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Abstract 

Cell-to-cell heterogeneity predicts a multitude of functions for homeostasis and 

development of disease states. These minute variations can make a massive impact in 

understanding the main components involved in a disease such as cancer. Tracking the protein 

expression in single cells is in great need as they enable the study of heterogeneous behaviors, but 

the main challenges are the requirement of the methodologies that are sensitive enough to detect 

low copy number of protein molecules within a wide dynamic range. Low copy proteins cannot be 

neglected as they can provide information about the phenotypic responses involved. Moreover, 

traditional analog methods are not suitable for detecting such small numbers as they give an 

average measurement, differentiating unique cells and quantifying population distributions would 

be problematic. Digital immunoassays have emerged as a robust technology for ultrasensitive 

detection of proteins. Here we engineered a multiplexed microfluidic digital ELISA platform with 

microarray structures for analyzing multiple proteins with low sample volume and high sensitivity.  

Cross communication between individual reactions, diffusing of reagents into bulk solutions and 

evaporation of solvents could be critical. To address this concern, we have developed a portable, 

automated instrument for sealing the microwells in the chambers with high pressure for conducting 

chemi- fluorescent reactions with increased resolution and sensitivity. 

With our developed platform, we can detect up to 15 biomarkers. We also applied our 

digital platforms for the detection of PSA aptamer with biotinylated lectins. 
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Chapter 1 

1. Introduction 

1.1.Background and Significance 

 

Cancer is a leading health issue all over the world mainly, United States. In 2017, there will be 

an estimated new cancer cases of about 1,688,780  diagnosed and 600,920 cancer deaths in the 

US.1  This figure is ascending, as competing causes of death diminish in importance. The 

fundamental abnormality for the development and growth of cancer is the continuous unregulated 

proliferation of cancer cells.2 Usually under normal conditions, cells respond appropriately to the 

signals that control the cell behavior whereas, cancer cells grow and divide in an uncontrolled 

manner, invading normal tissues and organs and ultimately spreading throughout the body as 

shown in Figure 1.3 The induced loss of growth control shown by cancer cells is the result of 

accumulated abnormalities in multiple regulatory systems and is reflected in various aspects of 

cell behavior that can distinguish cancer cells from the normal cells.4 Most cancers, are mainly 

associated with poor prognosis due to the asymptomatic nature of the disease, and late diagnosis, 

thus composing patient care and therapeutic outcome. Therefore, well established and accurate 

approaches for timely diagnosis of the disease both at early and advanced stages are critical to 

better assess treatment options, and saving lives. A key challenge in cancer control and prevention 

is detection of the disease as early as possible, enabling effective interventions and therapies to 

contribute to reduction in mortality and morbidity.5  



2 
 

 

Figure 1: Growth of normal cells vs cancer cells6 

1.2.Biomarkers 

Concentrations of certain biomolecules usually increase in the body during the formation of 

cancer. These biomolecules, are referred as biomarkers, which need to be accurately measured to 

detect specific diseases at early stage for better and more decisive prognosis.7 Biomarkers are 

important molecular signposts of the physiological state of a cell at a specific time. As a normal 

cell progresses through the complex pathways of transformation to a cancerous state, biomarkers 

could provide vital information for the identification of early cancer and people at risk of 

developing cancer.8 Identification and detection of cancer by pathological techniques are possible 

only on microscopic examination of the tumor tissue, long after disease onset. Although these 

techniques are important for prediction of tumor behavior and prognosis, additional methods are 

necessary for early detection as shown in Figure 2.9  
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Figure 2: Role of biomarkers for early detection of diseases.9 

 

The usefulness of a biomarker lies in its ability to provide early indication of disease or the 

progression of the disease.10 Biomarkers should be easy to detect, measurable across populations, 

and amenable to use in one or more of the following settings: detection at an early stage; 

identification of high-risk individuals; early detection of recurrence; or as intermediate endpoints 

in chemoprevention. Many secreted proteins are over-expressed in the blood at very early stages 

of developing cancers, prior to any possible physical symptoms. Levels of these secreted proteins 

can indicate the presence or absence of disease. In certain cases, these levels can indicate the stage 

of cancer as well, and guide therapy.11-12 These biomarker proteins are usually specific to distinct 

cancers but do not have high predictive values. For example, prostate specific antigen (PSA), a 

well-known FDA approved and first clinically used single biomarker protein for prostate cancer 

has a positive predictive value of -70%. While this can detect the cancer, it has nonetheless the 
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potential to detect false positives, and consequently un-required medical treatments and stress. 

Therefore, it is required to detect cancer with a panel of biomarker proteins specific to that cancer 

for point-of-care diagnosis and better understanding of the disease.13Measuring biomarkers in 

blood or serum provides essential information that allows prognosis and management of diseases. 

Moreover, the possibility of detection of low biomarker concentrations allows early diagnosis and 

plays a key role in increasing the survival rates of the patients. The biomarkers that are most widely 

used are either nucleic acids or proteins. They can show high abundance in the primary affected 

organ, but they become diluted when they spread into the body or blood stream, like in the case of 

cancer.14 Detection of a disease starting from a blood or serum sample is therefore often the 

preferred option. There are various proteomic technologies for identifying the cancer biomarkers 

like mass spectrometry, two-dimensional electrophoresis and many other techniques, but they 

suffer limitations like sample volume, assay time and sensitivity. On the other hand, having low 

blood sample consumption is also important, but evidently detecting rare biomarkers in small 

sample volumes requires techniques with high sensitivity as shown in Figure 3.11 

 

Figure 3:Evolution of biomarkers from first generation to fourth generation.8 
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1.3.Immunoassays 

Immunoassays are mainly used for the quantification of proteins and small molecules in many 

different fields such as medical diagnostics, proteomics, pharmaceutical research and biological 

research.15 Immunoassays were classified into main two types: heterogeneous and homogeneous. 

In heterogeneous immunoassays, antibodies are first immobilized on a solid support and then the 

antigen interacts at the boundary layer. With the help of this format, unbound antibodies and other 

reagents can be easily washed. In homogenous immunoassays, the capture antibodies interact with 

antigens in solution. In this case, the bound and unbound antibodies are differentiated based on 

physical or chemical changes forming from the binding event. Immunoassays are used to detect 

target proteins based on the specific interaction and complex formation between a target antigen 

(Ag) and an antibody (Ab), the latter being an immunoglobulin (Ig) with specific binding sites for 

the Ag.16 There are diverse types of assays such as direct, indirect and sandwich based assays. 

Among them sandwich immunoassays are the most widely used assay formats for protein analysis. 

In these type of assays, the target Ag is ‘sandwiched’ between two types of Abs, which are often 

called capture and detection Ab (cAb and dAb), respectively. In a sandwich immunoassay, first 

cAbs are immobilized on a substrate, after which the substrate is treated with blocking reagents 

like bovine serum albumin (BSA) to eliminate non-specific adsorption of molecules and increase 

the assay selectivity. Afterwards, the cAbs are exposed to an Ag-containing sample solution, after 

which the formed cAb–Ag complexes are incubated with the dAbs. After formation of the 

sandwich complex, antigens are detected to labels present on the dAbs. Sometimes, instead of a 

single dAb, a primary Ab that is specific to the Ag is applied, followed by a secondary Ab that is 

linked to the detection label as shown in Figure 4.15 
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Figure 4: Distinct types of immunoassays: Direct detection, indirect detection and sandwich 

immunoassays.15 

 

Fully automated immunoassay systems represent the gold standard for in vitro diagnostics 

currently, but at the same time there are several drawbacks that limit their effectiveness in practical 

use. One drawback is the requirement of large sample volumes, which limits their clinical practical 

utility. For example, in disease diagnostics, it would be ideal to use a single sample of a patient’s 

serum for studying many different disease markers. But, this can pose problems when 100-200 µL 

of sample is required for each specific test. Another drawback is the time and cost required for 

each assay.15 Analysis can take up to several hours because analyte molecules must diffuse across 

long distances before they encounter antibodies on the solid phase. Consequently, these 
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instruments are only feasible in centralized facilities such as hospital reference laboratories, to 

which samples are transported after collection. Conventional immunoassays are time- and 

resource-consuming, particularly when extensive automation is not economically beneficial or 

when portability becomes a predominant requirement. Consequently, there has been a sustained 

effort in the past decade to develop reliable diagnostic tools while reducing the complexity and 

associated costs of such assays. With the growing cost of health care, there is a need for 

decentralized immunodiagnostic tools capable of providing fast, quantitative results in the clinic 

or at the bedside.17 The availability of such tools can enable early diagnosis, decrease hospital 

stays, and eliminate transportation and administrative expenses. The need for decentralized 

immunodiagnostics has prompted the development of portable assays, and many researchers 

addressed this challenge by miniaturizing immunoassays using microfluidics. However, to date, a 

very few number of microfluidic systems have achieved fast, parallel, and highly sensitive 

detection of biomedically relevant proteins using a single fully functional microfluidic chip.18 

1.4 Microfluidic Platforms 

Microfluidics is the science and engineering of manipulating and controlling the flow of fluids 

and particles at micron and submicron dimensions. Since its origins in the early 1990s, about when 

microscale analytical chemistry techniques were gaining popularity and microelectronic 

technology began to be recognized to fabricate the miniaturized chromatographic and capillary 

electrophoresis systems, microfluidics has grown tremendously fast and sustained by the promise 

to revolutionize the conventional laboratory handling, processing, and analytical 

techniques.19While there are many obvious potential applications for microfluidics to significantly 

reduce sample volumes and to carry out reaction, separation, and detection quickly and sensitively. 

The main driving force behind the rapid development of microfluidic systems has been its future 
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to be exploited for a wide range of biological applications such as high-throughput drug screening, 

single cell or molecule analysis and manipulation, drug delivery and advanced therapeutics, bio 

sensing, and point-of care diagnostics as shown in Figure 5.20 The bias in the development of 

microfluidic devices toward biological-related applications has arisen, due to the search for a cost 

effective tool that can be imposed as a first user to mitigate the risks and costs associated with the 

attempt to introduce any modern technology into the commercial market. The need for 

decentralized immunodiagnostics has been prompted the development of portable assays, and 

many researchers addressed this challenge by miniaturizing immunoassays using microfluidics. 

The most common microfluidic paradigm relies on networks of enclosed micron dimension 

channels. At these small scales, fluids exhibit laminar flow—i.e., fluidic streams flow parallel to 

each other and mixing occurs only by diffusion.21 Miniaturizing immunoassays using 

microfluidics offer at least three main advantages over conventional available  methods: (1) The 

smaller dimensions of microfluidics can often reduce the diffusion times, which result in faster 

analysis. (2) The small volume of samples used in microfluidics reduces the consumption of 

expensive reagents and valuable samples, and make it compatible with blood samples, eliminating 

the need for phlebotomist and lowering the cost per assay. (3) The fluid handling in microfluidic 

channels can be automated with simple, compact instrumentation, reducing the size and operating 

cost of test equipment. These advantages can potentially upgrade the clinical utility of automated 

immunoassays while making them more feasible in a decentralized near-patient setting.22 
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Figure 5: A microfluidic device for point of care diagnostics23 

 

However, from a physics point of view, there are several unique features of microfluidic 

systems, which can distinguish them from their macro-scale counterparts. For instance, the motion 

of liquid that we typically observe at the macro-scale, such as the flow of water in a river, is largely 

influenced by inertial forces. On the other hand, the physical fluid phenomena that can be observed 

in micro-meter to nano-meter scale conduits are different. In such a small scale, liquid transport is 

mostly governed by viscous forces rather than inertial forces.24 By taking advantage of this 

inherent effect, the precise control of 10-9 to 10-18 liters of liquid in fluidic channels can be 

performed via electro kinetic effects such as electro-osmosis and electrophoresis.25 For the 

fabrication of microfluidic devices, chemistry has been playing the leading role. Traditionally, 

silicon was the material used for the fabrication of microfluidic devices since micro-fabrication 

techniques were well established in the semiconductor industry. With advances in material 

chemistry, scientists today can prepare these devices on glass and polymer substrates using 

photolithography and soft lithography, respectively, with significantly less effort. Even paper-

based fluidic channels have been recently reported that can cost only a few pennies to develop.26 

Chemistry based advances have been essential not only for easier fabrication of the devices but 
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also for taking more reliable and sensitive quantitative measurements on them. Fluorescence 

measurement is the most standard one on microfluidic systems although other spectrophotometric 

techniques such as UV-Vis, FT-IR, and Raman spectroscopy have been also demonstrated on this 

platform. In addition, electrochemical (coulometry, amperometry voltammetry) and mass 

spectrometric analyses can be applied to microfluidic devices which makes it a very versatile 

analytical tool to work with.27 

1.5 Brief Summary of this dissertation 

This thesis is composed of four chapters that focus in two different microfluidic research 

areas: designing microfluidic devices with two layers, developing chip-based digital enzyme-

linked immunosorbent assays (ELISAs) and exploiting their applications for detection of 

ultrasensitive proteins. For performing a digital immunoassay on a microfluidic device, a sample 

must be transported in a microchannel by using a separate component such as a pump. While 

connecting an external pumping system to the device may be the simplest way for introducing 

solution into a channel. Sealing the microwells is an important parameter for obtaining a digital 

signal. 28Thus, it is usually desirable to fabricate a microarray and seal it efficiently, and Chapter 

2 describes the development of such microfluidic devices with microwell compartments and an 

instrument for sealing the microwells. The application of a microfluidic channel for an enzyme-

linked immunosorbent assay (ELISA) is another research area that we have focused on. An ELISA 

is one of the most standard laboratory techniques in bio-medical fields for the identification and 

quantitation of antigens or antibodies. While ELISAs are typically performed on a plastic 

microtiter plate (96 well plate), there are many advantages of carrying out the assays on the 

microfluidic platform. As an example, using an electric field, it is possible to transport analyte 

molecules to a specific area within a microfluidic channel and increase the analyte concentration 
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at the location.28 We also designed and demonstrated an automated sealing instrument which 

involved a actuator with stroke length of 25mm, for sealing the femtoliter microcompartments for 

the digital detection of multiple biomarkers without cross contamination between the microwell 

compartments. Multiplexed digital ELISAs were also performed on our developed microfluidic 

devices. Chapter 3 presents the adaptation of the microfluidic digital assay for sensitive 

glycoprofiling of cancer biomarkers based on aptamer lectin sandwich assays. This involved the 

detection of various PSA glycosylation sites with different biotinylated lectins that are specific to 

the glycans. Finally, in Chapter 4 future work was discussed which involved the basic design of a 

microfluidic device and different methods for capturing single cells. 
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Chapter 2 

Multiplexed Microfluidic Digital ELISA for Detection of Biomarkers using an Automated 

Sealing system 

2.1 Introduction 

2.1a. Digital ELISA concept 

Development of bioassays with high sensitivity has gained a significant importance. 

Various efforts have been made based on different signal amplification techniques for improving 

the sensitivity of bioassays. 1 A digital assay set up requires a high-density array of small containers 

to ensure that enough wells are occupied at low concentration. In comparison to conventional 

bioassays that are frequently performed in a single reactor (tubes, microtiter plates, etc.), the 

reaction solution is partitioned into many microreactors in digital bioassays, allowing most 

compartments to be filled with either 0 or 1 target molecule.2 The operation of digital bioassays 

involves partitioning reaction solutions into micrometer-sized compartments. Instead of 

quantifying the absolute intensity of ensemble signals from tubes or microtiter plates, in digital 

bioassays, only the fraction of microcompartments showing positive signals is counted. Because 

of the unique binary property of the system, it is called the “digital” bioassay.3 Isolating single 

molecules into small volume containers has several advantages, including higher resolution and 

sensitivity, low sample and reagent volume requirements, low cost, and shorter analysis times. An 

additional advantage of using small containers is the ability to confine individual molecules for 

single-molecule studies. 

The traditional analog readout systems require a huge volume of the analyte molecules that 

could dilute reaction product, which would need millions of enzyme labels to generate the required 

signals that are easily detectable utilizing conventional plate readers. Sensitivity is therefore 

limited to the picomolar (pg/mL) range and above.4 Whereas, single molecule measurements are 
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digital in which each molecule amplifies a signal that can be counted as shown in Figure 6. It is 

much easier to measure the presence or absence of signal than to detect the absolute whole amount 

of signal. For example, early stage detection of many types of cancer is associated with improved 

patient outcomes, but the serum concentration of proteins that reliably indicate the presence of 

disease is expected to be picomolar (10-12 M) or lower.2 Most immunoassays, the traditional 

detection method for disease-associated proteins, cannot measure such low concentrations. Digital 

immunoassays utilizing single-molecule detection approaches have pushed the theoretical limit of 

detection down by several orders of magnitude into the attomolar (10-18 M) range. 

 

Figure 6: Concept of the digital bioassay. A schematic comparison between analog measurement 

and digital counting is shown. In digital bioassays (bottom part), the bulk reaction solution is 

partitioned into extremely small compartments to rapidly concentrate the reaction product. In 

conventional tube-based assays (top part), the reaction product diffuses very quickly, making a 

highly diluted product difficult to detect.3 

 

Because some of the biomolecules like proteins cannot be amplified like DNA, detecting 

a single molecule per microcompartment is more challenging. This problem has been addressed 

by the development of digital ELISA. The type of ELISA used in the digital bioassay is usually 

sandwich enabling the target analyte to be sandwiched between the two antibodies. The sensitivity 
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achieved by digital ELISA in some cases is in good agreement with theoretical sensitivity derived 

from parameters such as concentration, time, and affinity, making it possible to approach the 

theoretical limit of detection via an appropriate experimental setup.5 There are diverse ways in 

performing a digital ELISA, once such type is Single Molecule Array technology (Simoa). Simoa 

employs a bead suspension to carry out the entire binding and labeling process. The first step of 

digital ELISA is binding the target analyte onto beads conjugated to capture antibodies. Beads and 

the target analyte are mixed together so that the quantity of beads is more than the analyte 

molecules. The beads are then loaded on to the wells and further sealed and the wells containing 

beads that carry an enzyme molecule begin to build up fluorescent product as shown in Figure 7.6 

 

Figure 7: Digital ELISA. (a) A sample containing a target analyte is incubated with beads coated 

with capture antibodies. The beads are then consecutively incubated with biotinylated detection 

antibodies and SβG to form a single-enzyme–labeled immunocomplex on the bead. (b) The beads 

are resuspended in RGP and loaded onto a microwell array such that only one bead fits into each 

well. The array is then sealed with oil, and wells containing beads that carry an enzyme molecule 

begin to build up fluorescent product. Fluorescent images of the array are obtained to locate the 

beads inside the wells and to identify beads labeled with enzyme.6 

 



17 
 

2.1b. Digital Determination of Protein concentration with Poisson Distribution 

A digital bioassay is composed of several identical and independent reactions, with each 

showing either a positive or a negative signal (i.e., exactly two possible outcomes), satisfying the 

prerequisites of Bernoulli trials (or binomial trials); therefore, the digital bioassay should be 

modeled using Poisson distribution.7 At low ratios of enzyme to microwells, when there are a 

statistically significant number of beads with no enzymes, by measuring the fraction of active wells 

in a population it is possible to determine the bulk analyte concentration because the binding 

probability of a population of analyte molecules to a population of microwells is defined by the 

Poisson distribution. The Poisson distribution (eq.1) describes the likelihood of a number of events 

occurring if the average number of events is known. If the expected average number of occurrences 

is λ, then the probability that there are exactly k occurrences (k being a non-negative integer, k = 

0, 1, 2, 3,…) is equal to 

𝑃 (𝑋 = 𝑘) = 𝑒−𝜆 𝜆𝑘

𝑘!
..........................................(eq.1) 

At very low ratios of labeled analyte to microwells (less than about 0.1 enzyme labels per well), 

most wells have either zero or one labeled analyte molecule and the percentage of active wells 

increases approximately linearly with increasing analyte concentration. As the fraction of active 

wells becomes larger (> 0.1), Poisson statistics show that there are a considerable number of wells 

with multiple enzyme molecules as shown in Table 1. If the fraction of active wells is plotted 

against concentration, linearity is lost at high target concentrations because active wells that have 

multiple enzyme molecules bound contribute the same ‘digital’ signal as an active well that has 

one enzyme bound.  
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Table 1: Examples of probability calculation by Poisson Distribution.3 

 

In digital ELISA, λ is equal to the ratio of bound labeled proteins to the number of 

microwells, and k is the number of enzyme-labeled proteins carried by each sub-population of 

microwells (i.e., 0, 1, 2, 3, etc.). The aim of the digital assay experiment is to determine λ which 

is equal to average molecule per microwell and use it as the quantitative parameter to determine 

protein concentration. In the digital mode of analysis where microwells are identified as being 

either “on” or “off”, then k = 1, 2, 3 are indistinguishable and characterized as “on” beads. The 

probability for positive and negative wells is equal to 1.8  

P positive + P negative = 1………………………………………. (eq. 2) 

P positive = 1 – P negative where P negative means P (0) fraction of off wells. 

Due to this broad distribution, only occurrences of k = 0 can by determined as the fraction 

of “off” wells (Pλ(0)). Using eq.1 to determine Pλ(0), and the fact that the fraction of “on” wells is 

equal to one minus the fraction of “off” wells, it is possible to determine λ from fon (the fraction of 

“on” beads or % active) from (eq.4). 

P positive = 1 – Pλ (k=0) 

From eq.1 Pλ (k=0) = e-λ 
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P positive = 1 – e-λ 

e-λ = 1- P positive….. (eq.3) 

By applying logarithm (ln) on both sides of (eq.3) 

λ = -ln (1- P positive) or λ = -ln (1- fon) …………………………….. (eq.4) 

 

2.1c. Importance of Sealing 

High-density arrays of compartments fL - nL volume offer an excellent platform for 

performing parallel biochemical measurements to obtain statistically meaningful results for single-

molecule reactivity and cellular heterogeneity in a population sealing the containers is very 

important to achieve digital readout as it is critical to prevent evaporation, eliminate diffusion of 

the contents into bulk solution, and reduce transfer of product between containers.9 For example, 

If the captured molecule is an enzyme that acts on a fluorogenic substrate that is also in solution, 

enzyme activity will result in a fluorescent product that will reach a high concentration within 

sealed containers Whereas, containers in which no enzyme is present will maintain background 

levels of fluorescence intensity a shown in Figure 8.10 Instead of relying on the total amount of 

fluorescent product formed as is the case for bulk measurements, this approach has a digital 

readout, with the percentage of positive containers. Therefore, sealing is the main step for digital 

measurement of single molecules. The challenges for effective sealing of the compartments on a 

microarray platform is to prevent solvent evaporation, diffusion of reagents into bulk solution, and 

more importantly cross-communication between individual reactions. This is where my project 

comes in to develop an effective sealing method for detection of single molecule reactions where 

we developed an automated sealing system for closing the microwells which is discussed in 

experimental section. 



20 
 

 

Figure 8: Sealing plays a vital role in obtaining digital signal. By pressing a small area of the 

PDMS sheet with a glass needle, successive opening/closing rounds could be performed, allowing 

the exchange of the content of each chamber.10 

 

2.1d. Different Biomarkers 

a) CEA Protein 

 

Carcino Embryonic Antigen (CEA) is a heavily glycosylated cell-surface glycoprotein and 

one of a large family of immunoglobulins. Almost, thirty-six different glycoproteins have been 

identified in the CEA family, and they are derived from eight genes localized on chromosome 19 

in two clusters. CEA is a non-mucinous, 180kDa glycoprotein secreted by the epithelial cells of 

the digestive tract in the normal fetus and in adult cancers.11 A carcinoembryonic antigen (CEA) 

test is a blood test used to help diagnose and manage certain types of cancers, especially cancers 

of the large intestine and rectum.12 

b) EGFR 

The Epidermal Growth Factor Receptor (EGFR) subfamily of receptor tyrosine kinases 

comprise four members: EGFR (also known as HER-1, ErbB1, or ErbB), ErbB2 (Neu, HER-2), 
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ErbB3 (HER-3), and ErbB4 (HER-4). EGFR signaling regulates multiple biological functions 

including cell proliferation, differentiation, motility, and apoptosis.13 All EGFR family members 

are transmembrane glycoproteins with an extracellular ligand binding domain and a cytoplasmic 

domain containing a membrane-proximal tyrosine kinase domain followed by multiple tyrosine 

autophosphorylation sites with a molecular weight of 95kDa.14  

c) CA-125 

The Cancer Antigen (CA125) antigen, also called as MUC16, is a mucin protein that is 

found in type I transmembrane or present in secreted forms that are used monitor the progress of 

epithelial ovarian cancer therapy.15 Expression of isoforms, proteolytic cleavage, and heavy N- 

and O- linked glycosylation produce forms of human CA125 that can vary from 200-5000 kDa in 

size. It inhibits natural killer NK cell activity, which is thought to contribute to immune evasion in 

peritoneal cancer and pregnancy.16 

d) IL-6 

IL-6 (Interleukin-6) is a cytokine with molecular weight of 21kDa, that acts in the acute 

phase reaction, inflammation, hematopoiesis, bone metabolism, and cancer progression.17 It 

contributes to chronic inflammation in obesity, insulin resistance, inflammatory bowel disease, 

arthritis, sepsis, and atherosclerosis. In addition, the increased IL-6 serum levels were known to 

be associated with metastasis and poor prognosis mainly in prostate, ovarian and gastrointestinal 

cancers.18  

e) IL-8 

Interleukin- 8 (IL-8) is an 8.4 kDa protein belonging to the chemokines family that is well 

characterized by two important cysteine residues, and also separated by a third amino acid in 

between. 19There are two major forms of IL-8, one is the 72-amino acid monocyte-derived form, 
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which is very predominant in cultures of monocytes and macrophages, and the other is the 

endothelial form, which has five extra N-terminal amino acids, and predominant in cultures of 

tissue cells such as endothelial cells and fibroblasts.18  

2.2 Experimental 

2.2.1 Chemicals and Reagents 

The following reagents were used as received: 1 phosphate buffered saline solution 1 PBS 

(> 98.5, Mediatech, Inc.), Superblock T20 blocking buffer (PBST) (Thermo Scientific), 

fluorescein di B D galactopyranoside (FDG) (Invitrogen), Streptavidin Beta galactosidase 

conjugate (SBG) (Invitrogen), 2- propanol (IPA) (> 99.5%; Sigma Aldrich), ethanol (100% Decon 

laboratories Inc.), carcino embryonic antigen, human EGFR Duoset ELISA kit ( R&D Systems), 

human CEACAM-5 Duoset ELISA kit ( R&D Systems), human CA-125 Duoset ELISA kit ( R&D 

Systems), Human IL-6 Duoset ELISA kit ( R&D Systems), human IL-8 Duoset ELISA kit ( R&D 

Systems), 2mM MgCl2 (Fluka Analytical), bovine serum albumin (BSA) (Sigma Aldrich), 3 

glycidyloxy propyl trimethoxy silane (GPS) ( Sigma Aldrich), anhydrous toluene ( >99.8%;Alfa 

Aesar), N,N,N’,N’- tetramethylethylenediamine (TEA) (Sigma Aldrich),  SU-8 2010 

(Microchem), biotinylated BSA ( Thermofisher) 

2.2.2 Micro Fabrication and device assembly 

The microfluidic fabrication was performed to prepare the SU-8 molds on silicon wafers 

using a multi-layer soft lithography approach because there are two layers that were aligned 

together as shown in Figure 9. The Si mold for the pneumatic layer was fabricated using SU-8 

2025 (Micro Chem) with a final thickness of ~ 30 µm, following the recommended procedure by 

the manufacturer. The mold for the fluidic layer was fabricated by the two-step lithography. 

Briefly, the 25 µm thick channel features with a reaction volume of 0.1 µL was first patterned with 
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SU-8 2025 photoresist following the same procedure as above. The micropost array was patterned 

on top of the first layer by spin-coating SU-8 2010 at 4500 rpm for 60 s. The wafer was first 

prebaked at 65◦C for 2 min and at 95◦C for 4 min, and exposed for 10 s for total exposure energy 

of 110 mJ cm-2. The wafer was then post-baked at 65◦C for 1 min and at 95◦C for 4 min, followed 

by a 2 min development and hard-baking at 200 ◦C for 2h. Before making PDMS chips, all Si 

molds were treated with trimethylchlorosilane by gas phase silanization under vacuum for 

overnight.20 

 

Figure 9: Schematic representation of the design and assembly of a double layer microfluidic 

device. The two-layer microfluidic device integrates three parallel units each containing two 

channels with microarray compartments with top layer as pneumatic control and bottom layer as 

fluidic control. 

 

The silicon wafers were used as molds for making PDMS devices. For the pneumatic layer, 

PDMS (Dow Corning, USA) mixture at a 8 (base material): 1 (curing agent) ratio was mixed 

thoroughly, degassed in vacuum chamber, then poured on to the mold and cured in the oven at 

70◦C for 40 min. The cured PDMS slab was then peeled off from the mold and cut into rectangular 
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pieces. Access holes were punched in the PDMS replica of the pneumatic layer for pneumatic 

connections. Meanwhile, 5 g PDMS mixed at a ratio of 20:1 was spin coated over the mold at 300 

rpm for 30 s twice and cured on a 70◦C hotplate for 30 min to make the fluidic membrane layer. 

The pneumatic layer was then manually aligned with the aligner as shown in Figure 10 under a 

stereomicroscope and permanently bonded with the bottom fluidic layer by baking in the 70◦C 

oven overnight. The assembly was then removed from the mold and the holes were punched for 

fluid access. 

 

Figure 10: Aligner for pneumatic and flow channel alignment from our research lab. 

 

2.2.3 Surface patterning  

The glass substrates were patterned with 3- glycidyloxy propyl trimethoxy silane (GOPS) 

through silanization to enhance the surface adsorption of capture antibody within the area of the 

assay detection chamber. Before this step the glass slides (76.2 mm × 25.4 mm, Fisher Scientific) 

were first cleaned with freshly prepared piranha solution (3:1 mixture of concentrated H2SO4 with 

H2O2) for 15 min or overnight, rinsed twice thoroughly with deionized water, and dehydrated by 

baking on a 95◦C hotplate for 30 min. Hot piranha is extremely dangerous and should be handled 

with appropriate personal protection in a fume hood free of organic chemicals. The specific area 
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of the glass was then patterned by 2% GOPS in anhydrous toluene with 0.2% TEA by shaking for 

1 h. To remove the adsorbed excessive silane the glass slides were washed twice with toluene and 

isopropanol. GOPS patterned glass slides were then cured at 80◦C for 2h to cross link the 

monolayer.21The epoxy silane has been shown to form a dense homogenous and complete 

monolayer when compared with other silanes. The epoxide ring which is the terminal group of 

GOPS reacts with nucleophilic reagents like amines to form a neutral oxygen-hydrogen bond. The 

interaction between the nonbonded electron pair on the nitrogen of amine group and the carbon 

atom of the epoxy ring lead to the sequential processes of ring opening, electron rearrangement, 

and then formation of a neutral oxygen hydrogen bond as shown in the Figure 11. The neutral 

oxygen hydrogen bond further reacts covalently with the amino terminus of the capture antibodies. 

PDMS device was cleaned with ethanol and isopropanol. The GOPS patterned glass slide and 

PDMS device were with UV Ozone (UVO-Cleaner1 42, Jelight Company Inc.) for 5 min. The 

cleaned PDMS assembly was aligned and reversibly bonded with the APTES patterned glass 

resulting in permanent bonding between glass and PDMS making the device ready for experiment. 
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Figure 11: Schematic of the GOPS structure and its interaction with the silanol groups on glass. 

The epoxide ring which is the terminal group of GOPS reacts with nucleophilic reagents like 

amines to form a neutral oxygen-hydrogen bond. 

2.2.4 Microfluidic Pumping  

A crucial factor in solid-phase immunoassay was effective affinity capture of protein 

targets. Using our device, we could easily program on-chip pumping to control the sequential 

fluidic delivery of the antibodies and antigens for the sandwich immunoassay. Moreover, the 

integrated pneumatic pumps and valves allowed us to monitor and control the flow delivery and 

mass transport actively.21 Here a five-step stop-flow pumping method that we developed in our 

lab by other lab colleagues was adapted with a very slight modification and the on-chip pump was 

operated at 0.45Hz with four consecutive valve actuation steps set to 0.5 s each and a pulse step 

of 2 s. The flow rate was controlled by adjusting the closing pressure while simultaneously holding 

the opening vacuum at −80 kPa for valve actuation. The optimal volumetric flow rate was 

determined to be ~0.4 μL/min generated at 50 kPa closing pressure, which was in concordance 

with the previous study of our lab colleagues with the geometries factored in and the flow rate 

range predicted by numerical simulation.20 In addition to controlling flow delivery, the valves were 



27 
 

aligned on the top of each assay chamber were actuated briefly to generate convective mixing to 

facilitate affinity binding. The microwell chambers were used as reaction chamber as well. 

2.2.5 Sealing Manifold 

a) Manual 

The manual sealing manifold was used initially to press down the pneumatic channel under 

pressure as shown in the Figure. But the results were not as expected and there was leakage 

between the channels. So intense work was put to develop an automated sealing instrument as 

shown in the Figure 12. 

 

Figure 12: Side view and top view of the manual sealing manifold. There is a sliding place for 

placing the glass slide with PDMS device and then the screws were pushed down manually. 

 

b) Automated Sealing Instrument 

The automated sealing instrument was designed to facilitate the pressing of microwells 

for achieving the successful digital signal. Actuator was used with a stroke length of about 25mm 

so that it is portable to place on the microscope stage so that it would be easier to carry the signal 

amplification step under fluorescence microscope as shown in Figure 13. 
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Figure 13: Schematic illustration of automated sealing instrument which included a conex actuator 

with 25mm travel distance for digitalizing multiple biomarkers in micro compartments. 

 

2.2.6 Photobleaching experiment 

To test the sealing performance 100 µM fluorescein was passed through the channels and 

allowed to bleach at different time intervals by turning the laser on. The time interval was 20 min 

and the images were taken every 20 min up to 80 min to see if there was any diffusion between 

the burnt spot and the surrounding area. 

2.2.7 Free enzyme Assay 

For the free enzyme assay, SβG of various concentrations (1 – 100ng/ml) and FDG 500 

µM were mixed as shown in Figure 14 and filled in the chip by on-chip pumping and the assay 

chambers were pushed down with a 55 kPa pressure applied to the pneumatic channel immediately. 
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The microscope was adjusted to focus on the microwells and the fluorescence images were taken 

15 min after the closure of the chamber with an exposure time of 5000 ms. 

 

Figure 14: Schematic representation of free enzyme solution SβG and FDG. SβG of various 

concentrations (1 – 100ng/ml) and FDG 500 µM were mixed. 

 

2.2.8 Testing the sealing efficiency with single layer device with pressor 

For testing the sealing efficiency and effectively have more pressure in the detection area 

another PDMS pressor was added during the fabrication of the PDMS devices. The pressor was 

aligned manually in the detection area to have more pressure on the microwells. The Si mold was 

spin coated with PDMS mixture. The single layer device was prepared same as pneumatic layer as 

mentioned above, pressor and PDMS device were aligned together as one piece. The PDMS piece 

with pressor was reversibly bonded on to the glass slide as shown in the Figure 15. 
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Figure 15: Schematic representation of the fabrication of single layer device with pressor which is 

used for testing the sealing efficiency and effectively have more pressure in the detection area 

another PDMS pressor was added during the fabrication of the PDMS devices. 

 

2.2.9 CEA Assay 

The workflow of sandwich ELISA was shown in Figure 16. First, 8μg/mL capture antibody 

was pumped through the chip, incubated for overnight and then washed with PBS. The channels 

were then blocked with 5% BSA for 30min and washed with PBS Various concentrations of CEA 

protein (0 -1ng/mL) in PBS were added and incubated for 1h and then washed with PBS. Then 0.2 

μg/ mL detection antibody was pumped through the chip and incubated for 1h, then washed with 

PBS. 0.1 μg/mL SβG in PBSW was added and incubated for 20 min and then washed with PBS. 

0.5 mM FDG was added as the final step and incubated for various time intervals. The channels 

were pressed down with the actuator.  The signal was measured under fluorescent microscope, 

with 470nm wavelength and exposure time is 8000ms. 
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Figure 16: Scheme for a sandwich ELISA. A capture antibody specific to a target analyte is 

adsorbed onto a microtiter plate. A sample containing the target analyte is incubated with the 

adsorbed capture antibodies, which results in binding of the target analyte. The enzyme turns over 

a substrate that generates a detectable signal, such as a fluorescent or chemiluminescent product. 

The intensity of signal increase is related to the amount of target analyte that is bound.6 

 

2.2.10 Capture Efficiency comparison with and without PDMS membrane on glass slide 

To enhance the capture efficiency with the automated sealing instrument a different 

fabrication method with PDMS membrane was developed as shown in the Figure 17. The protocol 

involved in bonding the PDMS membrane to the glass slide before patterning the glass slides with 

GOPS. The desired size of PDMS membrane was cut and the cover on one side was removed, 

treated with UV and then bonded to the glass slide which was later cured in 70◦C for overnight. 

Then the glass slides along the PDMS membrane were coated with GOPS as mentioned above. 

PDMS device was treated with UV and then bonded onto the PDMS membrane glass slide. Then 

the CEA assay was performed on this set up.  
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Figure 17: Schematic workflow of the fabrication steps of glass slides with PDMS membrane. To 

enhance the capture efficiency with the automated sealing instrument a different fabrication 

method with PDMS membrane was developed. 

 

2.2.11 EGFR assay 

The glass slides were immobilized with GOPS as mentioned in the surface patterning section 

and then the PDMS device was bonded permanently on the patterned glass slides. First, 1 μg/mL 

capture antibody was pumped through the chip, incubated for overnight and then washed with 

PBS. The channels were then blocked with 5% BSA for 1h and washed with PBST. Various 

concentrations of EGFR protein (0 -200 pg/mL) in PBS were added and incubated for 2h and then 

washed with PBST. Then 0.36 μg/ mL detection antibody was pumped through the chip and 

incubated for 2h, then washed with PBST. 0.2 μg/mL SβG in PBSW was added and incubated for 

20 min and then washed with PBS. 500 µM FDG was added as the final step and incubated for 

various time intervals and the optimized time was 20 min. The channels were pressed down with 

the actuator.  The signal was measured under fluorescent microscope, with 470nm wavelength and 

exposure time is 8000ms. 
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2.2.12 Digital ELISA for different biomarkers 

 

The glass slides and PDMS device preparation were same as mentioned under section 2.2.9. 

Different biomarkers like CA-125, CEACAM-5, IL-6 and IL-8 were tested on our developed 

digital ELISA platforms. For the CA-125 assay, 1 μg/mL capture antibody, various concentrations 

of CA-125 protein (0 -3 pg/mL) in PBS, 0.36 μg/ mL detection antibody, 0.2 μg/mL SβG in PBSW 

and 500 µM FDG were used. For the CEACAM-5 assay, 4 μg/mL capture antibody, various 

concentrations of CEACAM-5 protein (0 -2 pg/mL) in PBS, 0.05 μg/ mL detection antibody, 0.2 

μg/mL SβG in PBSW and 500 µM FDG were used. For the IL-6 assay, 4 μg/mL capture antibody, 

various concentrations of IL-6 protein (0 -6 pg/mL) in PBS, 0.05 μg/ mL detection antibody, 0.2 

μg/mL SβG in PBSW and 500 µM FDG were used. For the IL-8 assay, 4 μg/mL capture antibody, 

various concentrations of IL-8 protein (0 -2 pg/mL) in PBS, 0.02 μg/ mL detection antibody, 0.02 

μg/mL SβG in PBSW and 500 µM FDG were used. For all the above assays the channels were 

pressed down with the actuator.  The signal was measured under fluorescent microscope, with 

470nm wavelength and exposure time is 8000ms. 

2.2.13 Multiplexed ELISA 

As the above biomarker assays were successful the next step was to put all these 

biomarkers into one device by performing the detection of multiple analytes at the same time. To 

achieve the multiplexed ELISA, we designed a patterning device for immobilization of capture 

antibodies of different biomarkers.  

a) Patterning Device for immobilization of capture antibodies 

The Si wafer was patterned with photolithography process with five different channels for 

immobilizing five different antibodies as shown in the Figure 18. The PDMS device was fabricated 

same as pneumatic as discussed above with 8:1 ratio of PDMS mixture and later curing for 2 h at 
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70◦C. The patterning device was then bonded temporarily by treating with UV Ozone for 2 min 

and placed reversibly on the glass slide. There was no cross talking between the channels as shown 

in the Figure which was tested with different food color solutions. The concentrations of the 

capture antibodies were same as used above in the ELISA protocols. Three different biomarkers 

were immobilized in alternate channels having two channels for EGFR and IL-6 and one channel 

in the center for CA-125. Two other inlets were used for fluorescent BSA which would help in 

dividing the channels in five parts later in the detection chip. The patterning device after loading 

the capture antibodies was placed in the 4◦C refrigerator overnight. Then the channels were washed 

with PBST thoroughly and the device was carefully peeled off. The glass slide was washed with 

deionized water and dried under N2 gas. Now the detection chip was bonded onto the above treated 

glass slide as shown in Figure 19.  

 

Figure 18: Schematic of patterning device for patterning different capture antibodies; a) three-

dimensional representation of the patterning device on glass slide; b) two-dimensional 

representation of five different channels where first channel and last channel were used for EGFR 

represented in green color, second and fourth channel for IL-8 represented in orange color, and the 

third channel for CA-125 represented in red color. The two-thin channel at the extreme were used 
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for fluorescent BSA represented in blue color; c) Real image of the patterning device on glass slide 

with different food color dye solutions. 

 

Figure 19: Typical fluorescence images of three different cases where the fluorescence resulted 

from fluorescent BSA a) after patterning the capture antibodies, b) after peeling the patterning 

device, c) after bonding the detection device. 

 

b) Specificity test 

As we were running the multiplexed ELISA on one device we were concerned about the 

cross interactions between the channels. The specificity test was used to confirm that there were 

no interferences between different channels as shown in Table 2. This was carried out by using 

each inlet in the device for each biomarker that means first channel for CA-125, second for IL-6 

and third for EGFR. Optimized ELISA protocol was performed through these channels but while 

introducing the target antigen only the specific antigen could pass through the channels. So, in the 

first channel only CA-125 antigen was used, in the second channel IL-6 antigen and in the third 

channel EGFR antigen. In that way only, the antibody that was specific to the target antigen was 

interacted but not with other target antigens.  

 

 

 

0.2 mm 0.2 mm 0.2 mm 
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Table 2: Specificity test with three biomarkers CA-125, IL-8, EGFR. This was carried out by 

using each inlet in the device for each biomarker that means first channel for CA-125, second for 

IL-6 and third for EGFR.  

 

2.2.14 ELISA protocol 

As the above biomarker assays were successful the next step was to put all these 

biomarkers into one device by performing the detection of multiple analytes at the same time. To 

achieve the multiplexed ELISA, we designed a patterning device for immobilization of capture 

antibodies of different biomarkers as discussed above. The workflow of the multiplexed ELISA 

was shown in the Figure 20.  
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Figure 20: Schematic workflow of multiplexed digital ELISA. After the immobilization of capture 

Abs, the target antigens and detection Abs were added. Then SβG and FDG were added in the last 

step and the channels were pushed down. 

 

Once the detection device was ready for the further ELISA steps. The channels were 

blocked with 1% BSA for 1h. Then the channels were washed with PBST. The target antigens 

with specific concentrations were prepared as a mixture, pumped through the channels and 

incubated for 1.5h. The channels were washed with PBST. Now the detection antibodies mixture 

was prepared with specific concentrations, pumped through the channels and incubated for 1.5h. 

0.2 μg/mL SβG in PBSW was added and incubated for 20 min and then washed with PBS. 500 

µM FDG was added as the final step and incubated for various time intervals and the optimized 

time was 20 min. The channels were pressed down with the actuator.  The signal was measured 

under fluorescent microscope, with 470nm wavelength and exposure time is 8000ms. 
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2.3 Results and Discussion 

2.3.1 Photobleaching Experiment 

Photobleaching experiment was performed with 100µM fluorescein to see the sealing 

performance and if there is any diffusion between the bleached area and   unbleached area. There 

are specific conditions that may affect the re-radiation of light by an excited fluorophore, and thus 

reduce the intensity of fluorescence. This reduction of emission intensity is generally 

called fading or photobleaching. As shown in the Figure 21 the images were taken with a 20-min 

time interval up to 80 min. The images clearly depicted that there was no diffusion between the 

bleached and unbleached area and the sealing performance with the automated instrument was 

successful. 

 

Figure 21: Photobleaching experiment was performed and the typical fluorescence images were 

taken at different time intervals starting from 0 min to 80 min respectively.   
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2.3.2 Free Enzyme Assay 

For testing performance of the microwell-assisted microfluidic chemifluorescence 

detection, a free enzyme assay was implemented to detect the beta galactosidase. A typical 

fluorescence image was presented in the Figure 22 for various concentrations of 0 and 100 ng/mL 

respectively, showing the successful detection of beta galactosidase. Fluorescence intensity across 

an array of wells were measured for a serial 10-fold dilution of beta galactosidase, which showed 

constant fluorescence intensity across the microwells as shown in the Figure. It was also observed 

that the signal levels in the microwells increased with the target concentration. With the successful 

results of free enzyme assay we further proceeded to CEA assay. 

 

Figure 22: For testing the performance of the microwell-assisted microfluidic chemifluorescence 

detection various concentrations of SBG and FDG were mixed and allowed to pass through the 

channels. 
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2.3.3 Digital Counting of positive well with Image J 

First the images were captured with fluorescence inverted microscope and saved in tiff 

format. Then the images were opened with Image J software and converted into 32-bit format by 

clicking image tab on Image J. Then the background was subtracted by choosing subtract 

background under process tab. The background was corrected with image calculator under edit 

process tab, by using the background mage which was the plain glass slide image taken under the 

same conditions. Then the image was inverted by choosing edit tab and the threshold was adjusted 

by choosing image tab as shown in the Figure 23. Then the image was processed by clicking the 

process tab and clicking the binary tab, mask was created by selecting the fill in the holes. Later 

the image was analyzed by choosing the analyze particles under measure tab and clicking the add 

to manager command. In that way, the positive wells were selected and were counted as number. 

Based on the total number of wells per image and positive wells the percentage of wells was 

calculated for each concentration in each experiment. 
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Figure 23: Steps followed for digital counting by using Image J software. 

 

2.3.4 CEA Assay 

CEA assay was performed as mentioned in the above protocol and various concentrations 

of target antigen were used in the assay starting from 0 – 1 ng/mL. The fluorescence images 

acquired for different concentration standards such as control, 0.01, 0.1, 1 pg/mL were displayed 

in Figure 24, which showed a very low background level for the blank control. The percentage of 

positive microwells were plotted as a logarithmic function of CEA concentration. The percentage 

of positive microwells showed a linear increase along with the CEA concentration. The 

quantitative detection of CEA was achieved over a dynamic range of 10 fg/mL which had 4.55% 

of positive wells to 1 ng/mL with 55% of positive microwells. From this experiment we could not 
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achieve better digital detection due to the microcompartment sealing issues and also the capture 

efficiency was not that good. 

 

 

Figure 24: Microfluidic ELISA for CEA protein. Typical fluorescence images (false color) 

showing a very low background level for the blank control and increased number of positive wells 

with the CEA concentration. Quantitative detection of CEA was achieved over a dynamic range 

of 10 fg/mL to 1ng/mL. Error bars are standard deviations of three replicate experiments. 

 

2.3.5 Capture Efficiency comparison with and without PDMS membrane on glass slide 

To enhance the capture efficiency and better sealing performance with the automated 

sealing instrument a different fabrication method with PDMS membrane was developed as shown 

in the Figure. CEA assay was performed on this modified device as mentioned in the above 

protocol and various concentrations of target antigen were used in the assay starting from 0 – 

1ng/mL as shown in the Figure 25. Using the optimized conditions, we calibrated the microfluidic 

ELISA combined with the microwell assisted chemifluorescence detection for quantitative 

detection of CEA protein. The fluorescence images acquired for different concentration standards 

were displayed in Figure, which showed a very low background level for the blank control and the 
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percentage of positive microwells increased along with the CEA concentration. The capture 

efficiency did not improve as expected when compared to previous assay with 9.46% positive 

wells for 10 fg/mL and 73% positive wells for 1 ng/mL. The interaction between glass- PDMS 

was much better when compared to PDMS - PDMS as shown in the Figure 26. 

 

 

 

Figure 25: Microfluidic ELISA for CEA protein on modified device set up. Typical fluorescence 

images (false color) showing a very low background level for the blank control and increased 

number of positive wells with the CEA concentration. Quantitative detection of CEA was achieved 

over a dynamic range of 10 fg/mL to 1ng/mL. Error bars are standard deviations of three replicate 

experiments. 
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Figure 26: Comparison between two different devices set up that is with PDMS membrane on 

glass slide and without PDMS membrane. The interaction between glass -PDMS was much better 

when compared to PDMS- PDMS. 

 

2.3.6 EGFR Assay 

EGFR assay was performed as mentioned in the above protocol and various concentrations 

of target antigen were used in the assay starting from 0 – 200pg/mL. The fluorescence images 

acquired for different concentration standards 0.002 pg/mL and 0.2 pg/mL were displayed in 

Figure 27, which showed a very low background level for the blank control and the percentage of 

positive microwells increased along with the EGFR concentration. The percentage of positive 

microwells were plotted as a logarithmic function of EGFR concentration. 
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0.002 pg/mL                                                  0.2 pg/mL 

 

      

 

Figure 27: EGFR assay was performed with various concentrations of target antigen from 0 – 

200pg/mL. Here we showed typical fluorescence images for 0.002 pg/mL and 0.2 pg/mL. 

 

The percentage of positive microwells increased with that of the EGFR concentration. As 

shown in the Figure 28 we clearly experienced a linear increase in the percentage of positive wells 

within the concentration range of 0, 0.002, 0.02, 0.2, 2 pg/mL with 0.55%, 0.85%,1.48%, 2.87%, 

12.7% respectively. We also compared the log – log calibration plot with % active wells and 

concentration of EGFR which showed a semi linear increase as shown in Figure 29 and 30. As 

shown in the Figure 31 we saw a straight increase after the assay reached a saturation point. The 

working concentration range for digital assay was between 0 – 2 pg/mL with R2 = 0.9923 whereas 

from 20 pg/mL the assay slightly deviated from the linear increase to saturation phase where it 

was no more a digital signal as most of the wells were having fluorescent signal. The assay 

performance was much better when compared with CEA assay by resulting in low background 

and high detection limit of 1.05 fg/mL.  

The λ value which is the average number of molecules per well was calculated using (eq.4) 

for each concentration based on the positive wells as shown in Table 3. The Table clearly showed 

100 µm 100 µm 
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that the λ increased with the increase in positive wells which increased along with the 

concentration of EGFR. 

 

Figure 28: Quantitative detection of EGFR was achieved over a dynamic range of 2 fg/mL to 2 

pg/mL with R2 = 0.9923 with a detection limit LOD of 1.05 fg/mL calculated from the value of 

blank signal plus three standard deviations. Error bars are standard deviations of three replicate 

experiments. 
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Figure 29: Comparison with log % active wells with log concentration of EGFR range 0.002-20 

pg/mL with a detection limit LOD of 1.05 fg/mL calculated from the value of blank signal plus 

three standard deviations. Error bars are standard deviations of three replicate experiments. 
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Figure 30: Comparison with log % active wells with log concentration of EGFR range 0.002-200 

pg/mL with a detection limit LOD of 1.05 fg/mL calculated from the value of blank signal plus 

three standard deviations. Error bars are standard deviations of three replicate experiments. 
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Figure 31: Quantitative detection of EGFR was achieved over a dynamic range of 0.002 to 200 

pg/mL. Error bars are standard deviations of three replicate experiments. The working 

concentration range was between 0 – 2 pg/mL whereas from 20 pg/mL the assay slightly deviated 

from the linear increase to saturation phase. 

 

Table 3: Calculation of λ (average number of molecules per well) values from % active wells for 

EGFR concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of EGFR. 
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2.3.9 Digital ELISA for different biomarkers 

 

Digital ELISA assays were performed as mentioned under section 2.2.12.  For the CA-125 

assay we observed that the working range for the digital assay was from 0 – 3 pg/mL which would 

be further used for carrying the multiplexed ELISA. As an example, the typical fluorescence image 

for 3 pg/mL was displayed in Figure 32, which showed a very low background level for the blank 

control and the percentage of positive microwells increased along with the CA-125 concentration. 

The percentage of positive microwells increased with that of the CA-125 concentration for 0, 0.3, 

3 pg/mL with 1.85%, 3.14%, 10.71% respectively. The λ value which is the average number of 

molecules per well was calculated using (eq.4) for each concentration based on the positive wells 

as shown in Table 4. The Table clearly showed that the λ increased with the increase in positive 

wells which increased along with the concentration of CA-125.  

 

 

Figure 32: Typical fluorescence image of 3 pg/mL was shown as an example of digital image. A 

working concentration range for digital assay for CA-125 protein was between 0.3 to 3 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

20 nm 100 µm 
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Table 4: Calculation of λ (average number of molecules per well) values from % active wells for 

CA-125 concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of CA-125. 

 

 

For the CEACAM-5 assay we observed that the working range for the digital assay was 

from 0 – 2 pg/mL. As an example, the typical fluorescence image for 0.2 pg/mL was displayed in 

Figure 33 which showed a very low background level for the blank control and the percentage of 

positive microwells increased along with the CEACAM-5 concentration. The percentage of 

positive microwells increased with that of the CEACAM-5 concentration for 0, 0.2, 2 pg/mL with 

2.35%, 4.50%, 11.05 % respectively which was more when compared with CA-125 including the 

control. The Table 5 clearly showed that the λ increased with the increase in positive wells which 

increased along with the concentration of CEACAM-5. 
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Figure 33: Typical fluorescence image of 0.2 pg/mL was shown as an example of digital image. 

A working concentration range for digital assay of CEACAM-5 protein was between 0.3 to 3 

pg/mL. Error bars are standard deviations of three replicate experiments. 

 

Table 5: Calculation of λ (average number of molecules per well) values from % active wells for 

CEACAM-5 concentration range. The Table clearly showed that the λ increased with the increase 

in positive wells which increased along with the concentration of CEACAM-5.  

 

 

For the IL-6 assay we observed that the working range for the digital assay was from 0 – 6 

pg/mL. As an example, the typical fluorescence image for 0.6 pg/mL was displayed in Figure 34 

which showed a very low background level for the blank control and the percentage of positive 

microwells increased along with the IL-6 concentration. The percentage of positive microwells 

100 µm 
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increased with that of the IL-6 concentration for 0, 0.6, 6 pg/mL with 2.05%, 3.75%, 10.25 % 

respectively which was like that of CA-125 including the control. The Table 6 clearly showed that 

the λ increased with the increase in positive wells which increased along with the concentration of 

IL-6. 

 

Figure 34: Typical fluorescence image of 0.6 pg/mL was shown as an example of digital image. A 

working concentration range of IL-6 protein for digital assay was between 0.6 to 6 pg/mL. Error 

bars are standard deviations of three replicate experiments. 

 

Table 6: Calculation of λ (average number of molecules per well) values from % active wells for 

IL-6 concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of IL-6. 
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For the IL-8 assay we observed that the working range for the digital assay was from 0 – 2 

pg/mL. As an example, the typical fluorescence image for 0.2 pg/mL was displayed in Figure 35 

which showed a very low background level for the blank control and the percentage of positive 

microwells increased along with the IL-8 concentration. The percentage of positive microwells 

increased with that of the IL-8 concentration for 0, 0.2, 2 pg/mL with 1.56%, 2.59%, 9.80 % 

respectively which was like that of IL-6 with less background. The Table 7 clearly showed that 

the λ increased with the increase in positive wells which increased along with the concentration of 

IL-8. 

 

 

Figure 35: Typical fluorescence image of 0.2 pg/mL was shown as an example of digital image. 

A working concentration range of IL-8 protein for digital assay was between 0.2 to 2 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

100 µm 
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Table 7: Calculation of λ (average number of molecules per well) values from % active wells for 

IL-8 concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of IL-8. 

 

 

2.3.10 Multiplexed Digital ELISA for detection of 3 different biomarkers on one Device 

Here we performed multiplexed ELISA with three different biomarkers CA-125, EGFR 

and IL-8. As we were running the multiplexed ELISA on one device we were concerned about the 

cross interactions between the channels. The specificity test was used to confirm that there were 

no interferences between different channels as shown in Table under 2.2.13. With the help of this 

developed device each channel was divided into five parts where two parts had EGFR biomarker, 

two parts had IL-8 biomarker and one part had CA-125. We achieved the successful detection of 

three different biomarkers with different concentrations on just one microfluidic device as shown 

in the Figure 36.  
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Figure 36: Multiplexed ELISA for three biomarkers was performed. Quantitative detection of three 

biomarkers CA-125, IL-6 and EGFR was achieved over a working dynamic range of 0.1 to 100 

pg/mL. Error bars are standard deviations of three replicate experiments. EGFR showed higher 

expression levels when compared to IL-8 and CA-125. 

 

The percentage of positive microwells increased with that of the protein concentration. As 

shown in the Figure 36 we clearly experienced a linear increase in the percentage of positive wells 

within the concentration range of 0-2 pg/mL and slight deviation from 10 – 100 pg/mL. 

2.4. Conclusion 

Here we successfully developed an integrated multiplexed microfluidic system for rapid 

and ultrasensitive ELISA detection of protein biomarkers. When compared with other existing 

microfluidic devices for solid-phase immunoassays, our system could perform flow through 

immuno-capture in an open channel and subsequently chemifluorescence detection in a reduced 
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volume, by improving the analytical sensitivity. Using this novel method, we demonstrated the 

quantitative detection of three biomarkers, which showed better performance than the commercial 

ELISA kits. We can also detect fifteen biomarkers with just a single drop of blood which would 

allow us to just use only one device for the detection of multiple biomarkers. The ability of our 

assay to quantitatively detect protein biomarkers across a broad dynamic range will be beneficial 

for the clinical utilities as the target concentration can vary significantly in patients at different 

disease states. Moreover, the adaptation of the femtoliter microwell pattern in our design opens 

opportunity to develop the next-generation microfluidic platforms that integrate and automate both 

digital and analog immunoassays to facilitate the advance of proteomics. 
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Chapter 3 

Detection of Prostate Specific Antigen using Aptamer – Lectin based Assay 

3.1 Introduction 

3.1a. Protein glycosylation  

Glycosylation, one of the most prevalent post-translational modifications (PTM) found in 

proteins, and play a significant role in a varied set of biological processes such as the cellular 

regulation and immune response. Glycosylation is also a best indicator of environmental effects 

that are observed during cellular processes.1 It has been proved that glycosylation is involved in 

many signaling pathways associated mainly with the transformation of a cell under normal 

conditions into a cancer cell. The process of glycosylation has been closely associated with cancer, 

for example, glycosylation can affect the tumor antigen interactions with receptors, e.g. CA125 

with galectin.2 Protein glycosylation is one of the challenging process to analyze due to its 

aggressive and heterogeneous nature caused by the non-templated biosynthesis. There are also 

several types of glycosylation. The most currently seen are N- linked glycosylation and O-

mannosylation as shown in Figure 37.3 Human plasma proteins are usually present within a 

dynamic concentration range of about 10 orders of magnitude. 

 

Figure 37: Representative mammalian O-linked and N-linked glycans. Proteins can be 

glycosylated by N-linkage to asparagine residues or O-linkage to serine or threonine residues. 4 
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Whereas, the glycoproteins of interest, such as cancer biomarkers, are generally present at 

very low concentration levels which makes it extremely challenging to accurately measure their 

glycan changes.5 Presently, mass spectrometry (MS) is a powerful technology which is widely 

used for structural analysis of glycoproteins and has been the gold standard method in glycomics 

since long time. However, glycan analysis by MS methods usually require large sample volumes 

and multi-step process for sample preparation.6 Due to the tedious and time-consuming process 

this method compromises the quantification accuracy and eventually limits the throughput for 

large-scale clinical studies to correlate the glycosylation process. Serum is the most common 

diagnostic fluid, but there is currently a lack of global methods for the characterization of 

glycoproteins, the ‘glycoproteome’. 7 

3.1b. Lectin Microarray 

In the recent times, lectin microarray has been emerged as an effective platform that can 

overcome the challenges faced by MS-based methods for glycomic studies. The lectin microarray 

technology has been very attractive and increasing attention of not only glycoscientists but also 

researchers in other fields. This is mainly, because the method enables the direct analysis of crude 

samples containing glycoproteins, without liberation of glycans, unlike conventional methods.8 

Lectins are defined as proteins that have the unique feature to recognize and bind to the 

carbohydrate complexes that protrude from glycolipids and glycoproteins. The term lectin is 

derived from the Latin word “legere” meaning “to choose”, and has been generalized to envelope 

all the non-immune carbohydrate specific agglutinins regardless of blood type source or 

specificity.9 The interaction of lectins with carbohydrates can be as specific and strong as the 

interaction between those of antigen-antibody or substrate-enzyme. Lectins bind not only to 

oligosaccharides on cells but they also bind to free-floating glycans including monosaccharides.10 
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The interactions of lectin and monosaccharide however, are relatively weak with dissociation 

constants often on the order of micromolar to millimolar range.8 There are many applications of 

lectins where they can be used to detect specific glycans in a biomarker like PSA. One of the 

commonly used format is the lectin microarray. In this format, a series of lectins and carbohydrate-

binding antibodies with different carbohydrate-binding specificity are immobilized on a glass slide 

which are treated with appropriate surface chemistry, like an epoxy functional group which bind 

to the lectin proteins.11 After the immobilization procedure, surface areas containing residual 

activated groups are treated with appropriate blockers, such as glycan-free serum albumin. Binding 

of the target glycans can be detected either directly through the labeling with fluorescent reagents 

or indirectly by overlaying the target glycoprotein with biotinylated antibody and fluorescently 

labeled streptavidin as shown in Figure 38.12 One of the limitation is that the interaction between 

lectin and glycan is very weak when compared to antigen and antibody. To, improve the sensitivity 

and specificity, extremely long durations of incubation (usually overnight) and rapid sample 

processing are required for lectin-glycan assay.4, 7 

 

Figure 38: Schematic illustration of the chip design and the scheme of antibody-lectin sandwich 

assay. The two-layer PDMS chip integrates eight parallel units each consisting of a three-valve 

pump and an actuatable assay chamber.7 
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Here, we employed microfluidic platforms for the lectin bioassay due to their immense 

advantages such as low sample volume, portable and simple experimental set up as discusses in 

chapter 1.  

3.1c. PSA Glycosylation 

Prostate Cancer also known as glandular cancer of the prostate gland, is one the most 

challenging medical issue worldwide.13 The prostate is a walnut shaped structure which is located 

under bladder and play a significant role in the male reproduction system. PSA is a 33 kDa serine 

protease (kallikrein-3) secreted by the prostate gland.14 The physiological function of the prostate 

is to involve in the ejaculation through the secretory gland and it is a major secretor of the 

glycoproteins almost all the types.15 The development and the maintenance of these roles are 

dependent upon the signals from the androgen receptor (AR). One of the principle role of the 

prostate is to produce prostate – specific antigen (PSA) which is a serine protease that can liquify 

semen and thereby enhances the sperm motility.16  PSA is a glycoprotein and the serum levels of 

PSA have been widely used as a biomarker of prostate cancer because during the initial stages the 

disruption of the prostatic epithelium allows the PSA to leak into the blood circulation. PSA has a 

N-glycosylation site at asparagine (Asn) – 69 which has been the main target of multiple studies. 

The possible glycan structures that are attached to PSA are mainly the four biantennary glycans 

and are estimated to comprise almost 80% of the total number of PSA bound glycans. These all 

have Hex 5 subunits consisting of three mannose and two galactose subunits or Hex – N- 

acetylglucosamine (NAc) which has four β-N-acetylglucosamine [GlcNAc] subunits with either 

one or two sialic acid residues and the presence of core fucose moieties as shown in the Figure 39. 

17 
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Figure 39: The four most common biantennary N-linked glycan structures detected on PSA 

asparagine – 69. These all have Hex 5 subunits consisting of three mannose and two galactose 

subunits or Hex – N- acetylglucosamine (NAc) which has four β-N-acetylglucosamine [GlcNAc] 

subunits with either one or two sialic acid residues and the presence of core fucose moieties.17 

 

 

Here in this work we have used different biotinylated lectins like SNA, AAL, Con A, DSL 

and jacalin based on their respective specificities to different glycans a shown in the Table. 

3.1d. Aptamers over Antibodies 

It is well known that ELISA assays usually depend on antibodies which have various 

downsides. In addition, to batch-to-batch variations in the production of antibody, it is very tedious 

and challenging to generate specific monoclonal antibodies, mainly against non-immunogenic 

molecules.18 To overcome these challenges there is an immense need for an alternative to 

antibodies to improve the ELISA method, and, among the different options, commutable 

replacement of the target capturing agent with a more suitable probe is an optimal approach.14 This 

alternative molecular recognition element (MRE) is termed as 'aptamer', which has the potential 
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to complement the role of antibodies in ELISA, thereby resulting in an improved ELISA which is 

called as enzyme-linked apta sorbent assay (ELASA). Aptamers are also known as the chemical 

antibodies which are either single- stranded DNA or RNA that can bind to a wide range of 

molecules with high specificity and affinity. DNA aptamers and RNA aptamers are not different 

from each other in terms of specificity or affinity, except that DNA aptamers have greater intrinsic 

chemical stability.19-20 It is also difficult to use antibodies for glycoprofiling because the capture 

antibodies are also glycosylated and there is a high possibility for misleading results because the 

lectins can bind to the glycans on capture antibodies rather than on antigens. Therefore, it is much 

better to use aptamers as capture probes. The most significant feature of using the aptamers is that 

they have dissociation constants that can reach as low as the picomolar–femtomolar range which 

thereby increases the sensitivity of the biomarker detection and can also handle the cross reactivity 

issues which are usually observed in glycoprofiling.14 Therefore, aptamers could be used as a 

potential tool for multi glycan profiling of biomarkers with high sensitivity and selectivity. At the 

same time, aptamers are easy to maintain, and they can also be reused which reduces the cost.18, 21 

Here, we used PSA aptamer for profiling the PSA expression with different biotinylated 

lectins. 

3.2 Experimental 

3.2.1 Chemicals and Reagents 

The following reagents were used as received: 1 phosphate buffered saline solution 1 PBS 

(> 98.5, Mediatech, Inc.), Superblock T20 blocking buffer (PBST) (Thermo Scientific), 

fluorescein di B D galactopyranoside (FDG) (Invitrogen), Streptavidin Beta galactosidase 

conjugate (SBG) (Invitrogen), 2- propanol (IPA) (> 99.5%; Sigma Aldrich), ethanol (100% Decon 

laboratories Inc.), All lectins were ordered from (Vector Labs) and (EY Labs). RNase A and B 
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from bovine pancreas were purchased (Sigma-Aldrich), 3 glycidyloxy propyl trimethoxy silane 

(GPS) (Sigma Aldrich), anhydrous toluene (>99.8%; Alfa Aesar), N,N,N’,N’- 

tetramethylethylenediamine (TEA) (Sigma Aldrich),  SU-8 2010 (Microchem), protein free PBS ( 

Thermo Scientific). 

3.2.2 Micro Fabrication and device assembly 

The microfluidic fabrication was performed as mentioned under section and the same 

device with GOPS patterning was used for aptamer based assays which will be discussed further. 

3.2.3 RNAse Assay 

The glass slides were immobilized with GOPS as mentioned in the surface patterning 

section and then the PDMS device was bonded permanently on the patterned glass slides. RNase 

Aptamer 5 µM in water immobilized onto the glass slide and incubated for 2 h at room temperature. 

The channels were then washed with PBST. The channels blocked with protein free PBS and 

incubated for 1 h at room temperature. Then RNase B protein (Positive control) and RNase A 

(Negative control) 0.1 µg/mL and 1 µg /mL diluted in PBS with Mg2+ and Ca2+ were added into 

channels and incubated for 1.5 h at room temperature. Then biotinylated ConA 0.2 µg/mL in 

10mM HEPES buffer with Ca2+, Mg2+, Mn2+ was added into channels and incubated for 1 h at 

room temperature. Then SBG – 0.2 µg/mL was added into channels and incubated for 30 min. 500 

µM FDG was added as the final step and incubated for various time intervals and the optimized 

time was 20 min. The channels were pressed down with the actuator.  The signal was measured 

under fluorescent microscope, with 470nm wavelength and exposure time is 8000ms. 

3.2.6 PSA assay 

The glass slides were immobilized with GOPS as mentioned in the surface patterning 

section and then the PDMS device was bonded permanently on the patterned glass slides. PSA 
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Aptamer 5 µM in water immobilized onto the glass slide and incubated for 2 h at room temperature. 

The channels were then washed with PBST. The channels blocked with protein free PBS and 

incubated for 1 h at room temperature. Then PSA protein 0, 10 pg/mL, 100 pg/mL diluted in PBS 

were added into channels and incubated for 1.5 h at room temperature. Then biotinylated PSA 

antibody 0.8 µg/mL in PBS was added into channels and incubated for 1 h at room temperature. 

Then SβG – 0.2 µg/mL was added into channels and incubated for 30 min. 500 µM FDG was 

added as the final step and incubated for various time intervals and the optimized time was 20 min. 

The channels were pressed down with the actuator.  The signal was measured under fluorescent 

microscope, with 470nm wavelength and exposure time is 8000ms. 

3.2.7 Detection of PSA with different biotinylated lectins 

 

For the detection of PSA with different lectins the glass slides and devices were prepared 

as mentioned under section 3.2.6. For all the PSA assays we used 5 µM of single stranded PSA 

DNA aptamer. PSA protein concentrations of 0 – 100 pg/mL were diluted in PBS, then SβG – 0.2 

µg/mL was added into channels and incubated for 30 min. 500 µM FDG was added as the final 

step and incubated for various time intervals and the optimized time was 20 min. The channels 

were pressed down with the actuator.  The signal was measured under fluorescent microscope, 

with 470nm wavelength and exposure time is 8000ms. The concentration of biotinylated lectins 

varied accordingly. For PSA assay with the biotinylated lectins SNA - 0.2 µg/mL, jacalin - 0.5 

µg/mL, AAL – 0.1 µg/mL, DSL - 0.2 µg/mL and Con A – 0. 0.1 µg/mL in PBS were used as 

shown in the Figure 40. 
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Figure 40: Schematic representation of Aptamer lectin based assay. PSA Aptamer 5 µM in water 

immobilized onto the glass slide. PSA protein concentrations of 0 – 100 pg/mL diluted in PBS 

were added into channels and incubated. Then biotinylated lectins with varied concentration in 

PBS were added into channels and incubated. Then SβG – 0.2 µg/mL was added into channels and 

incubated. 500 µM FDG was added as the final step and incubated for various time intervals and 

the optimized time was 20 min. 

 

3.3 Results and Discussion 

3.3.1 RNAse Assay 

RNase assay was performed as mentioned in the above protocol and various concentrations 

of RNase A and RNase B were used in the assay starting from 0, 0.1, and 1 µg/mL. Here, we 

demonstrated the microfluidic assay combined with the microwell assisted analog 

chemifluorescence detection for quantitative detection of RNase protein. The fluorescence images 

acquired for different concentration standards were displayed in Figure 41, which showed a very 

low background level for the blank control. The averaged fluorescence intensities for RNase B 

was high 201.19 for 1 µg/mL and 99.78 for 0.1 µg/mL which was a positive control as expected 

and RNase A was having lower intensities 28.18 for 1 µg/mL and 12.58 for 0.1 µg/mL as expected 

because it was used a negative control and for the blank it was 11.32.  This assay was performed 

to test the working of the lectin assay protocol as shown in Figure 41.  
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Figure 41: For testing the performance of the microwell-assisted microfluidic chemifluorescence 

detection of lectins various concentrations of RNase A and B were passed through the channels. 

A typical fluorescence image was presented in the Figure for various concentrations of 0, 0.1, 1, 

10, 100 µg/mL respectively. 

 

Figure 42: RNase assay results with RNase B as positive control, RNase A as negative control 

and their fluorescence intensities. 

0.3 mm 0.3 mm 

0.3 mm 

0.3 mm 0.3 mm 
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3.3.2 PSA assay 

PSA assay was performed as mentioned in the above protocol and various concentrations 

of target antigen were used in the assay starting from 0, 0.1, 1, 10 and 100 pg/mL. As an example, 

the typical fluorescence image for 1 pg/mL was displayed in Figure 43, which showed a very low 

background level for the blank control and the percentage of positive microwells increased along 

with the PSA concentration. The assay performance was pretty good by resulting in low 

background and high detection limit of 10 fg/mL. The percentage of positive microwells increased 

with that of the PSA concentration. As shown in the Figure 43 we saw a clear straight increase 

after the assay reached a saturation point. The working range of the digital assay was between 0.1 

– 1 pg/mL concentrations of PSA whereas from 10 pg/mL the assay slightly deviated from the 

linear increase to saturation phase where it was no more a digital signal as most of the wells were 

having fluorescent signal. We also compared the log % active wells and log concentration of PSA 

which showed a semi linear increase as shown in Figure 44. As shown in the Figure 45 we clearly 

experienced a linear increase in the percentage of positive wells within the concentration range of 

0.1 -1 pg/mL with R2 value = 0.9815. The λ value which is the average number of molecules per 

well was calculated using (eq.4) for each concentration based on the positive wells as shown in 

Table 8. The Table clearly showed that the λ increased with the increase in positive wells which 

increased along with the concentration of PSA.  

20 nm 
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Figure 43: Quantitative detection of PSA was achieved over a dynamic range of 0.1 pg/mL to 100 

pg/mL with a theoretical LOD of 10 fg/mL calculated from the value of blank signal plus three 

standard deviations. Error bars are standard deviations of three replicate experiments. Typical 

fluorescence image of 1 pg/mL was shown as an example of digital image. 

 

100 µm 
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Figure 44: Comparison with log % active wells with log concentration of PSA range 0.1 – 100 

pg/mL with a theoretical LOD of 10 fg/mL calculated from the value of blank signal plus three 

standard deviations. Error bars are standard deviations of three replicate experiments. 

 

 

Figure 45: A working concentration range of PSA for digital assay was between 0.1 to 1 pg/mL. 

Error bars are standard deviations of three replicate experiments. 
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Table 8: Calculation of λ (average number of molecules per well) values from % active wells for 

PSA concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of PSA. 

 

3.3.3 Detection of PSA with different biotinylated lectins 

Table 9: Different lectins with their origin and specificities for glycans 

 

 

Different biotinylated lectins were used to detect PSA. PSA assay with biotinylated SNA 

lectin which has specificity for sialic acid was performed as mentioned in the above protocol and 

various concentrations of target antigen were used in the assay starting from 0, 0.1, 1, 10 and 100 

pg/mL. As an example, the typical fluorescence image for 0.1 pg/mL was displayed in Figure 46, 

which showed a very low background level for the blank control and the percentage of positive 

microwells increased along with the PSA concentration. The assay performance was pretty good 
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by resulting in low background and high detection limit of 9.5 fg/mL. The percentage of positive 

microwells increased with that of the PSA concentration. As shown in the Figure 46 we saw a 

clear straight increase after the assay reached a saturation point. The working range for the digital 

assay was between 0.1 – 1 pg/mL concentrations of PSA whereas from 10 pg/mL the assay slightly 

deviated from the linear increase to saturation phase where it was no more a digital signal as most 

of the wells were having fluorescent signal. We also compared the log % active wells and log 

concentration of PSA which showed a semi linear increase as shown in Figure 47. As shown in 

the Figure 48 we clearly experienced an increase in the percentage of positive wells within the 

concentration range of 0.1 -1 pg/mL with R2 value = 0.9902. The λ value which is the average 

number of molecules per well was calculated using (eq.4) for each concentration based on the 

positive wells as shown in Table 10. The Table clearly showed that the λ increased with the 

increase in positive wells which increased along with the concentration of PSA. 

Figure 46: Quantitative detection of PSA using biotinylated SNA lectin was achieved over a 

dynamic range of 0.1 pg/mL to 100 pg/mL with a theoretical LOD of 9.5 fg/mL calculated from 

the value of blank signal plus three standard deviations. Error bars are standard deviations of three 

100 µm 
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replicate experiments. Typical fluorescence image of 0.1 pg/mL was shown as an example of 

digital image. 

 

 

 

 

Figure 47: Comparison with log % active wells with log concentration of PSA range 0.1 – 100 

pg/mL with a theoretical LOD of 9.5 fg/mL calculated from the value of blank signal plus three 

standard deviations. Error bars are standard deviations of three replicate experiments. 
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Figure 48: A working concentration range of PSA for digital assay was between 0.1 to 1 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

 

Table 10: Calculation of λ (average number of molecules per well) values from % active wells for 

PSA concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of PSA detected with SNA. 
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PSA assay with biotinylated Jacalin lectin which has specificity for galactose was 

performed as mentioned in the above protocol and various concentrations of target antigen were 

used in the assay starting from 0.1 – 100 pg/mL. As an example, the typical fluorescence image 

for 0.1 pg/mL was displayed in Figure 49, which showed a very low background level for the blank 

control and the percentage of positive microwells increased along with the PSA concentration. The 

assay performance was pretty good by resulting in low background and high detection limit of 

9.05 fg/mL. The percentage of positive microwells increased with that of the PSA concentration. 

As shown in the Figure 49 we saw a clear straight increase after the assay reached a saturation 

point. The linear range was between 0.1 – 1 pg/mL concentrations of PSA whereas from 10 pg/mL 

the assay slightly deviated from the linear increase to saturation phase where it was no more a 

digital signal as most of the wells were having fluorescent signal. We also compared the log % 

active wells and log concentration of PSA which showed a semi linear increase as shown in Figure 

50. As shown in the Figure 51 we clearly experienced a linear increase in the percentage of positive 

wells within the concentration range of 0.1 -1 pg/mL with R2 value = 0.9898. The λ value which 

is the average number of molecules per well was calculated using (eq.4) for each concentration 

based on the positive wells as shown in Table 11. The Table clearly showed that the λ increased 

with the increase in positive wells which increased along with the concentration of PSA. 
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Figure 49: Quantitative detection of PSA using biotinylated jacalin lectin was achieved over a 

dynamic range of 0.1 pg/mL to 100 pg/mL with a theoretical LOD of 9.05 fg/mL calculated from 

the value of blank signal plus three standard deviations. Error bars are standard deviations of three 

replicate experiments. Typical fluorescence image of 0.1 pg/mL was shown as an example of 

digital image. 

 

 

 

100 µm 
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Figure 50: Comparison with log % active wells with log concentration of PSA range 0.1 – 100 

pg/mL with a theoretical LOD of 9.05 fg/mL calculated from the value of blank signal plus three 

standard deviations. Error bars are standard deviations of three replicate experiments. 
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Figure 51: A working concentration range of PSA for digital assay was between 0.1 to 1 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

 

Table 11: Calculation of λ (average number of molecules per well) values from % active wells for 

PSA concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of PSA detected with Jacalin lectin. 
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PSA assay with biotinylated AAL lectin which has specificity for fructose was performed 

as mentioned in the above protocol and various concentrations of target antigen were used in the 

assay starting from 0.1 – 100 pg/mL. As an example, the typical fluorescence image for 1 pg/mL 

was displayed in Figure 52, which showed a very low background level for the blank control and 

the percentage of positive microwells increased along with the PSA concentration. The assay 

performance was pretty good by resulting in low background and high detection limit of 8.78 

fg/mL. The percentage of positive microwells increased with that of the PSA concentration. As 

shown in the Figure 52 we saw a clear straight increase after the assay reached a saturation point. 

The linear range was between 0.1 – 1 pg/mL concentrations of PSA whereas from 10 pg/mL the 

assay slightly deviated from the linear increase to saturation phase where it was no more a digital 

signal as most of the wells were having fluorescent signal. We also compared the log % active 

wells and log concentration of PSA which showed a semi linear increase as shown in Figure 53. 

As shown in the Figure 54 we clearly experienced a linear increase in the percentage of positive 

wells within the concentration range of 0.1 -1 pg/mL with R2 value = 0.9843. The λ value which 

is the average number of molecules per well was calculated using (eq.4) for each concentration 

based on the positive wells as shown in Table 12. The Table clearly showed that the λ increased 

with the increase in positive wells which increased along with the concentration of PSA. 
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Figure 52: Quantitative detection of PSA using biotinylated AAL lectin was achieved over a 

dynamic range of 0.1 pg/mL to 100 pg/mL with a theoretical LOD of 8.78 fg/mL calculated from 

the value of blank signal plus three standard deviations. Error bars are standard deviations of three 

replicate experiments. Typical fluorescence image of 1 pg/mL was shown as an example of digital 

image. 

 

 

  

20 nm 

100 µm 
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Figure 53: Comparison with log % active wells with log concentration of PSA range 0.1 – 

100 pg/mL with a theoretical LOD of 8.78 fg/mL calculated from the value of blank signal 

plus three standard deviations. Error bars are standard deviations of three replicate 

experiments. 

 



84 
 

 

Figure 54: A working concentration range of PSA for digital assay was between 0.1 to 1 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

 

Table 12: Calculation of λ (average number of molecules per well) values from % active wells for 

PSA concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of PSA detected with AAL.  

 

 



85 
 

PSA assay with biotinylated DSL lectin which has specificity for glucosamine was 

performed as mentioned in the above protocol and various concentrations of target antigen were 

used in the assay starting from 0.1 – 100 pg/mL. As an example, the typical fluorescence image 

for 1 pg/mL was displayed in Figure 55, which showed a very low background level for the blank 

control and the percentage of positive microwells increased along with the PSA concentration. The 

assay performance was pretty good by resulting in low background and high detection limit of 

11.05 fg/mL. The percentage of positive microwells increased with that of the PSA concentration. 

As shown in the Figure 55 we saw a clear straight increase after the assay reached a saturation 

point. The linear range was between 0.1 – 1 pg/mL concentrations of PSA whereas from 10 pg/mL 

the assay slightly deviated from the linear increase to saturation phase where it was no more a 

digital signal as most of the wells were having fluorescent signal. We also compared the log % 

active wells and log concentration of PSA which showed a semi linear increase as shown in Figure 

56. As shown in the Figure 57 we clearly experienced a linear increase in the percentage of positive 

wells within the concentration range of 0.1 -1 pg/mL with R2 value = 0.9857. The λ value which 

is the average number of molecules per well was calculated using (eq.4) for each concentration 

based on the positive wells as shown in Table 13. The Table clearly showed that the λ increased 

with the increase in positive wells which increased along with the concentration of PSA. 
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Figure 55: Quantitative detection of PSA using biotinylated DSL lectin was achieved over a 

dynamic range of 0.1 pg/mL to 100 pg/mL with a theoretical LOD of 11.05 fg/mL calculated from 

the value of blank signal plus three standard deviations. Error bars are standard deviations of three 

replicate experiments. Typical fluorescence image of 1 pg/mL was shown as an example of digital 

image. 
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Figure 56: Comparison with log % active wells with log concentration of PSA range 0.1 – 100 

pg/mL with a theoretical LOD of 11.05 fg/mL calculated from the value of blank signal plus three 

standard deviations. Error bars are standard deviations of three replicate experiments. 
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Figure 57: A working concentration range of PSA for digital assay was between 0.1 to 1 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

 

Table 13: Calculation of λ (average number of molecules per well) values from % active wells 

for PSA concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of PSA detected with DSL lectin. 
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PSA assay with biotinylated Con A lectin which has specificity for mannose and glucose 

was performed as mentioned in the above protocol and various concentrations of target antigen 

were used in the assay starting from 0.1 – 100 pg/mL. As an example, the typical fluorescence 

image for 0.1 pg/mL was displayed in Figure 58, which showed a very low background level for 

the blank control and the percentage of positive microwells increased along with the PSA 

concentration. The assay performance was pretty good by resulting in low background and high 

detection limit of 11.75 fg/mL. The percentage of positive microwells increased with that of the 

PSA concentration. As shown in the Figure 58 we saw a clear straight increase after the assay 

reached a saturation point. The linear range was between 0.1 – 1 pg/mL concentrations of PSA 

whereas from 10 pg/mL the assay slightly deviated from the linear increase to saturation phase 

where it was no more a digital signal as most of the wells were having fluorescent signal. We also 

compared the log % active wells and log concentration of PSA which showed a semi linear increase 

as shown in Figure 59. As shown in the Figure 60 we clearly experienced a linear increase in the 

percentage of positive wells within the concentration range of 0.1 -1 pg/mL with R2 value = 0.9897. 

The λ value which is the average number of molecules per well was calculated using (eq.4) for 

each concentration based on the positive wells as shown in Table 14. The Table clearly showed 

that the λ increased with the increase in positive wells which increased along with the 

concentration of PSA. 
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Figure 58: Quantitative detection of PSA using biotinylated Con A lectin was achieved over a 

dynamic range of 0.1 pg/mL to 100 pg/mL with a theoretical LOD of 11.75 fg/mL calculated from 

the value of blank signal plus three standard deviations. Error bars are standard deviations of three 

replicate experiments. Typical fluorescence image of 0.1 pg/mL was shown as an example of 

digital image. 
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Figure 59: Comparison with log % active wells with log concentration of PSA range 0.1 – 100 

pg/mL with a theoretical LOD of 11.75 fg/mL calculated from the value of blank signal plus three 

standard deviations. Error bars are standard deviations of three replicate experiments. 
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Figure 60: A working concentration range of PSA for digital assay was between 0.1 to 1 pg/mL. 

Error bars are standard deviations of three replicate experiments. 

 

Table 14: Calculation of λ (average number of molecules per well) values from % active wells for 

PSA concentration range. The Table clearly showed that the λ increased with the increase in 

positive wells which increased along with the concentration of PSA detected with Con A lectin. 

. 
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As shown in Figure 61 PSA aptamer was detected with biotinylated PSA antibody and five 

biotinylated lectins. Various concentrations from 0.1 – 100pg/mL were used, and percentage of 

positive wells were compared between PSA antibody and five lectins. Among the five lectins SNA 

showed more percentage of positive wells as it has the specificity for sialic acid which is present 

in high quantities and Con A showed a low percentage of positive wells which had specificity for 

mannose and glucose.  

 

Figure 61: Detection of PSA aptamer with PSA antibody and biotinylated lectins SNA, DSL, 

Jacalin, AAL and Con A. Error bars are standard deviations of three replicate experiments. 

3.4 Conclusion 

Here we successfully developed an integrated microfluidic system for rapid and 

ultrasensitive PSA antigen detection with biotinylated lectins. When compared with other existing 

microfluidic devices for solid-phase immunoassays, our system was able to perform flow through 
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immuno-capture in an open channel and subsequently chemifluorescence detection in a reduced 

volume, by improving the analytical sensitivity. Using this novel method, we demonstrated the 

quantitative detection of PSA using aptamers and biotinylated lectins, which showed better 

performance than the commercial ELISA kits. The ability of our assay to quantitatively detect 

highly glycosylated protein biomarkers across a broad dynamic range will be beneficial for the 

clinical utilities as the target concentration can vary significantly in patients at different disease 

states. Moreover, the adaptation of the femtoliter microwell pattern in our design opens 

opportunity to develop the next-generation microfluidic platforms that integrate and automate both 

digital and analog immunoassays to facilitate the advance of proteomics. 
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Chapter 4 

Summary and Future Directions 

4.1 Summary 

To envision our single cell analysis of genotypic and phenotypic changes associated with 

cancer at the systems level we have developed simple and portable microfluidic tools. Microfluidic 

digital ELISA is a very powerful tool which is useful to detect different biomarkers at low level 

concentrations up to femtomolar to attomolar range. As discussed in Chapter 1 microfluidic 

platforms offer various advantages in handling different biomolecules.  

Tracking the protein expression in single cells is in great need as they enable the study of 

heterogeneous behaviors, but the main challenges are the requirement of the methodologies that 

are sensitive enough to detect low copy number of protein molecules within a dynamic range.1 

Low copy proteins cannot be neglected as they can provide information about the phenotypic 

responses involved. Moreover, traditional analog methods are not suitable for detecting such small 

numbers as they give an average measurement, differentiating unique cells and quantifying 

population distributions would be problematic.2 Digital immunoassays have emerged as a robust 

technology for sub picomolar detection of proteins. To detect the low copy numbers of protein 

molecules in single cells using digital methods, cross communication between individual reactions, 

diffusing of reagents into bulk solutions and evaporation of solvents could be critical as mentioned 

in Chapters 2 and 3.3 To address this concern, we have developed a portable, automated instrument 

for sealing the microwells in the chambers with high pressure for conducting chemi- fluorescent 

reactions with increased resolution and sensitivity. Here we engineered a multiplexed microfluidic 

digital ELISA platform with microarray structures for analyzing multiple proteins with low sample 

volume and high sensitivity. With our developed platform, we can detect up to fifteen biomarkers. 
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At the same time, we also developed an aptamer-lectin based assays for the digital detection 

of highly glycosylated biomarkers as a replacement of capture antibodies due to their drawbacks 

as discussed in chapter 3. When compared with other existing microfluidic devices for solid-phase 

immunoassays, our system could perform flow through immuno-capture in an open channel and 

subsequently chemifluorescence detection in a reduced volume, by improving the analytical 

sensitivity.4 Using this novel method, we demonstrated the quantitative detection of PSA aptamers 

using biotinylated lectins, which showed better performance than the commercial ELISA kits. The 

ability of our assay to quantitatively detect highly glycosylated protein biomarkers across a broad 

dynamic range will be beneficial for the clinical utilities as the target concentration can vary 

significantly in patients at different disease states.5 Moreover, the adaptation of the femtoliter 

microwell pattern in our design opens opportunity to develop the next-generation microfluidic 

platforms that integrate and automate both digital and analog immunoassays to facilitate the 

advance of proteomics. Therefore, our microfluidic system is able to substantially enhance the pace 

of lectin-based assay for high-throughput glycomic profiling. The valve and pump structures hold 

the complete potential for full automation of the microsystem.6 

4.2 Future Work 

4.2.1 Single Cell Analysis 

With the successful results from both the projects the next step would be analyzing the single 

cells. Ideally, the cell behaves in a system and processes input factors into output behaviors using 

these internal signaling pathways like diffusion, active transport. The principle processes in each 

cell is same but the behavior of individual cells can vary significantly. These cell-to-cell 

interactions and differences play a key role in understanding their signaling pathways associated 

with several diseases such as cancer. Cells under identical conditions often display a distribution 

of heterogeneous behaviors.7 But the response and interaction are not known. So, analyzing single 
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cells is important. It is the study of individual cells there by provides better resolution of the 

components involved in the biology. In an ensemble analysis, it is not possible to distinguish 

between a state in which all cells have an intermediate phenotype (pink cells) and one in which 

half are on (red cells), half are off (white cells) as shown in the Figure 62.8-9 Whereas, in single 

cell analysis we can clearly differentiate the distribution between positive events and negative 

events. Also results from averaged populations could result in incorrect interpretations of 

regulatory and physiological mechanisms. To determine the actual mechanism in the disease 

states, analysis at the single cell level is required. Studying single cells is useful for analyzing 

various diseases such as cancer.10  

 

Figure 62: Single cell analysis vs ensemble analysis9 

Protein expression drives cellular functions like cell development and activity. Changes in the 

protein concentration can affect the cell phenotype, metabolism, growth and disease progression. 

Tracking protein expression in single cells enables the study of cellular pathways and cell-cell 

variations inside the tumor cells. In the pooled sample analysis, we cannot differentiate all the cell 

types but in the single cell analysis we can clearly see how well they are distributed which thereby 
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helps to understand the heterogenic behaviors as shown in Figure 63. Single cell technology 

induces a straightforward process that can detect both high and low protein expression levels which 

enables both earlier disease detection and targeted therapy.11 

 

Figure 63: Role of single cell analysis in studying tumor heterogeneity12 

 

4.2.2 Methods for trapping single cells 

a) Flow Cytometry 

There are few methods available for single cell analysis. One of them is flow cytometry which 

is widely used. It is a cell-based bioanalytical tool for analyzing hundreds of thousands of 

individual cells according to their size, granularity and fluorescence properties in a wide range of 

applications, e.g. viability, protein expression and localization, gene expression. It usually uses 

fluorescent probes to highlight cellular constituents or functions and measures the single cells 

flowing through the fluorescence detectors as shown in Figure 64.13-14 However, there are few 

downsides of using flow cytometry because it is not possible to have large volume of sample 

always. For example, a blood sample from patient or sample with rare cell types where the volume 

of the sample is highly limited. Also, it does not provide information about cell to cell interactions 
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and cell subpopulations with similar biomarker expression levels. The sensitivity is too low as it 

can detect only 500 copies per cell.15 The main challenge for tracking the heterogeneous behaviors 

at the single cell level is the requirement of the methodologies that are sensitive enough to detect 

low copy number of protein molecules within a dynamic range. These low copy numbers of 

proteins cannot be neglected as they can provide information about the phenotypic responses 

involved. It is not well suitable for point of care diagnostics as it is not portable in size and not cost 

effective.16 

 

Figure 64: Flow cytometry with different fluorescence detectors.14 

 

b) Our Strategy for trapping single cells 

Method 1: 

One of the methods we plan to design for trapping single cells is shown in Figure 65. The cells 

can be trapped in micro sized hurdle like structures in the center of a microchamber and they can 

be repeatedly treated and washed before lysis. The device consists of two layers of PDMS which 
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are finally bonded on a microscope glass slide. The core features are the chambers with the two 

central hurdles made of PDMS to physically trap the cells. In the current design, 60 of these 

chambers are ordered in alternate rows of seven or eight chambers on one microchip and each row 

is connected via a microchannel. The height of the channels and chambers is 20 μm, which is 

sufficiently high to allow most mammalian cell types to pass and prevent cellular stress due to 

shear forces.17 A ring-shaped valve (200 μm in diameter) surrounds the hurdles. When actuated, it 

isolates the trapped cells from the surrounding solution in a volume of 625 pL. Every 

microchamber within a row can be opened and closed individually, which enables a sequential 

supply of reagents to every single microchamber along the microchannel with virtually no cross-

contamination. After the lysis step, and the addition of the immunoassay compounds, the small 

volume of the microchambers prevents dilution of the target molecules and the fluorescent product, 

hence guaranteeing a high sensitivity.18 
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Figure 65: Schematic of a microchamber which is used to introduce and trap a cell inside the micro 

hurdle feature and to deliver compounds to the cell. The trapped cell can be isolated from the 

environment by hydraulic actuation of a ring-shaped valve (gray color). The image on the right is 

a fluorescent micrograph. the device consists of 60 hurdles and chambers. As shown by the 

different trapped food dyes, the chambers of one row can be actuated individually, thereby 

avoiding cross-contamination.
17 

 

Method 2: 

The second method includes the fabrication of a microarray that can capture single cells inside 

an array without using pumps or tubing to help the fluid flow within the device. The passive-flow 

microfluidic device consists of physical traps which are embedded in a center channel, connecting 

an inlet and an outlet reservoir. Fluid flow through the channel could be achieved by altering the 

surface of the channel.19 By treating the glass surface and the inner walls of the PDMS 

microchannel with oxygen plasma polar functional groups could be introduced on PDMS, thus 

providing the hydrophilic surface. The basic trap shapes could be in S-shaped square pillars with 
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approximate dimensions of 10 mm-10 mm and V-shaped rectangular pillars could be 10 mm - 7 

mm both with sides inclined at 30◦C and separated by a 5mm gap as shown in Figure 66.  

 

Figure 66: Design and operation of the passive-flow microfluidic device with schematic diagram 

of the microfluidic device fabrication process and a brief protocol to trap single cells in the passive-

flow microfluidic device.19 

 

 

Therefore, lysis chip will be designed as shown in Figure in which the cells will be lysed and 

then the target antigens will be detected with digital ELISA devices. 

 

 

 

 

 



105 
 

4.3 References 

1. Spiller, D. G.; Wood, C. D.; Rand, D. A.; White, M. R. H., Measurement of single-cell 

dynamics. Nature 2010, 465 (7299), 736-745. 

2. Liu, Y.; Singh, A. K., Microfluidic Platforms for Single-Cell Protein Analysis. Journal of 

Laboratory Automation 2013, 18 (6), 446-454. 

3. Cai, L.; Friedman, N.; Xie, X. S., Stochastic protein expression in individual cells at the 

single molecule level. Nature 2006, 440 (7082), 358-362. 

4. Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B. K. H.; Qin, L.; Ahmad, H.; Kwong, G. A.; 

Liu, C.-C.; Gould, J.; Hood, L.; Heath, J. R., Integrated barcode chips for rapid, multiplexed 

analysis of proteins in microliter quantities of blood. Nat Biotechnol 2008, 2. 

5. Nishimura, S.-I., Chapter 5 - Toward automated glycan analysis. In Advances in 

Carbohydrate Chemistry and Biochemistry, Horton, D., Ed. Academic Press: 2011; Vol. 65, pp 

219-271. 

6. Jayasena, S. D., Aptamers: An Emerging Class of Molecules That Rival Antibodies in 

Diagnostics. Clinical Chemistry 1999, 45 (9), 1628-1650. 

7. Di Carlo, D.; Wu, L. Y.; Lee, L. P., Dynamic single cell culture array. Lab Chip 2006, 6. 

8. Pan, X., Single Cell Analysis: From Technology to Biology and Medicine. Single cell 

biology 2014, 3 (1), 106. 

9. Lidstrom, M. E.; Konopka, M. C., The role of physiological heterogeneity in microbial 

population behavior. 2010, 6, 705. 

10. Wu, M.; Singh, A. K., Single-Cell Protein Analysis. Current Opinion in Biotechnology 

2012, 23 (1), 83-88. 

11. Wills, Q. F.; Mead, A. J., Application of single-cell genomics in cancer: promise and 

challenges. Human Molecular Genetics 2015, 24 (R1), R74-R84. 

12. Brown, J. M.; Attardi, L. D., The role of apoptosis in cancer development and treatment 

response. Nat Rev Cancer 2005, 5. 

13. Di Carlo, D.; Aghdam, N.; Lee, L. P., Single-cell enzyme concentrations, kinetics, and 

inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 2006, 7. 

14. Han, Y.; Lo, Y.-H., Imaging Cells in Flow Cytometer Using Spatial-Temporal 

Transformation. 2015, 5, 13267. 

15. Gawad, C.; Koh, W.; Quake, S. R., Single-cell genome sequencing: current state of the 

science. Nat Rev Genet 2016, 17 (3), 175-188. 

16. Lu, Y.; Chen, J. J.; Mu, L.; Xue, Q.; Wu, Y.; Wu, P.-H.; Li, J.; Vortmeyer, A. O.; Miller-

Jensen, K.; Wirtz, D.; Fan, R., High-Throughput Secretomic Analysis of Single Cells to Assess 

Functional Cellular Heterogeneity. Analytical Chemistry 2013, 85 (4), 2548-2556. 

17. Eyer, K.; Stratz, S.; Kuhn, P.; Küster, S. K.; Dittrich, P. S., Implementing Enzyme-Linked 

Immunosorbent Assays on a Microfluidic Chip To Quantify Intracellular Molecules in Single 

Cells. Analytical Chemistry 2013, 85 (6), 3280-3287. 

18. Oshima, Y.; Yajima, S.; Yamazaki, K.; Matsushita, K.; Tagawa, M.; Shimada, H., 

Angiogenesis-related factors are molecular targets for diagnosis and treatment of patients with 

esophageal carcinoma. Ann Thorac Cardiovasc Surg 2010, 16. 

19. Ramji, R.; Wong, V. C.; Chavali, A. K.; Gearhart, L. M.; Miller-Jensen, K., A passive-

flow microfluidic device for imaging latent HIV activation dynamics in single T cells. Integrative 

Biology 2015, 7 (9), 998-1010. 


