1
(~x)m

2
(~x)+ m

1
(~x)m

2
({x,~x})+ m

1
({x,~x})m

2
(~x)]/K 

 = [0.1x0.2 + 0.1x0.4 + 0.3x0.2]/0.84 = 0.12/0.84 = 0.14286 

m'({x,~x}) = m
1
({x,~x})m

2
({x,~x})/K = 0.3x0.4/0.84 = 0.14286. 

Thus, by definition, the belief that “x” is true after considering the two items of evidence 

is Bel’(x) = m’(x) = 0.71428, and the belief that “~x” is true is 0.14286, i.e., Bel’(~x) = m’(~x) = 

0.14286. The plausibility that “~x” is true is 0.28572 (i.e., Pl(~x) = 1Bel(x) = 1 – 0.71428 = 

0.28572). We see here that while belief that X is not true is only 0.14286, the plausibility that it 

is not true is 0.28572, based on the existing evidence. 
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3. EVIDENTIAL REASONING APROACH 

As mentioned earlier, evidential reasoning simply means reasoning with evidence. This 

term was coined by SRI International (Lowrance, Garvey, and Strat 1986, fn 1) to denote the 

body of techniques specifically designed for manipulating and reasoning from evidential 

information. Gordon and Shortliffe (1985) discussed this approach under DS theory in the 

context of MYCIN that was being developed “to determine the potential identity of pathogens in 

patients with infections and to assist in the selection of a therapeutic regimen appropriate for 

treating the organisms under consideration (see Shortliffe and Buchanan 1975, p. 237).” Pearl 

(1986) used this approach for analyzing causal models under the Bayesian framework. 

There are two basic dimensions of evidential reasoning. One is the structure of evidence 

pertaining to the problem of interest. The second is the framework used to represent uncertainties 

in the evidence and the related calculus to combine the evidence for decision making. Figure 1, 

represents a simple evidential diagram with three variables X, Y, and Z, represented by rounded 

boxes as variable nodes. These variable nodes may be interrelated through a logical relationship 

such as “AND” or “OR” or an uncertain relationship depicted by the relational node, R in a 

hexagonal box. The rectangular boxes in Figure 1 represent items of evidence, or evidence 

nodes, pertaining to the variables to which they are connected. 

In Figure 1, we have one item of evidence for each variable and one item of evidence 

pertains to both X and Y. This diagram is a network in structure. If we did not have the evidence 

pertaining to both X and Y, then the diagram would be a tree. In general, we may have only 

partial knowledge about these variables because of the nature of evidence; the evidence may not 

be strong enough to provide conclusive evidence about the status of the variables. This partial 

knowledge can be modeled using various frameworks such as fuzzy logic, probability theory or 

DS theory of belief functions. We will use probability theory and DS theory to model 
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uncertainties in the evidence in our illustrations. The question is:  what can we say about one 

variable having partial knowledge of all the variables and their interrelationship in the diagram? 

In reference to Figure 1, what can we say about Z if we have partial knowledge about X, Y, and 

Z, based on the evidence available in the situation as depicted by rectangular boxes in the figure, 

or what can we say about X having the partial knowledge about X, Y, and Z? The partial 

knowledge about these variables comes from the evidence that we may have. 

In order to answer the question “What can we say about Z?”, we need to propagate the 

partial knowledge (uncertainties) about X and Y, through the interrelationship R to variable Z 

and combine this knowledge with what we already know about Z from the evidence at Z. Or to 

answer the question, “What can we say about X having the partial knowledge about X, Y, and 

Z?” basically, we follow the same process. We propagate the partial knowledge (uncertainties) 

from Y and Z through the interrelationship R to X and combine this knowledge with what we 

already know about X through the evidence at X. In order to propagate uncertainties through an 

evidential diagram, we need to understand “vacuous extension,” “marginalization,” and 

constructing a Markov tree
1
 from an evidential diagram. Vacuous extension basically means to 

extend the knowledge about a smaller node (a node consisting of fewer variables) to a bigger 

node consisting of a larger number of variables, without having any new information about 

additional variables in the larger node. The marginalization process is required when the 

knowledge about a node is propagated to a smaller node. This process is just opposite to the 

vacuous extension; one has to marginalize the knowledge from the state space of the node to the 

state space of the smaller node. We illustrate these processes in the following sections. Next, we 

                                                           
1
 This topic is beyond the scope of this paper. Interested readers should see Srivastava (1995). 
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describe how to construct an evidential diagram and propagate uncertainties through the 

evidential diagram for a problem of interest. There are three main steps: 

Step 1-Develop an evidential diagram for the problem. An evidential diagram is a 

schematic representation of the variables, their interrelationships, and the items of evidence for 

the problem of interest (See Figures 2, see also Sun, Srivastava and Mock. 2006, for more 

details). Figure 2 represents an evidential diagram where one variable, Assertion
2
 A, has four 

items of evidence. In this example, all the variables are assumed to be binary. However, the 

approach being discussed here is valid for multi-valued variables too.  

Step 2-Representation of Uncertainties in Evidence: In this step we represent 

uncertainties in the evidence using the corresponding framework. For example, for Bayesian 

framework we use probabilities and/or conditional probabilities to represent uncertainties in the 

evidence. In DS theory, we use belief masses to represent uncertainties in the evidence. We 

express the uncertainties in the evidence pertaining to various variables and also express the 

uncertainties pertaining to the relationships used in the evidential diagram. In other words, for 

Bayesian framework, we determine the probability information for each variable in the network 

based on the evidence, and express the interrelationships among the variables in terms of 

probabilities. Similarly for DS theory, we determine the belief masses for each variable in the 

network based on the evidence pertaining to the variable, and express the interrelationships 

among the variables in terms of belief masses. 

Step 3: Propagation of Uncertainties in Evidential Diagram: Shenoy and Shafer 

(1990) have developed local computation techniques for propagating uncertainties in a network 

                                                           
2
SAS No. 31 (AICPA 1980) defines management assertions as the “representations by management that are 

embodied in financial statement components.” According to SAS 31, the management assertions consist of 

“Existence or Occurrence,” “Completeness,” “Valuation or Allocation,” “Rights and Obligations,” and “Presentation 

and Disclosure.” AICPA has recently issued SAS No. 106 (AICPA 2006), Audit Evidence, to supersede SAS No. 31, 

Evidential Matter. The new standard has been in effect since December 15, 2006. 
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of variables, i.e., through the evidential diagram, for both Bayesian framework and DS theory. 

Under the local computation technique for Bayesian framework, the partial knowledge about 

nodes, i.e., variables, is expressed in terms of probabilities and/or conditional probabilities 

known as probability potentials. Under DS theory, this knowledge is expressed in terms of belief 

masses defined at these nodes. 

Under the local computation technique, the propagation of partial knowledge about 

variables in the evidential diagram follows the following techniques:  if the partial knowledge is 

being propagated from a smaller node (fewer variables) to a larger node (more variables) then 

this knowledge needs to be vacuously extended to the state space of the larger node. However, if 

the partial knowledge is propagated from a larger node to a smaller node then this knowledge 

needs to be marginalized onto the state space of the smaller node. We will demonstrate the use of 

these techniques in Section 3 for Bayesian theory and Section 4 for DS theory. It should be noted 

that recent developments in propagating partial knowledge through a network of variables using 

local computations has made it possible to develop computer software such as Netica 

(http://www.norsys.com/) for the Bayesian, and Auditor Assistant (Shafer, Shenoy and 

Srivastava 1988) and TBMLAB (Smets 2005) for DS theory to solve complex problems. Also, 

this development allows one to develop analytical models for complex problems (e.g., see, 

Srivastava, Mock, and Turner 2009, and 2007). 

4. EVIDENTIAL REASONING UNDER BAYESIAN FRAMEWORK  

In this section, we use the Shenoy and Shafer (1990) approach to derive the traditional 

Bayesian audit risk models as derived by Leslie (1984) and Kinney (1984) using a ladder diagram 

approach. The reason we select to derive the traditional Bayesian audit risk model and not a model 

in the information systems domain is to demonstrate the value of evidential reasoning approach in 



 
 

11 
 

comparison with the ladder diagram approach as used by Leslie (1984) and Kenney (1984) to 

derive the well established Bayesian models. The ladder diagram approach has limited 

applicability, especially if there are several interrelated variables. For example, in developing a 

model for assessing fraud risk under the Bayesian theory (Srivastava, Mock, and Turner 2009), we 

have three fraud triangle variables, Incentives, Attitude, and Opportunities. These variables, in 

general, can be considered to be interrelated. And each variable has multiple items of evidence. 

Such a situation cannot be handled by the ladder diagram approach for developing analytical 

models. Srivastava, Mock, and Turner (2009b) use the evidential reasoning approach to develop a 

fraud risk assessment model under the Bayesian framework and analyze the results by considering 

several scenarios. 

Audit Risk Formula at the Assertion Level 

Figure 2 represents an evidential diagram for financial statement audit of an assertion of 

an account, say, Assertion A, on the balance sheet, depicted by a rectangular box with rounded 

corners. As commonly considered in the auditing literature, we assume that this assertion takes 

two values: “a = yes, the assertion A is true”, and “~a = no, the assertion is not true.” In the 

present case, we have four items of evidence pertaining to this assertion represented by 

rectangular boxes in Figure 2. Evidence E
IF

 represents the evidence based on the inherent factors 

(IF), whether material misstatement is present or not. Evidence E
IC

 represents the evidence based 

on internal controls whether the account balance is materially misstated or not. Similarly, E
AP

 

represents the evidence obtained from analytical procedures (AP) whether the account is 

materially misstated or not, and E
TD

 represents the evidence obtained from performing test of 

details of balance (TD). Under Bayesian theory, the audit risk is defined to be the posterior 
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probability, P(~a| E
IF

,E
IC

,E
AP

,E
TD

), that the assertion is not true given that we have partial 

knowledge about “Assertion A” from the four items of evidence, E
IF

, E
IC

, E
AP

, and E
TD

.  

To derive the Bayesian audit risk formula, we need to first identify all the probability 

information (the partial knowledge) based on the four items of evidence about “Assertion A” and 

then combine them using the Shenoy and Shafer (1990) approach. Probability information on a 

variable is expressed in terms of what Bayesian literature refers to as probability potentials, 

which essentially are probabilities or conditional probabilities associated with the variable based 

on the evidence. The following discussion provides the details of the steps involved in 

identifying and combining all the potentials at the variable and finally determining the posterior 

probabilities.

  
Step 1- Identify all the Probability Potentials in the Evidential Diagram: Based on the 

four items of evidence (see Figure 2), we have the following probability potentials (’s) in terms 

of prior probabilities and conditional probabilities at “Assertion A”. 

Potentials due to Inherent Factors:                   
IFI

IF

IF
I

F

F

φ (a) P (a)
 =   = 

P (~a)φ (~a)

   
   
    

 (1a) 

Potentials due to Internal Controls:           
IC IC

IC

IC IC

IC

IC

φ (a) P (E |a)
 =   = 

P (E |~a)φ (~a)

   
   
    

 (1b) 

Potentials due to Analytical Procedures: 
AP APAP

AP

AP APAP

P (E |a)φ (a)
 =   = 

P (E |~a)φ (~a)

   
    

  
 (1c) 

Potentials due to Test of Details:           
TD TDTD

TD

TD TD
TD

φ (a) P (E |a)
 =   = 

P (E |~a)φ (~a)

   
   
    

 (1d) 

The above probability potentials are not necessarily normalized because, in general, 

P(E|a) + P(E|~a)  1. 
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Step 2- Combination of Potentials: According to Shenoy and Shafer (1990), the 

combined probability potentials at “Assertion A” are determined by point-wise multiplication of 

all the potentials at A, which is the process of multiplying each element of the potential by the 

corresponding element of the other potentials at the variable. This process yields the following 

potentials at “Assertion A”. 

 

IF IC AP TD

A IF IC AP TD

IF IC AP TD

P (a)P(E |a)P(E |a)P(E |a)
 = 

P (~a)P(E |~a)P(E |~a)P(E |~a)

 
       

  ,

 (1e) 

where the symbol  represents the point-wise multiplication of the potentials. 

 
If we normalize the above potentials, we obtain the posterior probabilities obtained by 

using Bayes’ Rule, which is given by the following expression: 

IF IC AP TD
IF IC AP TD

IF IC AP TD IF IC AP TD

P (~a)P(E |~a)P(E |~a)P(E |~a)
P(~a|E E E E ) = 

P (~a)P(E |~a)P(E |~a)P(E |~a) + P (a)P(E |a)P(E |a)P(E |a)
. (2) 

In terms of the symbols used by Kinney (1984), we can rewrite the above equation as: 

IF IC AP TD

IC AP TD

IR.CR.APR.DR
P(~a|E E E E ) = AR = 

IR.CR.APR.DR + (1-IR)P(E |a)P(E |a)P(E |a)
. (3) 

Equation (3) is the general result derived by Kinney (1984) using the ladder diagram 

approach. In the above expression, AR represents the traditional Bayesian audit risk and IR, CR, 

APR, and DR, respectively, represent the inherent risk, control risk, analytical procedure risk, 

and the detection risk, as defined by Leslie (1984) and Kinney (1984). Leslie (1984), in his 

derivation, assumed P(E
IC

|a) = P(E
AP

|a) = P(E
TD

|a) = 1, because internal controls, analytical 

procedures, and test of details will find no material misstatement if there is no material 

misstatement. However, Kinney (1984) assumed that these conditional probabilities may not 

necessarily be one. 
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One can write the audit risk formula in (2) in terms of the likelihood ratios (’s) and prior 

odds (a) as: 

  
IF IC AP TD

a IC AP TD

1
P(~a|E E E E ) = 

1 + π λ λ λ
, (4)

 

where the prior odds are defined as 
a
 = P

IF
(a)/P

IF
(~a), and the likelihood ratios as 


IC

=P(E
IC

|a)/P(E
IC

|~a), 
AP

=P(E
AP

|a)/P(E
AP

|~a), and 
TD

=P(E
TD

|a)/P(E
TD

|~a). In general, the 

likelihood ratio represents the strength of the corresponding evidence (Dutta and Srivastava 

1993, 1996, Edwards 1984). A value of >>1 means that the evidence is positive and provides 

support in favor of the variable. A values of 1>≥0 means the evidence is negative and supports 

the negation of the variable. A value of = 1 represents a neutral item of evidence. It simply 

means that there is no information in the evidence about the variable or that we have not 

performed the procedure, i.e., we have not collected the corresponding piece of evidence. An 

infinitely large value of  (i.e., ) means that the evidence in support of the variable is so 

strong that the probability of the variable being true is 1.0. For example, as 
IC
∞, P(a|E

IC
) 1. 

A value of = 0 implies infinitely strong negative item of evidence suggesting that it is 

impossible for the variable to be true. For example, if 
IC

= 0 then P(a|E
IC

) = 0, an P(~a| E
IC

) = 1. 

Equation (4) yields intuitively appealing results. For example, when we have no evidence 

about the variable “Assertion A” whether it is true or not true from any of the four sources, i.e., 

when 
a
 = 1, and 

IC
= 

AP
= 

TD
= 1, we get P(~a| E

IF
E

IC
 E

AP
 E

TD
) = 0.5, as expected (50-50 

chance of the assertion being true or false when we have no information). In order to get the 

audit risk to be 0.05 or less, i.e., P(~a| E
IF

E
IC

 E
AP

 E
TD

) ≤ 0.05, the term 
a


IC


AP


TD
 in the 

denominator in Equation (4) needs to be equal to or greater than 19. Equation (4) can be used for 
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audit planning purposes; depending on how strong the prior information (i.e., 
a
) is and the 

strength of internal controls (i.e., 
IC

), one can plan the nature and extent of the audit procedures 

to achieve the desired level of combined strength (i.e., 
AP


TD
) from analytical procedures and 

test of details for “Assertion A” to achieve the desired audit risk. 

5. EVIDENTIAL REASONING UNDER DS THEORY 

The objective of this section is to show how evidential reasoning is performed under the 

DS theory. Similar to Bayesian framework, we consider the same example and show how one 

can derive the audit risk models at the assertion level under DS theory. Although we could have 

chosen an example from the information systems domain such as information security (Sun, 

Srivastava and Mock 2006) or systems security and systems reliability (Srivastava and Li 2008), 

but for the convenience of the reader we decided to continue with the derivation of the audit risk 

model at the assertion level and compare the results with Srivastava and Shafer (1992). 

Audit Risk Formula at the Assertion Level 

Srivastava and Shafer (1992) developed the audit risk models at various levels of the 

account (assertion level, account level, and the balance sheet level) under the DS theory. These 

models were developed with the assumption that all the items of evidence were affirmative in 

nature, i.e., the items of evidence in their model provided support only in favor of the variables 

being true, and no support for the negation. Recently, Srivastava and Mock (2010) developed an 

audit risk model under the DS theory for the situation where, in general, all the items of evidence 

were assumed to be mixed, i.e., the evidence provided partial support in favor of the variable and 

partial support for its negation. 
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We consider the case depicted in Figure 2 with one variable, “Assertion A”, and four 

independent items of evidence, inherent factors (EIF), internal controls (E
IC

), analytical 

procedures (E
AP

), and test of details (E
TD

).  The following sets of m-values represent the strength 

of evidence pertaining to the four items of evidence in Figure 2: 

Inherent factors:   m
IF

(a), m
IF

(~a), and m
IF

({a,~a}),  (10a) 

Internal Controls:   m
IC

(a), m
IC

(~a), and m
IC

({a,~a}), (10b)  

Analytical Procedures:   m
AP

(a), m
AP

(~a), and m
AP

({a,~a}), (10c) 

Detail Test of Balance:   m
TD

(a), m
TD

(~a), and m
TD

({a,~a}). (10d) 

We use Dempster’s rule to combine the above four items of evidence. Given that 

“Assertion A” is a binary variable, we use Srivastava (2005, Equations 10-13) and obtain the 

following combined belief masses: 

i i i
i i i;  ; m(a)=1 1 m (a) /K m(~a)=1 1 m (~a) /K m({a,~a})= m ({a,~a})/Kand ( ) ( )      , (11) 

where 
i i i

i i iK= 1 m (a) 1 m (~ a) m ({a,~a})( ) ( )      , and  i{IF, IC, AP, TD}.  

As defined in Section 2, the total beliefs and plausibilities for “a” and “~a” can be 

derived from Equations (11) as: 

i
i

Bel(a)=1 1 m (a) /K( )  , 
i

i

Bel(~a)=1 1 m (~a) /K( )  , where i{IF, IC, AP, TD} (12a) 

i
i

Pl(a)= 1 m (~a) /K( ) , and 
i

i

Pl(~a)= 1 m (a) /K( ) , where i{IF, IC, AP, TD}. (12b) 

Using the Srivastava and Shafer (1992) definition of the audit risk as the plausibility, 

Pl(~a), that “Assertion A” is not true, one obtains the following expression for the audit risk: 
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Audit Risk = 
i

i

Pl(~a) = 1 m (a) /K( ) , where i{IF, IC, AP, TD}. (13) 

Under the special case when all the items of evidence are assumed to be affirmative, as 

assumed by Srivastava and Shafer, i.e., assuming m
IF

(~a) = m
IC

(~a) = m
AP

(~a) = m
TD

(~a) = 0, 

and m
IF

(a) = 1IR, m
IC

(a) = 1CR, m
AP

(a) = 1APR, m
TD

(a) = 1TD, and m
IF

({a,~a}) = IR, 

m
IC

({a,~a}) = CR, m
AP

({a,~a}) = APR, and m
TD

({a,~a}) = TD, Equation (13) reduces to: 

 Audit Risk at the Assertion Level =AR = IR.CR.APR.TD. (14) 

Equation (14) is what Srivastava and Shafer obtained for the audit risk, AR, at the assertion 

level. Also, Equation (14) is similar to the SAS 47 Audit Risk model (AICPA 1983) , where IR, 

CR, APR, and DR represent, respectively, the inherent risk, control risk, analytical procedures 

risk, and test of detail risk at the assertion level. By definition, IR, CR, APR, and DR represent 

the plausibility of “~a” based on the corresponding evidence, i.e., Pl
IF

(~a) = IR, Pl
IC

(~a) = CR, 

Pl
AP

(~a) = APR, and Pl
TD

(~a) = DR. 

6. CONCLUSION AND POTENTIAL RESEARCH OPPORTUNITIES 

In this paper we have introduced the evidential reasoning approach for decision making 

under uncertainties. We have used two frameworks, Bayesian framework and DS theory of belief 

functions, for modeling uncertainties. A brief introduction to belief functions is also provided. 

We have used evidential reasoning approach to demonstrate the process of deriving analytical 

formulas for the audit risk at the assertion level under the two frameworks. The results are 

compared with similar results obtained by previous researchers. It is interesting to note that the 

evidential reasoning approach makes it easier to develop analytical models for decision making 

under uncertainties for complex problems. 
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In terms of research opportunities, there are lots of interesting problems, both theoretical 

and empirical in nature, especially in information systems domain that one could investigate 

using the evidential reasoning approach. Some examples of such problems are: How effective 

and reliable is the accounting information system of a company? How effective are the internal 

accounting controls in an accounting system? Answers to these questions come down to 

determining the assertions and sub-assertion relevant to the problem of interest, interrelationships 

among these assertions and sub-assertions, and determining the corresponding items of evidence 

to assess whether these assertions are true or not. Essentially, this involves creating the 

appropriate evidential diagram and using the appropriate framework for representing 

uncertainties and then using the evidential reasoning approach to make the decision. Another 

area of interest in information system domain is the assessment of trust, trust for regular business 

transactions, and trust for ecommerce transactions. Again, such a problem involves determining 

the basic assertions of trust, i.e., what are the basic assertions and sub-assertions that constitute 

trust and what kinds of relationships exist between these assertions and sub-assertions, and 

ultimately what is the structure of evidence? Again, such questions involve both theoretical and 

empirical studies.  
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Figure 1: Evidential Reasoning and Evidential Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Evidential Diagram for one Variable with Four Independent Items of Evidence in an 

Audit Context 
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