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Inference in Hybrid Bayesian Networks with Nonlinear
Deterministic Conditionals

Abstract

To enable inference in hybrid Bayesian networks containing nonlinear deterministic
conditional distributions, Cobb and Shenoy in 2005 propose approximating nonlinear
deterministic functions by piecewise linear ones. In this paper, we describe a method
for finding piecewise linear approximations of nonlinear functions based on a penal-
ized MSE heuristic, which consists of minimizing a penalized MSE function subject to
two principles, domain and symmetry. We illustrate our method for some commonly
used one-dimensional and two-dimensional nonlinear deterministic functions such as
W = X2, W = eX , W = X · Y , and W = X/Y . Finally, we solve two small examples
of hybrid Bayesian networks containing nonlinear deterministic conditionals that arise
in practice.

Key Words: deterministic variable, hybrid Bayesian networks, mixtures of polynomi-
als, deterministic conditional distributions, nonlinear functions, penalized mean square
error heuristic

1 Introduction

The primary goal of this paper is to describe a method for computing marginal distributions
in hybrid Bayesian networks (BNs) containing nonlinear deterministic conditionals for some
continuous variables. To achieve this goal, we approximate nonlinear functions with piecewise
linear functions, then use the results in combination with mixtures of polynomial functions
to perform inference. Hybrid BNs are BNs containing a mix of discrete and continuous
random variables. A random variable is said to be discrete if its state space is countable,
and continuous otherwise.

In a BN, each variable is associated with a conditional probability distribution (or a
conditional, in short), one for each state of its parent variables. A conditional for a variable
is said to be deterministic if the variances of the conditional are all zeroes (for all states
of the variable’s parents). If a discrete variable has a deterministic conditional, this does
not cause any difficulties in the propagation algorithm. However, if a continuous variable
has a deterministic conditional, then the joint probability density function for all continuous
variables does not exist, and this must be taken into account in a propagation algorithm for
computing posterior marginals. Recently, Shenoy and West [21] have proposed an extension
of the Shenoy-Shafer architecture for discrete BNs [20] where deterministic conditionals for
continuous variables are represented by Dirac delta functions [5]. Henceforth, when we talk
about deterministic conditionals, we implicitly mean for continuous variables.

A major problem in inference in hybrid BNs is marginalizing continuous variables, which
involves integration. Often, there are no closed form solutions for the result of the integration,
making representation of the intermediate functions difficult. We will refer to this as the
integration problem.
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One of the earliest non-Monte Carlo methods for inference in hybrid BNs was proposed
by Lauritzen and Jensen [10, 11] for the special case where all continuous variables have the
so-called conditional linear Gaussian (CLG) probability distributions, and discrete variables
do not have continuous parents. A CLG distribution is a Gaussian distribution whose mean
is a linear function of its continuous parents, and whose variance is a non-negative constant.
Such BNs are called mixture of Gaussians BNs since the joint conditional distribution of all
continuous variables is a multivariate Gaussian distribution for each combination of states of
the discrete variables. Since marginals of multivariate Gaussian distributions are multivariate
Gaussian distributions whose parameters can be easily found from the parameters of the
original distribution, this obviates the need to do integrations. However, the requirement
that all continuous conditional distributions are CLG, and the topological restriction that
discrete variables have no continuous parents, restrict the class of hybrid BNs that can be
represented using this method.

Another method for dealing with the integration problem is the mixture of truncated
exponentials (MTE) technique proposed by Moral et al. [13]. The main idea here is to ap-
proximate conditional probability density functions (PDFs) by piecewise exponential func-
tions, whose exponents are linear functions of the variables in the domain, and where the
pieces are defined on hypercubes, i.e., intervals for each variable. Such functions are called
MTEs, and this class of functions is closed under multiplication, addition, and integration,
operations that are done in the propagation algorithm. Thus, the MTE method can be used
for hybrid BNs that do not contain deterministic conditionals.

The MTE method does not pose restrictions such as the limitation that discrete variables
cannot have continuous parents, and any conditional distribution can be used as long as they
can be approximated by MTE functions [4, 8]. The MTE method cannot be used directly in
hybrid BNs containing nonlinear conditionals. However, by approximating nonlinear func-
tions by piecewise linear (PL) ones, the MTE method can be used for hybrid BNs containing
nonlinear deterministic conditionals [2]. However, using MTE functions to perform the re-
quired operations with PL functions requires some manipulation of the results to ensure the
resulting function remains an MTE potential.

Recently, Shenoy and West [22] have proposed another method called mixture of poly-
nomials (MOP) to address the integration problem. The main idea is to approximate con-
ditional PDFs by piecewise polynomials defined on hypercubes. In all other respects, the
MOP method is similar in spirit to the MTE method. MOP approximations of PDFs can be
easily found by using Lagrange interpolating polynomials with Chebyshev points [18]. This
method can also be used with two-dimensional conditional PDFs. Also, MOP functions are
naturally closed under transformations for multi-dimensional linear deterministic functions,
e.g., W = X + Y , etc. Langseth et al. [9] introduced mixtures of truncated basis functions
(MOTBFs) as a generalization of the MTE and MOP frameworks that provide a flexible
tradeoff between accuracy and complexity when approximating empirical PDFs.

In this paper, we demonstrate the use of MOP functions for BNs with nonlinear deter-
ministic conditionals and improve on the approach previously used to find PL linear approx-
imations to nonlinear functions [2]. We propose a method for finding PL approximations
of nonlinear functions based on a penalized MSE heuristic, which consists of minimizing
a penalized mean square error function subject to two basic principles. We illustrate our
method for some one-dimensional functions (such as W = X2, and W = eX), and some
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two-dimensional functions (such as W = X · Y , and W = X/Y ). For reasons of space, we
limit our approximations of the PDFs in the optimization and inference problems to MOP
functions. Similar ideas can be applied to MTE or MOTBF functions.

An outline of the remainder of the paper is as follows. In Section 2, we briefly sketch the
extended Shenoy-Shafer architecture [21] for inference in hybrid BNs containing deterministic
conditionals and define mixtures of polynomial functions. Also, we describe some numerical
measures of goodness of an approximation of a PDF/CDF. In Section 3, we describe two
basic principles and a heuristic for finding a PL approximation of a nonlinear function in
one and two dimensions, and we illustrate these principles and heuristic for the functions
W = X2 and W = eX in the one-dimensional case, and W = X · Y and W = X/Y for
the two-dimensional case. In Section 4, we describe two examples of hybrid BNs containing
nonlinear deterministic conditionals. Finally, in Section 5, we summarize our contributions
and describe some issues for further research.

2 Definitions

In this section, we briefly sketch the extended Shenoy-Shafer architecture [21] for inference
in hybrid BNs containing deterministic conditionals, define mixture of polynomial functions,
and discuss some methods for measuring the quality of MOP approximations to PDFs.

2.1 Extended Shenoy-Shafer Architecture

Conditionals for discrete variables are represented by functions called discrete potentials,
whose values are in units of probability (dimension-less quantities). Conditionals for contin-
uous variables are represented by functions called continuous potentials, whose units are in
units of probability density (probability per unit X, where X is a continuous variable). If
X is a continuous variable with a deterministic conditional represented by the deterministic
function X = g(Y1, . . . , Yn), where Y1, . . . , Yn are the continuous parents of X, then such a
conditional is represented by δ(x− g(y1, . . . , yn)), where δ denotes the Dirac delta function
[5].

In the process of making inferences, we use two operations called combination and
marginalization. Combination of potentials consists of pointwise multiplication. The units of
the combined potential are the product of the units of the component potentials. Marginal-
izing a discrete variable from a potential is by addition over the state space of the discrete
variable. The units of the marginal are the same as the units of the potential being marginal-
ized. Marginalizing a continuous variable from a potential is achieved by integrating the
potential over the state space of the continuous variable. If the potential being marginalized
does not contain Dirac delta functions, the usual rules of Riemann integration apply. If the
potential being marginalized contains Dirac delta functions, then we use the properties of
Dirac delta functions [21]. In either case, the units of the marginal consist of the units of
the potential multiplied by the units of continuous variable X.

In all other respects, the extended Shenoy-Shafer architecture is the same as the Shenoy-
Shafer architecture [20]. Given a hybrid BN with evidence potentials, we first construct a
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binary join tree [17], and then propagate messages in the binary join tree resulting in the
marginals of variables of interest.

2.2 Mixtures of Polynomials

The definition of mixture of polynomials given here is taken from [18]. A one-dimensional
function f : R→ R is said to be a mixture of polynomials (MOP) function if it is a piecewise
function of the form:

f(x) =

{
a0i + a1ix+ · · ·+ anix

n for x ∈ Ai, i = 1, . . . , k,

0 otherwise.
(2.1)

where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and a0i, . . . , ani are
constants for all i. We will say that f is a k-piece (ignoring the 0 piece), and n-degree
(assuming ani 6= 0 for some i) MOP function.

Example 1. An example of a 2-piece, 3-degree MOP function g1(·) in one-dimension is
as follows:

g1(x) =


0.424 + 0.128x− 0.085x2 − 0.028x3 if −3 < x < 0,

0.424− 0.128x− 0.085x2 + 0.028x3 if 0 ≤ x < 3

0 otherwise

(2.2)

g1(·) is a MOP approximation of the PDF of the standard normal distribution on the domain
(−3, 3), and was found using Lagrange interpolating polynomial with Chebyshev points [18].
�

The main motivation for defining MOP functions is that such functions are easy to
integrate in closed form, and that they are closed under multiplication, integration, and
addition, the main operations in making inferences in hybrid BNs. The requirement that
each piece is defined on an interval Ai is also designed to ease the burden of integrating
MOP functions. Pieces of a MOP function can also be defined on a region called a hyper-
rhombus that includes a linear function of one or more variables [18]. In general, integration
of hyper-rhombus MOP functions is slower than hypercube MOP functions, so we utilize the
hypercube formulation exclusively in this paper.

The family of MOP functions is closed under multiplication, addition and integration,
the operations that are done during propagation of potentials in the extended Shenoy-Shafer
architecture for hybrid BNs. They are also closed under transformations needed for linear
deterministic functions. We will illustrate this by a small example.

Example 2. Consider the BN shown in Fig. 1. In this BN, X, Y , and W are all
continuous, and W has a deterministic conditional, W = X + Y . Suppose we are interested
in computing the marginal PDF of W . Suppose g1(·) is a MOP approximation of the PDF
of the standard normal distribution (as described in Eq. (2.2)). Then ξ(x) = g1(x − 3)
is a MOP approximation of the PDF of X, and ψ(x, y) as defined in Eq. (2.3) is a MOP
approximation of the conditional PDF of Y | x.

ψ(x, y) =
g1(

y−6−2x
2

)

2
(2.3)
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X

Y

W = X + Y

X ~ N(3, 12)

Y | x ~ N(6 + 2x, 22)

W

Figure 1: A BN with a Sum Deterministic Conditional.

The deterministic conditional of W is represented by ω(x, y, w) = δ(w − x− y), where δ
is the Dirac delta function. First, we marginalize Y :

((ψ ⊗ ω)−Y )(x,w) =

∫ ∞
−∞

ψ(x, y)ω(x, y, w) dy

=

∫ ∞
−∞

ψ(x, y) δ(w − x− y) dy

= ψ(x,w − x) (2.4)

The result in Eq. (2.4) follows from the sampling property of Dirac delta function: If f is
continuous in a neighborhood of a, then∫ ∞

−∞
f(x) δ(x− a) dx = f(a) (2.5)

Since ψ(x, y) is a MOP, ψ(x,w − x) is a MOP. Next, we marginalize X:

((ξ ⊗ (ψ ⊗ ω)−Y )−X)(w) =

∫ ∞
−∞

ξ(x)ψ(x,w − x) dx (2.6)

Since ξ(x), and ψ(x,w − x) are MOPs, the marginal distribution of W computed in Eq.
(2.6) is a MOP. �

2.3 Quality of MOP Approximations

In this section, we discuss some quantitative ways to measure the accuracy of a MOP ap-
proximation of PDFs.

We will measure the accuracy of a PDF with respect to another defined on the same
domain by four different measures, the Kullback-Leibler (KL) divergence, maximum absolute
deviation, absolute error of the mean, and absolute error of the variance.
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If f is a PDF on the interval (a, b), and g is a PDF that is an approximation of f such
that g(x) > 0 for x ∈ (a, b), then the KL divergence between f and g, denoted by KL(f, g),
is defined as follows ([7]):

KL(f, g) =

∫ b

a

ln

(
f(x)

g(x)

)
f(x) dx. (2.7)

KL(f, g) ≥ 0, and KL(f, g) = 0 if and only if g(x) = f(x) for all x ∈ (a, b). The statistic
KL(f, g) has information theory semantics as the # bits needed to encode g if it is optimized
to encode f . It has been shown in [23] that for any measurable event, the error in its
probability (by using PDF g instead of f) is bounded by

√
KL(f, g)/2.

The maximum absolute deviation between f and g, denoted by MAD(f, g), is given by:

MAD(f, g) = sup{|f(x)− g(x)| : a < x < b} (2.8)

One semantic associated with MAD(f, g) is as follows. If we compute the probability of

some interval (c, d) ⊆ (a, b) by computing
∫ d

c
g(x) dx, then the error in this probability is

bounded by (d− c) ·MAD(f, g).
The maximum absolute deviation can also be applied to CDFs. Thus, if F (·) and G(·)

are the CDFs corresponding to f(·), and g(·), respectively, then the maximum absolute
deviation between F and G, denoted by MAD(F,G), is

MAD(F,G) = sup{|F (x)−G(x)| : a < x < b} (2.9)

The value MAD(F,G) is in units of probability, whereas the value MAD(f, g) is in units
of probability density, and the two values cannot be compared to each other. The se-
mantic associated with MAD(F,G) is as follows. If we compute the probability of some
interval (c, d) ⊆ (a, b) using G(d) − G(c), then the error in this probability is bounded by
2 ·MAD(F,G).

The absolute error of the mean, denoted by AEM(f, g), and the absolute error of the
variance, denoted by AEV (f, g), are given by:

AEM(f, g) = |E(f)− E(g)| (2.10)

AEV (f, g) = |V (f)− V (g)| (2.11)

where E(·) and V (·) denote the expected value and the variance of a PDF, respectively.
To illustrate these definitions, let f(·) denote the PDF of the standard normal distribution

truncated to (−3, 3). Consider g1(·), the 2-piece, 3-degree MOP approximation of f(·) as
described in Eq. (2.2). Also, let F (·) and G1(·) denote the CDFs corresponding to f
and g1, respectively. Fig. 2 shows a graph of g1(z) overlaid on the graph of f(z). The
goodness of fit statistics for g1 are as follows: KL(f, g1) ≈ 0.0051, MAD(f, g1) ≈ 0.0248,
MAD(F,G1) ≈ 0.0028, AEM(f, g1) ≈ 0.0000, AEV (f, g1) ≈ 0.0239.

3 Piecewise Linear Approximations of Nonlinear Func-

tions

When we have nonlinear deterministic conditionals, our strategy is to approximate these
functions by PL functions. The family of MOP functions is closed under the operations
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Figure 2: A Graph of g1(z) (in red) Overlaid on the Graph of f(z) (in blue).

needed for linear deterministic functions.
There are many ways in which we can approximate a nonlinear function by a PL function.

In this section, we examine two basic principles and a heuristic with the goal of minimizing
the errors in the marginal distribution of the variable with the deterministic conditional
represented by the PL approximation.

3.1 One-Dimensional Functions

In this subsection, we will describe PL approximations of two one-dimensional functions
Y = X2 and Y = eX using two basic principles and a heuristic.

3.1.1 The Quadratic Function Y = X2

Consider a simple BN as follows: X ∼ N(0, 1), Y = X2. The exact marginal distribution of
Y is chi-square with 1 degree of freedom. We will use the 2-piece, 3-degree MOP g1(·) defined
in Eq. (2.2) on the domain (−3, 3) for the MOP approximation of the PDF of N(0, 1).

Two Basic Principles In constructing PL approximations, we will adhere to two basic
principles. First, the domain of the marginal PDF of the variable with the deterministic
conditional should remain unchanged. By domain, we mean the region of the real line
where the PDF is positive. We will refer to this principle as the domain principle. Given
a random variable, we have two questions: 1) What are its possible values? 2) What are
the probabilities (or densities) of these values? It is clear that the first question is more
fundamental than the second. It makes little sense to compare two PDFs that do not
agree on the domain. The domain principle requires that in finding a PL approximation,
the domain of the deterministic variable should not be changed. Thus, in the chi-square
example, since the PDF of X is defined on the domain (−3, 3), and Y = X2, the domain
of Y is (0, 9), and we need to ensure that any PL approximation of the function Y = X2

results in the marginal PDF of Y on the domain (0, 9).
Second, if the PDF of X is symmetric about some point, and the deterministic function

is also symmetric about the same point, then we need to ensure that the PL approxima-
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tion retains the symmetry. We will refer to this principle as the symmetry principle. The
symmetry principle applies only when we have symmetry of the deterministic function and
symmetry of the joint PDF of the parent variables about a common point. The main idea
behind the symmetry principle is to reduce the # parameters required to describe a PL ap-
proximation. As we will see subsequently, it is important to keep the # parameters small in
finding a PL approximation. Exploiting any symmetry is one way to do so. In the chi-square
example, the PDF of X is symmetric about the point X = 0, and Y = X2 is also symmetric
about the point X = 0 on the domain (−3, 3). Therefore, we need to ensure that the PL
approximation is also symmetric about the point X = 0.

Penalized MSE Heuristic In the statistics literature, there are several heuristics (such
as Akaike’s information criterion (AIC) [1] and Bayes information criterion (BIC) [16]) for
building statistical models from data. For example, in a multiple regression setting, if we have
a data set with p explanatory variables and a response variable, we could always decrease
the sum of squared errors in the model by using more explanatory variables. However, this
could lead to over-fitting and poor predictive performance. Thus, we need a measure that
has a penalty factor for including more explanatory variables than is necessary. If we have a
model with p explanatory variables, and σ̂2 is an estimate of σ2 in the regression model, the
AIC heuristic is to minimize n × ln(σ̂2) + 2p, where the 2p term acts like a penalty factor
for using more explanatory variables than are necessary.

Our context here is slightly different from statistics. In statistics, we have data, and the
true model is unknown. In our context, there are no data and the true model is known
(the true model could be a nonlinear model estimated from data). However, there are some
similarities. We could always decrease the error in the fit between the nonlinear function
and the PL approximation by using more parameters (pieces), but doing so does not always
guarantee that the error in the marginal distribution of the deterministic variable with the
nonlinear function will be minimized. We will demonstrate that using more pieces (and
therefore more parameters) may lead to a worse result for the marginal distribution of the
target variable. One reason for this is that we are approximating PDFs by MOPs, and
having a lot of pieces in a PL approximation means a lot of parameters, and the marginal
of the target variable is a convoluted sum of the pieces, and the errors do not always cancel
out. In our empirical tests, we have observed that increasing the # pieces decreases errors
in the marginal up to a point, and beyond this point, increasing # pieces causes errors in
the marginal to increase. Also, making inferences with MOPs/MTEs that have many pieces
can be intractable [19]. For these two reasons, we need to keep the number of pieces as small
as possible.

Suppose fX(x) denotes the PDF of X and suppose we approximate a nonlinear deter-
ministic function Y = r(X) by a PL function, say Y = r1(X), that has p free parameters.
By free parameters, we mean parameters that are used in specifying Y = r1(X) that are not
already included in the specifications of fX(x) and Y = r(X), and those that can vary freely
without violating the domain and symmetry principles. The mean square error (MSE) of
the PL approximation r1, denoted by MSE(r1), is given by

MSE(r1) =

∫ ∞
−∞

fX(x) (r(x)− r1(x))2 dx. (3.1)
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Figure 3: A Graph of Y = r1(X) (in red) Overlaid on the Graph of Y = X2 (in blue).

The penalized MSE heuristic finds a PL approximation Y = r1(X) with p free parame-
ters such that the pMSE(r1) = ln(MSE(r1)) + p is minimized subject to the domain and
symmetry principles.

In approximating higher dimensional nonlinear functions, we need to balance the weight
between the ln(MSE(r1)) factor and the penalty factor p. For example, in approximating
W = r(X, Y ), introducing an additional PL piece, of the form W = aX + bY + c, may
cost as much as 3 additional free parameters. So to balance the two competing factors, one
possibility is to define the penalized MSE heuristic as follows:

pMSE(r1) = d ln(MSE(r1)) + p (3.2)

where d is the dimension of the PL function r1. For one-dimensional functions, e.g., Y = X2,
d = 1. For two-dimensional functions, e.g., W = X · Y , d = 2.

For the chi-square BN, the domain and symmetry principles require use of (−3, 9), (0, 0),
and (3, 9) as knots of a PL approximation. The knots are the endpoints of the intervals of
the domain of X and, along with the corresponding values for Y = X2, completely determine
the PL approximation. Suppose we wish to find a 4-piece PL approximation. Let (x1, y1)
and (−x1, y1) denote the two additional knots where −3 < x1 < 0, and 0 < y1 < 9. Such
a PL approximation would consist of 2 free parameters (where the parameters are x1 and
y1). Solving for the minimum MSE(r1) with g1(x) as the PDF of X results in the solution:
x1 = −1.28, y1 = 1.16, the minimum value of MSE(r1) = 0.0433, and the corresponding
value of pMSE(r1) is −1.1405.

The PL approximation Y = r1(X) is as follows (see Fig. 3):

Y =


−4.66− 4.55X if X < −1.28

−0.91X if −1.28 ≤ X < 0

0.91X if 0 ≤ X < 1.28

−4.66 + 4.55X if X ≥ 1.28

(3.3)

If we approximate Y = X2 by a PL approximation Y = r2(X) with, say 6 pieces (4
parameters), then the value of MSE(r2) is 0.0060, and the value of pMSE(r2) is −1.1235,
which is higher than pMSE(r1). Similarly, if we use an 8-piece approximation (with 6 free
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Table 1: Goodness of Fit and Run Time Results for the Quadratic Function Example.

# pieces 4 6 8
# free parameters 2 4 6
MSE 0.0433 0.0060 0.0016
pMSE −1.1405 −1.1235 −0.4205
KL 0.2498 0.1532 0.1098
MAD of PDF 35.3322 35.0924 34.7124
MAD of CDF 0.1639 0.1332 0.1010
AEM 0.0589 0.1886 0.1683
AEV 0.0651 0.1055 0.1864
CPU (in secs.) 0.50 0.75 1.05

parameters), then the value of MSE(r3) is 0.0016, and the value of pMSE(r3) is −0.4205,
which is higher than pMSE(r1) and pMSE(r2). Thus, the penalized MSE heuristic suggests
a 4-piece PL approximation Y = r1(X). The accuracies of the marginal PDF of Y computed
using MOP g1(x) for the PDF of X, and the three PL approximations r1, r2, and r3 are shown
in Table 1 (best values are shown in boldface). The CPU row gives the run time required
by Mathematica 10.1 to compute the marginal PDF of W using the PL approximation.
All experiments were run on a desktop computer under identical conditions. The alternate
model used as the actual PDF to calculate the goodness of fit statistics is the marginal
PDF of Y found using g1 and Y = X2. One reason for doing this is to capture the errors
caused by the PL approximation without confounding by the errors caused by using a MOP
approximation g1 of the PDF of X.

In Table 1, notice that the MSE decreases monotonically with the # of pieces. As the #
free parameters increases, the penalized MSE score will eventually increase after bottoming
out at some point (here at # pieces = 4). We report the results for the various measures
of accuracy. The minimum values of KL divergence, MAD of PDF, and MAD of CDF are
attained for # of pieces = 8. The minimum values of AEM and AEV are attained at #
pieces = 4. The CPU time is monotonic in the # pieces.

Let g2(·) denote the marginal PDF of Y computed using g1(·) and Y = X2 (the CDF
corresponding to this PDF is denoted by G2). Let g11(·) denote the marginal PDF of Y using
g1(·) and Y = r1(X). Let G11(·) denote the CDF corresponding to PDF g11(·). A graph of
G11(·) overlaid on the graph of G2(·) is shown in Fig. 4.

3.1.2 The Exponential Function Y = eX

Consider the problem where X ∼ N(0, 1), Y = eX , and we wish to compute the marginal
PDF of Y . The theoretical marginal distribution of Y is log-normal with parameters µ = 0
and σ2 = 1. As the PDF of X is approximated on the domain (−3, 3), the domain principle
requires that the marginal for Y be defined on the domain (e−3, e3). Thus, in finding a PL
approximation of Y = eX , we need to use the knots (−3, e−3) and (3, e3). Although the PDF
of X is symmetric about the axis X = 0, the function Y = eX is not symmetric about any
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Figure 4: A Graph of G11 (in red) Overlaid on the Graph of G2 (in blue).

axis. Therefore, the symmetry principle does not apply for this problem.
Suppose we wish to find, e.g., a 2-piece PL approximation of Y = r(X) = eX . This

involves solving an optimization problem with two parameters associated with the knots
(−3, e−3), (a1, b1), (3, e3). Let Y = r1(X) denote the PL approximation given by these
knots. We solve an optimization problem as follows:

Find a1, b1 so as to

Minimize
∫∞
−∞ g1(x)(r(x)− r1(x))2 dx (3.4)

subject to : −3 < a1 < 3, and

e−3 < b1 < e3.

Solving this optimization problem results in the optimal solution: a1 = 1.32, b1 = 1.91.
A graph of the PL approximation Y = r1(X) overlaid on Y = r(X) is shown in Fig. 5. The
minimum value of MSE is 0.4566, and the corresponding value of pMSE is 1.2161.

Using the PL approximation Y = r1(X), and the MOP approximation g1(x) of the PDF
of N(0, 12), we computed the marginal PDF/CDF of Y , and compared it with the “exact”
marginal PDF/CDF of Y (computed using g1(x) and Y = eX , which is not a MOP, but we
have a representation of it). Fig. 6 shows the marginal CDF of Y computed using Y = r1(X)
overlaid on the marginal CDF of Y computed using Y = eX .

We repeated this procedure for a 3-piece and 4-piece PL approximation of Y = eX . The
pMSE value is the smallest for the 2-piece approximation. The goodness of fit statistics for
the three PL approximations are as shown in Table 2. Also shown are CPU time (in seconds)
required to compute the marginal PDF of Y . Notice that the 2-piece PL approximation
results in the smallest MAD of PDF statistic, and requires the least CPU time for computing
the marginal PDF of Y . In the case of the 2-piece PL approximation, the marginal PDF of
Y is computed as a 3-piece, 3-degree MOP. In the case of the 3-piece PL approximation, the
marginal PDF of Y is computed as a 4-piece, 3-degree MOP, and in the case of the 4-piece
PL approximation, the marginal PDF of Y is a 5-piece, 3-degree MOP. Thus, the 2-piece
PL approximation results in the most economical marginal representation of the marginal
PDF of Y , which may explain why the CPU time is lowest for the case of the 2-piece PL
approximation.
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Figure 5: A Graph of Y = r1(X) (in red) Overlaid on the Graph of Y = eX (in blue).

Figure 6: A Graph of the CDF of Y using Y = r1(X) (in red) Overlaid on the Graph of the
CDF of Y using Y = eX (in blue).

3.1.3 Approximation Algorithm

An algorithm for approximating a one-dimensional nonlinear function with a PL functions
is summarized in Figure 7. The algorithm begins by establishing a set of knots that define
the PL function. This set includes the endpoints of the domain of the independent variable
and the decision variables determined in the optimization process. If the nonlinear function
is symmetric, this set is expanded to include the points where the result of the function r(x)
is identical on the opposite of the point of symmetry xs. The process is repeated until the
pMSE value is no longer improved.

3.2 Multi-Dimensional Functions

In this section, we find PL approximations of the two-dimensional nonlinear functions, W =
X · Y , and W = X/Y . For multi-dimensional nonlinear functions, we can use the same
principles and heuristic as for the one-dimensional case.
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Table 2: Goodness of Fit and Run Time Results for the Exponential Function Example.

# pieces 2 3 4
# free parameters 2 4 6
MSE 0.4566 0.0623 0.0311
pMSE 1.2161 1.2239 2.5298
KL 0.8437 0.3747 0.1411
MAD of PDF 0.6233 1.1312 2.3453
MAD of CDF 0.3035 0.1484 0.0442
AEM 0.1429 0.0305 0.0163
AEV 0.3164 0.1073 0.1182
CPU (in secs.) 0.16 0.20 0.23

3.2.1 The Product Function W = X · Y

Consider a BN: X ∼ N(5, 0.52), Y ∼ N(15, 42), X and Y are independent, and W =
r(X, Y ) = X · Y . We have a 2-piece, 3-degree MOP gX(x) = g1(

x−5
0.5

)/0.5 of the PDF of

X on the domain (3.5, 6.5), and a 2-piece, 3-degree MOP gY (y) = g1(
y−15
4

)/4 of the PDF
of Y on the domain (3, 27) (here g1(·) is the 2-piece, 3-degree MOP approximation of the
standard normal PDF on the domain (−3, 3) as described in Eq. 2.2).

Using these two MOP approximations of the PDFs of X and Y , we can find an “exact”
marginal PDF of W as follows:

gW (w) =

∫ ∞
−∞

gX(x)

(∫ ∞
−∞

gY (y) δ(w − x · y) dy

)
dx (3.5)

gW (·) is not a MOP, but we do have a representation of it, and can compute its mean
(E(gW ) = 75) and variance (V (gW ) = 458.96). Unfortunately, we cannot compute the CDF
corresponding to gW (·). So we do not report any MAD for the CDFs statistics.

Suppose we wish to find a 2-piece PL approximation of W = X · Y as follows:

r1(x, y) =

{
a1x+ b1y + c1 if x < sX

a2x+ b2y + c2 if x ≥ sX

Notice that the number of parameters in this 2-piece PL approximation is 7 (a1, b1, c1, a2,
b2, c2, and sX).

The domain of the joint distribution of X and Y is a rectangle (3.5 < X < 6.5) × (3 <
Y < 27). The exact domain of W is (10.5, 175.5). We need to find a PL approximation
r1(X, Y ) of r(X, Y ) = X · Y that satisfies the domain principle. The smallest value of
W = X · Y is 10.5 at the point (X, Y ) = (3.5, 3), and the largest value of W is 175.5 at
the point (X, Y ) = (6.5, 27). To satisfy the domain principle, we impose the constraints
r1(3.5, 3) = 10.5, and r1(6.5, 27) = 175.5. These two equality constraints reduce the number
of free parameters from 7 to 5.
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The function W = X · Y is symmetric about the axis X = Y , but the joint PDF of
(X, Y ) is not symmetric about this axis. Therefore, the symmetry principle does not apply
in this case.

We define the following function that will be used in the optimization problem to find
the parameters for the PL approximation:

MSE(a1, b1, c1, a2, b2, c2, sX) =

∫ ∞
−∞

gX(x)

(∫ ∞
−∞

(r(x, y)− r1(x, y))2 gY (y) dy

)
dx

To find values for the PL parameters, we solve an optimization problem as follows:

Find a1, b1, c1, a2, b2, c2, sX so as to (3.6)

Minimize MSE(a1, b1, c1, a2, b2, c2, sX)

subject to : r1(3.5, 3) = 10.5, r1(sX , 27) ≤ 175.5,

r1(sX , 3) ≥ 10.5, r1(6.5, 27) = 175.5,

3.5 < sX < 6.5,

and a1, b1, a2, b2 ≥ 0.

Solving the optimization problem in (3.6), we obtain a PL approximation r1 as follows:

r1(X, Y ) =

{
8.27X + 4.26Y − 31.32 if X < 5.26

24.43X + 5.61Y − 134.90 if X ≥ 5.26
(3.7)

For this optimal solution, the constraint r1(sX , 3) ≥ 10.5 is binding, i.e., r1(3.5, 5.26) = 10.5.
Therefore, the number of free parameters for this optimal solution is 4. The total MSE for
r1(X, Y ) when compared to r(X, Y ) using PDFs gX(·) and gY (·) is 11.5121. Since W = X ·Y
is two-dimensional, and we have 4 free parameters in the PL approximation r1(X, Y ), the
pMSE value is pMSE(r1) = 2 log(11.5121) + 4 = 8.8869.

Let gW1(·) denote the marginal PDF of W computed using gX(x), gY (y), and δ(w −
r1(x, y)). gW1(·) is computed as a 19-piece, 7-degree MOP on the domain (10.5, 175.5). A
graph of gW1(·) overlaid on the graph of gW (·) is shown in Fig. 8. The goodness of fit
statistics of gW1 compared to gW are shown in the second column in Table 3. Results from
additional experiments described subsequently in this section are also displayed in this table.

One way to reduce the pMSE value of a PL approximation is to reduce its number of
parameters. Notice that in the solution of the optimization problem (3.6), c1 ≈ −a1 · b1,
and c2 ≈ −a2 · b2. Thus, if we add the constraints c1 = −a1 · b1 and c2 = −a2 · b2, to the
optimization problem in (3.6), we obtain a PL approximation r2 as follows:

r2(X, Y ) =

{
3X + 4.69Y − 14.08 if X < 5.15

27X + 5.35Y − 144.55 if X ≥ 5.15
(3.8)

A graph of r2(X, Y ) is shown in Fig. 9 along with the exact function r(X, Y ). As in the
case of r1(X, Y ), the constraint r2(sX , 3) ≥ 10.5 is binding. Notice that the approximation
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W = r2(X, Y ) has only 2 free parameters (compared to 4 for W = r1(X, Y )). The approxi-
mation W = r2(X, Y ) has a MSE of 16.6193, compared to MSE of 11.5121 for W = r1(X, Y ).
The corresponding value of the penalized MSE heuristic is pMSE(r2) = 7.6209, which is
lower than pMSE(r1) = 8.8869. The pMSE value of r2 is lower than the pMSE value of r1
because r2 has 2 less parameters than r1. Let gW2(·) denote the marginal PDF of W com-
puted using gX(x), gY (y), and δ(w − r2(x, y)). gW2(·) is computed as a 19-piece, 7-degree
MOP on the domain (10.5, 175.5). A graph of gW2(·) overlaid on the graph of gW (·) is shown
in Fig. 10. The goodness of fit statistics of gW2 compared to gW are shown in the third
column of Table 3.

Comparing these statistics with those obtained without the constraints c = −a · b, we
see that even though the MSE of r2 is higher, all four goodness of fit statistics for gW2

(computed using r2) are better than the corresponding ones for gW1 (computed using r1).
pMSE(r2) = 7.6209 is lower than pMSE(r1) = 8.8869. At least in this case, the penalized
MSE heuristic chooses a PL approximation that has lower errors. Of course, there are no
guarantees that this will always happen.

In a similar manner, we can find a 3-piece PL linear approximation (with the assumption
than c = −ab) as follows:

r3(X, Y ) =


a1X + b1Y − a1b1 if X < sX1

a2X + b2Y − a2b2 if sX1 ≤ X < sX2

a3X + b3Y − a3b3 if X ≥ sX2

This 3-piece PL approximation has 8 parameters (a1, b1, a2, b2, a3, b3, sX1 , and sX2). In
finding an optimal solution that satisfies the domain principle, the number of free parameters
is reduced to 5 because of the equality constraints r3(3.5, 3) = 10.5, r3(sX1 , 3) = 10.5, and
r3(6.5, 27) = 175.5. Even though the MSE(r3) = 4.4350 is lower than the MSE(r2) =
16.6193, pMSE(r3) = 7.9791 is higher than pMSE(r2) = 7.6209 because r3 has 3 more free
parameters than r2.

In the 2- and 3-piece solutions described above, we split the joint domain of (X, Y ) on
X (x < sX , x ≥ sX , etc.). We can also split the domain on Y . The goodness of fit statistics
for the case when we split on Y are not as good as compared to when we split on X. We
do not know why. We conjecture that in the case of the product function, splitting on X
provides better results because X has a smaller variance than Y . When we split on Y , none
of the inequality domain constraints are binding. Thus, a 2-piece PL approximation when
we split on Y has 1 more free parameter compared to when we split on X. The goodness
of fit statistics when we split on Y are shown in Table 3. Thus, the PL approximation
suggested by the penalized MSE heuristic is the 2-piece PL approximation described in Eq.
(3.8), where we assume c = −ab, and that has the best goodness of fits statistics for KL,
MAD (PDF ), and AEV .

3.2.2 The Quotient Function W = 3X/Y

In this subsection, we will consider the problem X ∼ χ2(5), Y ∼ χ2(15), X and Y are
independent, and W = r(X, Y ) = 3X

Y
. The exact marginal distribution of W is F (5, 15),

where F (n, d) denotes the F -distribution with n numerator, and d denominator, degrees of
freedom.
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Table 3: Goodness of Fit and Run Time Results for the Product Function Example.

Split on X X X Y Y Y Y
c = −a · b? No Yes Yes No Yes Yes Yes
# pieces 2 2 3 2 2 3 4
# free parameters 4 2 5 5 3 6 9
MSE 11.5121 16.6193 4.8312 8.9383 14.5624 2.6470 1.10
pMSE 8.8869 7.6209 8.1502 9.3807 8.3568 7.9469 9.19
KL 0.0095 0.0011 0.0029 0.0369 0.0453 0.0061 0.0032
MAD (PDF ) 0.0021 0.0006 0.0006 0.0067 0.0069 0.0025 0.0015
AEM 1.0478 0.6677 0.2687 0.5660 0.0000 0.0000 0.0000
AEV 48.9341 0.4223 29.2187 11.1167 11.6572 1.1496 0.6330
CPU (in secs) 17.86 21.08 25.71 17.04 20.14 25.65 32.12

In [22], it is claimed that MOPs are closed under transformations needed for quotient
functions. But this claim is incorrect. If X and Y are independent, fX(x) denotes the PDF
of X, fY (y) denotes the PDF of Y , and W = X/Y , then the PDF fW (w) is given by

fW (w) =

∫ ∞
−∞
|y| fX(w y) fY (y) dy (3.9)

Although fX(w y), is a polynomial function of y and w, it is not a MOP because it is defined
on regions such as a < w y < b, which is not a hyper-rhombus. Thus, fX(w y) is not a MOP.
Consequently, fW (w) may not be a MOP.

The 0.5 and 99.5 percentiles of X are 0.41, and 16.75, respectively, and we approximate
the PDF gX(x) of X on this domain. Similarly, the 0.5 and 99.5 percentiles of Y are 4.60, and
32.80, respectively, and we approximate the PDF gY (y) of Y on this domain. We will describe
a PL approximation of r(X, Y ) on the joint domain (0.41, 16.75)× (4.60, 32.80). Notice that

the minimum value of W on the joint domain is (3)(0.41)
32.80

= 0.04, and the maximum value is
(3)(16.75)

4.60
= 10.92. Thus, as per the domain principle, we will find an approximation of the

PDF of W on the domain (0.04, 10.92).
Consider a 2-piece PL approximation r1(X, Y ) of r(X, Y ) = 3X/Y where we split the

domain of (X, Y ) on Y as follows:

r1(X, Y ) =

{
a1X + b1Y + c1 if Y < sY

a2X + b2Y + c2 if Y ≥ sY
(3.10)

The PL approximation r1(X, Y ) has 7 parameters (a1, b1, c1, a2, b2, c2, and sY ). We find
the values of these parameters to minimize the MSE of r1(X, Y ) as compared to r(X, Y ) =
3X/Y . To satisfy the domain principle, we impose equality constraints r1(0.41, 32.80) = 0.04,
and r1(16.75, 4.60) = 10.92. The objective function to be minimized is defined as follows:

MSE(a1, b1, c1, a2, b2, c2, sY ) =

∫ ∞
−∞

gY (y)

(∫ ∞
−∞

(r(x, y)− r1(x, y))2 gX(x) dx

)
dy

18



To find values for the PL approximation parameters, we solve an optimization problem
as follows:

Find sY , a1, b1, c1, a2, b2, c2 so as to

Minimize MSE(a1, b1, c1, a2, b2, c2, sY ) (3.11)

subject to : r1(0.41, 32.80) = 0.04, r1(16.75, sY ) ≤ 10.92,

r1(0.41, sY ) ≥ 0.04, r1(16.75, 4.60) = 10.92,

4.60 ≤ sY ≤ 32.80,

and a1, a2 ≥ 0, b1, b2 ≤ 0.

The constraints ensure that the domain principle is satisfied. The resulting PL approximation
is as follows:

r1(X, Y ) =

{
0.61X − 0.37Y + 2.41 if Y < 7.02

0.18X − 0.016Y + 0.50 if Y ≥ 7.02
(3.12)

At the optimal solution, the constraint r1(0.41, sY ) ≥ 0.04 is binding. Thus, the number
of free parameters for the PL approximation in Eq. (3.12) is 4 (= 7 − 3, where 7 is the
number of parameters and 3 is the number of equality constraints). The MSE of the the
PL approximation r1(X, Y ) compared to r(X, Y ) (with respect to a 2-piece, 5-degree MOP
approximation g(x) of the PDF of X, and a 2-piece, 4-degree MOP approximation h(y) of
the PDF of Y ) is 0.1600. This function is shown graphically in Fig. 11 along with the actual
quotient function. Since there are 4 free parameters, the pMSE score for this approximation
is 0.3349. The resulting PDF k1(·) is shown in Fig. 12 overlaid on the PDF k0(·) found by
using the actual quotient function r(X, Y ) in combination with the MOP approximations
to the χ2 PDFs. The goodness of fit statistics of k1(·) compared to k0(·) are shown in the
second column of Table 4.

Next, we found a 3-piece PL approximation r2(X, Y ) of r(X, Y ) = 3X/Y in a similar
way that had 7 free parameters (including two optimal split points on Y , and 4 equal-
ity constraints). The minimum MSE is 0.04600, and the corresponding pMSE value is
pMSE(r2) = 0.8398, which is higher than the pMSE value pMSE(r1) = 0.3349 of the
2-piece PL approximation described in Eq (3.12).

Next, we repeated the procedure and split the joint domain of (X, Y ) on X. The results
are not as good as when we split on Y (see Table 4). Notice that for this example, the best
goodness of fit statistics are obtained by a 3-piece PL approximation where we split on Y ,
the variable in the denominator of the quotient function. The 2-piece PL approximation
with the smallest pMSE score has decent goodness of fit statistics. It requires less time
to compute the marginal of W than the 3-piece split. Based on the results in Table 4, we
conjecture that for quotient functions, splitting on the variable in the denominator will get
better results than splitting on the variable in the numerator.

Thus, for the quotient example, the 2-piece PL approximation r1(X, Y ) described in
Eq. (3.12) is the PL approximation suggested by the penalized MSE heuristic. This is one
example where the penalized MSE heuristic doesn’t suggest the approximation that leads
to the best goodness of fit statistics for the resulting marginal PDF; however, the trade-
off between accuracy and computational complexity seems reasonable given the reasonable
comparison of the marginal PDF to the actual model.
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Table 4: Goodness of Fit and Run Time Results for the Quotient Function Example.

Split on Y Y X X
# pieces 2 3 2 3
# free parameters 4 7 5 9
MSE 0.1600 0.0460 0.2226 0.1232
pMSE 0.3349 0.8398 1.9957 4.8119
KL 0.2449 0.0605 0.8071 0.4393
MAD (PDF ) 0.4834 0.3054 0.5292 0.4618
AEM 0.0951 0.0524 0.0868 0.0559
AEV 0.1644 0.1021 0.4202 0.2488
CPU (in secs.) 33.03 46.35 28.15 47.58

4 Two Examples

This section describes two examples that include a deterministic variable that is a nonlinear
function of its continuous parents. Such examples may arise when constructing BNs in
domains such as business.

4.1 Crop Problem

This example is similar to one used by Lerner [12] and Murphy [15]. The example differs from
previous implementations because the continuous variables are assumed to have log-normal
distributions (instead of normal). In this model, crop size (C) (in million bushels (mB))
produced depends on whether the rain conditions are drought (R = d), average (R = a), or
flood (R = f). The price (P ) of crop (in $/bushel ($/B)) is negatively correlated with crop
size (C). Revenue (V ) (in million $ (m$)) is a deterministic function of crop size (C) and
price (P ), i.e. V = C · P .

The BN and the parameters of the distributions for the variables in the Crop example
are shown in Fig. 13. We will describe a MOP solution to the Crop problem.

First we found 2-piece, 5-degree MOP approximations of the PDFs of C|d, C|a, and
C|f , which have log-normal distributions with parameters as specified in Fig. 13 using the
Lagrange interpolating polynomials with Chebyshev points and the procedure described in
[18]. After we marginalize the discrete variable R, we obtain an 8-piece, 5-degree MOP
approximation of the mixture PDF for C as shown in Fig. 14. The expected value and vari-
ance of this marginal PDF are 4.15 and 1.80, respectively, which are close to the theoretical
expected value of 4.15 and variance of 1.83.

Next we found a MOP approximation of the conditional PDF of P |c using the mixed tree
technique proposed in [14]. We divided the domain of C into 5 equal probability intervals:
(0.93, 2.88), [2.88, 3.63), [3.63, 4.51), [4.51, 5.34), [5.34, 8.88). Next, we found a 2-piece, 5-
degree MOP approximation of the PDF of P |c at the mid-point of each interval (again using
Lagrange interpolating polynomials with Chebyshev points and the procedure described in
[18]). Thus, the MOP approximation of the conditional PDF of P |c has 10 pieces, and 5
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degrees. A 3D plot of the MOP approximation of the conditional PDF of P |c is shown in
Fig. 15 along with a 3D plot of the exact PDF of P |c.

If we compute the marginal PDF of P using the MOP approximation of the marginal
PDF of C and the MOP approximation of the conditional PDF of P |c, we obtain a 13-piece,
5-degree MOP. A plot of this MOP is shown in the left side of Fig. 16. The expected
value and variance of the MOP approximation of the marginal PDF of P are 6.77 and
3.73, respectively. A simulation with 5,000,000 trials produced estimates for the mean and
variance of 6.78 and 2.53, respectively. A histogram for P from this simulation is shown in
the right side of Fig. 16.

Next, we found a 2-piece PL approximation r1(C,P ) of the deterministic function associ-
ated with V using the constraint c = −a ·b as described in Section 3.2.1. Consistent with the
previous examples, we split the domain of the variable C because its marginal distribution
has a smaller variance (1.80) than the marginal distribution of P (3.73). The optimal split
point was very close to the upper bound of the third region of the conditional PDF of P |c.
To minimize the pMSE score, we decided to use the upper bound of the third region 4.51
as the split point (instead of the optimal split point). The total MSE of the 2-piece PL
approximation with 4.51 as the split point is 0.91. There are 2 free parameters in the 2-piece
PL approximation (4 parameters − 2 equality constraints to satisfy the domain principle).
Thus, the pMSE value for this PL approximation is 1.81. The details of the 2-piece PL
approximation are as follows:

r1(C,P ) =

{
6.96C + 2.61P − 18.14 if C < 4.51

5.56C + 5.91P − 32.90 if C ≥ 4.51
(4.1)

Finally, using the computed MOP approximation of the marginal PDF of C, the fitted
MOP approximation of the conditional PDF of P |c, and the PL approximation V = r1(C,P ),
we compute the marginal PDF of V , which is computed as a 50-piece, 11-degree MOP on the
domain (6.45, 49.41). Computing the marginal PDF of V required 112 seconds of computing
time. A plot of the MOP approximation of the marginal PDF of V is shown in Fig. 17
overlaid on the marginal PDF of V using the exact nonlinear function V = C · P (which is
not a MOP, but can be computed in Mathematica). The expected value and variance of the
PDF of V computed using the 2-piece PL approximation are 25.97 and 16.28, respectively,
compared to corresponding values of 25.77 and 16.74, respectively, from using the exact
nonlinear function V = C · P . The measures of accuracy between these two PDFs are as
follows: KL ≈ 0.0068, MAD (of PDF) ≈ 0.0018, AEM ≈ 0.1995, and AEV ≈ 0.4645.

Consistent with our previous examples, using more pieces in the PL approximation does
not improve the accuracy of the marginal distribution for V . For instance, a 5-piece PL
approximation, one for each of the five regions of the PDF of P |c, has an MSE of 0.4307 but
a pMSE score of 6.3153. The marginal distribution is indistinguishable graphically from the
one displayed in Fig. 17 and has a less accurate mean of 25.77 and a lower variance of 16.11.
With the 5-piece PL approximation, 151 seconds of computing time were required to obtain
the marginal distribution.
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Table 5: Risk of Fatal Crash per Billion Miles Traveled in Northeastern States of US in 2008

Avg. Temp. ] Fatal Miles Traveled Crash Rate
Month (◦F) Crashes (billions) (per billion miles)
January 17 297 34.241 8.67
February 18 280 31.747 8.82
March 29 267 36.613 7.29
April 43 350 36.445 9.60
May 55 328 38.051 8.62
June 65 386 37.983 10.16
July 70 419 39.233 10.68
August 68 410 39.772 10.31
September 59 331 37.298 8.87
October 48 356 38.267 9.30
November 37 326 34.334 9.49
December 22 311 37.389 8.32

Source: US Department of Transportation

4.2 Risk of Fatal Crashes

This example is adapted from [6]. Table 5 describes some data on fatal crashes including
average temperature, miles travelled and crash rate. A BN model for the data is as shown
in Fig. 18.

To model the prior PDF of Average Temperature (T ), we used a mixture of four beta
distributions as follows:

fT (t) =


9(t−40)2
156,250

if 15 ≤ t ≤ 30

−9(136,300−7440t+93t2)
5,000,000

if 30 < t ≤ 40

−3(1,338,700−72,080t+901t2)
13,720,000

if 40 < t ≤ 50
6(t−40)2
214,375

if 50 < t ≤ 75

(4.2)

Notice that fT (t) is a 4-piece, 2-degree MOP on the domain [15, 75]. A graph of fT (t)
is shown in Fig. 19. The conditional PDF of M given T = t is a CLG distribution.
Using the mixed-tree technique suggested by Moral et al. [14], we approximated this PDF
by a 6-piece MOP, fM |t(m), where the mixed-tree pieces are on intervals [15, 30], (30, 50],
(50, 75]. Similarly, we approximated the conditional PDF of N given T = t, fN |t(m), by a 6-
piece mixed-tree MOP using the same three mixed-tree intervals as for M . The parameters
for these two CLG distributions were obtained by least-squares regression with T as the
independent variable and M and N as the dependent variables, respectively. The standard
deviation of the error terms, ε, are defined as the standard errors from these two regression
models.

The BN model assumes M and N are conditionally independent given T . This is also
reflected in the regression model where if you regress, e.g., M against T and N , then the
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coefficient on N is not statistically significant. The other assumption in the BN model is
that given {N,M}, R is conditionally independent of T . This follows from the fact that the
column Fatal Crash Rate in the table is the quotient R = N/M .

Assuming no evidence, we can compute the marginal PDF of (M,N), fM,N(m,n), as
follows:

fM,N(m,n) =

∫ ∞
−∞

fT (t) fM |t(m) fN |t(n) dt (4.3)

fM,N(m,n) is computed as a 30-piece, 6-degree MOP. Next, as discussed in Subsection
3.2.2, we found a 2-piece PL approximation of the deterministic conditional R = N

M
(where

we split the domain of M in an optimal way) as follows:

r1(N,M) =

{
0.022N − 1.162M + 40.339 if M < 31.001

0.024N − 0.192M + 8.008 if X ≥ 31.001
(4.4)

Next we computed the marginal PDF of R using the PL approximation R = r1(N,M)
and also using the exact conditional R = N

M
. A graph showing the exact and approximate

PDF of R is shown in Figure 20.

5 Summary and Conclusions

This paper is concerned with inference in hybrid BNs containing nonlinear deterministic
conditionals using MOPs. MOPs are not closed under operations needed for nonlinear de-
terministic conditionals. Earlier, Cobb and Shenoy [2] suggest approximating nonlinear
deterministic conditionals by PL ones. However, there are many ways of creating such ap-
proximations, and a very näıve strategy was used in [2].

In this paper, we describe a principled approach to finding PL approximations of nonlinear
functions. Two basic principles are the domain principle, and the symmetry principle. The
domain principle states that a PL approximation should be such that the resulting domain
of marginal PDF of the deterministic variable should be exactly the same as in the nonlinear
case, and the symmetry principle states that a PL approximation should retain symmetry of
the nonlinear function and the symmetry of the PDFs of the parent variables, if any. Also, a
simple penalized MSE heuristic for finding a PL approximation is suggested that minimizes
a penalized MSE function subject to the domain and symmetry principles.

Using this heuristic, we describe a general algorithm for one-dimensional nonlinear func-
tions. The algorithm for multidimensional functions is similar to the one-dimensional case.
Also, PL approximations of some commonly used nonlinear functions are computed. In the
one-dimensional case, this include the quadratic function Y = X2, and the exponential func-
tion Y = eX . In the two-dimensional case, we examine the cases of the product function
W = X · Y , and the quotient function W = 3X/Y . For all of these nonlinear functions, we
compute the marginal of the variable with the nonlinear deterministic conditional using PL
approximations, and compare it with the marginal found using the exact nonlinear function,
and compute the errors in the marginals.
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The penalized MSE heuristic is not perfect. For the product function example, the
penalized MSE heuristic leads to a 2-piece PL approximation that has the smallest KL,
MAD(PDF ), and AEV statistics. However, for the quotient function example, it leads to
a 2-piece PL approximation, whereas the 3-piece PL approximation has the best goodness
of fit statistics. In most cases, the penalized MSE heuristic leads to PL approximations that
have few pieces (two in all the examples we did), requires less time to compute the marginal
PDF of the variable with the deterministic conditional, and produces approximations of the
marginal PDF with the least number of pieces. In any case, the proposed penalized MSE
heuristic is the first and only heuristic for finding PL approximations of a nonlinear function
whose goal is to minimize the MSE of the marginal of the deterministic variable whose
conditional is described by the nonlinear function.

Finally, we use our methods to solve two small hybrid BNs that contain nonlinear deter-
ministic conditionals. The first one, called the Crop problem was first described by Murphy
[15] and contains a product function. The second one, called Risk of Fatal Crash, described
by Fenton and Neil [6], contains a quotient function. In both cases, we find the marginal
PDF of the variable of interest, and compare it with the PDF obtained using the exact
nonlinear function. Of course, the exact PDFs are not MOPs, and there are no guarantees
that they can be used for further computation.
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Given:

Find:

i=i+1
xt={x0,...,x(1),...,x(i),...,xN}
yt={y0,..., y(1),...,y(i),...,yN}
rt(x) is the piecewise linear function defined by xt and 
yt where x(1),...,x(i) and y(1),...,y(i) are decision variables

Find x(1),...,x(i) and y(1),...,y(i) to minimize MSE(rt)
Calculate pMSE(rt)

Is r(x) symmetric?

xt= xt∪ {2xs−x(1)}∪⋯∪{2xs−x(i)}∪ xs
yt= yt ∪ {y(1),...,y(i)}∪ r(xs)
Re-order points in xt and sort yt according 
to the corresponding points in xt
Define rt(x) based on updated xt and yt

Yes

No

Is pMSE(rt) <
pMSE*?

Yes

No

x = xt
y = yt
r1(x) is the piecewise linear function defined by x and y

r(x), ΩX ={x: x0 ≤  x ≤ xN}, g1(x) and possibly xs
i←0, pMSE*← ∞ 

r1(x) that minimizes pMSE(r1) calculated w.r.t. g1(x)

Figure 7: Algorithm in pseudo-code for approximating a one-dimensional nonlinear function
with a PL function.
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Figure 8: A Graph of gW1(·) (in red) Overlaid on the Graph of gW (·) (in blue).

Figure 9: Left: A 3D Plot of r(X, Y ) = X · Y . Right: A 3D Plot of r2(X, Y ).

Figure 10: A graph of gW2(·) (in red) overlaid on the graph of gW (·) (in blue)
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Figure 11: Left: A 3D Plot of r1(X, Y ). Right: A 3D Plot of r(X, Y ).

Figure 12: A Graph of k1(w) (in red) Overlaid on the Graph of k0(w) (in blue).
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Crop 
(C)

Price
(P)

V = C⋅P

C|d ~ LN(1.08, 0.172)

C|a ~ LN(1.59, 0.202)

C|f ~ LN(0.66, 0.252)

P|c ~ LN(2.55 – 0.16c, 0.102)

Revenue
(V)

Rain
(R)

P(R = d) = 0.35
P(R = a) = 0.60
P(R = f) = 0.05

Figure 13: A BN Model for the Crop Example.

Figure 14: A MOP Approximation of the PDF of C in the Crop Example.

Figure 15: A 3D Plot of the Conditional PDF of P |c (left) and its MOP Approximation
(right).
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Figure 16: Left: A MOP Approximation of the Marginal PDF of P . Right: A Histogram
for P Found Using Monte Carlo Simulation.

Figure 17: A MOP Approximation of the Marginal PDF of V Using a 2-piece PL Approx-
imation of V = C · P (in red) Overlaid on the Marginal PDF of V Using V = C · P (in
blue).
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Avg. Temperature 
(T)

# fatal crashes
(N)

# miles driven
(M)

Crash rate
(R)

N = 243.55 + 2.14 T + ε,
where ε ~ N(0, 24.972)

M = 32.643 + 0.0935 T + ε,
where ε ~ N(0, 1.479352)

R = N/M

Figure 18: A BN Model for the Crash Rate Dataset.

Figure 19: A Graph of the PDF of T .
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Figure 20: A Graph of the Exact (in blue) and Approximate (in orange) PDF of R.
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