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Abstract  

This study focuses on analyzing bike route safety in Lawrence using road geometry, infrastructure, 

and traffic characteristics. Bike crash incidence has been considered as a measure of bike route 

safety in this study. The independent variables considered for the bike route safety analysis are the 

number of lanes, route slopes (average), traffic volume (dummy variable based on functional road 

classification), the availability of bike routes, and posted speed limits. Bike crash data (the 

dependent variable), and Digital Elevation Model (DEM) data were collected from city of 

Lawrence. For the study purpose, streetwise bike route facilities, and traffic lane numbers have 

been updated based on city of Lawrence database. Finally, the average slope for each street in 

Lawrence has been calculated from DEM raster using ArcMap. As the data were characterized by 

over-dispersion and zero inflation, conventional negative binomial and zero inflated negative 

binomial models generate statistically significant variable coefficients. Interestingly, coefficients 

from both model have produced near identical bike compatibility maps for Lawrence. The study 

has found that bike route safety decreases with the increase of the traffic volume and lane numbers. 

In other words, collector and arterial roads are not the safest option for bicyclists in Lawrence, but 

the local neighborhood level streets are more suitable for biking. The route slope has no significant 

impact on bike route safety and the speed is negatively related with bike crash incidence. The 

unavailability of actual bike count data and bike speed data result in some flaws in the outcome of 

bike compatibility map. In a nutshell, complex statistical analysis adds some values in the current 

understanding of bike safety with the data available.   
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Chapter 1: Introduction 

Biking is becoming a very popular mode of transport for commuters in modern cities, 

especially as the last/first mile connector. It not only offers physical and environmental benefits 

but also reduces the negative impact of motor vehicle travel on the society. There is a growing 

interest to promote the bicycle as an alternative form of transportation and a means to reduce the 

dependency on automobiles for shorter trips. The widespread use of automobiles for daily 

commutes in urban areas contributes to serious environmental, economic, and public health 

problems. The heavy dependency on automobiles can affect urban mobility and the quality of life. 

On the other hand, bicycle offers a sustainable active transportation option to city dwellers and it 

helps to improve public health conditions. In such a context, the bicycle may be a viable option 

for a more sustainable urban mobility.  

However, the provision of efficient bicycle system in the cityscape is challenging, because 

city routes are generally characterized with high traffic volumes, speed, and wider routes. These 

routes are prone to bike crash unless sufficient bicycle route facilities are available. The common 

forms of bike route infrastructure are separate bike routes, bike lanes, and shared use paths. It is 

generally believed that the existence of continuous bicycle route infrastructure reduces bicycle 

crash incidence. Besides the bicycle infrastructure, the physical and geographical attributes of the 

route influence bicyclists’ route choice. Therefore, these factors need to be considered in providing 

a safe and convenient bike route. It is worthwhile to investigate these factors to reduce bike crashes 

and make bicycling safe for all ages in Lawrence. 
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1.1.  Research Question, Objective and Problem Statement 

This section comprises the research question including the main inquiry of the study, a set of 

objectives to achieve the study goal and a problem statement. The research question of this study 

is following:   

“What road geometry, infrastructure, and traffic characteristics influence bike route safety in 

the City of Lawrence, Kansas?”    

The study investigates the following more specific questions to understand the bike route safety 

conditions in Lawrence.    

o Is there any relationship between the route slope and the number of bike crashes? 

o Does the presence of bike routes influence the safety for bicyclists? 

o Do the increase of lane number, speed, and traffic volume positively affect bike crash 

incidence?  

o Where are the existing bicycle crash zones located in Lawrence? 

o Which routes are safer for bicyclists in Lawrence?   

Three specific objectives have been identified in studying bike route safety in Lawrence:  

o To explore the relationship between road geometry, traffic characteristics, and bike 

crash incidence  

o To develop a bike compatibility map that would identify safer bike routes in Lawrence 

o  To investigate whether an empirical analysis makes any difference in the 

understandings of bike safety with the available data 

The problem statement illustrates the need of research and provides evidence to support 

the study goal. Lawrence is a college town with a population of just over 92,500 and the bicycle 

is a very popular mode of transport in this city compared to other cities in Douglas County (United 
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States Census Bureau, 2014).  The city of Lawrence already has some (maybe insufficient) bike 

routes, bike lanes and shared use paths in the existing city routes. Despite these existing bike 

infrastructure, the rate of bicycle and pedestrian crashes in the City of Lawrence is significantly 

higher than other cities in Douglas County, Kansas (Mortinger, 2015). About 97% bike and 

pedestrian crash incidents of Douglas County occurred in Lawrence between 2009 and 2013. (City 

of Lawrence, 2015). According to ETC Institute Citizen Survey in 2015, only 10% residents feel 

very safe riding bike in Lawrence, and 21% are satisfied with the connectivity of bicycle lanes 

(City of Lawrence, 2015). The University of Kansas (KU) is the major hub or activity center in 

the city of Lawrence, and KU is located on top of a hill- Mount Oread. An empirical research is 

needed to conclude whether the steep slopes of the connecting routes to the University of Kansas 

makes biking more challenging or some other road infrastructure and traffic characteristics such 

as lanes, traffic volumes, speed, bike routes etc. play a key role in bike crashes. To this end, it is 

important to identify the prevailing crash zones in the City of Lawrence and figure out the safe 

route for bicyclists. The provision of bike infrastructure can play a vital role in ensuring safety to 

the riders e.g. KU students, faculties, staff, city residents etc. In a nutshell, the objectives of this 

study are to figure out how and what road geometry, infrastructure, and traffic characteristics affect 

bike safety in the city of Lawrence, KS. This study identifies the existing bike crash zones, the 

spatial relationship between the route slope and the number of crash incidence and between the 

presence of bike facilities and crash incidence. Finally, a bike compatibility map is prepared to 

identify which routes are more comfortable and safer options for the bicyclists in Lawrence. The 

similarities and distinction of this compatibility map with the City’s bike rideability map would be 

helpful in providing recommendations for the next moves of the City of Lawrence.   
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1.2.  Status quo of Bike Analysis (Plans and Policies)  

1.2.1. University of Kansas Bike Plan.  The University of Kansas has updated its campus 

bike plan in spring 2016 and the League of American Bicyclists designated city of Lawrence as a 

bicycle friendly community at the bronze (the lowest) level in August 2016. The plan tried to 

achieve following goals:  

o Enhance the multimodal network linking residential, academic, and recreational 

destinations on campus and in the community 

o Promote a safe and healthy campus environment 

o Increase bicycle and pedestrian mode share through the implementation of new 

policies, programs, and infrastructure 

o Improve coordination with the City of Lawrence and create seamless transitions 

between university and city bike routes and infrastructure.  

o Improve movement uphill by identifying policy, program, and infrastructure 

solutions that encourage people to overcome the real and perceived barrier of steep 

routes to campus (Center for Sustainability, 2016).  

1.2.2. Countywide (Douglas County) Bikeway System Plan.The main goal of the 

Countywide Bikeway Plan was to identify bikeway recommendations for the portions of Douglas 

County that have not previously had bikeways planned. In addition to the provision of bike 

infrastructure, the plan has emphasized 5 E’s (Encouragement, Education, Enforcement, 

Evaluation, and Engineering). The major recommendations include building bicycle parking 

facilities, connecting bicycle facilities and routes to transit stops, continue installing bike racks on 

all buses, a bike share feasibility study which is now underway.  



5 

 

 

1.2.3. Bicycle Rideability map. The bicycle rideability map is designed to promote, 

encourage and educate bicyclists. The map assists riders in choosing routes most applicable to 

their skill level and alerts bicyclists about difficult intersections. It also shows major landmarks to 

help bicyclists navigate around town and identifies transit connections.  

The creation of the rideability layer was not scientific. It evolved over time, the current 

rideability map is the third generation of it. There were 9 Bicycle Advisory Committee (BAC) 

members on the committee. BAC members were asked to draw colored lines to represent the 

categories and then they discussed particular sections if they had differences. No road geometry 

and traffic factors were considered. BAC members used their own experiences to rank the routes. 

This is very subjective judgment and a limitation of the current rideability map. 

Bicycle planning has always been a priority for the city of Lawrence since last two decades 

and the increasing citizen concern about bicycling issues prompted the city commission to form 

Bicycle Advisory Committee (BAC) in the mid-1990s. The initial purpose of BAC was to promote 

bicycle transportation and safety and the future of bikeway planning in Douglas County. Over the 

years, BAC, currently known as Transportation Commission, has made recommendations on the 

location and design of bikeways, expenditures of public funds for bikeway development and 

maintenance, promotion of bicycle use and safety, street design issues related to bicycle use, and 

other bicycle and transportation issues. 

1.3.  Research Gap (Motivations of the Study) 

The empirical study of bike safety analysis using road geometry, infrastructure, and traffic 

characteristics is non-existent. The City of Lawrence has a bike rideability map which was 

prepared by Bicycle Advisory Committee (BAC) members based on their riding experiences. This 

measurement of bicycle safety is subjective and not scientific. There might be a gap between actual 
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safer routes and perceived safer routes by BAC members. That is why an empirical research is 

required to find out the safer routes for bicyclists and what road factors contribute to the bicyclist's 

safety. A statistical analysis (regression) has been conducted to best fit the data and the regression 

coefficients are then used to develop a bike compatibility map for Lawrence. To find the existing 

bike crash zones, a kernel density map has been prepared using ArcMap. The bike safety analysis 

would investigate what factors are responsible for an area prone to a bike crash. This information 

would be useful for city planners and decision makers to understand what measures need to be 

taken to improve bike safety for certain areas. Finally, the bike compatibility map would be helpful 

in identifying the safe and convenient routes for the bike users. To pursue this scope of study, the 

city of Lawrence has been chosen as a study area and it is important to know some basic geographic 

features and existing bike route facilities in Lawrence.  

1.4.  Study Area  

Lawrence is the sixth largest city in the state of Kansas and it is a county seat of Douglas 

County, Kansas. It is located in northeastern Kansas next to Interstate 70, alongside the banks of 

the Kansas and Wakarusa Rivers. Lawrence has a diverse economy spanning education, scientific 

research, industrial, agricultural, finance and government. Most of these activities are tied to 

the University of Kansas which is the largest employer in Lawrence.   

At present, the city of Lawrence has 49 miles on-road designated bike facilities i.e. bike 

lanes, bike routes, and marked shared lanes. The city also has 28 miles hard surface shared use 

paths, and 40 miles of off-road natural surface paths i.e. trails at Clinton Lake (City of Lawrence, 

2015). It is noteworthy that Lawrence has been recognized as bicycle friendly community at the 

bronze level (the lowest level) since 2004 by the League of American Bicyclists. In 2016, 

Lawrence was still at the bronze level and the Lawrence still have much higher bike crashes than 

https://en.wikipedia.org/wiki/University_of_Kansas
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other cities in the Douglas County. As a college town, there is a higher propensity to use bikes in 

Lawrence and bike safety issues demand an empirical analysis to help reduce crash incidence 

(alternatively to achieve vision zero crash incidence) in the city. Therefore, this study chooses the 

city of Lawrence as the study area. The availability of required data for regression analysis is a 

plus. 

1.5.  Summary of the Chapter 

 The goal of the study is to identify what road geometry, infrastructure, and traffic 

characteristics play a key role in the bike route safety. The number of bicycle crash incidence has 

been used as an indicator for bicyclist’s safety in this study. Table 1 summarizes the type of data 

required for the study, source of the data, spatial and statistical tools used to analyze the data, and 

the queries answered by the collected data and analysis.    

Figure 1: Map of the study area (GIS Data Source: City of Lawrence, KS) 
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  Table 1: Sources of data and tools to be used in answering research question 

Data Source Tools Questions to Answer 

Bike crash data City of Lawrence  RStudio 

Excel 

ArcMap 

How road geometry and traffic 

characteristics factors affect 

bike route safety?  

 

 

Route slope  City of Lawrence  

Existing bike route City of Lawrence  

Traffic volume  KDOT and  

City of Lawrence  

Number of lane City of Lawrence 

Crash locations KDOT  Spatial Analyst 

(ArcMap) 

To identify crash zones 

Slope vs Crash City of Lawrence  RStudio / Excel Impact on bicyclists safety 

Factors of crashes RStudio, Excel,  To analyze bike safety 

 

 The rest of the thesis is organized as is shown in Figure 2 below.  

 

 

 

 

 

 

 

 

 

 

 

Literature Review 
(Identification of dependent and independent variable) 

Explore Data, Source & Gap 
• City of Lawrence & KDOT 

• Lane number 

• Speed 

• Bike route facility 

• Traffic volume 

• Slope (Not Available) 

Statistical Analysis 
• Linear Regression 

• Logistic Regression 

• Poisson Regression 

• Zero Inflated Poisson 

• Negative Binomial 

• Zero Inflated Negative 

Binomial 

Bike Compatibility Map 
(Interpret variable coefficients) 

 

Spatial Analysis (ArcMap) 
• Slope calculation from DEM 

• Master database preparation 

• Export data for statistical 

analysis 

Selection of Best Fit Model 
P-value, α, Vuong test (AIC, BIC, Raw) 

Findings, Recommendation 

& Conclusion 

Figure 2: Workflow diagram of the study 
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Chapter 2: Literature Review 

A literature survey has been conducted to review relevant existing studies, and the 

approaches taken by other researcher to solve similar or related issues. Even though bike safety is 

not a new phenomenon, the context and physical features of each study are different. Therefore, 

the literature review would help to identify what resources are available and what gaps in research 

exists. The identification of dependent and independent variables are the major findings of the 

literature survey. Once the relevant variables are identified, the next step is to check what statistical 

methods are available to find the relationship between independent and dependent variable. This 

chapter has three main components: factors that affect bike route safety, methods to conduct safety 

analysis, and strategies to provide bike route facilities.  

2.1. Factors that Affect Bike Route Safety 

The factors that affect bicycle route choice are three-fold, namely, the characteristics of 

roads, traffic characteristics, and environmental factors.   

2.1.1. Characteristics of the Roads.  For the bike route safety analysis, it is important to 

know the road geometry, width and traffic lane numbers, pavement type and condition, the slope 

of road segments. Pertinent research findings on road characteristics have been summarized as 

below.  

 Petritsch, Landis, Huang, and Challa (2006) found that a majority of bicyclists prefer to 

bike on streets with two lanes rather than pedaling on wider roads (with four lanes). According to 

these authors, the drivers tend to pay more attention to other vehicles on the wider roads than to 

bicyclists. This behavior increases the probability of bike crash incidence. On the other hand, 

Hyodo, Suzuki, and Takahashi (2000) found that usually, bicyclists plan their trips by directing 
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them to main streets, with several traffic lanes. The reason given by the authors is that the wider 

roads are better known by users, which facilitates the planning of their trips.  

The bad condition of the pavement or debris on a road may be a major impediment for the 

bicyclist to ride on it, because the lack of a suitable surface for cycling decreases the sense of 

security, forcing the bicyclist to choose other routes (Noland & Kunreuther, 1995). M. Stinson and 

Bhat (2004) found that bicyclists avoid biking on unpaved roads and prefer to use roads with the 

paved and smooth surface. The pavement type and condition are more important for experienced 

cyclists because these users are more capable in evaluating the quality of the pavement. 

The presence of uphill stretches impede in the choice of the route and severe slopes are 

often avoided by bicyclists. M. A. Stinson and Bhat (2005) found that the tolerance with uphill 

stretches is directly related to the type of bicyclist. The preference for flat roads is higher among 

non-experienced bicyclists. But the more experienced bicyclists prefer to ride on roads with steep 

slopes because these roads require a greater level of physical exercise. The study did not mention 

what slope is a severe or steep slope. Sener, Eluru, and Bhat (2008)  used three categories of slope 

(flat terrain, moderate slopes, and steep slope) and have drawn an interesting conclusion that 

bicyclists prefer routes with a moderate slope. Winters, Teschke, Grant, Setton, and Brauer (2010) 

claim that there is no consensus on the threshold above which the slope is considered unsuitable 

for biking, but the limit considered in the study was 10%. Broach, Dill, and Gliebe (2012) found 

that some bicyclists in Portland, Oregon were willing to go 37% longer distances on a flatter route 

to avoid slopes that are greater than 2%.  

The existence of bike paths, bike lanes, and bike routes are of prime importance for 

bicyclist route choice. In addition to the existence of infrastructure for bicyclists, it is necessary 

that this infrastructure is continuous. Roads with uninterrupted bicycling infrastructure are much 



11 

 

 

more attractive to bicyclists than roads with only a few stretches of bike lanes or bike paths. On 

the other hand, Dill (2009) concluded that most bicycle users will not use the biking infrastructure 

(even if it is very good) if this route implies a very large deviation from the shortest path between 

their points of origin and destination. With respect to preference for use of bike paths and lanes, 

Larsen and El-Geneidy (2011) found that there is no statistically significant difference between 

men and women in Canada, whereas Garrard et al. (2008) in Melbourne, Australia, found that the 

percentage of women who prefer to use cycling infrastructure is statistically higher than that of 

men. 

2.1.2. Traffic Characteristics. Higher number of conflict points with motor vehicles, long 

time exposure to high-volume and high-speed road traffic result in mental stress for the bicyclists. 

Therefore, traffic volume is considered as a very important factor in route choice and bicycle users 

tend to prefer roads with low traffic volume. The vehicle flow (volume) is inversely proportional 

to the bike rider’s experience. Experienced bicyclists tend not to bother with the volume and speed 

of traffic sharing the road with them. Casello, Nour, Rewa, and Hill (2011) concluded that what 

really bothers bicyclists is the behavior of vehicle drivers to bicyclists instead of traffic flow. The 

relationship between speed, traffic volume, and the perceived risk of accidents is very important 

(Snizek, Nielsen, & Skov-Petersen, 2013). The availability of traffic volume data for each street is 

difficult, so Snizek et al. (2013) used the road hierarchy (arterial, collector or local roads) as a 

proxy for the volume and speed of traffic. It is a common practice in the study of bike route safety. 

2.1.3. Environmental Characteristics. The perception of security (a possible risk of 

robbery and physical assault) is an important criterion in the bike route decision making. Sener et 

al. (2008) found that about 20% of the bicyclists were anxious about their personal safety while 

biking. Absence of streetlight in any route segment would force bicyclists to change the route 
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while biking at night. Weather conditions can be incorporated in the bike route safety analysis. 

Presumably rainy or snowy weather condition are riskier as the road surface not favorable for the 

bicyclists.  

2.2. Methods and Strategies for Bike Route Safety Analysis 

This section has three major components, i.e. GIS based approach, statistical approach, and 

survey based (participatory) approach. Researchers have tried to explore different ways to analyze 

bike route safety. All three types of strategies are discussed below.   

2.2.1. GIS Based Approach. Singleton and Lewis (2012) conducted a bike safety study in 

London using bicycle accident data. The authors used Geographic Information Systems (GIS) tool 

for analyzing and visualizing crash occurrences. Network routing algorithm was adopted to 

account for the frequency of bike accidents within a series of proposed journeys. This pilot routing 

application compared the quickest route with an accident avoidance weighted route between a 

series of origins and destinations. Finally, route safety attributes were applied. 

  Hu, Zhong, Cheng, and Wang (2012) conducted a study on road safety evaluation models 

for bicyclist in the campus of Higher Education Mega Center (HEMC) in China using GIS. In 

China, road accidental injuries, mostly bicyclists, to the students in HEMC are a large number.  

The authors have summarized key factors that impact the bicyclist safety in campus: the slope 

gradient, road curvature, distance to intersections and other special factors (like a rainy day) that 

contribute to the road risk. These factors were quantified, normalized, and finally, a comprehensive 

safety evaluation model (road risk distribution model) for bicyclist was developed. With the help 

of ArcMap software, all risk values of points in the road were interpolated through sample points 

by Digital Terrain Model (DTM) function, and the risk DTM was overlaid on the remote sensing 
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image of the same area. Finally, a risk distribution map along the road for bicyclists of campus in 

sunny days and rainy days were created using ArcMap and Network Analyst.  

Chu, Azer, Catalanotto, Ungar, and Goodman (1999) used a method to identify the high 

accident locations through clustering techniques that involve query by crash type, time of day and 

crash severity. The outcome of the study can be used to identify and rank crash locations for the 

most effective use of safety funds. NCCGIA (2000) used route planning and cluster analysis to 

identify high bike crash zones and it could be used for practical decision making in the provision 

of bike route facilities. Smaller search radii can be used to show crash clusters on intersections and 

route segments whereas larger search radii can be used to recognize large zonal clusters. The 

perception of bike and pedestrian crash risk can be used for crash prevention. Butchart, Kruger, 

and Lekoba (2000) conducted survey of households in six neighborhoods in a low-income area of 

Johannesburg, South Africa (Sample size, N = 1075). The authors have concluded that inadequate 

signage, traffic lights, and alcohol involvement were perceived as pedestrian risk factors. The 

preventive measures include increased law enforcement and traffic calming. The most pronounced 

methods to measure and rank high crash zone are individual methods such as crash frequency, 

crash rate, crash density, and composite method such as the sum-of-the-ranks method, which can 

be used to rank high pedestrian crash zones. The crash frequency (CF) is the number of reported 

pedestrian/bike fatal and injury crashes. All types of fatal and injury crashes are given equal 

weights. The crash density (CDA) method is a strategy to rank zones based on crash frequency, CF 

or CFS per length or area. The crash rate (CR) method is used to rank zones based on the CF or 

CFS in relation to a measure of exposure. Typical measures of exposure are pedestrian and 

vehicular volume, and the population in the proximal area. The crash rate based on vehicular 

volumes (CRVV) is the ratio of CF to the vehicular volume. The vehicular volumes are measured 
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either as the number of vehicles crossing a point in a given time period or as vehicle-miles of travel 

along a segment in that period. The sum-of-the-ranks (SR) method combines the selected 

individual methods in the calculation of a single rank value for each zone. The Crash Score (CS) 

method is based on normalizing the values to the same scale to obtain a score for each method. In 

the sum-of-the-ranks method, crash density (CDA), crash rate based on vehicular volume(CRVV), 

and crash rate based on population (CRPP) are used to estimate the overall crash score using the 

CS method. The individual scores for each method are normalized to a 0 –100 scale using the 

following equations:  

Score CDA = (CDA / maximum CDA) × 100 

  Score CRVV = (CRVV / maximum CRVV) × 100 

Score CRPP = (CRPP / maximum CRPP)× 100                  (Butchart et al., 2000)  

The highest score for a method is equal to 100. The individual scores for each method are then 

summed to estimate the crash score for the zone: 

CS = Score CDA + Score CRVV + Score CRPP              (Butchart et al., 2000) 

 

2.2.2. Statistical Approach. Mapping the risk of collision between bicyclists and motor 

vehicles in urban areas is important to provide safe bicycle route opportunities. It might be helpful 

to make an informed transportation planning decisions and explore patterns of injury 

epidemiology. Yiannakoulias, Bennet, and Scott (2012) stated that bicycle crash risk can be 

measured by four parameters e.g. Crash frequencies, crash per capita, crash rates per bicyclist, and 

crash rates per distance traveled. The relative risk of bicyclist collisions can be expressed as  

θi = (yi /ei)                      (Yiannakoulias et al., 2012) 
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where yi is the observed and ei is the expected number of collisions in census tract i. The expected 

number of collisions is equal to the total bicyclist kilometers travelled in tract i multiplied by the 

study area rate of collisions (total collisions divided by total kilometers travelled). Given i, the 

number of collisions yi in the census tract can be treated as an independent Poisson process 

(Yiannakoulias et al., 2012). Using the shortest distance route choice algorithm, the study 

estimated the total distance traveled by all commuter bicyclists in Hamilton, Canada. This measure 

can be used to represent the underlying geography of biking risk more realistically, and provide 

more geographically and empirically meaningful information to those interested in understanding 

how bike safety varies over space. Moreover, the understanding the geography of biking collision 

risk could also be important for improving the understandings of spatial inequities of biking risk, 

and linking these inequities to features of the social environment (Yiannakoulias et al., 2012).   

Bike crash data can be investigated to understand the bike route safety using regression 

models. The type and distribution of data define which regression model to apply. Because each 

model has its underlying assumptions and data need to verify those assumption criteria for the 

model to apply. For instance, the data need to be normally distributed to for a linear regression 

model to apply. If the data contains lots of zero and has over-dispersion problems, then generalized 

linear models or zero inflated models would be a better fit.    

2.2.2.1. Generalized Linear Model (GLM). Over-dispersion (variance is much larger than 

mean) and excess zeros are two problems that typically occur in count data sets in economics and 

the social sciences. Poisson regression model (quasi-Poisson model) and negative binomial 

regression model are very useful tool to deal with overly dispersed data. Both models belong to 

generalized linear models (GLM). On the other hand, zero-inflated Poisson regression is conducive 

to model count data that have an excess of zero counts.  (Zeileis, Kleiber, & Jackman, 2008). Three 
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generalized linear models are commonly used for count data analysis, i.e. Poisson, quasi-Poisson 

and negative binomial model.    

Poisson distribution is the simplest method and commonly used for modeling count data 

with probability density function f(y;µ) = exp(−µ)·µy y!. It is a special case of the generalized 

linear model framework. The canonical link is g(µ) = log(µ) resulting in a log-linear relationship 

between linear predictor and mean. In the Poisson model, the variance is identical to the mean, 

thus the dispersion is fixed at φ = 1 and the variance function is V (µ) = µ (Zeileis et al., 2008). In 

R, it is specified in the glm() call just by setting family = Poisson. While describing the mean using 

Poisson model it is important not to underestimate the variance of the data. (Zeileis et al., 2008). 

Another way of dealing with over-dispersion is to use the mean regression function and the 

variance function from the Poisson Generalized Linear Models (GLM). In this case the dispersion 

parameter φ unrestricted and φ is not assumed to be fixed at 1 rather it is estimated from the data. 

This strategy leads to the same coefficient estimates as the standard Poisson model but inference 

is adjusted for over-dispersion. Consequently, both models (quasi-Poisson and sandwich-adjusted 

Poisson) adopt the estimating function view of the Poisson model and do not correspond to models 

with fully specified likelihoods. In R, the quasi-Poisson model with estimated dispersion parameter 

can also be fitted with the glm() function, simply setting family = quasi-Poisson. (Zeileis et al., 

2008)  

The third way of modeling over-dispersed count data is to assume a negative binomial 

(NB) distribution. Package MASS provides the family function negative.binomial() that can 

directly be plugged into glm() provided the argument theta is specified (θ = 1).  

2.2.2.2. Hurdle Model. Some data sets contain more zero observations than that would be 

allowed for the Poisson model. Hurdle Model can capture both over-dispersion and zero inflation 
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phenomenon. Hurdle model has two components: A truncated count component, such as Poisson, 

geometric or negative binomial, is employed for positive counts, and a hurdle component models 

zero vs. larger counts. In statistical package R, the hurdle() function from the pscl package is used 

to fit count data. The arguments of hurdle() are given as follows (Zeileis et al., 2008). 

hurdle(formula, data, subset, na.action, weights, offset, dist = "poisson", zero.dist = "binomial", 

link = "logit", control = hurdle.control(...), model = TRUE, y = TRUE, x = FALSE, ...  

   

2.2.2.3. Zero-Inflated Model. Zero-inflated models can deal with excess zero counts in the 

data. These models are two-component mixture combining a point mass at zero with a count 

distribution such as Poisson or negative binomial. Thus, zeros might come from two different 

sources i.e. from both the point mass and the count component. For modeling the unobserved state 

(zero vs. count), a binary model is used. In statistical package R, zeroinfl() function from the pscl 

package is used to fit zero inflated count data model. The arguments of zeroinfl() are given as 

follows.  

zeroinfl(formula, data, subset, na.action, weights, offset, dist = "poisson", link = "logit", control 

= zeroinfl.control(...), model = TRUE, y = TRUE, x = FALSE, ...) 

Where all arguments have almost the same meaning as for hurdle(). The main difference with 

hurdle model is the absence of zero.dist argument. In the zero.dist function of hurdle model, a 

binomial model is used for distribution in the zero-inflation component. (Zeileis et al., 2008). 

 In short, generalized linear model, hurdle model, and zero inflated model are very useful 

to deal with wide range of data. Poisson regression model is very useful to model the count data 

when the variance of the data is equal to the mean. If data are characterized with over-dispersion, 

then zero inflated model are useful i.e. zero inflated Poisson, zero inflated negative binomial. This 
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section also summarizes the R code to conduct these regression model in statistical package -

Rstudio. Table 2 summarizes statistical model, its context of application with variable data type.  

Table 2: Summary of statistical models, and their applications 

Model Application Dependent 

Variable 

Independent 

Variable 

Linear regression Description of a linear 

relationship 

Continuous  

 

 

 

 

Continuous 

and/or 

categorical 

Logistic regression Prediction of the probability of 

belonging to groups 

(outcome: yes/no) 

 

Dichotomous 

(success of 

treatment: 

yes/no) 

Poisson regression Modeling of 

counting processes 

Count data 

Zero Inflated Poisson 

(ZIP) 

Modeling of 

Count data with lots of zeros 

Count data  

Zero Inflated 

Negative Binomial 

(ZINB) 

Modeling of count data where 

data are over dispersed 

(Variance > Mean) 

Count Data  

 

2.2.3. Survey Based (Participatory) Approach. Primary data analysis is a powerful tool 

to analyze any real world problems and conducting surveys is a common way to collect primary 

data. The direct input from the stakeholders (e.g. bicyclist) makes the plan more applicable and 

user-friendly. Survey can be conducted at KU campus, downtown, or bicyclists on the bus to get 
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the untold stories about the challenges of riding bikes in Lawrence. These inputs might address 

many issues that the city of Lawrence is currently unaware of. 

2.3. Strategies to Providing Bicycle Facility 

 This section has three components i.e. factor to consider in providing bike route facilities, 

provision of public bike system, and geological and cultural context for providing bike route 

facilities.  

2.3.1. Factors to consider in the provision of bike route facility The selection of a 

bicycle facility may depend on many factors, including vehicular and bicycle traffic 

characteristics, adjacent land use and expected growth patterns. Table 3 lists some of these factors 

to consider. Safe, comfortable and well-designed facilities are essential to encourage bicycle use 

(AASHTO Executive Committee, 1999). Limitations of each type of facility must also be 

considered. Obstructions and impediments to bicycle travel include incompatible grates, debris, 

shoulder rumble strips, narrow lanes, driveways, rough pavements, curbside auto parking, bridge 

expansion joints, railroad tracks, poor sight distance and traffic signals that are not responsive to 

bicycles (AASHTO Executive Committee, 1999).  

  Table 3: Factors to consider in selection of bicycle facilities 

Skill level of users 

Motor vehicle parking 

Aesthetics 

Personal Safety/Security 

Stops 

Bridges 

Barriers 

Crash reduction 

Conflicts(Between motor 

vehicle and cyclist) 

Maintenance 

Intersection corridors 

Directness 

Accessibility 

Pavement surface quality 

Truck and bus traffic 

Traffic volumes and speed 

Costs/ funding  

 Source: (AASHTO Executive Committee, 1999)  
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In an effort to become ‘Bike Friendly’, it is best to find the required and desired features 

and amenities that need to be included in the development of bicycle facilities. Table 4 shows 

results from a bicycle tourism study from Taiwan that illustrated numerous factors bicyclists found 

important in selecting routes (Chang & Chang, 2005). Factors like bike path, low traffic volume, 

flat terrain, pavement quality, signage and interpretation are not only important for recreational 

purpose but also affect the safety of the bicyclists. Some of these factors have been considered in 

this study as well. 

 Table 4: Order of importance of factors in the bicycling facility for recreational cyclists. 

Order of 

importance 

Factors Order of 

importance 

Factors 

1 Safety 12 Weather and climate 

2 Low flow of traffic 13 Bike rental provided 

3 Bike path 14 Scenery and greenery 

4 Restroom 15 Bike route length long enough  

5 Tourist attraction 16 Café and restaurant 

6 Bicycle map 17 Touring activity of cyclists 

7 Rest place 18 Flat terrain preferred 

8 Signage and interpretation 19 Friendly residents 

9 Pavement quality 20 Convenient store  

10 Racks and locker provided 21 Accommodation  

11 Challenging terrain 

preferred 

 

Source: (Chang & Chang, 2005) 
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2.3.2. Provision of Public Bicycle System. Bike sharing is becoming very popular in the 

North American cities. The City of Lawrence, KS is no exception of this trend. The city has been 

conducting bike sharing feasibility study currently and attempting to connect with the public transit 

system. Historically, the bicycle is very convenient and efficient for last mile travel. Yang, Lin, 

and Chang (2010) proposed public bicycle system to connect major origins and destinations with 

some fixed pickup and drop off points (see Figure 3). For shorter trips, it could be very pragmatic 

solution and the city of Lawrence, as a college town, could possibly adapt this idea to promote 

bicycle in the town among the high school, college, and even young professionals. Undoubtedly, 

this would create a more engaged and lively community in the town.   

  Figure 3: Network structure of public bicycle system. Source: Yang et al. (2010) 

2.3.3. Transit Oriented Development and Bike Sharing. Historically, western European 

countries e.g. Denmark, Germany have better transit and bicycle friendly infrastructure. The higher 

population density, mixed land use pattern (which generates shorter trips within city limits), 
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conducive policies have promoted bicycling in those countries. In addition to good bike 

infrastructure, the people in those geographical areas i.e. the Netherlands, Denmark love bicycling, 

which is partly cultural phenomenon. However, the land use and density of North American cities 

are quite different from European cities. Even though USA and Canada have similar climatic and 

cultural context, Canada has a higher bike share of urban trips than the United States. There exists 

a misconception that cold weather might restrict the bicycling, but Pucher and Buehler (2006) 

concluded that cool climate does not prevent biking and a warm climate does not necessarily assure 

it. For instance, Yukon Territory- with roughly the same latitude as Alaska—has a bike share of 

work trips more than twice as high as California’s (2.0 vs. 0.8%) and more than three times as high 

as Florida’s (0.6%) (Pucher & Buehler, 2006).  The study also examined factors like biking safety, 

land use patterns, car ownership rates, and costs of car use, per capita income, climate, and cultural 

differences to find bicycling trends in USA and Canada. The study also urged transit oriented 

development policies and the integration of bicycle with transit network to promote bicycling and 

enhance its safety (Pucher & Buehler, 2006). The city of Lawrence is conducting a feasibility study 

for adopting bike sharing strategy and it would probably be an efficient last mile solution. Better 

connectivity with bus stop would help bicyclists to avoid very steep and risky routes as well.  

2.4. Conceptual Framework 

 A conceptual framework illustrates which variables contribute to the bike crash incidence. 

As shown in Figure 4, traffic characteristics, road geometry, infrastructure, environmental 

characteristics, and characteristics of drivers and bicyclists have an impact on bike crash incidence. 

Neither the city of Lawrence nor the Kansas Department of Transportation have all these data 

available. So, the lane number, traffic volume, speed, and bike route facility have been selected as 
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independent variable for the bike route safety analysis in Lawrence. Street-wise slope data are not 

available, but it has been calculated from Digital Elevation Model (DEM) data using ArcMap.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traffic Characteristics 

▪ Traffic speed & volume 

▪ Bike speed & volume 

Road Geometry 

▪ Route slope 

▪ Curvature 

▪ Intersection & conflict points 

▪ Line of sight  

Infrastructure 

▪ Continuous bike route 

▪ Lane width 

▪ On-street parking 

▪ Pavement condition  

▪ Street lights 

Characteristics of drivers/bicyclists 

▪ Age & experience level 

▪ Mental health  

▪ Alcohol intake  

Environmental Characteristics 

▪ Weather 

▪ Time of crash 

▪ Surface condition (wet/dry) 

 

Bike Crash Incidence  

Figure 4: Conceptual framework of the study 
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Addition of some primary data i.e. actual bike count and speed data, on-street parking etc. 

in the model could probably increase the predictability. As a large number of bike incidence 

occurred close to intersections, proximity to intersections could be considered as an independent 

variable. Variables that are very significant but not available are actual bike count and speed, 

characteristics of bicyclists/drivers, on-street parking, line of sight etc.  

2.5. Summary of Literature Review  

 The main road geometry, infrastructure, and traffic characteristics that influence bike safety 

are roadway width, number of lanes, pavement type, and condition, slope of the route, the presence 

of bike routes, traffic volume and speed. Actual bicyclists speed is important to understand 

maneuvering related crash incidence, and bicyclists movement directions in steep slope helps to 

measure the crash severity. The presence of trucks on the road and left turn at the intersection also 

affect the safety of bicyclists. The City of Lawrence does not have all these data and the collection 

of certain data for each street are very expensive for the city e.g. bicyclists volume and speed in 

city streets etc. Therefore, it is important to find patterns from the available data using advanced 

statistical methods. Previous study on bike safety analysis using crash data is non-existent. Some 

studies used bicycle user ratings as a measure of safety and applied statistical tools to find 

correlation between variables. But none of those were dealing with zero inflated data. This study 

explores how to deal with zero inflated data in bike safety analysis. Bike crash data have been used 

as dependent variable and the independent variables are route slope, lane number, traffic volume, 

speed, the availability of bike route facilities.  
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Chapter 3: Methodology 

Literature review in Chapter 2 helped to narrow down the independent and dependent 

variables for the study. This chapter will describe the steps that have been followed to investigate 

the impacts of road geometry, infrastructure, and traffic characteristics on bike route safety. 

Contents of this chapter include the discussion of underlying assumptions, model structure and its 

components for all the regression models that have been applied in this study. It is important to 

validate the methodology, check the applicability of these models for the collected data set. 

Exploration of the distribution of independent and dependent variable data is a prerequisite for 

data analysis. The details of the study area and existing bike route facilities has been discussed in 

the chapter 1 (subsection 1.4). At this point, data type, statistics of the dependent and independent 

variables have been discussed in the following section.   

3.1 Exploring Data, Type, and Collection Method  

The literature review shows that the presence of bike route facilities, route slope, speed, 

traffic volume, number of lanes play a vital role in describing the safety issues for bicyclist.  It is 

generally believed that the presence of bike routes helps to reduce the bike crash incidence and 

lower speed with a smaller number of lanes are less prone to bike crash. The steepness of slope is 

very subjective and less experienced bicyclists tend to ride on relatively flat route. These are all 

predicted variables for bike safety analysis. On the other hand, the bike crash incidence is a 

measure of safety, because it reflects how safe a bicyclist is at any route segment. Therefore, the 

bike crash incidence has been considered as response variable for this study. These data are 

available in the City of Lawrence and others are extracted from collected data using ArcMap 

software.  
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 Table 5: Exploring the type of data and its applications 

Data Applications (Remarks) 

Street Centerline Speed limit, traffic flow direction, and route surface 

characteristics 

Digital Elevation Model 

(DEM) data for Lawrence 

To calculate slope of each route segment 

Bikeway System T2040 Plan Existing and future bike infrastructure plan, facility type and 

width of bike infrastructure i.e. width of bike lane, route, shared 

use path etc.   

Traffic Volume 24 hours’ traffic volume data, AM peak, and PM peak traffic 

volume data.  

Number of lane An independent variable to develop the compatibility index 

Road Hierarchy Three major road classes’ i.e. primary, secondary and local 

roads. It is a proxy for traffic volume data and the perception of 

safety that influence the route choice by bicyclists.  

 Data source: City of Lawrence, KS.  

3.2.1 Street Centerline.  The street shapefile is downloaded from City of Lawrence 

website. The shapefile has some important information i.e. posted speed limit for each route, road 

surface characteristics, traffic flow direction (one way or both way) and segments length etc. It is 

good to know the definition of route segments in the city of Lawrence.  Section 2.3.2 of the Kansas 

911 GIS Data model (http://kansasgis.org/initiatives/NG911/index.cfm) discusses road center line 

creation in relation to address ranges.  A segment will be split if it crosses a city limit or has a 

street name change.  At Douglas County & the City of Lawrence, road segments were split where 

address ranges change.  For example, in Lawrence on W 22nd Terrace between Ousdahl Road and 

Naismith Drive, the street is made up of 4 different segments.  Each segment represents the address 

range within a “100” block.  From Naismith Drive, the address range begins as the 1300 block and 

moving west towards Ousdahl the next segments represent the 1400, 1500 and 1600 block 

https://mail.ku.edu/owa/redir.aspx?SURL=4a90CsU9vd9f3Zbszwj_ZpXKtqZ2RdnyyOUIU1cHXtIPT8CT7ILUCGgAdAB0AHAAOgAvAC8AawBhAG4AcwBhAHMAZwBpAHMALgBvAHIAZwAvAGkAbgBpAHQAaQBhAHQAaQB2AGUAcwAvAE4ARwA5ADEAMQAvAGkAbgBkAGUAeAAuAGMAZgBtAA..&URL=http%3a%2f%2fkansasgis.org%2finitiatives%2fNG911%2findex.cfm
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respectively. This split of route segment, in fact, provides more details for route level of bike 

analysis.     

3.2.2 Streetwise slope calculation.  The Digital Elevation Model (DEM) data with cell 

size of 3 feet has been collected from the City of Lawrence. The slope has been calculated using 

surface tool under spatial analyst toolbox of ArcGIS. In order to calculate the level of service for 

each road segment, streetwise slope is measured, which is considered as one of the major 

determining factors of bicyclists’ route choice. Streetwise slope has been calculated using ‘Add 

surface information’ tool under ‘3D Analyst’ toolbox of ArcMap. The average slope of each route 

segment has been calculated using the bilinear method. Bilinear is an interpolation method for 

raster data to determine a value from the values of the four nearest cells.  

3.2.3 Traffic volume.  The traffic volume of a route segment plays an important role in 

determining its compatibility for the bicyclists. The greater the traffic volume, the higher the risk 

of potential bicycle crash incidence. It is a more concerning issue for the inexperienced bicyclists 

than experienced bikers. However, it is an important variable, in general, for bicycle compatibility 

of any route. The City of Lawrence and Kansas Department of Kansas (KDOT) collect traffic 

volume data at some designated points in the city streets. It is very challenging to get traffic volume 

for each route segment in Lawrence. So, the road hierarchy (functional class) has been used as 

proxy of traffic volume for each route segments. For example, a principal arterial would have more 

traffic volume than a collector, a collector would have more traffic than a city street etc. The 

functional class of roads have been converted to factor variable and considered as a proxy for 

volume data.  In this study, freeways, ramp, turnaround, and private road segments have been 

ignored in data analysis. So, there are three categories left under functional road class of the data 

and they are street, collector (Major/just collector) and arterial (Major & minor).  
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3.2.4 Number of Lanes and Traffic Flow Direction.  The number of traffic lanes in a 

route segment has a strong influence over bicyclists’ route choice. The bicyclists generally prefer 

fewer (two) lane routes and the motorists tend to pay more attention to other larger vehicles than 

to bicyclists in the wider routes (more lanes). So, the number of traffic lanes and flow direction 

(one way or two way) are very important variables to analyze the bicyclists comfort level and safe 

features. These data have been collected from City of Lawrence, but the number of lanes data had 

some accuracy problem and lots of missing data. Therefore, the data have been cross-checked 

using google maps as background in the ArcMap.  

3.2.5 Existing Bike Infrastructure.  It is generally believed that the presence of bike 

infrastructure (bike lane, bike route, shared use path, shared lane marking) reduces the bike crash 

incidence which, in turns, increase the safety features for bicyclists.  Bike lanes are on-road lanes 

marked with paint, dedicated to cycling and typically excluding all motorized traffic. A shared use 

path supports multiple modes, such as walking, bicycling, inline skating and people in wheelchairs. 

Bicyclists share route with motorists in bike route and routes with shared lane marking. The bike 

infrastructure data for city of Lawrence have been collected from ‘Bikeway System T2040’ which 

was prepared by City of Lawrence. For the regression model, bike infrastructure variable has been 

converted as dichotomous (binary) variable which consists of 0 (no bike infrastructure) and 1 (have 

bike infrastructure).  

3.2.6 Bike Crash Data.  Bike crash incidence reflects the safety and comfort level of 

bicyclists in any route segments. It can be used as response variable to understand the route safety 

for bicyclists. The city stores each crash incidence data with latitude and longitude that helps to 

project the crash location on the map using ArcMap. The crash locations have been joined to the 

city street shapefile using ‘spatial join’ tool of ArcMap. The tool helps to add total number of crash 

https://en.wikipedia.org/wiki/Shared_use_path
https://en.wikipedia.org/wiki/Shared_use_path
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incidence for each route segment in Lawrence. It sums up all crashes that intersect or closest to the 

street centerline.  

3.2.7 Sample Size.  The sample size is an important indicator for conducting statistical 

analysis. In any empirical study, the sample size affects the precision of inferences made about the 

population. In practice, it is very expensive and time-consuming to work with whole population; 

therefore, the selection of an appropriate sample size determines the result of the analysis. The 

smaller sample size might result in a biased answer and some regression model e.g. Poisson cannot 

produce meaningful results with small sample sizes. Due to inappropriate sample sizes, there might 

be two types of errors during hypothesis testing. Type I error (false-positive) occurs when the null 

hypothesis is rejected even though it is true in the population. Type II error (false-negative) arises 

if null hypothesis is accepted but it is not true in the population.  

The street centerline shapefile which was collected from City of Lawrence has 5773 route 

segments within the city boundary. The functional class of the street shapefiles has 13 identical 

categories and 5 of these route classes have been ignored in this study. It is inappropriate to provide 

bike facilities in freeways, freeways ramp, frontage, other ramp, and turnaround. Thus, total 

sample street segments have declined to 5081 which is a large enough sample for conducting any 

statistical analysis.  

3.2.8 Statistics of the Model Variables 

 Table 6 summarizes and explains the dependent and independent variables considered in 

the study. The data type and summary statistics are also included in Table 6 to understand the 

pattern of the data. Road hierarchy has been used as proxy of traffic volume. It is assumed that 

arterial roads would have a higher traffic volume than collector roads. Volume is used as 

categorical variable in the model.   
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 Table 6: Summary statistics of dependent and independent variables 

Variables Data Type Summary Statistics Remarks 

Crash Incidence Count Mean: 0.054  

Range: 0 to 8 

Dependent Variable  

Number of Lane Count  Mean: 2.29 

Range: 1 to 7  

Independent variable  

Volume (Dummy) Categorical  Arterial:808 

Collector: 896 

Street: 3377 

Independent variable 

Presence of bike route Dichotomous 

(Binary)  

No: 4041 

Yes: 1040 

Independent variable 

Traffic speed  Count  <30 mph: 472 

30-45mph: 4592 

>45 mph: 17 

Independent variable 

Slope Continuous  < 1.50: 1776   

1.5 - 40: 2606 

>40: 699 

Average slope: 2.450 

Below average route 

segments: 3332 

Independent variable 

 

 

3.2 Data Analysis  

The criteria and underlying assumptions to choose a statistical model have been discussed 

in this section. Depending on the type and distribution of the data, multiple regression methods 

have been tested to find a model that describes the data best. Before initiating data analysis, it is 

important to discuss the selection of appropriate regression model. The model selection depends 

on the data type of dependent and independent variable. For example, linear regression model 

requires continuous dependent variable, logistic regression model is applicable for dichotomous 
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dependent variable, and the count data requires Poisson regression, zero-inflated Poisson 

regression, zero-inflated negative binomial regression model. The coefficients of variables, R 

squared value, p-value play important role in the selection of best model.  

The better the model the lower the error between predicted and actual values. To find the 

best model a sequential statistical data analysis has been conducted. The variables have both 

continuous and categorical data. The sample size is 5081 and the data are characterized with lots 

of zeros. Next, we investigate if there is any linear relationship between dependent variable (Crash 

incidence) and independent variables (speed, slope, presence of bike routes, traffic volume and 

number of lanes).  

3.2.1. Phase I: Linear Regression Model.  In a linear regression model, Ordinary Least 

Square (OLS) method is used to find linear relationships between independent and dependent 

variables. The underlying assumptions of linear regression include data linearity, normality, 

independence of error and equality of variance.  

According to Figure 5, bike crash data are not normally distributed and are positively 

skewed and do not follow any pattern. Over 4000 route segments do not have bike route facility 

(it is dichotomous data) and slope data are positively skewed as well. The majority of the route 

segments have a speed limit of less than 30 mph and two lanes. It is evident from Figure 5 that 

data have violated the underlying assumptions of linear regression model. Thus, the ordinary least 

square method would result in significant error in the estimation. Next, a logistic regression model 

is tested as it can handle nonlinear relationship in the data. 

3.2.2 Phase II: Logistic Regression Model.  Instead of linear relationships between the 

dependent and independent variable, logistic regression model works better for nonlinear 

relationships among variables. In this case, the dependent variable should be binary data (yes =1, 
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no=0) and the independent variables would help to predict whether there will be crash incidence 

in a route segment or not. The logistic regression makes no assumption about the distribution of 

the independent variables. Data do not have to be normally distributed, linearly related or of equal 

variance within each group. Also, the logistic model can handle any large or small values of 

independent variable with its link function (log odds transformation or logit) and the logit is the 

Crash Data Distribution  

 
Sample Size 5081,  

Zero= 4898, Non-zero=183 

Sample Size 183,  

(Non-zero data only)  

Figure 5: Histogram distribution of dependent and independent variables 
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natural parameter of binomial distribution. Noteworthy to mention is that the dependent variable 

has been converted into binary data (1= Route segments have one or more crash incidence and 0= 

No crash incidence). The outcome of the logistic regression model did not produce any meaningful 

coefficients of the independent variables. Additionally, the logistic model outcome is binary in 

nature and the bike crash data are not necessarily binary. The crash incidence data can be 

considered as count data because crash data are either zero or any positive number. The Poisson 

regression model is very useful to analyze the count data.   

3.2.3 Phase III: Poisson Regression Model. The Poisson model is the best known 

generalized linear model for count data and the model typically uses log of the mean. Count data 

represent all nonnegative integer values i.e. 0,1,2,3.. etc. The Poisson distribution assumes that the 

variance of the dependent variable would be same as the mean. Poisson regression model has been 

applied for the variables in this study and the coefficients of the independent variables i.e. speed, 

slope, lane, and volume, are statistically significant at 99.9% confidence interval (Appendix A).  

But the interpretation of the coefficients is misleading because the bike crash data show greater 

variability than the Poisson model allows. For bike crash data, the variance (0.1236) is much larger 

than mean (0.0562) which implies data have an over-dispersion issue. This is a clear violation of 

the underlying assumptions of Poisson regression model. The possible reasons for over-dispersion 

could be heterogeneity of independent variables or lots of zero in the data. To overcome this issue 

a Zero-inflated Poisson model (ZIP) or a negative binomial model can be applied.    

3.2.4 Phase IV: Zero-inflated Poisson Model (ZIP).  ZIP is a useful statistical tool for 

modeling data with excess zeros. Zero-Inflated Poisson (ZIP) model has two components i.e. count 

model and logit model for predicting excess zeros. The first process is governed by a Poisson 

distribution that generates counts, some of which may be zero and logistic part generates structural 



34 

 

 

zeros. ZIP model has been run for bike safety dataset and it shows a significant improvement from 

conventional Poisson model (model results are attached in Appendix A).   

                            
3.2.5 Phase V: Negative Binomial. The negative binomial model can deal with overly 

dispersed count data and it is very useful for discrete data over an unbounded positive range whose 

sample variance exceeds the sample mean. Since the negative binomial distribution has one more 

parameter than the Poisson, the second parameter can be used to adjust the variance independently 

of the mean. Having lots of zero in the data does not necessarily mean that zero inflated model is 

the sole solution. Depending on the distribution and type of data, negative binomial could be a 

better solution than zero inflated negative binomial model. The output of the negative binomial 

model shows that the independent variables are strongly related with the dependent variable (the 

results are attached in the appendix A).  

3.2.6 Phase VI: Zero-inflated Negative Binomial (ZINB). The ZINB is considered as 

the upgraded version of negative binomial. Sometime but not always ZINB shows better fit to the 

data than that of conventional negative binomial model. Thus, ZINB model has been run to see if 

there is any significant improvement from the negative binomial model in terms of meaningful 

regression coefficients and fit to the data. The ZINB model result and R code have been attached 

in the appendix A.  

3.3 Best Regression Model Selection 

Data predictability, p-value, and significance level play key role in the selection of best 

regression model. In this study, linear regression model, logistic model, and Poisson model are not 

the best fitted model because bike crash data have violated the assumptions of these regression 

models. So, possible candidates for the best fitted model are negative binomial, zero inflated 

Poisson and zero inflated negative binomial model.  

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Mean
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 Desmarais and Harden (2013) stated that Vuong test is useful to determine whether the 

zero-inflated model fits the data significantly better than count regression with a single equation. 

For instance, comparisons of zero-inflated count models with their non-zero-inflated analogs (e.g., 

zero-inflated negative-binomial versus negative-binomial, or zero-inflated Poisson versus 

conventional Poisson). Vuong test outcomes have three test statistics i.e. Raw, AIC corrected and 

BIC corrected. Each test statistic (Raw, AIC corrected and BIC corrected) performs similarly well 

for zero inflated data. The raw difference between actual and predicted counts for each outcome 

can be used as a model fit indicator. Akaike’s information criterion (AIC) balances model’s 

goodness-of-fit to the data and the model with a smaller AIC value is considered better fit to the 

data. Lastly, the Bayesian information criterion (BIC) is very useful to select the correct model 

when the sample size is large and the smaller the number better the model. Considering all these 

factors, ZINB model has been selected as best fitted model and the coefficients of ZINB model 

has been used to explore the impacts of road geometry and traffic characteristics on bike route 

safety. The coefficients of independent variable in the negative binomial (NB) model are also 

statistically significant with the dependent variable. A comparative analysis and interpretations of 

the ZINB and NB regression coefficients are discussed in section 4.4.  

3.4 Impacts of Road Geometry Factors to Bike Route Safety 

The coefficients of the zero-inflated negative binomial model are log coefficients, so these 

are converted into a number using the exponentials of those log coefficients. If the values are less 

than 1 it means the independent variables would negatively impact the dependent variable, and a 

greater than 1 value means positive impact on dependent variable. All independent variables have 

been interpreted to find the correlation of these variables with bike safety in the city of Lawrence.  
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In order to identify the bike crash zone in Lawrence, the kernel density tool of ArcMap has 

been used to generate bike crash density map showing low to high bike crash prone areas in the 

city (Figure 8). To visualize the relationship between the existing bike route infrastructure and 

crash incidence, the bike route shapefile is superimposed on top of bike crash zone map layer. This 

map (Figure 10) would help to understand whether the presence of bike route infrastructure help 

to reduce the crash incidence or not. Moreover, city planner would get an idea where to build new 

bike route infrastructure in the city. Similarly, Figure 9 shows the spatial relationship between 

route slope and crash incidence in Lawrence.  

Finally, the bike compatibility map has been developed using the (ZINB) regression 

coefficients of independent variables i.e. slope, lane numbers, speed, existing bike facilities etc. 

The regression coefficients were multiplied by the corresponding variables and then added with 

intercept to get the index value for each route segment in Lawrence. This index value has been 

classified by Jenks natural break method in ArcMap. Natural break method identifies the break 

points for each class in a way that minimizes variance within the class and maximizes the 

difference between classes. These classes are based on the natural groupings that is inherent in the 

data. The bike compatibility map for the City of Lawrence (Figure 11) has been prepared and this 

outcome will be compared with existing city’s bike rideability map (Figure 12) which was 

prepared by user experience ratings. The similarities and differences of these two maps would be 

analyzed with justifications.  

3.5 Expert Interview 

Two expert interviews have been conducted to get insight on bike route safety. City engineer of 

Lawrence and senior transportation planner from Mid-America Regional Council (MARC) have 
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gone through the bike compatibility map and regression outcomes. Both have made comments and 

suggested some measures to improve the model results.  

3.6 Summary of the Methodology 

 After exploring the type of dependent and independent variable data, it is revealed that the 

data are characterized by over-dispersion and zero inflation. The independent variables are not 

linearly related with dependent variable. Therefore, several models have been applied and 

analyzed to find the best representation of the data. The logistic regression model improved the 

explanatory power of the model from linear regression as it is not bounded by assumptions of equal 

variance or normality. But the dependent variable is binary in logistic model and the crash 

incidence could be better represented as count data because the number of crash incidence for a 

street segment could be more than one and crash number is not necessarily always binary data. 

Therefore, generalized linear models have been applied to improve the model output. Firstly, the 

Poisson model has been applied to explore the model improvement from logistic regression and 

the result shows that R2 value increased a bit. But the underlying assumption about the equality of 

mean and variance has made the outcome questionable as the data have an over-dispersion 

problem. In order to resolve this issue, zero inflated Poisson model and negative binomial model 

have been applied. Both these models have showed improvement from the Poisson model. If the 

data have lots of zero then zero inflated model usually improves the model result. To test that 

hypothesis, zero inflated negative binomial model has been applied to compare the result with 

negative binomial model. It is found that zero inflated negative binomial model produces 

significantly better result than negative binomial. The independent variables are strongly 

correlated with dependent variable and the coefficients are significant as well. To validate this 

result, Vuong test has been conducted and found that zero inflated negative binomial model (ZINB) 



38 

 

 

shows significant improvement from negative binomial model. So, the coefficients of each 

independent variable in the ZINB model have been used to explain the relationship with the 

dependent variable. As the coefficients of ZINB model are log based, the exponentials of the 

coefficients have been used to quantify how one-unit change of independent variable would affect 

the dependent variable by keeping all other variables constant. Finally, the bike compatibility map 

has been generated using the ZINB regression coefficients and natural break (Jenks) classification 

method was used to create the class intervals for the map. The outcomes of this compatibility map 

have been compared with the city’s bike rideability map and the analysis includes both similarities 

and differences. Chapter 4 (Experimental Results) would analyze and summarize negative 

binomial and zero inflated negative binomial model results. It will also synthesise each model 

result and explain the contribution of each variables to the bike route safety in Lawrence, KS. 
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Chapter 4: Experimental Results 

The goal of this chapter is to explore and synthesize the regression model outputs. The 

results would explain how road geometry and traffic characteristics affect the bike route safety in 

the City of Lawrence, KS. Meanwhile, chapter 3 illustrates the process to conduct the regression 

models and this chapter will explain the outcomes. The null hypothesis is that road geometry, 

infrastructure, and traffic characteristics have no impact on the bike route safety. The alternative 

hypothesis is that bike route safety increases with the increase of the bike routes facilities, and it 

is negatively related with traffic volume, number of lanes, slope, and speed. To draw a conclusion, 

statistical analysis has been conducted to find the correlation between independent and dependent 

variable. It is noteworthy to mention that chapter 3 laid the foundation for this analysis by 

discussing the underlying assumptions and structural components of each regression model. Prior 

to beginning with the statistical analysis, the regression model components and model evaluation 

parameters are discussed in the following subsections.   

4.1 Outline of Regression Model Components 

The model outline includes variables name and the regression models to be applied in this 

study. The regression models are linear regression, logistics regression, Poisson regression, Zero-

inflated Poisson regression, negative binomial regression, and zero-inflated negative binomial 

regression model. For all these models, predictor, response variables, and sample size are same.  

Dependent variable: Crash incidence  

Independent variable:  

o Number of lanes  

o Route slopes (Average Slope) 

o Existing bike routes 
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o Traffic volume  

o Posted speed limits 

Total route segments: 5081 

 
4.2 Key Model Evaluation Parameters 

4.2.1 P-value. The p-value for each variable test the null hypothesis that the coefficient is 

equal to zero (no effect). A low p-value (< 0.05) indicates that the null hypothesis cannot be 

accepted. Alternatively, an independent variable with low p-value is likely to have a significant 

impact on the response variable and it would be a good addition to the model. On the other hand, 

a larger (insignificant) p-value suggests that changes in the predictor are not associated with 

changes in the response. Typically, p-value helps to determine which independent variable is 

strongly related with the dependent variable and which one should keep in the model.  

4.2.2 R-Squared Value. In the linear regression model, ordinary least squares (OLS) 

regression method minimizes the sum of the squared residuals. Generally, a model fits the data 

well if the differences between the observed values and the model's predicted values are small and 

unbiased. R-squared is a statistical measure of how close the data are to the fitted regression line. 

R squared value represents the percentage of the response variable variation that is explained by a 

linear model. However, R2 value has two basic limitations. First, R-squared cannot determine 

whether the coefficient estimates and predictions are biased, which is why residual plot analysis is 

required. Second, R-squared does not indicate whether a regression model is adequate. It is likely 

to have a low R-squared value for a good model, or a high R-squared value for a model that does 

not fit the data. Regardless of the R-squared, the statistically significant coefficients still represent 

the mean change in the response for one unit of change in the independent variable while holding 
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other predictors in the model constant. Therefore, conclusions drawn from the statistically 

significant predictors are still very important and extremely valuable.  

4.2.3 Regression Coefficients. Regression coefficients represent the mean change in the 

response variable for one unit of change in the independent variable while holding other 

independent variables in the model constant. This statistical control that regression provides is 

important because it isolates the role of one variable from all of the others in the model.   

4.3 Statistical Analysis to Fit the Data  

In Poisson model, the independent variable i.e. speed, slope, lane, bike route and volume 

are significantly related with dependent variable (Appendix A). But the variance (0.1236) of the 

dependent variable is greater than mean (0.0562) which is the violation of the Poisson model 

assumptions. This implies that the data have over-dispersion problem and the Poisson model 

output cannot be accepted to illustrate the impact of road geometry, infrastructure, and traffic 

characteristics on bike route safety in Lawrence, KS.   

To deal with over-dispersion, Zero Inflated Poisson (ZIP) and Negative Binomial (NB) 

model have been applied to fit the data better. The outcome of ZIP model indicates statistically 

significant improvement from Poisson model (Appendix A). The independent variables e.g. speed, 

lane number, bike route facility, slope, and traffic volume are negatively correlated with the crash 

incidence. The coefficient of slope and low traffic volume street are not statistically significant, 

and the application of ZIP model coefficients have produced some erroneous outcomes in the bike 

safety map for Lawrence i.e. local and low volume streets are unsafe for bicyclists in few 

neighborhoods. Thus, ZIP model coefficients would not be the best choice to analyze bike safety 

in Lawrence. The next step is to explore the negative binomial and zero inflated negative binomial 

model as the data are heavily zero inflated and overly dispersed.     

http://blog.minitab.com/blog/adventures-in-statistics/a-tribute-to-regression-analysis
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There is no consensus in literature to choose zero inflated negative binomial model over 

negative binomial without verifying the data distribution and model result. Having lots of zeros in 

the data do not necessarily always mean that zero inflated negative binomial model will produce 

better result than that of conventional negative binomial model. Depending on the distribution and 

type of the data, negative binomial model sometimes generates better result than zero inflated 

negative binomial model. Certainly, there are some cases when ZINB model would generate more 

meaningful outcomes than NB model. For instance, if the response variable is the number of 

children ever born to a sample of 52 years old women, then it is very likely that many women at 

that age are biologically sterile. In this case, variation in the independent variables might not 

change (very little chance) the response variable outcome. Surely this type of restriction does not 

apply for bike crash incidence. There is always a possibility of crash incidence at any section of 

roads anytime.  

As discussed in the previous chapter (subsection 3.3) that Vuong test has been applied in 

this study to measure the model improvement between zero inflated model and their corresponding 

non-zero equivalent model.  Rstudio generated results are summarized below to compare negative 

binomial, conventional Poisson model with their zero inflated counterparts.   

> vuong(Poisson,ZIP: Comparison between ZIP and conventional Poisson 
------------------------------------------------------------- 
              Vuong z-statistic             H_A    p-value 
Raw                   -4.747265 model2 > model1 1.0309e-06 
AIC-corrected         -4.563891 model2 > model1 2.5107e-06 
BIC-corrected         -3.964876 model2 > model1 3.6717e-05 
> vuong(ZINB,NB): Comparison between ZINB and conventional Negative Binomial 
------------------------------------------------------------- 
              Vuong z-statistic             H_A   p-value 
Raw                   3.4384711 model1 > model2 0.0002925 
AIC-corrected         2.5839216 model1 > model2 0.0048842 
BIC-corrected        -0.2075769 model2 > model1 0.4177797 
> vuong(ZIP,ZINB): Comparison between ZIP and ZINB 
------------------------------------------------------------- 
              Vuong z-statistic             H_A  p-value 
Raw                   -1.715317 model2 > model1 0.043144 
AIC-corrected         -1.715317 model2 > model1 0.043144 
BIC-corrected         -1.715317 model2 > model1 0.043144 
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According to Vuong test result, ZINB would be a better model than that of NB or ZIP. Zero 

inflated Poisson model is certainly an improvement from the conventional Poisson model and all 

three test statistics i.e. Raw, AIC and BIC corrected are statistically significant with very low p 

value. On the other hand, Raw and AIC value suggest that ZINB model is better choice than 

conventional NB model to analyze bike crash data for city of Lawrence. Although BIC value 

indicates other way around but p value is not statistically significant. Finally, all three Vuong test 

statistics suggest that ZINB would be better option than that of zero inflated Poisson model.  

By considering the pattern and type of bike crash data, and Vuong test result, it has been 

decided to consider the output of both ZINB and NB model in investigating the bike safety factors. 

Negative binomial model generates meaningful coefficients for all variable but bike route 

facilities, and independent variables are statistically significant as well. The model coefficients are 

log based, so these numbers are exponentiated to get the odds ratio. The exponentiated value of 

each variable explains the impact (positive or negative) of road geometry and traffic characteristics 

on bike route safety. The detail explanations of predictor variable coefficients and a comparison 

with ZINB model coefficients have been summarized in the following section (section 4.5) of 

chapter 4.   

Negative Binomial Model Coefficients:  
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.71193    0.68010  -2.517 0.011830 *   
Speed           -0.04359    0.01648  -2.644 0.008191 **  
Slope           -0.18934    0.06230  -3.039 0.002374 **  
Lane             0.41030    0.12054   3.404 0.000665 *** 
Bike_Route       0.32529    0.21076   1.543 0.122723     
VolumeCOLLECTOR -0.18197    0.28576  -0.637 0.524270     
VolumeSTREET    -1.07524    0.32719  -3.286 0.001015 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for Negative Binomial(0.0793) family taken to be 1) 
 
    Null deviance: 822.52  on 5080  degrees of freedom 
Residual deviance: 705.02  on 5074  degrees of freedom 
AIC: 1861.5 
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Zero inflated negative binomial model has two components e.g. count model and zero 

inflated model (logistic model). The log link function of the count model is negative binomial and 

interpretation of coefficients is similar to the negative binomial model. On the other hand, the 

coefficients of the zero-inflated model are on the logit scale, and the odds ratio has been calculated 

by exponentiating coefficients value. It is, however, noteworthy to mention that zero inflated 

model predicts non-occurrence of the outcome.   

 

Count model coefficients (negbin with log link): 
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)      2.279871   1.019487   2.236  0.02533 *  
Speed           -0.057911   0.022458  -2.579  0.00992 ** 
Slope           -0.005619   0.105647  -0.053  0.95758    
Lane            -0.106037   0.114798  -0.924  0.35565    
VolumeCOLLECTOR -0.666485   0.432336  -1.542  0.12317    
VolumeSTREET    -1.262345   0.459714  -2.746  0.00603 ** 
Bike_Route      -0.899831   0.287944  -3.125  0.00178 ** 
Log(theta)      -0.381392   0.495144  -0.770  0.44114    
 
 
Zero-inflation model coefficients (binomial with logit link): 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      4.12116    1.12503   3.663 0.000249 *** 
Speed            0.03267    0.02477   1.319 0.187157     
Slope            0.17844    0.10898   1.637 0.101564     
Lane            -1.08748    0.19868  -5.474 4.41e-08 *** 
VolumeCOLLECTOR -0.58098    0.49097  -1.183 0.236681     
VolumeSTREET    -0.59902    0.56534  -1.060 0.289332     
Bike_Route      -1.76222    0.42783  -4.119 3.81e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Theta = 0.6829  
Number of iterations in BFGS optimization: 78  
Log-likelihood: -894.6 on 15 Df 

 

The exponentiated coefficients and the range of coefficients with 95% confidence interval 

for both ZINB and NB model have been attached to the appendix A. All regression results have 

been generated using Rstudio software.   
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4.5 Interpretation of Model Coefficients 

The coefficient interpretation of predictor variables would enable how road geometry, 

infrastructure, and traffic characteristics affect the bike route safety in Lawrence. The 

exponentiated coefficients have been used to interpret the sensitivity of the independent variables.  

In other words, the exponentiated coefficients value would help to quantify how much one-unit 

change of independent variable will affect the dependent variable.   

  

 Table 7 lists the exponentiated model coefficients and significance level of each 

independent variable. The coefficients without any asterisk means that there is one in the 95% 

confidence interval range which implies that coefficient is not significant. The odds ratio of greater 

than one means positive correlation and less than one means the negative correlation between 

independent and dependent variable.  

Table 7: ZINB and NB model results with exponentiated regression coefficients 

Independent Variable Exponentiated 

Coefficients: NB  

Exponentiated Coefficients: ZINB 

Count Model  Logistic Model 

Speed 0.96 ** 0.94 ** 1.03 

Slope 0.83 ** 0.99 1.19 

Lane 1.51 *** 0.89 0.34 *** 

Bike Route  1.38 0.41 ** 0.17 *** 

Volume_Collector 0.83 0.51  0.56 

Volume_Street 0.34 ** 0.28 ** 0.55  

 

Significance Code (α):    0 ‘***’      0.001 ‘**’        0.01 ‘*’         0.05 ‘.’      
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4.5.1 Speed. In this study, posted speed limit for each route segment has been used rather 

than the actual bicyclist’s riding speed. As citywide bicycle speed data are not available, vehicular 

speed limit has been considered as a proxy measurement of bicyclist’s safety for city of Lawrence. 

Streetwise bike speed and volume data collection is expensive for a small city like Lawrence, and 

the use of vehicular speed as a proxy is also common practice in bike safety studies. The posted 

speed limit for a route segment provides a relative idea about the bicyclists’ speed. Bike crash 

severity is positively related with the speed limit of a street. The severity of crash incidence 

increases with the increase of speed. The higher the speed the higher the possibility of skidding 

and imbalance.   

 Both ZINB and NB model conclude that speed has a strong correlation with bike 

route safety and the correlation with dependent variable is statistically significant (α is 0.01). The 

absence of one in the 95% confidence interval also implies strong correlation with the dependent 

variable. The odds ratio is less than one which means bike crash frequency is negatively related to 

speed. Both negative binomial model and count model coefficients support the above conclusion. 

According to NB model, a one-unit increase of traffic speed would affect bike crash count by a 

factor of 0.96 with remaining all other variables constant. ZINB model also suggests identical 

impact of speed on bike route safety. The lower speed local neighborhood streets are more prone 

to bike crash than high-speed arterial roads. According to City of Lawrence bike crash data, two-

thirds of the bike crash incidents occurred on the city streets with a speed of no more than 30 mph. 

It might be because of the higher volume of bicyclists ride on the neighborhood level city streets. 

In other words, bike crash incidence reduces in the high-speed road (arterials) because there are 

not so many bicyclists on arterial roads. The addition of predictor variable like actual bicycle 
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volume in the model would probably produce more logical outcome (which means the crash 

incidence increases with the increase of bicyclist speed).   

4.5.2 Slope (Average). The city of Lawrence has a unique topographic feature i.e. a flat 

downtown and hilly university campus adjacent to each other. Both locations are the major 

attractions (either origin or destination) for the bicyclists. So, the presence of steep slope streets 

between major origin and destination might have (or maybe not) a potential impact on bicycle 

route choice, especially for the inexperienced bicyclists. On the other hand, low to moderate route 

slope may not affect route choice for experienced bicyclists but the inexperienced bicyclists 

usually have preference to bike on relatively flat terrain. Pre-assumption before testing the data, 

the probability of bike crash incidence would increase with the increase of slope.  

 Negative binomial model strongly concludes that there is negative relationship 

between crash incidence and slope. The coefficient of the slope is statistically significant at 0.01 α 

level with a p-value of 0.0023. The odds ratio of 0.83 implies that one-unit increase of slope would 

decrease the bike crash incidence by a factor of 0.83 with all other variables constant. 

Alternatively, the probability of bike crash incidence in the steep slope route is relatively lower. 

On the other hand, ZINB model coefficients are not statistically significant and the odds of count 

model concludes like negative binomial model. The odds ratio of 1.019 for zero inflated logistic 

model part indicates that the slope has a positive proportional relationship with the crash incidence 

variable. Remaining all other variables constant in the model, a one-unit increase in slope variable 

would increase the possibility of crash incidence by a factor of 1.019. But slope coefficients in the 

ZINB model is not significant and it can be concluded that slope does not have strong influence 

on bike safety for Lawrence.   
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4.5.3 Lanes. Bicyclist’s comfort level usually decreases with the increase of lane number 

on the street. A higher lane number indicates a higher traffic volume and high-speed vehicles on 

the road. This creates a stress and discomfort to the bicyclists on the road, but this impact might 

be very limited in the shared use path (off road bike facilities). In the negative binomial model, the 

correlation between lane number and crash incidence is statistically significant with significance 

level (α) of 0.001. The odds ratio of 1.51 indicates that lane number is positively related with crash 

incidence. Holding all other variables constant, a one-unit increase of lane number would increase 

the probability of crash incidence by a factor of 1.51. The lower the number of lanes on the road 

the safer the ride for bicyclists. In contrary, the zero-inflation part of ZINB model is statistically 

significant at 95% confidence level, but the count model coefficient is not significant at all. The 

odds ratio of zero inflated part indicates negative relationship between crash incidence and lane 

number.   

4.5.4 Bike Route. Usually, the presence of bike route facility has a positive impact on the 

comfort and safety of bicyclists. Riders tend to prefer riding on facility bike routes than that of 

routes without bike route infrastructure. It is important to investigate whether the presence or 

absence of bike route facilities have any influence on bike route safety in Lawrence.     

 Negative binomial model coefficient for bike route is not statistically significant, 

but ZINB model coefficients are statistically significant at significance (α level) of 0.01 and the p-

value is very small (0.002). This implies that bike route has significant impact on the safety of 

bicyclists. The odds ratio of 0.41 indicates that bike route facility would have a negative impact 

on bike crash incidence which is consistent with other peer reviewed studies. ZINB model 

concludes that presence of bike routes would decrease crash incidence by a factor of 0.41 with 
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holding all other factors constant in the model. In other words, a one-unit increase of bike route 

facilities would decrease the probability of crash incidence by the margin of 59%.  

4.5.5 Volume. The volume is a factor variable of functional class of road and data were 

collected from City of Lawrence. Three major road types e.g. street, collector and arterial have 

been categorized as a proxy of the low, medium and high volume of traffic. In this regression 

model, the coefficients of collector and street are relative to the arterial road and reference level is 

arterial road.  

 The volume is significant in both NB and ZINB model. Bike route safety decreases 

with the increase of traffic volume. According to ZINB model result, the odds ratio for medium 

traffic volume route is 0.51 relative to high traffic volume route which means medium traffic 

volume roads would have a lower possibility of crash incidence than that of high volume traffic 

roads. In the case of low volume traffic roads, the probability of crash incidence would be 

decreased by a factor of 0.28 relative to the high-volume traffic roads. The possibility of crash 

incidence increases with the increase of traffic volume on the street.  

 To recapitulate, major collector and arterial roads are not the safest option for 

bicyclists because of higher lane numbers, traffic volume, and speed. The presence of bike route 

facilities helps to reduce bike crash incidence and route slope is not a strong determinant of 

bicyclists safety in Lawrence. Both NB and ZINB model coefficients are helpful to get better 

insights on bike route safety for bicyclists. Only bike route variable in negative binomial model 

and lane number variable in ZINB model are not statistically significant. Interestingly, both model 

coefficients have produced almost identical bike compatibility map for Lawrence. Before 

interpreting the bike compatibility map of Lawrence, it is important to explore bike crash location 

and its spatial relationship with route slope and bike route facility.  
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Source: (Pulugurtha, Krishnakumar, & 

Nambisan, 2007) 
Figure 6: Circular search area around each cell in simple method, 

4.6 Identification of Bike Crash Zone in Lawrence 

Identification of bike crash zone is important in developing efficient and effective 

strategies to enhance bike safety. It would be a useful tool for the city planner to decide in which 

locations safety improvement measure is required. The bike crash data from 2009 to 2013 were 

collected from the City of Lawrence for crash zone identification. The collected crash data were 

geocoded by the City of Lawrence which means that the first step of creating crash density map is 

already done. Each crash incidence represents one dot on the GIS map, but the difficulty of 

representing the crash data with a dot is that several crashes may have occurred at the same point. 

To resolve this issue, a density map has been created using spatial analyst tool of ArcMap. The 

density can be measured using two methods in ArcMap: simple method (point density and line 

density) and kernel density. In a simple method, the entire study is divided into a preset number of 

cells (Figure 6). The large circular dots in Figure 6 represent crashes near the cell. The individual 

cell density values are then calculated as the ratio of number of crashes that fall within the search 

area to the size of the search area (Pulugurtha et al., 2007) 

 

 

 

 

 

 

 

In a simple method, the outcome of the map is biased by the radius of the search area. For 

instance, the larger the radius the smoother the density surface. In the kernel method, a circular 

search area is drawn around each crash (large circular dots in Figure 7) instead of the cell as in the 
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case of the simple method. A kernel function is then applied to each crash to calculate the kernel 

values. The surface value is highest at the location of the crash. It decreases with increasing 

distance from the crash, reaching 0 at the radius distance from the crash. The ArcMap uses a 

quadratic kernel function to estimate kernel density. The individual cell density values are then 

calculated as the sum of the overlapping kernel values over that cell. (Pulugurtha et al., 2007).   

 

 

 

 

 

 

 

 

 

  Usually, the kernel method generates smoother looking density surface than simple 

method. But kernel density map is also affected by the radius of search neighborhood (the greater 

the radius the flatter the resulting kernel).    

To overcome the issue of subjectivity, the concentration areas in the crash density map are 

categorized into very low, low, medium, high, and very high-risk locations. These ranges are 

identified for these five classes based on the quintiles for the corresponding variable. Thus, the 

“very low” class consists of values from 0 to the 20th percentile in the range of values of the 80th 

percentile.  

.  

Source:(Pulugurtha et al., 2007) Figure 7:Circular search area around each crash- Kernel Method, 
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Figure 8 shows the crash density in the city of Lawrence and the clusters represent the 

crash zone in the city. In the preparation of Kernel density map, the search radius and cell size 

were 1000 feet and 50 feet respectively. The crash density map shows that the largest bike crash 

zone is located in and around the downtown area.  The extent of the crash zone includes 6th street 

to W 19th street along the Massachusetts Street. The bike crash zone classification is summarized 

in Table 8. 

 

 

Figure 8: Bike crash density map for the City of Lawrence 
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Table 8: Summary finding of crash zones in Lawrence 

Crash Severity Streets/Intersections 

Very high crash 

zone  

Massachusetts Street (6th street to 15th street) 

W 9th street (Mississippi street to Cincinnati street) 

W 19th street (Louisiana street to Massachusetts street) 

23rd street (Naismith to Louisiana street, Crestline drive to Atchison 

Avenue) 

15th and Iowa intersection  

6th street and Lawrence Avenue intersection  

6th and Rockledge road intersection    

6th and Monterey way intersection  

6th an S Folks road intersection  

High Crash zone Kasold drive and Trail road intersection  

Monterey way and Bob Billings Parkway intersection  

Wakarusa drive and Clinton Parkway intersection  

Clinton Parkway and Inverness drive intersection  

Crossgate drive and Clinton Parkway intersection  

Medium crash 

zone 

23rd and Kasold drive intersection  

W 9th street and Iowa street intersection  

 

 

 

 

 



54 

 

 

4.7 Spatial Relationship between Crash Location and Route Slope 

Route slope is an interesting road geometric feature in Lawrence where route slope changes 

within a short distance e.g. flat downtown and hilly college campus very close to each other. Route 

slope is a deciding factor for inexperienced bicyclists and hilly landscape of the City of Lawrence 

has made biking more interesting. The severity of crash incidence in upward hill and downward 

hill would be different. Presumably, the crash incidence in the downward hill would be more 

severe and might cause fatal injuries.  

Figure 9 shows the spatial relationship between crash incidence and slope distribution. The 

route slope data have been classified into three categories using natural break method in ArcMap 

and the classes are relatively flat moderate slope, and steep slope. This layer is then superimposed 

on top of crash zone map to explore spatial relationship between slope and crash incidence. The 
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Figure 9:  Spatial relationship between bike crash and route slope in Lawrence 
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average route slope for Lawrence is 2.4560 and two-thirds of routes have lower than average slope. 

The summary of the slope and crash density map is listed in Table 9.  

      Table 9: Summary of route slope and bike crash density map 

Route Slope Range Remarks 

Relatively flat  <1.50 35.3% route segments fall into this category 

Moderate slope 1.5 – 4.00 51% route segments fall into this category 

Steep slope 4.0 – 16.080 13.7% routes have slope of more than 40  

 

 Figure 9 shows that most of the bike crash incidence occurred in flat to moderate slope 

routes. But there are steep slope areas with medium to high crash density in Lawrence e.g. east 

side of Tennessee street between 14th street and 9th street. This study has concluded that the 

correlation between bike crash and route slope is not statistically significant. Thus, slope has very 

little impact in the bike route safety for Lawrence. Slope of major roads and neighborhoods in 

Lawrence have been extracted from Figure 9.  

The slope distribution of major streets in Lawrence are following:    

o Iowa Street (Flat to moderate Slope) 

o 23rd Street (Flat to moderate Slope) 

o Clinton Parkway: Flat to moderate slope (Between Iowa Street and Wakarusa Drive)  

     Moderate to steep slope (Further west of Wakarusa Drive)  

o W 6th Street (Flat to moderate slope)  

o Bob Billings Parkway (combination of steep and moderate slope)  

o W 19th Street (Flat to moderate slope)  

o E 15th Street (Moderate slope)  

o Massachusetts Street (Flat)  
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o Tennessee Street (Flat) 

o Kentucky Street (Flat)  

o Wakarusa Drive (Moderate slope, steep slope south of Clinton Parkway)  

o Kasold Drive (Mostly flat to moderate slope, steep slope in the Deerfield area) 

o Haskell Avenue (Flat to moderate slope)  

Synthesis of neighborhood street slope is following:  

• Flat to moderate Route Slope  

o Downtown Lawrence  

o Lawrence cultural district  

o Old West Lawrence  

o North Lawrence  

o East Lawrence  

o Lawrence High School neighborhood 

o Prairie Park  

o Free State High School neighborhood  

• Moderate to Steep Slope Route  

o Deerfield  

o Sunset Hills  

o West Hills 

o Quail Run and Perry Park  

o The Jayhawk club block  
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4.8 Relationship Between Crash Location and Bike Route  

The presence of bike route facility has a significant influence on bike route safety, and this 

study has concluded that the probability of bike crash incidence would decrease with the increase 

of bike route infrastructure. The provision of bike routes not only create safe and convenient places 

for bicyclists but also give confidence to the people of all ages and abilities to ride safely. With 

the increase of bike route infrastructure over the years, number of bicyclists in Lawrence has 

increased 65.7% from 2009 to 2015 (City of Lawrence, 2015). This implies that people tend to 

bike more if there are bike route facilities available on the street. In addition to the provision of 

bike route facility, creating a bike culture is also important to reduce bike crash incidence. Higher 

bicyclist volume in any area does not necessarily mean that bike crash rate would be higher. For 

instance, the Netherlands has the lowest bike crash rate even though bicyclists volume is highest 

in the world. So, it is important to encourage people to bike on the street which would help to 

create a strong bike culture in Lawrence.  

Out of 5081 route segments, only 1041 segments have bike route facilities. Figure10 shows 

the location of bike crash incidence, and existing bike route facilities in Lawrence. In the 

downtown Lawrence, there are bike routes on Massachusetts street, Vermont street, and New 

Hampshire street but this area is still very prone to bike crash. Higher traffic and bicyclists volume 

and frequent conflict points among themselves might be a reason.  

The 23rd street is another important route in the city of Lawrence and lots of student housing 

are located nearby the 23rd street. A bicycle could be the primary mode to commute to the school. 

Figure 10 shows that 23rd street has so many high crash prone intersections and it would give city 

planners a heads-up to emphasize on these intersections.  
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The North Lawrence has some bike crash zone with no existing bike route facilities. The 

city planners and decision makers can think about some intersections and surrounding 

neighborhoods i.e. Locust street and N 7th street, Maple street and N 8th street etc., to provide bike 

route infrastructure.    

With the understanding of all independent variables and their regression coefficients, bike 

compatibility map for Lawrence has been prepared using both NB and ZINB model coefficients. 

Bike compatibility map based on negative binomial model is attached in the appendix B. The next 

section will explain bike route safety and comfort level using bike compatibility map which is 

prepared based on ZINB regression coefficients. It will also compare the outcome of bike 

compatibility map and city’s bike rideability map to explore similarities and differences.    

Figure 10: Spatial relationship between bike crash location and bike route facilities 
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4.9 Case Study for Bike Compatibility in Major Corridors 

 The bike compatibility map provides a very clear idea about which routes in Lawrence are 

good for all bicyclists and the routes that need some improvements. The map has five class interval 

ranges from very safe to unsafe for bicyclists. For a better understanding of the map, the major 

corridors in the city are discussed below.  

4.9.1 Clinton Parkway and 23rd Street. According to Figure 11, Clinton Parkway is an 

unsafe bike route option in the City of Lawrence. The number of lanes, high traffic volume, and 

high-speed traffic have made the Clinton Parkway as unsafe option for bicyclists. This study also 

concludes that crash incidence probability increases with higher traffic volume and higher lane 

numbers on the street. Regardless of flat route slope, high traffic volume and traffic speed have 

turned Clinton Parkway unsafe for bicyclists. This outcome does not match with the city’s Bike 

Rideability Map (Figure 12).        

On the other hand, the 23rd Street (right side of Iowa Street) is one of the busiest streets in 

Lawrence and there are lots of commercial, shopping, restaurants, retail and office buildings on 

both side of the streets. High volume of traffic, major intersections, and lots of conflict point 

interrupts mobility of bicyclists flow, frequent entrance and exit of commercial establishments to 

the 23rd street make the route very difficult for the bicyclists. There are no designated bike routes, 

but some segments have a wider sidewalk along the road. According to the ZINB regression 

coefficient value, the presence of bike route has significant impact on bike route safety and high 

traffic volume negatively affects the safety of bicyclists. Thus, 23rd Street is designated as unsafe 

option for bicyclist as well (Figure 11).      

4.9.2 W 6th Street.  The W 6th Street is another high traffic volume and high-speed street 

in Lawrence. In addition to that, the lack of bike facilities and frequent interruptions with motor 
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vehicles at intersections makes W 6th street unattractive to the bicyclists. As concluded in the ZINB 

coefficients interpretation, the lack of bike route facilities and high traffic volume decrease the 

bicyclist’s comfort and safety on the street. Major intersections along the 6th street i.e. 6th and 

Michigan, 6th and Rockledge road, 6th and Lawrence Avenue, 6th and Monterey Way, are very 

crash prone (Figure 8). Therefore, the bike compatibility map shows that W 6th street belongs to 

moderate to unsafe option for bicyclists (Figure 11). This outcome does not match with the Bike 

Rideability Map (Figure 12).  

4.9.3 Iowa Street.  The Iowa Street is a major arterial road in Lawrence and it connects 

with all other major streets and interstate I-70 as well. According to Kansas Department of 

Transportation traffic count data, the volume of the traffic at Iowa Street varies between 23000 

and 34500 per day. N Iowa Street (even further north of 6th street) has relatively less traffic which 

is around 9000 per day (City of Lawrence, 2017). Apart from high traffic volume, the Iowa Street 

has some difficult intersections for bicyclists i.e. 15th street and Iowa, 19th and Iowa street, 21st, 

and Iowa, 23rd, and Iowa etc. Referring to the ZINB regression coefficients interpretation, the lack 

of bike facilities on top of above issues makes the Iowa street unattractive to the bicyclists. Both 

bike compatibility map and City’s Bike Rideability map have drawn similar conclusion for Iowa 

Street.   

4.9.4 19th Street.  The 19th street has medium to high traffic volume ranges from 6000 to 

21000 per day based on KDOT and City of Lawrence traffic count (City of Lawrence, 2017). The 

E 19th street (Barker Avenue to O’Connell road) has comparatively less traffic than West side of 

the 19th street (Iowa to Massachusetts street). In addition to low traffic, there is also bike facilities 

after Barker and 19th street intersection which makes the street more friendly and comfortable for 

the bicyclists. As per ZINB model result, bicyclist’s comfort increases with the decrease of traffic 
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volume. Therefore, the compatibility map and rideability map draw the same conclusion. On the 

other hand, biking on the W 19th street is a bit challenging and bicyclists need to be careful about 

some major intersections i.e. Louisiana Street and W 19th street, Tennessee and W 19th street etc. 

Bicyclists need to be very watchful at the W 19th street and Iowa intersections as many vehicles 

right turn quickly to get off the major arterial even in the red signal. Also, Figure 8 indicates that 

the route segment between Iowa and Ousdahl road has high crash density. Overall, 19th street is a 

safe option for bicyclists in Lawrence.  

4.9.5 Bob Billings Parkway.  This street is characterized by medium to high traffic volume 

(11000 to 15500 per day) and route slope changes frequently (City of Lawrence, 2017). Bob 

Billings Parkway is very difficult for the inexperienced bicyclists as riders need to handle both 

uphill and downhill route slope very often. The route segment between Wakarusa Drive and 

Kasold Drive are very challenging for the bicyclists. Figure 8 indicates that there is two high bike 

zones i.e. Monterey Way and Bob Billings intersection, in this route segment. The bike 

compatibility map (Figure 11) indicates that this segment is moderately unsafe option for 

bicyclists. Along the Bob Billings Parkway, there are three apartment housings i.e. Meadowbrook, 

Orchard Corners, and Aspen West apartment between Iowa Street and Kasold Drive. Lots of KU 

students who live in these apartment use bicycle for their daily commute. As concluded in the 

regression model interpretation that lane numbers, high speed, and traffic volume affect bike route 

safety significantly. The Bob Billings and Iowa street intersection is one of the most difficult 

intersection for the bicyclists as it is very high crash prone area (Figure 8). Thus, Bob Billings 

Parkway is designated as moderately unsafe to unsafe option for bicyclists in Lawrence. The 

Inverness Drive is one of the safest connector routes for bicyclists between Bob Billings Parkway 

and Clinton Parkway. 
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4.9.6 Downtown Lawrence. The downtown is a major activity hub in Lawrence and it 

attracts a lot of people from all over the city for various purposes. The city of Lawrence has 

facilitated adequate bike route facilities to ensure bike connectivity with the Lawrence downtown. 

Streets with bike route facilities in downtown are Massachusetts street (between 11th street and 

23rd street), Vermont street (between 11th and 6th street), New Hampshire street (between 11th and 

6th street), Connecticut street (between 7th and 15th street), and 7th street (between Michigan street 

and Delaware street). Downtown Lawrence is also connected with north Lawrence through 

Massachusetts and Vermont street with bike route which is separated from motor vehicles.  

 The bike compatibility map (Figure 11) shows that biking on the downtown Lawrence is a 

safer option for the bicyclists. The underlying road geometry and traffic factors that contribute to 

safer bike route in downtown Lawrence are lower number of lanes, existing bike route facilities, 

flat terrain, low vehicular speed, and relatively low traffic volume. For instance, routes are two 

lane, route slope is less than 1.5 degree, traffic volume on Vermont street is just over 4000 per day  

(City of Lawrence, 2017). The 7th street has bike route facilities with relative lower traffic volume 

(around 1000-1200 vehicles per day) which makes it a good choice for bicyclists to move east-

west direction from downtown (City of Lawrence, 2017).  

4.9.7 9th Street. The 9th street is another major east-west connector street in Lawrence. It 

is characterized by medium to high volume traffic (around 16,700 per day) and lots of major 

intersections i.e. Kentucky and 9th, Tennessee and 9th, Maine and 9th, Mississippi and 9th street etc. 

The street has bike route facility and it is relatively flat terrain. According to the bike compatibility 

map, the 9th street is mostly a safe option for bicyclist.  

4.9.8 Deerfield (North of 6th street).The neighborhood around Lawrence Country Club is 

very safe and comfortable for the bicyclists according to the bike compatibility map. Low volume 
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of traffic, fewer interruptions with vehicles, and the presence of bike facilities on Lawrence 

Avenue, Princeton Boulevard, Trail road which connects Lawrence Avenue and Monterey way 

make these routes better and safer choice for biking. Interestingly, city’s Bike Rideability map also 

recommends these routes safe for all riders.   

4.9.9 North and East Lawrence. According to bike compatibility map (Figure 11), both 

north and east Lawrence are very bike friendly and the underlying factors might include low traffic 

volume, presence of bike route facilities, and fewer lane numbers.   

 

Figure 11: Bike Compatibility Map for City of Lawrence 
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Figure 12: Bike Rideability Map for City of Lawrence 

Source: https://assets.lawrenceks.org/assets/mpo/bicycle/BikeMap.pdf 

 

4.9.9 Criticism and limitations of the Compatibility Map. Despite the advantages of the 

bike compatibility map, it has some downsides as well and the map could produce more detailed 

and precise results on bike route safety. In this study, road functional class has been used as a 

proxy of traffic volume, because actual bike count data are not available for Lawrence. The 

addition of actual bike count data and bicyclist speed in the regression model would probably make 

a significant difference in the model output. Only installation of bicycle route facility may not 

always improve the bicyclist's safety, considering pavement conditions of bike routes and 

https://assets.lawrenceks.org/assets/mpo/bicycle/BikeMap.pdf
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sidewalks, on-street parking, and land use data might add some values in the explanatory power 

of the model. The conceptual framework (section 2.4) described all possible factors that might 

have an impact on bike route safety, but data unavailability is a problem for this study. The city of 

Lawrence has started collecting bike count data voluntarily but an emphasize can be added on bike 

count and speed data collection to reduce bike crash incidence in Lawrence.   

Route curvature might have an impact on bike route safety especially bike crashes due to 

sharp edge maneuvering.  The addition of horizontal route curvature as a predictor variable in the 

model might improve some predictability. The ‘Curve Detective’ tool which is available in 

‘HighwaySafety.pyt’ (a customized Python toolbox) can be used to calculate the bike route 

curvature for Lawrence. The last but not the least, the study area is very small, and the bigger city 

with more bike crash incidents and relevant road geometry data would result in better regression 

model output.   

4.10 Interview with Professional Expertise 

Apart from literature review, the insight of professional expertise is a useful tool to improve 

knowledge base. Therefore, two interviews have been conducted to get their insight and comments 

on the outcome of the bike compatibility map. These professionals are David Cronin, Lawrence 

City Engineer, and Aaron Bartlett, Senior Transportation Planner at Mid-America Regional 

Council (MARC).   

Aaron Bartlett has agreed with the variables considered to prepare the bike compatibility 

map for Lawrence. He commented that these are all good variable to include in bike safety analysis. 

He mentioned that “the study area, Lawrence, is very small city and it does not have enough 

bicycling or network to produce reliable results. Look at Portland or a larger city. My guess is that 

your R squared is relatively low due to this factor.” 
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City Engineer of Lawrence have gone through the bike compatibility map and he agreed 

with most of the outcomes. He recommended conducting the bike route safety analysis using actual 

traffic volume data instead of proxy data to see if that makes any difference. City of Lawrence and 

Kansas Department of Transportation jointly collect traffic volume data for some designated routes 

in Lawrence. Streetwise traffic volume data have been inserted to the ArcMap database and then 

regression model has been run again. In this case, the sample size was 1698 route segments and 

routes have actual traffic volume have been considered. The model also concludes that volume has 

negative correlation with bike route safety. This implies that routes with high traffic volume are 

more prone to bike crash incidence and are less safe for bicyclists. Addition of actual traffic volume 

in the model does not change or produce any meaningful coefficients for the other independent 

variables. Yet it is good to know that information, and it would be helpful for future researchers. 

The next possible step would be adding actual bicycle volume to get better model results. The city 

of Lawrence has started collecting bike count data and it is now conducted by volunteers in 

different locations of the city. Volunteers are using National Bike and Pedestrian Documentation 

(NBPD) project method for collecting bike count data. When city of Lawrence would have enough 

bike count data with decent sample size, then this regression model would probably produce more 

pragmatic results. The next chapter will summarize the major findings of the study and 

recommendations to improve the bike safety in the City of Lawrence.  
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Chapter 5: Recommendation and Conclusion 

This chapter will summarize the major findings by synthesizing the experimental results and 

explain how the objectives of the research are met. The main findings of the data analysis and 

statistical model will be recapitulated in this chapter. Finally, some recommendations will be 

provided to improve the bike safety in the city of Lawrence.   

5.1 Major Findings  

The main goal of the study was to find what road geometry and traffic characteristics affect 

the bike route safety. In order to achieve that goal, some supplementary questions were set in the 

beginning of the study. Table 10 summarizes how these objectives are met in the study and the 

corresponding results.   

Table 10: Summary of major findings of the study 

Queries Results Remarks 

 

 

 

Does the presence of bike 

routes affect the safety for the 

bicyclists? 

Yes, the bike route variable is strongly related 

with response variable with a significance level 

of 0.01 and p value of 0.002.  

 

The variable would have negative impact on the 

response variable (crash incidence) 

 

The odd ratio is 0.41 which implies that the 

presence of bike routes would decrease crash 

incidence by a factor of 0.41 (given all other 

factors are constant).  

 

 

 

 

Details can 

be found in 

Chapter 4, 

Section 

4.5.4 

 

 

 

The slope is not statistically significant in ZINB 

model, but it is negatively correlated with bike 

crash incidence according to NB model at 0.01 

Details: 

Chapter 4, 
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Is there a relationship 

between the route slope and 

the number of crashes? 

α level where the p-value is 0.0023 which is 

significant as well.  

 

NB model concludes that bike crash incidence 

does not necessarily increase with the increase 

of route slope.  

Section 

4.5.2  

 

 

 

 

 

Where are the existing 

bicycle crash zones located in 

Lawrence? 

 

Very high crash zone:  

    Mass St. (between 6th and 15th St.) 

    W 19th St. (between Louisiana & Mass)  

    15th & Iowa intersection etc.  

 

High crash zone:  

    Monetary way and Bob billings   intersection 

    Wakarusa Dive. & Clinton Parkway    

    Intersection etc.   

 

Medium Crash Zone: 

    23rd & Kasold Drive intersection.  

    W 9th St. & Iowa intersection etc.  

 

 

 

 

Details at 

Chapter 4  

 Section 4.6 

Figure 6 

Table 8  

 

Does high traffic volume 

affect bicyclists’ safety? 

 

 

Yes, traffic volume is negatively correlated 

with bike safety. This implies that local 

neighborhood streets are much safer for 

bicyclists than collector and arterials roads.   

 

The probability of crash incidence increases 

with the increase of traffic volume.  

In this study, functional road class has been 

used as a proxy of traffic volume. The whole 

model has been re-run with actual traffic 

 

Details at 

Chapter 4  

Section 

4.5.5 
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volume in selected routes (sample size was 

1698). This new model result also concludes 

that traffic volume has negative correlation with 

bike route safety.  

 

 

Relationship between crash 

incidence and traffic speed 

Statistically significant (α level is 0.001) 

relationship exists between traffic speed and 

crash incidence.  

Speed is negatively correlated with crash 

incidence. It indicates that collector and arterial 

roads are less prone to bike crash incidence. It 

might be because there are fewer number of 

bicyclists on these high-speed roads. Given that 

two-thirds of crash incidents occurred on city 

streets with a speed of no more than 30 mph.  

 

In this study posted speed limit has been used 

instead of actual bicyclist speed. Availability of 

bicycle speed data would probably improve the 

model result.  

 

 

Details at  

Chapter 4  

Section 

4.5.1 

Does the bike crash incidence 

increase with the increase of 

lane numbers? 

The probability of bike crash incidence 

increases with the increase of lane numbers.  

 

Local streets are safer than collector or arterial 

streets.  

Details at  

Chapter 4  

Section 

4.5.3 

Spatial relationship between 

bike crash location and bike 

route facilities.  

Figure 10 shows which routes and intersections 

are crash prone. It implies where the city of 

Lawrence needs to extend bike route facilities.  

 

Details at  

Chapter 4 

Section 4.8  
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The rideability map shows bike suitability for collector and arterial routes based on the 

bicyclist's user rating. The compatibility map shows more details of bike route comfort and safety 

based on road geometry, infrastructure, and traffic characteristics of all types of streets. There are 

both similarities and differences between the bike rideability map and the bike compatibility map. 

The bike compatibility map indicates that neighborhood level streets that are characterized by low 

traffic volume, fewer lane numbers etc. are safer option for bicyclists. Moreover, the presence of 

bike route facility makes a difference on bicyclists safety. A synthesis of bike compatibility map 

is listed below.   

  Recommended routes for bicyclists are:  

o Local neighborhood streets 

o W 19th street (watch out at Louisiana and W 19th, Naismith and W 19th intersections) 

o Inverness Drive (it connects Bob Billings and Clinton Parkway) 

o Harvard road  

o  Trail Road (Monterey Way to Lawrence Avenue)  

o W Princeton Boulevard (Peterson to S Iowa street)  

o Lawrence Avenue (W Princeton Boulevard to W 6th street)  

o Peterson road (Monterey way to N Iowa street)  

o W 27th street  

o Harper Street 

o Haskell Avenue (North part of 23rd street) 

o Connecticut street   

o E 13th street  

o Downtown Lawrence  
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o North Lawrence neighborhood  

o East Lawrence neighborhood 

o W 4th street (McDonald Drive to Indiana street)  

Route segments where inexperienced bicyclists are not recommended include major 

collector and arterial roads. The city of Lawrence needs to take some actions to improving bike 

safety on those roads. The actions might include providing off road bike facilities (shared use 

paths), improvement in the sidewalk pavement, or providing more bicycle friendly signage at the 

major intersections etc. List of streets that require city’s attention are following.  

o W 6th street  

o Iowa Street (W 6th street to W 31st street) 

o 23rd street  

o Bob Billings Parkway  

o Clinton Parkway 

o Kasold Drive  

o Wakarusa Drive  

o Kasold Drive and Petersen road intersection in Deerfield area 

o W 15th street (Iowa street to Naismith Drive) 

o  Haskell Avenue (23rd street to E 31st street) 

The high bike crash density intersections that require special attentions are:  

o Iowa and W 15th street  

o Iowa and 23rd street  

o W 19th street and Iowa street  

o Kasold Drive and W 6th street  
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o Massachusetts street and 23rd street 

o Rockledge road and W 6th street  

o Lawrence Avenue and W 6th street  

o Monterey way and W 6th street 

o W 6th street and S Folks road  

o Louisiana street and W 19th street  

Both negative binomial (NB) and zero inflated negative binomial (ZINB) model generate 

identical bike compatibility maps. Bayesian Information Criterion (BIC) test statistics predicts 

model improvement better when sample size is large. In this study, BIC indicates negative 

binomial model coefficients are better than zero inflated negative binomial model coefficients, but 

p value was very high (0.42). On the other hand, Raw and Akaike Information Criterion (AIC) test 

statistics suggest that ZINB model is better than conventional NB where p value is statistically 

significant for both AIC and Raw test statistics. In a nutshell, there is no consensus that zero 

inflated negative binomial model would generate better result than conventional negative binomial 

model. It depends on the type and distribution of data, independent and dependent variable, and 

research queries.    

5.2 Recommendations to Improving Bike Safety 

According to the League of American Bicyclists, the number of bicycle commuters nearly doubled 

in the 70 largest cities of US between 1990 and 2012. In 2014, Americans make more than four 

billion trips by bike each year (Petersen, 2014). In the US, bike crashes are increasing day by day 

with the increase in the number of bicyclists. But the situation is the other way around in the 

Netherlands, because of the excellent bike route design, the provision of adequate route facilities, 

and the establishment of biking as a part of their culture. In this study, the term “crash” is used 

http://www.bikeleague.org/
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instead of “accident” to emphasize that design and planning of the transportation system 

contributes to most of the bike fatalities and injuries. A set of recommendations have been 

proposed based on the findings of this study.  

o The presence of bike route facility helps to reduce bike crash incidence, and it would 

increase bike route safety considerably. Most of the collector and arterial roads in 

Lawrence are not safe for bicyclists. As these roads have high traffic volume with high 

speed. Off street bike route facility e.g. shared use path or barrier protected bike lane 

could be an effective way to improve bike route safety. Between 2009 and 2013, two-

thirds of bike crash incidence occurred in neighborhood level streets. To improve bike 

safety in neighborhood streets, dedicated right of way for bicyclists could be a better 

choice. In fact, encouraging biking in the neighborhood streets would help to create a 

bike culture in a community. This might be helpful to reduce bike crash incidence in the 

local streets of Lawrence.  

o Citywide bike count data is a prerequisite to better understand the spatial distribution of 

bicyclists and their trip pattern. The city of Lawrence is currently collecting bike count 

data on a voluntary basis. Prioritizing the bike count data collection project would help 

to minimize bike crash incidence in Lawrence. It is noteworthy to mention that 

availability of streetwise bike count data could result in better regression coefficients 

which might be helpful insight to improve bike safety in Lawrence.  

o While analyzing bike crash data it was found that the city of Lawrence stores bike crash 

information in ArcGIS platform with a single line geometry. Instead of one single line, 

bike crash data can be stored in two lines with much more detailed information for each 
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direction of the street. This would help to extract the directional impact on bike route 

safety especially for a city like Lawrence where route slope changes drastically.    

5.3 Conclusions 

 The bike route safety study based on road geometry, infrastructure, and traffic 

characteristics conclude that high traffic volume streets with larger lane numbers e.g. collector and 

arterial roads are unsafe for bicyclists. Local neighborhoods level streets are comparatively safer 

routes for bicyclists in Lawrence. Route slope does not have significant impact on bike route safety 

for Lawrence even though slope changes drastically very often. Surprisingly, speed is negatively 

related with crash incidence and underlying reason is that this study used posted speed limit as 

speed variable. Availability of actual bicycle speed for each street would probably change the 

model outcome. Instead of using traffic volume, actual bike count data for the whole city would 

surely bring some meaningful insights in the bike safety analysis. It can be concluded that complex 

statistical analysis on bike safety using available data adds some value in the understanding of bike 

safety for the city of Lawrence. The bike compatibility map indicates which routes are safer option 

for bicyclists and which streets are unsafe for bicyclists. This compatibility map has some flaws 

i.e. details are missing which can be improved by incorporating variables like actual bike count 

data, bicyclists speed etc. These limitations of bike compatibility map can be overcome with better 

data (as listed on the conceptual framework), and advanced statistical methods would not make 

any difference unless better data available.    

 Bicycle crash incidence is very much under reported, and the city of Lawrence does not 

have enough crash data to develop regression model with high predictability. Conducting this type 

of research for big cities like Portland would produce more meaningful outcomes. An addition of 

variable in the model like on-street parking, actual bicycle volume and speed for different street 
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segments, pavement condition of streets and sidewalks, land use type- residential or commercial, 

the curvature of streets etc. would probably improve the model predictability. In short, there is 

probably no better way than empirical analysis to explore inherent causal relationship among 

variables with a comprehensive data available.  
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Appendix 

Appendix A: Regression Model Results 

Poisson Regression Model:  

R Code:  

Step 1: Install necessary packages and Data in R 

 > install.packages("pscl") 
 >install.packages(“MASS”,”lattice”,”ggplot2”) 
 > install.packages("boot") 
 > Data <- read_csv("C:/Users/SHOFI/Desktop/Thesis Analysis/Data.csv") 

Step 2: Proxy of volume data (factor variable of Functional road class)  

 > Data$FUNCTCLASS<-factor(Data$FUNCTCLASS) 
 > table(Data$FUNCTCLASS) 
 > Data$Volume<-Data$FUNCTCLASS 

Step 3: Run Poisson model 

Poisson<-glm(Crash~Speed+Slope+Lane+Bike_Route+Volume, 
family=poisson,data=Data) 

 

> summary(Poisson) 
 
Call: 
glm(formula = Crash ~ Speed + Slope + Lane + Bike_Route + Volume,  
    family = poisson, data = Data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.0675  -0.3648  -0.2348  -0.2106   7.6028   
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.30932    0.47307  -2.768 0.005645 **  
Speed           -0.07337    0.01090  -6.733 1.66e-11 *** 
Slope           -0.16767    0.04780  -3.508 0.000452 *** 
Lane             0.52537    0.07230   7.267 3.68e-13 *** 
Bike_Route       0.23063    0.13469   1.712 0.086829 .   
VolumeCOLLECTOR -0.14802    0.18466  -0.802 0.422805     
VolumeSTREET    -1.16391    0.22754  -5.115 3.13e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 1995.5  on 5080  degrees of freedom 
Residual deviance: 1754.4  on 5074  degrees of freedom 
AIC: 2184.8 
 
Number of Fisher Scoring iterations: 6 
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Zero-Inflated Poisson (ZIP) Model:  

R Code:  

ZIP<-zeroinfl(Crash~Speed+Slope+Lane+Bike_Route+Volume,data=Data)  

Model Summary:  

> summary(ZIP) 
 
Call: 
zeroinfl(formula = Crash ~ Speed + Slope + Lane + Bike_Route + Volume, data = 
Data) 
 
Pearson residuals: 
    Min      1Q  Median      3Q     Max  
-0.6121 -0.1786 -0.1253 -0.1126 74.2310  
 
Count model coefficients (poisson with log link): 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      2.28830    0.73418   3.117  0.00183 **  
Speed           -0.03715    0.01717  -2.164  0.03048 *   
Slope           -0.00392    0.07809  -0.050  0.95996     
Lane            -0.16057    0.09388  -1.710  0.08719 .   
Bike_Route      -0.79038    0.22907  -3.450  0.00056 *** 
VolumeCOLLECTOR -0.43037    0.29778  -1.445  0.14838     
VolumeSTREET    -1.04124    0.33428  -3.115  0.00184 **  
 
Zero-inflation model coefficients (binomial with logit link): 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      3.64774    0.95438   3.822 0.000132 *** 
Speed            0.05017    0.01903   2.637 0.008376 **  
Slope            0.16177    0.08173   1.979 0.047764 *   
Lane            -0.92775    0.17742  -5.229 1.70e-07 *** 
Bike_Route      -1.30038    0.31461  -4.133 3.58e-05 *** 
VolumeCOLLECTOR -0.28920    0.35650  -0.811 0.417237     
VolumeSTREET    -0.15271    0.46739  -0.327 0.743871     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Number of iterations in BFGS optimization: 26  
Log-likelihood: -904.2 on 14 Df 
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Negative Binomial Model: 

R Code: 

> NB<-glm.nb(Crash~ Speed+Slope+Lane+Bike_Route+Volume,data=Data) 

 

Model Output Summary:  

> summary(NB) 
 
Call: 
glm.nb(formula = Crash ~ Speed + Slope + Lane + Bike_Route +  
    Volume, data = Data, init.theta = 0.0792526012, link = log) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.5656  -0.3075  -0.2261  -0.2032   4.1660   
 
Coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -1.71193    0.68010  -2.517 0.011830 *   
Speed           -0.04359    0.01648  -2.644 0.008191 **  
Slope           -0.18934    0.06230  -3.039 0.002374 **  
Lane             0.41030    0.12054   3.404 0.000665 *** 
Bike_Route       0.32529    0.21076   1.543 0.122723     
VolumeCOLLECTOR -0.18197    0.28576  -0.637 0.524270     
VolumeSTREET    -1.07524    0.32719  -3.286 0.001015 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for Negative Binomial(0.0793) family taken to be 1) 
 
    Null deviance: 822.52  on 5080  degrees of freedom 
Residual deviance: 705.02  on 5074  degrees of freedom 
AIC: 1861.5 
 
Number of Fisher Scoring iterations: 1 
 
 
              Theta:  0.0793  
          Std. Err.:  0.0120  
 
 2 x log-likelihood:  -1845.4770  
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As the coefficients are log based, it is important to exponentiate the values to get the odds ratio.  

> exp(cbind(CO=coef(NB),confint(NB))) 
                       CO     2.5 %    97.5 % 
(Intercept)     0.1805173 0.0433694 0.7374630 
Speed           0.9573494 0.9281210 0.9872143 
Slope           0.8275090 0.7292815 0.9303408 
Lane            1.5072632 1.2150088 1.9023711 
Bike_Route      1.3844321 0.9184350 2.0869742 
VolumeCOLLECTOR 0.8336274 0.4646651 1.5010804 
VolumeSTREET    0.3412142 0.1767108 0.6626395 

 

 

Zero Inflated Negative Binomial (ZINB) Model: 

R Code:  

> ZINB<-zeroinfl(Crash~ Speed+Slope+Lane+Volume+Bike_Route, data=Data,dist=   

"negbin") 

Model Output:  

> summary(ZINB) 
 
Call: 
zeroinfl(formula = Crash ~ Speed + Slope + Lane + Volume + Bike_Route, data = 
Data,  
    dist = "negbin") 
 
Pearson residuals: 
     Min       1Q   Median       3Q      Max  
 -0.4807  -0.1809  -0.1201  -0.1075 110.7639  
 
Count model coefficients (negbin with log link): 
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)      2.279871   1.019487   2.236  0.02533 *  
Speed           -0.057911   0.022458  -2.579  0.00992 ** 
Slope           -0.005619   0.105647  -0.053  0.95758    
Lane            -0.106037   0.114798  -0.924  0.35565    
VolumeCOLLECTOR -0.666485   0.432336  -1.542  0.12317    
VolumeSTREET    -1.262345   0.459714  -2.746  0.00603 ** 
Bike_Route      -0.899831   0.287944  -3.125  0.00178 ** 
Log(theta)      -0.381392   0.495144  -0.770  0.44114    
 
Zero-inflation model coefficients (binomial with logit link): 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      4.12116    1.12503   3.663 0.000249 *** 
Speed            0.03267    0.02477   1.319 0.187157     
Slope            0.17844    0.10898   1.637 0.101564     
Lane            -1.08748    0.19868  -5.474 4.41e-08 *** 
VolumeCOLLECTOR -0.58098    0.49097  -1.183 0.236681     
VolumeSTREET    -0.59902    0.56534  -1.060 0.289332     
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Bike_Route      -1.76222    0.42783  -4.119 3.81e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Theta = 0.6829  
Number of iterations in BFGS optimization: 78  
Log-likelihood: -894.6 on 15 Df 
> exp(cbind(CO=coef(ZINB),confint(ZINB))) 
                              CO      2.5 %      97.5 % 
count_(Intercept)      9.7754240 1.32539856  72.0982487 
count_Speed            0.9437344 0.90309456   0.9862030 
count_Slope            0.9943966 0.80841120   1.2231703 
count_Lane             0.8993910 0.71817866   1.1263273 
count_VolumeCOLLECTOR  0.5135105 0.22006159   1.1982692 
count_VolumeSTREET     0.2829896 0.11493743   0.6967542 
count_Bike_Route       0.4066386 0.23126498   0.7150021 
zero_(Intercept)      61.6308812 6.79471284 559.0178131 
zero_Speed             1.0332077 0.98425162   1.0845989 
zero_Slope             1.1953530 0.96544771   1.4800063 
zero_Lane              0.3370640 0.22834682   0.4975420 
zero_VolumeCOLLECTOR   0.5593500 0.21368131   1.4642012 
zero_VolumeSTREET      0.5493478 0.18139800   1.6636511 
zero_Bike_Route        0.1716636 0.07421819   0.3970507 

 

 

Model Comparison:  

> vuong(Poisson,ZIP) 
------------------------------------------------------------- 
              Vuong z-statistic             H_A    p-value 
Raw                   -4.747265 model2 > model1 1.0309e-06 
AIC-corrected         -4.563891 model2 > model1 2.5107e-06 
BIC-corrected         -3.964876 model2 > model1 3.6717e-05 
> vuong(ZINB,NB) 
------------------------------------------------------------- 
              Vuong z-statistic             H_A   p-value 
Raw                   3.4384711 model1 > model2 0.0002925 
AIC-corrected         2.5839216 model1 > model2 0.0048842 
BIC-corrected        -0.2075769 model2 > model1 0.4177797 
> vuong(ZIP,ZINB) 
------------------------------------------------------------- 
              Vuong z-statistic             H_A  p-value 
Raw                   -1.715317 model2 > model1 0.043144 
AIC-corrected         -1.715317 model2 > model1 0.043144 
BIC-corrected         -1.715317 model2 > model1 0.043144 
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Appendix B: Map 

Bike Compatibility Map for City of Lawrence 

 

  * Negative binomial model coefficients have been used to prepare this map.  
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