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Abstract
Semantic and phonological systems interact during word processing. However, the current
approaches to studying these systems tend to examine them as separate entities with a focus on
processes that occur in those systems. An alternative approach is to examine the underlying
representations of these systems with the use of the computational and mathematical tools of
Network Science. The analysis of language networks, where nodes represent words and edges
represent relationships, have shown that network structure influences language processes. The
present study analyzes a novel phonological network using collected phonological association
data. 1,018 participants provided up to three phonological associates to a cue word. The cue and
response words were used as nodes in the phonological association network, and edges were
placed between cue and response pairs. The resulting phonological association network structure
exhibited several characteristics, like small-world structure and assortative mixing by degree that
were similar to the well-studied one-phoneme difference phonological network, but the
phonological association network was also different in structure from the well-studied one-
phoneme difference phonological network. In addition, three age-related phonological
association networks were examined that represented young adulthood, early middle adulthood,
and late middle adulthood. However, there was little phonological network structure change
across these age-related networks. Lastly, cutting-edge research in Network Science that uses
multiplex networks was employed to examine the semantic and phonological systems
simultaneously. This multiplex consisted of two layers: semantic associations and phonological
associations. Cue and response words were used as nodes and edges were placed between cue
and response pairs in their respective layers. The two layers are distinctly different in their

network structure as they represent different aspects of the mental lexicon. However, there was
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overlap between layers, or instances where a pair of words was connected in both the semantic
and phonological layers. Regression analyses were conducted to further assess the influence of
single-layer and multiplex network structure on behavioral performance. Specifically, the
reaction time for visual lexical decision and naming were predicted using semantic degree,
phonological degree, aggregated multiplex degree, multidegree, and the interaction between
semantic and phonological degree. The results of a model building procedure indicated that all of
the degree measures were needed in the regression analysis model, providing evidence that
multiplex structure and the interaction between layers is important to word processing. In sum,
the findings from this study provide evidence that phonological associations can be used to
construct a representation of the phonological system, that phonological network structure does
not significantly change with increasing age, and that the multiplex structure is important to

language processing.
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Chapter 1: Using Network Science to Understand Language Processing

Complex systems exist in all aspects of our lives from the way we travel and how we surf
the Internet to the way people communicate with others or a body communicates with itself
(Newman, 2008). By defining two parameters, nodes and edges, these complex systems can be
examined as a network, where nodes represent an entity (e.g., people) and edges represent
relationships (e.g., friendship). With the tools of Network Science, we can describe the
underlying structure of the complex system and make inferences about how processes occur
given that structure. For instance, in an analysis of a social network of friends, the tools of
Network Science can be used to assess which people in the network are the most connected and
can spread information very quickly to many others. By being able to model the structure and
processes of a complex system, Network Science has emerged as a useful tool in a variety of
disciplines, including cognitive psychology. In particular, language networks that represent
aspects of the mental lexicon (or the place in memory where all the words a person knows are
stored) have been examined as a way to better understand how words are represented, organized,
and used.

A network of the mental lexicon is constructed with nodes representing words and edges
connecting words that are related. Relatedness could be defined in several ways, including
meaning (i.e., semantic relationships) or sound (i.e., phonological relationships). The
connections found in “semantic networks” have been defined in a number of ways, including
connecting words that are associates (e.g., De Deyne, Navarro, & Storms, 2013; Hills, Maouene,
Maouene, Sheya, & Smith, 2009; Morais, Olsson, & Schooler, 2013; Nelson, McEvoy, &
Dennis, 2000; Steyvers & Tenenbaum, 2005), connecting words if they share features (e.g.,

Hills, et al., 2009), connecting words that are synonyms or antonyms of each other (e.g., Motter,



Moura, Lai, & Dasgupta, 2002; Ravasz & Barabasi, 2003; Steyvers & Tenenbaum, 2005), or
connecting words if they co-occur in usage (e.g., Ferrer i Cancho & Sol¢, 2001; Lund & Burgess,
1996). In a “phonological network”, on the other hand, the overlap of strings of phonology
determine relatedness between words. For example, Vitevitch (2008) connects word with high
phonological overlap, where words are connected that differ by only one phoneme either through
addition, deletion, or substitution (Luce & Pisoni, 1998). Other phonological networks have been
examined that measure lesser degrees of overlap, where one phonological string is a subset of
another (e.g., Kello & Beltz, 2009).

Importantly, with Network Science, we can examine not just the individual properties of
words as is commonly done in the traditional psycholinguistic approach, but also the
relationships that exist among them. The structure that emerges from these connections in a
language network will have important implications for how processing occurs. Consider this
scenario: Two networks are created with the same number of nodes and the same number of
edges. The only difference between these two networks lies in the structure that emerges from
how those edges connect the nodes. In one network, the edges are placed randomly, while in the
other network, the edges are placed according to a defined relationship. The structure of the
edges in the latter network may allow for more efficient processing than in the former network,
highlighting the importance of how edges are defined in the network and the structure that
emerges. Through structural examination of networks, researchers can determine which network
best models the mental lexicon by testing derived predictions with behavioral experiments.
Therefore, continuing to model and understand the structure of the mental lexicon will provide
new insight on word retrieval processes that cannot be done with the standard psycholinguistic

approach alone, which typically considers only processes or only representations.



Single-Layer Networks of the Mental Lexicon

As stated previously, understanding the structure of a network will provide insight into
how processing will occur in that network. Specifically, a single-layer network is one in which
there is only a single defined type of edge placed between nodes. There are many standard
network measures commonly obtained when examining single-layer networks (see Appendix A
and below for descriptions of these measures), and there are measures that assess three different
levels of the network structure. Micro-level measures examine individual nodes in the network
and the nodes immediately connected to that individual (i.e., “neighbors”) Macro-level measures
examine the whole network and general tendencies of that network. And, in between the micro-
and macro-levels, the meso-level measures focus on sub-sets or communities of nodes. By
examining the network structure at these different levels, researchers can consider how the
structure of the mental lexicon might influence processing during word retrieval beyond some of
the more traditional psycholinguistic measures that focus only on the characteristics of individual
words (e.g., word frequency and word length).

Micro-level analysis. One measure that has received much consideration is degree, or
the number of immediate connections of a particular node. In psycholinguistic research, degree
in a phonological network has also been termed phonological neighborhood density (Luce &
Pisoni, 1998). However, I will use the term degree in the remainder of this paper. A node with
high degree is connected to many similar words, whereas a node with low degree is connected to
few similar words.

Research has found that degree of a node can influence the ease and speed with which the
associated word is recalled or produced. For example, individuals produce more speech errors

and tip-of-the-tongue states for words with low degree and are slower to produce low degree



words than high degree words (Harley & Bown, 1998; Vitevitch, 1997; 2002; Vitevitch &
Sommers, 2003). In contrast, words with high semantic associate set size (equivalent to degree)
are slower and less accurately recalled (Nelson, Bennett, Gee, Schreiber, & McKinney, 1993;
Nelson & McEvoy, 1979; Schreiber & Nelson, 1998). The difference in effect for degree in these
two examples may be due to 1) the system of examination (phonological vs semantic), and/or 2)
the task itself (a production task vs a recall task).

A second micro-level measure is clustering coefficient, which has been shown to also
influence word retrieval processes. The clustering coefficient assesses the extent to which
neighbors of a node are also connected to each other (Watts & Strogatz, 1998). A node with high
clustering coefficient has many connections amongst its neighbors, whereas a node with low
clustering coefficient has few connections amongst its neighbors.

In the phonological network, Chan & Vitevitch (2010) found that participants produced
words with high clustering coefficient more slowly and less accurately than words with low
clustering coefficient. Having a more interconnected local neighborhood was more detrimental
for word production processes than having a less interconnected local neighborhood. In the
semantic association network, Nelson and colleagues found that participants recalled more words
with higher interconnectivity (equivalent to clustering coefficient) amongst associates than words
with lower interconnectivity amongst associates (Nelson, et al., 1993). Similar to the findings of
degree, the differing effects of clustering coefficient may be due to differences in the system
being examined and/or the task.

It is important to note that although degree and clustering coefficient are both micro-level
measures, they describe different aspects of the micro-level structure and can have different

effects on processing (see Figure 1). For example, in the phonological network, low degree is



more detrimental for word production, whereas high clustering coefficient is more detrimental.
In other words, having few neighbors that sound similar can disrupt word production processes,
but high interconnectivity amongst the neighbors (regardless of how many neighbors) can also
disrupt word production processes. Figure 1 shows an example from Chan & Vitevitch (2010) of
two words (badge and log) that have the same degree and would be considered as having high
degree. However, despite both having the same high degree, the word badge would be more
difficult to produce than the word /og due to their differences in clustering coefficient. Taken
together, these findings highlight the importance of looking at multiple types of network
measures even at the same level of analysis to gain the most complete picture of how structure

influences processing.

budge

Figure 1. Example words from the phonological network with the same degree but different
clustering coefficients. Reprinted from Chan & Vitevitch (2010). The words badge and log have
degree of 13, but hadge has a clustering coefficient of 0.58 and /og has a clustering coefficient of
0.28. Despite having the same degree, badge and log would still have different rates of success in
production (e.g., speed and accuracy).



Meso-level analysis. At the meso-level, the unit of analysis is communities of nodes
within the larger network. Nodes within a community are densely connected to one another, with
few connections between communities (Newman & Girvan, 2004; Ravasz & Barabasi, 2003).
This community structure is thought to occur through the natural division of a larger network
into smaller groups that share features. Indeed, Siew (2013) found in the phonological network
that words within a given community shared similar phonological segments and lexical
characteristics compared to words in other communities. Additionally, Ravasz & Barabasi
(2003) suggested that the semantic network also has a community structure, where the
communities share meaning. Furthermore, they suggest that “important” highly connected nodes,
or hubs, serve as a bridge between communities allowing for the formation of a larger, robust
network (Ravasz & Barabasi, 2003).

The division of a large network into smaller communities may allow for more efficient
processing. For example, in the semantic network, the presence of communities could make the
initial search process for a target word more efficient by reducing the required search space from
the entire network to just the community that the word resides within. This hypothesis could
explain the semantic interference and facilitation effects in picture-word interference tasks. That
is, associatively related distractors that provide facilitation (e.g., carrot and rabbit; Sailor, et al.,
2009) would be located within the same semantic community. But, categorically related
distractors that interfere (e.g., chipmunk and rabbit; Damian, Vigliocco, & Levelt, 2001;
Hantsch, Jescheniak, & Schriefers, 2005; Rahman & Aristei, 2010) would be members of
separate communities competing for activation.

In addition, the typically found facilitation effects for phonology can also be explained by

the community structure of the phonological network. Recall that members of a given



phonological community share phonological segments. Communities may provide an indirect
way to send priming to needed phonology during word retrieval. For example, during a TOT
elicitation task, priming of the target word’s phonology has been shown to reduce the frequency
of TOTs if presented before the word retrieval task and has been shown to increase TOT
resolution if presented after the word retrieval task (James & Burke, 2000). In these studies, only
partial phonological information, from one phoneme to one syllable, is presented with each
prime. These primes likely reside in the same phonological communities as their target word.
Therefore, community structure could facilitate retrieval of phonology and reduce word retrieval
failures, and lends well for testing with behavioral studies and simulations.

Macro-level of analysis. At the macro-level, we consider the whole network structure.
Many of these measures are the average of all the node’s micro-level measures (e.g., average
clustering coefficient), but additional measures of node location, path length, mixing patterns,
and network description (e.g., small-world and scale-free structure) are also used to describe the
overall network structure.

All nodes in the network are located in one of three places: the giant component, an
island (or smaller component), or as an isolated hermit (Vitevitch, 2008). The giant component is
the largest grouping of nodes in the network that are all connected in some way. Islands are
separate, smaller components (i.e., fewer nodes than the giant component), where nodes in an
island are all connected to each other. Lastly, hermits are nodes that have no connection with any
other node in the network; in other words, they are isolates.

A comparison of giant component size of semantic and phonological networks provides
interesting insight into the overall connectedness of these networks. In particular, the giant

component of a semantic network has been shown to be quite large (e.g., about 96% of all nodes



in the network; Steyvers & Tenenbaum, 2005), whereas the giant component of a phonological
network is much smaller (e.g., about 34% of all nodes in the network; Vitevitch, 2008). The way
in which similarity is defined in semantics versus phonology lends to these stark differences in
giant component size. For example, in an association network, where edges are placed between
cue and response words, it is much more difficult to get an island and hermit word due to the
nature of the association task.

Taking note of not just the size of these components, but also the way the structure of
these components influences processing, is important. Little research has explicitly examined
how location of nodes influences word processing. However, it is often noted that words located
in the giant component tend to be of shorter length, higher word frequency, and earlier age of
acquisition than words located in islands or as hermits (Siew, 2013). The traditional
psycholinguistic hypothesis would be that words in the giant component should be easier to
retrieve and produce given their item-level characteristics. However, a study by Vitevitch and
Castro (2015) examining archival picture naming data of healthy older adults and individuals
with aphasia, highlight the importance of looking closer at the influence of location on
processing. This initial examination showed that words located outside of the giant component
were easier to name than words located inside of the giant component for both healthy older
adults and individuals with aphasia (Vitevitch & Castro, 2015). Further research is needed to test
these effects in young adults as a test for the influence of age, as well as using a continuous
variable of component size (rather than inside versus outside of the giant component).

A second way to assess the macro-level structure of the network is to determine
“distance” measures, like average shortest path length. Path length is the number of connections

that must be traversed to get from one node in the network to another node in the network (Watts



& Strogatz, 1998). The average shortest path length is computed by taking the average of all the
shortest path lengths of all pairs of nodes in the network. Having short average path length
suggests that traversing across even a large network can be done very easily by taking
“shortcuts.”

Both semantic and phonological networks have short average path lengths. In the
semantic networks explored by Steyvers and Tenenbaun (2005), the average path length was 3
with a maximum path length of 5, whereas in the phonological network of Vitevitch (2008) the
average path length was approximately 6. The smaller average path length of the semantic
network may be due to more interconnectivity amongst nodes as compared to the phonological
network, possibly due to the constraints of phonology. For example, there are only so many
phonemes in the English language and only a set number of ways to combine those phonemes to
create English words (i.e., phonotactic constraints).

Some work has been done with semantic networks to assess the influence of distance on
word processing through the examination of “near” and “far” neighbors of a target word. Given a
target word (e.g., bottle), “near” neighbors (e.g., jar) would be more similar in meaning than
“far” neighbors (e.g., skillet). In a picture-word interference paradigm, naming latencies of a
target word were slower when presented with a semantically “near” neighbor than a semantically
“far” neighbor (Vieth, McMahon, & de Zubicaray, 2014; but see Hutson & Damian (2014) for
no effect). Additionally, in a blocked naming task, blocks that contained items from two “near”
categories (e.g., body parts and clothing) were named slower than items from two “far”
categories (e.g., body parts and vehicles; Vigliocco, Vinson, Damian, & Levelt, 2002). This
finding is consistent with the previous hypothesis regarding communities of semantic categories,

in that words within a community would facilitate processing and words in different
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communities would interfere in processing. The addition of distance suggested here would be
that closer communities would have more interference than farther communities. Important to
note is that these current measures of distance (i.e., “near” vs “far”) are based on subjective
ratings, rather than defined Network Science measures. By using a Network Science measure,
like path length, we can quantify exactly how many connections lie between one node and
another in the network, thereby providing a more precise definition of “near” and “far.”

Mixing patterns refer to the way in which nodes tend to connect. For example, in a social
network, people tend to be friends if they have the same gender, race, or age. Pertinent to
language networks, mixing patterns among words are also found. In semantic networks, mixing
has been found for a variety of measures including part of speech, valence, dominance, arousal,
and concreteness (Van Rensbergen, Storms, & De Deyne, 2015). Participants tend to produce
words that are similar on these characteristics as the cue word presented to them and highlight
different ways in which “meaning similarity” can be subjectively defined in the network.

Network properties of a node, for example degree, can also be used to describe mixing
patterns, and have been found in phonological networks. Two examples of mixing by degree is
assortative mixing by degree and disassortative mixing by degree. Assortative mixing by degree
is the notion that nodes with high degree tend to connect to other nodes with high degree,
whereas disassortative mixing by degree is the notion that nodes with high degree tend to
connect to other nodes with low degree (Newman, 2002).

The phonological network of Vitevitch (2008) has assortative mixing by degree, and has
been found to influence word retrieval. Specifically, Vitevitch, Chan, and Goldstein (2014)

found that participants are more likely to respond with a word of the same degree in a variety of
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psycholinguistic tasks (e.g., hear a high degree word and respond with a similar sounding high
degree word), and may be useful in assessing the definition of “phonological similarity.”

Mixing by degree also has important implications for the resiliency of a network; in other
words, how connected does the network remain with the removal of nodes. For example,
Newman (2002) examined how the targeted removal of nodes by degree (e.g., removing nodes
with the highest degree first) affects network structure as compared to the random removal of
nodes. Indeed, Newman (2002) found that a network with assortative mixing by degree is more
resilient to a targeted attack than a network with disassortative mixing by degree. One
explanation for this finding is that assortatively mixed networks have a more highly
interconnected giant component with many redundant pathways of connections, and removing
one of the high degree nodes will have little impact on processing. However, in the
dissassortatively mixed network, the connections of high degree nodes are more likely to be
diffused across the network, and their loss will be more detrimental to the network (Newman,
2002). This has also been seen in the relatively consistent average path length of a phonological
network after the targeted removal of high degree nodes (Arbesman, Strogatz, & Vitevitch,
2010).

Given that both semantic and phonological networks exhibit assortative mixing by
degree, language networks would be hypothesized as being resilient to damage. However, there
are changes to language processing with diseases, and even normal, healthy aging. Therefore, it
is important to further study the way in which these measures can be used to assess changes in
network structure over time and test different models of “damage.” For instance, it may not be
the case that random or targeted removal of nodes occurs with age or disease (because this would

be equivalent to a word or concept being removed from the lexicon), but rather a weakening of
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connections between nodes (Borge-Holthoefer, Moreno, & Arenas, 2011; Steyvers &
Tenenbaum, 2005). One way to assess how these different types of damage to the network
manifest in actual behavioral changes would be to conduct computer simulations. For example,
we could simulate a network where nodes are removed and compare that to a network where
edges are weakened to see which approach better accounts for real data of patients with dementia
or aphasia.

Lastly, networks can be classified in different ways based on their macro-level structure,
like small-world and scale-free structure. Small-world structure is the notion that despite being
large in size (i.e., many nodes), the network is easy to traverse. This is the commonly understood
notion of “six degrees of separation” discussed in social psychology (Milgram, 1967), whereby
there are, on average, six people between you and any other person in the world. A network is
said to have a small-world structure when average path length is approximately equivalent to, but
average clustering coefficient is much greater than a comparably-sized random network (Watts
& Strogatz, 1998).

On the other hand, scale-free structure is the notion that few nodes have many
connections, and many nodes have few connections. Those nodes with many connections are
sometimes called “hubs”, which have been found to be critical in mechanisms of network
growth, network resiliency, and the spread of processing across a network (Albert, Jeong, &
Barabasi, 2000; Newman, 2008). A network is said to have a scale-free structure when the
degree distribution of the network follows a power-law, which contrasts with the degree
distribution of a comparably-sized random network (i.e., same number of nodes and edges, but

one where edges are placed randomly) that follows a Poisson distribution (Newman, 2008).
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Small-world structure and scale-free structure have been assessed for networks of the
mental lexicon. Both semantic networks (Morais, et al., 2013; Motter, et al., 2002) and
phonological networks (Vitevitch, 2008) have been defined as having small-world structure,
which allows for an efficient and rapid search of the network (Kleinberg, 2000; Vitevitch, 2008;
Watts & Strogatz, 1998). Interestingly, though, language networks are more mixed on scale-free
structure. Some semantic networks have been shown to exhibit a scale-free structure with degree
distributions following a power-law (Steyvers & Tenenbaum, 2005). However, in other semantic
networks, the degree distribution is better fit by a logarithmic scale with an exponential cut off
(Morais, et al., 2013). And furthermore, the phonological network of Vitevitch (2008) best fits an
exponential distribution. For language networks, it seems more plausible to not exhibit scale-free
structure. Morais, et al. (2013) argue that there is a limit to the storage and processing of
information. Specifically, having many words with few connections would be ideal so as not to
have an overly connected network that slows processing, and also having a boundary for the
maximum number of connections a node can have is important for capacity limits.

In sum, Network Science measures can be utilized to examine word retrieval in ways that
cannot be done by using traditional psycholinguistic approaches, namely through the
consideration of how structure influences processing. Another advantage of the Network Science
approach is that it can model multiple layers of information simultaneously. Current research on
networks of the mental lexicon tend to focus on only one layer of information (i.e., just
examination of semantic relationships or just examination of phonological relationships).
However, emerging work in Network Science is examining multiplex networks, which are

networks that contain two (or more) different types of relationships. Thus, it is possible to create



14

a network that includes representations for both semantic and phonological relationships at the
same time, and will provide a more comprehensive model for testing.
Multiplex Network of the Mental Lexicon

As with most traditional psycholinguistic research, examination of networks of the
mental lexicon has only focused on one type of relationship at a time. These exclusive analyses
may be due to the way that Linguistics categorizes the field (e.g., phonology and semantics are
different sub-disciplines) to the “modules” found in most models of speech perception and
speech production, or simply for simplicity’s sake. Indeed, Strogatz (2001) highlights that
although there are many useful avenues of investigation with networks, different disciplines will
suppress some aspects of networks to focus on others. This includes ignoring other potentially
relevant “layers” of information (i.e., examination of only one type of edge between nodes) to
fully understand what is happening in only one layer.

However, the possibility exists to include multiple types of edges in a network to
examine multiple layers simultaneously (see Kivela, et al., 2014). A multiplex network is a
specific kind of multilayer network in which all layers share the same nodes (Figure 2). Given
that most models of speech perception and production have a notion of a semantic “module” and
a phonological “module”, it is important that both are examined simultaneously, where one layer
represents semantic relationships and another layer represents phonological relationships.
Indeed, one multiplex has been examined thus far that includes aspects of semantic, syntactic,
and phonological relationships amongst words (Stella, Beckage, & Brede, 2017), and has been
shown to be a better predictor of word acquisition in children than using single-layer networks

alone. Therefore, the use of a multiplex network will enable a more inclusive examination of the
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structure of both the semantic and phonological relationships among words, and allow for testing

of how this complex structure influences a variety of language processing.

Figure 2. A depiction of a two-layer multiplex network. Reprinted from Gomez, et al. (2013).
Each layer is represented by a plane and each plane consists of the same nodes as indicated by
the dashed lines. However, edges within a layer can be different as indicated by the solid lines.

Multiplex analysis. There are different ways to visualize and analyze a multiplex
network. For example, the multiplex can be constructed to include two types of edges (intra- and
inter- layer edges), like done in other types of multilayer networks. Intra-layer edges are those
edges placed between nodes within a given layer (e.g., the solid lines in Figure 2), whereas inter-
layer edges are edges placed between nodes across layers (e.g., the dashed lines in Figure 2). An
alternative method for visualizing and analyzing a multiplex is to reduce the layers into one
network by using colored edges (see Figure 3), where a different color is used for the edges of
each layer. In the unique case of multiplex networks, inter-layer edges only represent one-to-one
mappings of words, and are not often included in network analysis. From this edge-colored
multiplex, similar structural measures to that examined with single-layer networks can be

obtained and analyzed.
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Figure 3. An edge-colored multiplex of the Mental Lexicon. Reprinted from Stella, Beckage, &
Brede, (2017). Panel A depicts four single-layer networks: Association, Co-occurrences,
features, and phonological similarity. Panel B represents the multiplex network with four edge-
colored layers.

First, degree is still a useful measure in a multiplex network and represents the number of
neighbors for a given node. Degree can be defined within each intra-layer and calculated as done
previously with single-layer networks (Kivela, et al., 2014), allowing for a comparison of degree
for a particular node across layers. For example, the semantic degree of a particular node can be
compared to its phonological degree. With a multiplex, though, we can also determine
multidegree (Bianconi, 2013; Kivela, et al., 2014). If a pair of nodes are connected in multiple
layers, then a multilink can be placed between these nodes. For example, if two nodes are
connected in both the semantic layer and the phonological layer, then a multilink would be
placed between the node pair. Multidegree then is the number of multilinks of a given node. This
measure provides some idea of the amount of overlap between the layers of a multiplex. For
example, rat-cat share both semantic and phonological edges, and would have a multilink, as
contrasted to pairs of nodes that are only connected within one layer (e.g., dog-cat in the
semantic layer and mat-cat in the phonological layer).

Clustering coefficient can also be defined in a multiplex, but suffers from a complexity

issue of deciding whether to consider edges in one layer or multiple layers (Kivela, et. al., 2014).
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Recall that in the single-layer network measure, clustering coefficient is a measure of how
connected the neighbors of a node are to one another. Intra-layer clustering coefficients can be
calculated from the multiplex and would be identical to the clustering coefficients obtained when
examining that layer’s single-layer network.

To examine multiplex clustering coefficient that takes into consideration the edges in
multiple layers, Cozzo, et al. (2013) suggest an examination of “3-cycles,” in which the node of
interest and two connected neighbors form a closed triangle, regardless of what layer those edges
reside in. This form of clustering coefficient considers how many closed triangles can be created
for a particular node. Each closed triangle is formed by taking a total of 3 steps starting and
finishing at the node of interest (Figure 4). For example, panel A in Figure 4 shows the standard
single-layer closed triangle, where the node of interest forms a closed triangle of edges with two
neighbors in the same layer. Panels B-D in Figure 4 show ways in which a closed triangle can be
achieved with two layers. Importantly, the use of closed triangles to measure clustering
coefficient of a multiplex can help provide insight on how processing moves between layers of a

multiplex.

Figure 4. Depiction of closed triangles in single-layer and multi-layer networks. Adapted from
Cozzo, et al. (2015). Closed triangles are formed by making 3 steps starting at the orange node,
or the node of interest. The solid black lines represent edges between nodes. The yellow lines
also represent edges between nodes and indicate the second step in each triangle. Dashed lines
indicate identical nodes across layers. Depiction A shows a closed triangle in a single-layer
network. Panels B-D show different ways a closed triangle can be completed when considering
nodes in two layers.
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Careful note must be made regarding transitivity, or how processes move, within the
multiplex. Traversing across a multiplex is more complicated than traversing just a single-layer
network. Kivela, et al. (2014) state that there are two important theoretical questions that must be
answered: 1) does moving from one layer to another layer count as a “step” in the process, and 2)
are intra-layer “steps” equivalent across layers. These questions need careful theoretical
consideration. Regarding the first question, in the current models of speech perception and
production, moving between a semantic “module” and a phonological “module” is assumed to
incur some kind of “cost.” Therefore, the traversal between semantic and phonological layers in
the network should be considered as a “step.” For example, in tip-of-the-tongue (TOT) states, the
inability to successfully activate all necessary phonological nodes leads to a disruption in word
retrieval (Burke, MacKay, Worthley, & Wade, 1991). Activating the semantic information is
done successfully, but that activation does not spread successfully in the phonological system.
Moving activation from the semantic to the phonological system resulted in a “cost” that
impacted successful word retrieval.

Regarding the second question, a step within one layer is likely equivalent to a step in
another layer. Specifically, moving from one word to another in the semantic system would have
the same “cost” as moving from one word to another in the phonological system. Simulations
within a multiplex network representing semantic and phonological relationships may provide
additional insights into the costs associated with these intra- and inter- layer steps.

Shortest path lengths can also be determined from a multiplex with the same cautions
regarding transitivity. The freedom to move between layers may shorten average path length
overall. But, it is important to note that theoretically this may not be applicable in all language

processing contexts. The extent to which processing travels between semantic and phonological
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systems, for example, is a contested issue in psycholinguistics. For example, it is the case that
processing travels top-down from the semantic system to the phonological system during word
production, but the amount of interaction back and forth between the semantic and phonological
systems is thought to be minimal, if it is possible at all. However, such switching may occur
when a particular search strategy is used, for example in a language- or word-game task.

In addition to these network measures that are similar between single-layer and multiplex
networks, there are additional measures that can be calculated to determine the amount of
overlap between layers in a multiplex. For example, the degree of multiplexity assesses the ratio
of node pairs with multilinks to the total number of all node pairs in the network (Kivela, et al.,
2014). If there is high overlap between two layers in the multiplex, then the degree of
multiplexity will be close to 1. However, if there is little overlap between the layers in the
multiplex then the degree of multiplexity will be close to 0.

In sum, there are several measures that can be used to investigate the structure of a
multiplex, and these measures are complex due to accounting for multiple layers. It is important
to note that the usage of multiplex networks and measures is still an emerging area within the
larger discipline of Network Science. Using a well-studied domain, like language processing, it
would be possible for network scientists to further develop these multiplex measures. However,
the purpose of this paper is to begin the initial construction of a multiplex for the mental lexicon,
one that includes semantic and phonological relationships. By using some of the established
measures and a visual exploration of the multiplex, I will be able to see how the structure of
these two layers are different and how they overlap.

Given that words hold both semantic and phonological information, it would be

appropriate to have a multiplex that includes the same nodes (i.e., words) in both layers and
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represents both aspects of the words. In addition, for this multiplex, it is important to also
consider having similar operational definitions for edges in each layer. This will help ease
interpretation of any effects derived from this multiplex. Semantic association data has been
made available to help achieve this goal. Chapter 2 describes the collection and analysis of
phonological association data, which is then used to create a phonological association network in
Chapter 3. In addition, to comparing different types of phonological network structures in
Chapter 3, a comparison of age-related phonological networks will be done in Chapter 4. Then,
Chapter 5 consists of an analysis of the multiplex structure that includes both semantic and
phonological associations. Finally, a discussion of the current findings and their limitations, as

well as future directions, is given in Chapter 6.
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Chapter 2: Phonological Association Task
Introduction

One common way to define edges in semantic networks is to use association norms
(Nelson, et al., 2000). That is, participants are given a cue word and are asked to respond with
the first word that comes to mind. Nodes are the cue and response items, and edges are placed
between cue-response pairs (e.g., De Deyne & Storms, 2008; Morais, et al., 2013; Steyvers &
Tenenbaum, 2005). These semantic association networks are created from participant-driven
data, rather than corpora or printed materials (e.g., dictionary or thesaurus).

On the other hand, the commonly studied phonological network of Vitevitch (2008) uses
the one-phoneme metric to define edges. Nodes are words from the Merriam Webster Pocket
Dictionary, and edges are placed between words that differ by one phoneme (through addition,
substitution, or deletion; Luce & Pisoni, 1998). This phonological network, although shown to
explain several psycholinguistic findings for word recognition and production (Vitevitch,
Goldstein, Siew, & Castro, 2014; Vitevitch & Luce, 2016), is not derived from participant data,
and to some may seem like an arbitrary measure of phonological similarity (e.g., why only a one
phoneme difference, rather than two or more?).

Conducting the phonological association task will provide two benefits. First, similar
operational definitions of edges in the semantic and phonological layers of the multiplex
analyzed in a later chapter will allow for an easier interpretation of findings, particularly when
comparing words that are semantically related to words that are phonologically related. Second,
a comparison of the phonological association network to the well-studied phonological network
of Vitevitch (2008) will help determine if different operational definitions of “phonological

similarity” have significant influences on the overall structure of the network.
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Method

Participants. A total of 1,051 participants completed the phonological association task.
However, data from only 1,018 participants is described here. Participants were dropped
according to data pre-processing steps detailed later. Table 1 provides detailed demographic
information of the 1,018 participants. All participants (37.6% male) were native English speakers
from the United States. Participants ranged in age from 18 to 99 years (M =42, SD = 16).
Education level of participants ranged from high school to doctorate. Participants were recruited
from Amazon Mechanical Turk (87.3%) and from the University of Kansas SONA-Systems pool
of undergraduate psychology students. Amazon Mechanical Turk participants received monetary
compensation, whereas SONA participants received partial course credit. It should be noted that
there were no participants over the age of 25 recruited from the SONA-Systems pool. Therefore,
all of the adults in middle to late adulthood participating in this study were sampled using
Amazon Mechanical Turk. Given the level of computer literacy required to use Amazon
Mechanical Turk it is not very likely that the middle to late adulthood participants had significant

cognitive deficits.
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Number of Participants by Age and Education Level.

Education Level
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Age High Some Bachelor’s | Master’s | Doctorate
(years) School College Degree Degree Degree TOTAL
18 to 24 8 146 14 1 0 169
25 to 34 24 73 124 16 2 239
35to 44 18 48 63 25 6 160
45 to 54 21 39 41 17 9 127
55 to 64 28 84 79 32 9 232

65+ 11 26 30 17 7 91
TOTAL 110 416 351 108 33 1018

Determination for the appropriate sample size of this study was made based on the
sample sizes and cue-response parameters of semantic association tasks. Sample size does vary
among studies, for example, from 300 (Nelson, et al., 2000) to more than 70,000 (De Deyne, et
al., 2013) participants. Additionally, these studies vary in the number of cue words each
participant receives and the number of responses participants are expected to provide. For
example, Nelson, et al., (2000) presented 60 cue words and requested 2 responses, whereas De
Deyne, et al. (2013) presented on average 18 cue words (ranged from 7 to 30) and requested 3
responses. Importantly, presenting fewer cue words and requesting fewer responses will require
more participants. In the present case 60 cue words were presented and 3 responses were
requested as a way to compensate for the relatively small sample size that serves as a starting
norm dataset for phonological associations.

Materials. In order to create the multiplex in a later chapter, it is important to have cue

words that are used to obtain both the semantic and phonological association responses. A
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semantic association dataset is already available with permission from S. De Deyne. The same
cue words from the semantic association dataset were used as the cue words for the phonological
association task in this study. The original set of cue words from S. De Deyne had 10,050 words.
Items that were more than one word (e.g., apple juice), proper nouns (e.g., America), represented
in different spellings (e.g., labour vs labor; the American version was maintained), or
inappropriate (e.g., taboo words) were removed from the list, leaving 9,371 words.

Qualtrics was used to administer the phonological association task and data was analyzed
using R version 3.4.0 (R Core Team, 2017). An informed consent statement was given to
participants, and they indicated consent before the study began. Demographic questions
capturing age, education, and whether they were a native English speaker were shown.
Instructions for participation were then displayed, followed by the phonological association task.
During the phonological association task, instructions remained on the screen followed by a cue
word and text box for the input of responses. Cue words that were homographs (n=154 words)
were presented with a sample sentence using the intended pronunciation (see Appendix B).
Intended pronunciation was determined by the semantic association data collected by S. De
Deyne.

Procedure. After providing consent and answering basic demographic questions,

participants were presented with the following instructions: Your task is to provide up to three

words that SOUND similar to the word provided. Type those responses that immediately come to

mind. Do not spend too long on any one item. If you do not know the word provided or do not
have any responses that immediately come to mind, please type “DK”. Note that it is acceptable
to type only one or two words, but no more than three. Please use commas (,) to separate your

responses.
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After reading the instructions, participants then moved on to the association task. A cue
word was presented on the screen and a text box was available for participants to provide their
responses. In addition, the instructions remained on the screen for reference if needed. Each
participant received a total of 60 random cue words, and each cue word was responded to by at
least 6 participants (max = §8).

Results

Cleaning of Data. Before performing any analyses on the network, preprocessing was
completed like that done with the semantic association data (De Deyne, et al., 2013). First, data
from participants who responded with 65% or more “Don’t Know” responses were removed. De
Deyne, et al. (2013) had a cutoff of 50% or more “Don’t Know” responses; however,
suppressing semantic associates and providing phonological associates is a harder task, hence the
increase in allowable “Don’t Know” responses. Also, participants who responded with semantic
associates were also excluded. Responses from 15 random cue words for each participant were
examined to determine if semantic associates were provided that contained no phonological
overlap (e.g., CLIMATE-WEATHER). If those responses were primarily semantic associates,
then their data were excluded. These criteria helped to ensure that participants completed the
phonological association task according to task instructions with effort, and resulted in the loss
of 33 participants’ data.

Next, all responses were examined to ensure they were real words by comparing
responses to the commonly used word corpora of SUBTLEX-US (Brysbaert & New, 2009),
Kucera & Francis (1967), and CELEX (Baayen, Piepenbrock, & van Rijn, 1993). Spelling errors
were corrected if it was clear what the intended word was (e.g., recieve). Any remaining words

not found in the word corpora were examined further. In some cases, the word was a real word as
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found in the dictionary, but had an uncommonly used morphological form (e.g., anointer). These
words were not listed in the corpora, but were retained. The remaining words not found in the
word corpora and determined not to be a real word by checking in the online Merriam-Webster
dictionary (www.merriam-webster.com) were removed. In addition, two-word responses, proper
nouns, and inappropriate responses (including those words that were removed from the original
cue list) were also excluded. This resulted in 8,575 responses (~10% of the data) being excluded
from analysis.

After removal of data as indicated above and only examining actual word responses (i.e.,
removal of “Don’t Know” responses), there was a total of 77,451 cue and response pairs
generated by participants. Of these responses, there were 56,747 unique cue and response pairs.
Table 2 provides the number of participants providing each unique cue-response pair. It can be
seen that a large number of unique cue-response pairs were made by only one participant
(76.8%). What is often done in association datasets is to remove those responses that are not
frequently made as a way to ensure that responses are reflective of “most” people. For example,
the minimum cut-off would be to remove those responses that are not generated by at least two
people (Nelson, et al., 2000). However, a number of appropriate responses would likely be
discarded in the current study should this minimum cut-off be used. Rather than following
removal cut-offs as done in previous work, weights on the edges will provide an alternative way
to maintain the data but acknowledge the frequency of responses. The weighting of edges will be

included in the phonological association network analyzed in the next chapter.
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Table 2.

Count and Frequency of the Number of Participants Generating the Same Response for a
Particular Cue Word.

Number of Participants Number of Percentage of
with Same Response | Unique Cue and | Unique Cue and
to a Particular Cue Response Pairs | Response Pairs

1 43,602 76.8%

2 8,223 14.5%

3 3,087 5.4%

4 1,206 2.1%

5 476 0.8%

6 134 0.2%

7 18 <0.1%

8 1 <0.1%

Description of Words. There was a total of 20,575 unique words in the phonological
association dataset. This set of words consisted of 9,329 of the original cue words (9,298 were
responded to as cues and 7,669 were provided as responses) and another 11,246 new words.

Two standard psycholinguistic measures were calculated for the phonological association
dataset: length and word frequency. Words varied in length as measured by the number of
phonemes from 1 to 15 (M =5.8, SD =2.0). Word frequency was determined by extracting from
standard corpora the log of word frequency, since it is known that word frequency is highly
skewed. First, the log of word frequency was taken from SUBTLEX-US (Brysbaert & New,
2009), with 557 words not found in SUBTLEX. Kucera and Francis (1967) was used to obtain
the log of word frequency for another 174 words, and CELEX (Baayen, et al., 1993) was used to
obtain the log of word frequency for another 302 words. The remaining 81 words were verified
as real words in the dictionary and given a value of 0 for the log of word frequency. SUBTLEX-

US was chosen as the starting word corpus because it has been shown to be more reliable in
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predicting participant performance on standard psycholinguistic tasks (Brysbaert & New, 2009).
In the phonological association dataset, the log of word frequency varied from 0 to 6.33 (M =
1.88, SD = 0.92).

An additional 40 cue words had no responses to them and were not provided as
responses. These words ranged in the number of phonemes from 3 to 10 (M = 6.5, SD = 1.6) and
ranged in the log of word frequency from 0 to 3.26 (M = 1.98, SD = 0.76).

Age differences were also examined given that word finding problems increase with age
and may impact performance during the association task. Three age groups were examined that
resulted in a fairly even distribution of the sample: young, early middle, and late middle adults.
The young adult group ranged in age from 18-34 years (M = XX, SD = XX). The early middle
adult group ranged in age from 35-54 years M = XX, SD = XX). And, the late middle adult
group ranged in age from 55 to 99 years (M = XX, SD = XX). Although there were some
participants over the age of 75 that could represent an older adult category, their number is small.
Thus, the sample is more representative of an early middle and a late middle adulthood range.

First, the time to complete the task was examined. On average, the task took 24.64 min
(8D = 16.38). Young adults took on average 22.26 min (SD = 17.90), early middle adults took
24.55 min (SD = 12.38), and late middle adults took 27.72 min (SD = 17.03). This finding
suggests that the task took longer as age increased, and could be reflective of increased word
finding difficulties (but see below for an alternative explanation).

The proportion of responses by response number was also examined. Table 3 provides
the proportion of responses for each age category and response number. Young adults provided
28,467 responses, early middle adults provided 22,638 responses, and late middle adults

provided 26,346 responses. The proportion of first responses appears to decrease with age, while
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the proportion of second and third responses appears to increase with age. This may indicate that
older adults are more likely to provide multiple responses than younger adults, and may

contribute to the increased amount of time spent on the task.

Table 3.

Proportion of Responses for Each Age Category and Response Number.

Age Category First Responses Second Responses Third Responses
Young Adults 55.8% 29.3% 14.9%
Early Middle Adults 53.0% 30.8% 16.2%
Late Middle Adults 51.3% 31.3% 17.4%

Cue and Response Pairs. Of interest to this study is the amount of phonological overlap
between cue-response pairs. The number of phonemes different between each cue-response pair
was calculated following the one-phoneme difference metric of Luce and Pisoni (1998), where
phoneme changes include addition, substitution, and deletion. Cue-response pairs differed
between 0 (e.g., be — bee) and 11 phonemes (e.g., especially — unfortunately). Using the same
three age groups, the number of phonemes different for cue-response pairs was examined. Young
adults ranged in number of phonemes different from 0 to 11, with a mean of 2.38 phonemes.
Early middle adults ranged in the number of phonemes different from 0 to 11, with a mean of
2.36 phonemes. Late middle adults ranged in the number of phonemes different from 0 to 10,
with a mean of 2.32 phonemes. Therefore, age did not impact the range or average number of
phonemes different. Table 4 lists the count and frequency of phoneme differences for cue-

response pairs, regardless of age.
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Table 4.

Count and Frequency for the Number of Phonemes Different in Cue and Response Pairs.

Number of Count | % of All Cue- | Cumulative % of All
Phonemes Different Response Pairs | Cue-Response Pairs

0 655 0.8% 0.08%

1 27566 35.6% 36.4%

2 22234 28.7% 65.1%

3 11608 15.0% 80.1%

4 7460 9.6% 89.8%

5 4299 5.5% 95.3%

6 2178 2.8% 98.1%

7 938 1.2% 99.3%

8 372 0.5% 99.8%

9 107 0.1% 99.9%

10 30 <0.1% 99.9%

11 4 <0.1% 100.0%

Even though over 60% of cue-response pairs generated were different by only one or
two phonemes, there was a large range of phoneme differences, sparking further interest in the
cue-response pairs. Several additional analyses were conducted to better understand the
relationship between cue-response pairs provided by participants.

First, recall that participants could provide up to three responses to a given cue word.
There has been debate over the utility of this particular protocol of allowing multiple responses
versus one response. De Deyne, et al. (2013) argue that multiple responses provide richer data
that captures a larger portion of the mental lexicon, including weaker edges between words that
might not be captured if only collecting one response (i.e., strong edges only between a pair of
words). However, Nelson, et al. (2000) argue that although weak edges are added, the data
becomes less reliable in capturing similarity between words. For example, participants may be

making new responses in relation to their own earlier responses, rather than the cue word.
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To address this concern, the number of phonemes different between cue and response
pairs for each response number was examined, as well as the number of phonemes different
between first and second responses, second and third responses, and first and third responses for
a cue word. If participants are making later responses in relation to their earlier responses, and
not the cue word, it would be expected that the number of phonemes different between cue and
response will increase as response number increases. A one-way ANOVA examining the mean
number of phonemes different between a cue and each response number was statistically
significant, F(2, 22401) = 15.75, p <.0001. Tukey’s HSD showed that the mean number of
phonemes different was higher for cue-second responses (M = 2.83, SD = 1.52) than cue-first
responses (M =2.70, SD = 1.40) and cue-third responses (M = 2.75, SD = 1.63), ps < .01, with no
significant difference between cue-first responses and cue-third responses. This finding suggests
that second responses were furthest from the cue word in terms of phoneme overlap.

Additional tests were conducted to further examine the number of phonemes different
between responses of a cue word. If participants are making responses in relation to earlier
responses, rather than the cue word, the response to response phoneme difference should be
smaller than the cue to response phoneme difference. In other words, later responses should be
more phonologically different from the cue word than to an earlier response. When examining
second responses made to cues, a f-test showed that the number of phonemes different between
cue-second response pairs (M = 2.83, SD = 1.52) and first-second response pairs (M = 2.84, SD =
1.61) were not different, #(15359) = 0.40, p = 0.69. However, when examining third responses
made to cues, a one-way ANOVA was statistically significant, F(2, 16454) =9.86, p <.0001.
The number of phonemes different between cue-third response pairs (M = 2.75, SD = 1.63) and

first-third response pairs (M = 2.70, SD = 1.66) were larger than second-third response pairs (M
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=2.61, 8D = 1.65), ps < .05, with no significant difference between cue-third response pairs and
first-third response pairs.

These findings taken together suggest that second responses were likely made in relation
to the cue word presented, but third responses may have been made in response to earlier
responses. However, it is also interesting that even though third responses may have been
influenced by previous responses, they were also more likely to be closer in phonology to the cue
word than second responses.

In addition to the large range in the number of phonemes different between cue and
response pairs, the small proportion of responses that are one phoneme different (36.4%) is also
surprising. Previous studies eliciting phonological similarity associations from participants have
found high rates of one phoneme differences between cue-response pairs. For example, Luce &
Large (2001) found 71% of responses to nonwords to be one phoneme different, and Vitevitch,
et al. (2014) found 74.5% of responses to real words to be one phoneme different. In addition,
Vitevitch, Goldstein, & Johnson (2016) report proportions of responses at each difference in
number of phonemes, with 84.2% of the responses being one phoneme different from the cue.
However, these previous studies have only used cue words that are 3 phonemes in length,
whereas the present data used cue words that ranged from 1 to 14 phonemes in length.

To assess whether the present findings compare to previous findings regarding the
number of phonemes different between cue-response pairs, only cue words that are three
phonemes in length and their responses were analyzed. There was a total of 15,697 cue-response
pairs where the cue word was 3 phonemes in length. Responses in this subset of the data ranged
from 0 to 9 phonemes (M = 1.34, SD = 0.67). Table 5 provides the proportion of this subset of

data for each number of phonemes different, along with the reported results from Vitevitch, et al.
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(2016). Interestingly, the findings for this subset of the data resemble the previous findings. In
this data, 69.5% of the cue-response pairs had a one phoneme difference between them, with

23.5% of the cue-response pairs having a two-phoneme difference between them.

Table 5.

Count and Frequency for the Number of Phonemes Different between Cue and Response Pairs
where Cue Length = 3.

Number of Number of Cue- Frequency of Cue- Vitevitch, Goldstein, &
Phonemes Different Response Pairs Response Pairs Johnson (2016)

0 287 1.8%

1 10914 69.5% 84.2%

2 3695 23.5% 13.5%

3 627 4.0% 2.1%

4 124 0.8%

5 32 0.2%

6 10 <0.1% .07%

7 5 <0.1%

8 <0.1% .07%

9 2 <0.1%

Given that these findings for cue words with a length of three phonemes are consistent
with previous findings, it was of interest to further understand how the length of cue words
impacts the number of phonemes different between cue and response pairs. The large range in
number of phonemes different in the present phonological association data may be influenced by
cue word length, given that cue words were as long as 14 phonemes. Specifically, as the number
of phonemes increase in a cue word, the more phonemes that must be held constant to maintain
phonological overlap. This decreases the number of possible responses that a participant might
be able to provide for a cue word. Indeed, a Pearson’s correlation shows that as the number of

phonemes in the cue word increases, the difference in the number of phonemes between cue and
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response also increases, » = 0.68. The correlation is plotted in Figure 5 with the best fitting line
of y = 0.5416x — 0.3485 and R? = .47. In sum, these results provide evidence that the number of
phonemes different between cue and response pairs may be driven by factors like cue length and

response number.
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Figure 5. Scatterplot of cue word length and number of phonemes different between cue and
response. The Pearson’s correlation r = .68. The best fitting line is given in red, with darker blues
representing a larger proportion of responses.

Lastly, an analysis was done that considers the nature of the association task itself in
producing similarity associations. Indeed, an association task is hypothesized to capture semantic
relationships when individuals are asked to provide the first word that come to mind. In the
present phonological association task, participants are still required to provide responses that
immediately come to mind, but must also determine whether those responses sound similar to the
cue word. In this case, it may be possible that participants are still having semantic associates

come to mind from which phonological associates are filtered out, rather than the intention that
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only words that sound similar come to mind. It is important to note, though, that it is not
problematic for a participant to provide a response that is both phonologically and semantically
related. However, if participants selected responses on the phonological association task strictly
from the semantic associates that came to mind, the evidence should support a high rate of
semantic-phonological overlap in cue-response pairs.

To address this issue, each unique cue-response pair from the phonological association
task was compared to the cue-response semantic association pairs provided by S. De Deyne. Of
the 56,754 unique cue-response pairs provided in the phonological association task, only 4,034
pairs were also found in the semantic association data provided by S. De Deyne, or 7.1% of
phonological cue-response pairs (e.g., abdomen — abdominal). These findings suggest that
although some cue-response pairs were provided on both the phonological and semantic
association tasks, participants primarily provided only phonological associates, not semantic
associates that also happened to be phonologically related.

Discussion

The purpose of collecting phonological associations was to assess phonological similarity
between words using participant-driven data as a new way to construct a phonological network.
Studies have shown that a large proportion of phonological association responses tend to differ
by only one phoneme (Luce & Large, 2001; Vitevitch, et al., 2014, Vitevitch, et al., 2016). In the
present data, only a small proportion of phonological associates differed from the cue word by
one phoneme. Instead, a range of phoneme differences from 0 to 11 phonemes was found, with
the majority of the cue-response pairs being different by 4 phonemes or less.

There were several factors considered for why there was such a large range in phoneme

differences. First, response number may have been a factor, as previous work is conflicted on the
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validity of using multiple responses in an association task. In the present data, it appears that
response number may have had an influence, albeit small. In particular, it was found that second
responses had less phonological overlap to the cue word than first responses. Interestingly,
though, third responses had the same amount of phonological overlap to the cue word as first
responses, but were still more phonologically similar to the second response. These findings are
suggestive that earlier responses may have influenced later responses.

Another factor that was considered as an influence on the large range in phoneme
differences was the length of cue words. The previous findings showing a high proportion of
phonological associates that are only one phoneme different was conducted with cue words that
are only three phonemes in length. However, the present study had cue words that ranged from 1
to 14 phonemes. Indeed, when examining the cue words with a length of three phonemes only,
the present data is consistent with previous work. In addition, it was also found that as cue word
length increased, the number of phonemes different between cue-response pairs also increased.
This finding supports the notion that longer cue words require a larger proportion of their
phonemes to be maintained, and reduces the number of possible options available. Therefore,
having longer cue words in the phonological association task was a contributing factor to the
large range in the number of phonemes different between cue and response words.

A final factor was considered in the present study as an influence on the large range in
phoneme differences, namely task strategy. In particular, association tasks have typically been
used to capture semantic relationships. However, association tasks have also been used to
capture phonological similarity between words by modifying the task instructions. In these
studies, including the present study, participants are instructed to provide responses that

immediately come to mind that also sound similar. This additional instruction may or may not be
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enough to reduce the production of semantic associates. On the one hand, participants may first
have semantic associates come to mind from which they select phonological associates. On the
other hand, participants may have phonological associates come to mind, and some may also
happen to be semantically related. If the former case is true, a larger proportion of cue-response
pairs would be both semantically and phonologically related. However, in the present study,
there was only a small proportion (7.1%) of cue-response pairs that were also given in the
semantic association task. This suggests that participants were not influenced by semantic
associations, and completed the task as instructed.

Although the range in number of phonemes different between cues and responses does
raise the question as to how participants completed the task, the findings from this study suggest
that participants followed task instructions. In addition, age was found to not be a contributing
factor to the number of phonemes different. Time spent on the task did increase with age, but
also the proportion of second and third responses. Future research can continue to examine
strategies that participants employed in order to complete the phonological association task, as
well as other demographic factors, like education. For example, it may have been the case that
participants focused on morphology or thyming, particularly for the longer words. In these
instances, only a small portion of the word would be maintained (e.g., a stem or affix), and may
have led to some of the higher phoneme differences found.

In sum, association data has been widely used to understand the organization of semantic
representations, and will also serve useful in understanding phonological associations. In order to
further understand phonological similarity and its representation in the mental lexicon, Network

Science tools will be used in the next chapter.
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Chapter 3: Comparison of Phonological Association and One-Phoneme Metric Networks
Introduction

Network analyses have been used to better understand the way in which words are
represented and structured in the mental lexicon, and the influence of that structure during
language processes. In network analyses, words are represented as nodes and edges are placed
between words that are related. Associations, provided by participants through an association
task, have been used to construct and analyze semantic networks (e.g., De Deyne, et al., 2013;
Hills, et al., 2009; Morais, et al., 2013; Nelson, et al., 2000; Steyvers & Tenenbaum, 2005).
Phonological associations, however, have not been collected on a large scale, and thus have not
been used to create phonological networks.

From the phonological association data analyzed in Chapter 2, a phonological association
network was created. This network structure will be compared to the well-studied phonological
network of Vitevitch (2008) that defined phonological similarity using a one-phoneme
difference. In addition, the phonological association network is constructed using participant-
driven data, whereas the phonological network of Vitevitch (2008) is constructed using a corpus.
This comparison between different types of phonological networks is important for better
understanding how phonological similarity is represented in the mental lexicon. Indeed, the
phonological association network might capture novel aspects of phonological structure.
Method

The phonological association data described and analyzed in Chapter 2 was used to
construct the phonological association network analyzed in the present chapter. The nodes in this
network are the cue and response words, and edges are placed between cue and response pairs. In

addition, this data will also be used to construct a one-phoneme metric network that is
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comparable to the phonological network of Vitevitch (2008). The nodes in this network are the
cue and response words, and edges are placed between any two words that differ by one
phoneme through addition, substitution, or deletion (Luce & Pisoni, 1998). It’s important to note
that these networks are defining edges in different ways for different purposes. The phonological
association network is only considering participant-driven data, whereas the one-phoneme metric
network assumes that any cue word responded to and any response made would exist in the
mental lexicon. Therefore, one-phoneme difference edges can be placed between two response
words or between two cue words in addition to being placed between cue and response pairs.

To create the networks, two important decisions must be made concerning the way edges
are placed between nodes in the network. The first decision is whether to place “arcs” or “edges”
between nodes. An arc provides information about directionality. In the case of the association
data, an arc could be placed from the node of a cue word o the node of a response word since the
cue produced the response (and not the other way around). An edge, on the other hand, suggests
there is a symmetrical relationship between the two nodes.

The second decision is whether to include weights on edges. Weights would provide
information about the strength or frequency of the relationship between two nodes. In the case of
the association data, weighting captures the frequency of cue-response pairings. In other words,
cue-response pairs that are made by multiple participants would have a weight approaching a
value of 1, whereas cue-response pairs made by only one person would have a weight close to 0.
On the other hand, unweighted edges are assumed to be of equal strength.

Following Vitevitch (2008), the one-phoneme metric network in this study used
undirected, unweighted edges. However, for the phonological association network, directed,

weighted edges were used between each unique cue and response pair. Importantly, weighting
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was calculated by taking the number of a particular response given for a cue word divided by the
number of presentations of that cue word. For example, for the cue word ABLE, which was
presented 7 times, and the response of LABEL, which was given by 3 participants, the weight
between the cue-response pair of ABLE-LABEL would be 3/7, or 0.43. In this dataset, weights
ranged from 0.125 to 1.000 (M = 0.217, SD = 0.126), and a histogram of the weights is provided
in Figure 6. For reference, a weight less than 0.2 would signify cue-response pairs that were only

provided by one participant.

50000
45000 43602
40000
35000
30000
25000
200000
15000
10000

51000

Mumber of Unigue Cue-Response Pairs

430 774 180 347 g5

[.11,.20] [.21, .40] [.51, .20] [.71, .BO] [.21, 1]
[0, .10] [.21, .30] (.41, .50] [.61, .70] (.81, 90]

Weights

Figure 6. Histogram of weights. Weighting between a cue-response pair is determined by taking
the number of times a given response was made for a particular cue word divided by the number
of times that cue word was presented.

Finally, common practice in network analysis is to compare the network of interest to a
comparably-sized random network, or a network that has the same number of nodes and edges,

but where edges are placed randomly. The phonological association and one-phoneme metric
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networks were compared to comparably-sized random networks (i.e., the same number of nodes
and edges). These random networks were only used to determine “small-worldness” of the
network of interest. Network generation and analysis were conducted using the igraph package
(Csardi & Nepusz, 2006; Ognyanova, K., 2017) in R (R Core Team, 2017).
Analysis

As stated previously, there are several standard measures used to describe and compare
networks. This study focused on basic description of the overall network by calculating macro-
and meso- level measures, and included weighting of edges in the calculation of these measures.
Macro-level descriptions of the network, like small-world and scale-free structure, were
determined by analyzing the average shortest path length, average clustering coefficient, and
degree distribution of the network. Additional descriptive measures, like location of nodes in the
network, mixing by degree, and community structure were used to further describe the macro-
and meso- levels of the network. Each of these measures were calculated for the phonological
association network, the one-phoneme metric network, and comparably-sized random networks,
and compared to the phonological network of Vitevitch (2008). Table 6 presents the results for

these network measures for each network type.
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Table 6.

Network Structure Measures for the Phonological Association Network, One-Phoneme Metric

Network, and Phonological Network of Vitevitch (2008).
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Phonological Association Network. The analysis of the structure of the phonological
association network follows that laid out by Vitevitch (2008), and includes a description of
community structure. Recall that the phonological association network is created by representing
words as nodes and placing an edge between each cue and response word pair. This definition
leads to a network containing 20,615 nodes and 56,754 edges. These nodes resided in one of
three places: the giant component, an island, or as a hermit. There were 20,253 nodes (98.2%) in
the giant component, 3222 nodes (1.6%) located in islands, and 40 hermit nodes (0.2%). There
were 95 islands that ranged in size from 2 to 9 nodes (see Figure 7). Interestingly, islands were
organized by phonological overlap in both the initial and rhyme position of words, often

overlapping through a suffix (see Table 7).

sideboard beatings
. readings
. greetings
seedlings
cyborg meetings
origins hangman
organs
discourages
forages oranges .g fréslhuman
. hinges
porridges orangutan fisherman

Figure 7. Example islands from the Phonological Association Network.
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Table 7.

Proportion of Islands in the Phonological Association Network with Different Types of Overlap.

Type of Overlap Proportion of Islands
Phonological Overlap

Alliteration 45.3%

Rhyme 49.5%

Near Rhyme 5.3%
Morphological Overlap

Prefix 2.1%

Suffix 61.1%

Stem 18.9%

Note Islands can overlap by more than one type.

An analysis was conducted to determine if the phonological association network would
be classified as having small-world structure. Recall that having a small-world structure indicates
that the network is easy to traverse despite its large size, and is identified by having a similar
average shortest path length and larger average clustering coefficient than a comparably-sized
random network (Watts & Strogatz, 1998). In order to calculate the average shortest path length
and the average clustering coefficient, only those nodes and edges in the giant component were
considered, as this is the largest, fully connected component of the network.

The average shortest path length of the phonological association network was 9.80,
whereas the average shortest path length of the comparably-sized random network was 9.67.
Using network analysis convention, where the difference in values is no greater than 1.5 times in
magnitude, the average shortest path length values for the phonological association network and
the random network were not significantly different. The average clustering coefficient of the
phonological association network was 0.12, whereas the comparably-sized random network had
an average clustering coefficient of 0.0002. The average clustering coefficient values for the

phonological association network and the random network were significantly different by several
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magnitudes according to network analysis convention. In addition, a statistical measure of
“small-world-ness” was calculated following Humphries & Gurney (2008), where values greater
than 1 indicate a small-world network. The phonological association network had a value of
724.79. Therefore, these measures indicate that the phonological association network has a
small-world structure.

Next, an analysis was conducted to determine if the phonological association network
could be classified as having a scale-free structure. Recall that having a scale-free structure
suggests that few nodes have many edges (i.e., hubs) and many nodes have few edges. This is
indicated by the degree distribution following a power-law function when plotted on a log-log
scale. Figure 8 displays the log-log plot for the degree distribution of the phonological

association network. The power-law function was best fit by the equation y = 4.70x 262,

RMSE = 0.64, whereas the exponential curve was best fit by the equation y = 0.17¢~%18%
RMSE = .03. Since the exponential curve better fits the data than the power-law function, the

phonological association network does not have a scale-free structure.
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Figure 8. Log-log plot of degree distribution for the Phonological Association Network. The
power-law function is represented in red and the exponential curve is represented in blue.

Mixing by degree was also examined in the phonological association network. Recall that
assortative mixing by degree occurs when nodes with high degree tend to be connected to other
nodes with high degree. On the other hand, disassortative mixing by degree occurs when nodes
with high degree tend to be connected to nodes with low degree. To determine the kind of
mixing pattern of the phonological association network, a Pearson’s correlation between a node’s
degree and each of its neighbor’s degree was examined. A correlation of » (56,515) =0.44, p <
.0001, was found suggesting that an assortative mixing by degree pattern exists in the
phonological association network.

Finally, the community structure of the phonological association network was examined.
In total, there were 70 communities in the giant component as determined by the Louvain
method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) with a modularity of 0.86. A

modularity value higher than 0.3 is indicative of significant community structure (Clauset,



Newman, & Moore, 2004). Figure 9 depicts different communities in the giant component by
color. These communities ranged in size from 8 to 1,060 nodes (M = 289.33, SD = 228.53).
Communities overlapped in several ways phonologically and/or morphologically, resulting in

smaller groupings of nodes organizing within a community (see Figure 10).

Figure 9. Giant component of the Phonological Association Network. Color represents
communities.
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Figure 10. Example community from the Phonological Association Network.

One-Phoneme Metric Network. The analysis of the structure of the one-phoneme

metric network follows that laid out by Vitevitch (2008) and as done above for the phonological

association network. Recall that the one-phoneme metric network is created by representing

words as nodes and placing an edge between each pair of words that differ by one phoneme.
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Only cue words that were responded to and all responses given were used as nodes in this
network. In other words, the hermit nodes of the phonological association network were not
included because there are multiple reasons why participants did not respond to those items
during the phonological association task (e.g., did not know the word, did not have any
associates come to mind). Therefore, this definition leads to a network containing 20,575 nodes
and 57,042 edges. These nodes resided in one of three places: the giant component, an island, or
as a hermit. There were 10,481 nodes (50.9%) in the giant component, 3,347 nodes (16.3%)
located in islands, and 6,747 hermit nodes (32.8%). There were 1,244 islands that ranged in size
from 2 to 77 nodes (see Figure 11). Interestingly, islands were mostly organized by phonological
overlap in the initial phoneme position, and often involved a stem that was consistent between

words (see Table 8).

aptitude separation
preparation
altitude reparation
attitude
latitude respiration
desperation
platitude restoration
attendants lecturer
attendance
attendant
lectures
ascendant
ependent
descenﬂagt dependents
deéscendants
defendant
defendants lecture

Figure 11. Example islands from the One-Phoneme Metric Network.
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Table 8.

Proportion of Islands in the One-Phoneme Metric Network with Different Types of Overlap.

Type of Overlap Proportion of Islands
Phonological Overlap

Alliteration 85.7%

Rhyme 26.8%
Morphological Overlap

Prefix 1.7%

Suffix 20.1%

Stem 66.8%

Note Islands can overlap by more than one type.

An analysis was conducted to determine if the one-phoneme metric network would be
classified as having small-world structure. The average shortest path length of the one-phoneme
metric network was 6.46, whereas the average shortest path length of the comparably-sized
random network was 6.01. Again, using network analysis convention where the difference in
values is no greater than 1.5 times in magnitude, the average shortest path length values for the
one-phoneme metric network and the random network were not significantly different. The
average clustering coefficient of the one-phoneme metric network was 0.16, whereas the
comparably-sized random network had an average clustering coefficient of 0.0003. The average
clustering coefficient values for the one-phoneme metric network and the random network were
significantly different by several magnitudes according to network analysis convention. In
addition, “small-world-ness” (Humphries & Gurney, 2008) for the one-phoneme metric network
was 1157.50. Therefore, these measures indicate that the one-phoneme metric network has a
small-world structure.

Next, an analysis was conducted to determine if the one-phoneme metric network could

be classified as having a scale-free structure. Figure 12 displays the log-log plot for the degree
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distribution of the one-phoneme metric network. The power-law function was best fit by the
equation y = 1.13x~177, RMSE = 0.12, whereas the exponential curve was best fit by the
equation y = 0.10e~%11* RMSE = .02. Since the exponential curve better fits the data than the

power-law function, the one-phoneme metric network does not have a scale-free structure.
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Figure 12. Log-log plot of degree distribution for the One-Phoneme Metric Network. The
power-law function is represented in red and the exponential curve is represented in blue.

Mixing by degree was also examined in the one-phoneme metric network. A Pearson’s
correlation between a node’s degree and each of its neighbor’s degree was examined. A
correlation of » (54,648) = 0.67, p <.00001, was found suggesting that an assortative mixing by
degree pattern exists in the one-phoneme metric network.

Finally, the community structure of the one-phoneme metric network was examined. In
total, there were 37 communities in the giant component as determined by the Louvain method
(Blondel, et al., 2008) with a modularity of 0.68. A modularity value higher than 0.3 is indicative

of significant community structure (Clauset, et al., 2004). Figure 13 depicts different
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communities in the giant component by color. These communities ranged in size from 6 to 1,054
nodes (M = 283.27, SD = 324.99). Similar to the phonological association network, communities
overlapped in several ways phonologically and/or morphologically, resulting in smaller

groupings of nodes organizing within a community (see Figure 14).

Figure 13. Giant component of the One-Phoneme Metric Network. Color represents
communities.
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ambled

Figure 14. Example community from the One-Phoneme Metric Network.
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gumbo

jumbe

stumble

stumbles

Correlations between Networks. The previous network examinations focused on

macro- and meso- level network structure. However, it is also important to compare an

individual word’s network structure in the phonological association network to the same word’s

network structure in the one-phoneme metric network. Differences in the structure of a word

between two networks may provide additional insight into how phonological similarity is

represented in the mental lexicon. Specifically, the location of a word in each network was

examined, as well as a word’s degree and clustering coefficient in each network.
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First, the location of words in each network was examined, as well as how that location
may have differed (or remained the same) between networks. Location of words was categorized
into either located in the giant component, an island, or as a hermit for each network. Location of
nodes from the phonological association network to the one-phoneme metric network could
change in one of five possible ways: from the giant component to an island, from the giant
component to a hermit, from an island to the giant component, from an island to a hermit, or
remained in the same location in both networks. Note that hermit words in the phonological
association network were not included in the one-phoneme metric network, and therefore, there
is no possible change of a hermit to an island or of a hermit to the giant component in this
analysis. The proportion of nodes for each type of location change is given in Table 9.
Interestingly, half of the nodes remained in the same location for the two networks. Not
surprisingly, a large portion of nodes “broke away” from the giant component of the
phonological association network into islands or hermits in the one-phoneme metric network.
The one-phoneme metric network has a “stricter” definition of phonological similarity reducing

the likelihood of an edge between two nodes.

Table 9.

Proportion of Nodes for Each Type of Location Change from the Phonological Association
Network to the One-Phoneme Metric Network.

Type of Location Change Count of Proportion of
Nodes Nodes
Giant Component to Island 3280 15.9%
Giant Component to Hermit 6605 32.1%
Island to Giant Component 113 0.5%
Island to Hermit 142 0.7%
Same Location 10435 50.7%
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Next, the degree of words in each network was examined. The phonological association
network had an average degree of 5.52 (SD = 5.84), whereas the one-phoneme metric network
had an average degree of 5.54 (SD = 8.58). A Pearson’s correlation between the degree of a word
in the phonological association network and the degree of the same word in the one-phoneme
metric network showed that degree between networks was correlated, » (20575) = .51, p <.0001

(see Figure 15). Therefore, words have similar degree in each network.
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Figure 15. Scatterplot of Phonological Association Network and One-Phoneme Metric Network
degrees.

However, thus far degree has been discussed simply as the number of immediate
neighbors for a given node. In the phonological association network, though, directed edges were
used providing a means to examine two sub-types of degree: in-degree and out-degree. In-degree
is the number of edges pointing toward a given node, whereas out-degree is the number of edges

pointing from a given node. Since edges were placed from a cue word to a response word, that
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edge would be considered in the out-degree value for the cue word, but would be considered in
the in-degree value for the response word. Therefore, cue words are the only words that would
have an out-degree value. However, it is possible that cue words could have in-degree if given in
response to another cue word, as well as the novel word responses provided by participants.

This fact is important given that 55% of words used to create the phonological
association network would only have one contributing sub-type in the overarching degree value
discussed previously, which may bias the results of degree correlation. Therefore, an additional
analysis was done examining the correlation of degree between the phonological association
network and the one-phoneme metric network for cue words only (whose degree includes the
possibility of both in- and out- degree). A Pearson’s correlation between the degree of a cue
word in the phonological association network and the degree of the same cue word in the one-
phoneme metric network showed that degree between networks was correlated, » (9298) = .71, p
<.0001. Indeed, the r value increased from the previous analysis, supporting the notion that
words without the possibility of having both sub-types of degree (i.e., response words) may have
influenced the degree correlation findings.

Lastly, the clustering coefficient of words in each network was examined. A Pearson’s
correlation between the phonological association network and the one-phoneme metric network
was small., 7 (20575) = .14, p <.0001. One possibility for this small correlation could be due to
the large number of words located as hermits, with no clustering coefficient, in the one-phoneme
metric network. An additional Pearson’s correlation was conducted excluding hermit words in
the networks. Interestingly, the correlation between clustering coefficient of words in the
phonological association network and the one-phoneme metric network was smaller in this

analysis, 7 (13828) = .06, p <.0001. Therefore, it is interesting to note that the clustering
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coefficient of words in the phonological association network may only be slightly similar to the

clustering coefficient of words in the one-phoneme metric network.

One-Phoneme Metric Network
Clustering Coefficient

0 0.2 0.4 0.6 0.8

Phonological Association Network
Clustering Coefficient

Figure 16. Scatterplot of Phonological Association Network and One-Phoneme Metric Network
clustering coefficients.

Discussion

The comparison of different networks provides a means to understand factors that may
influence the representation of phonological similarity in the mental lexicon. In this study, three
phonological networks were examined that varied in source of data and edge definition:
phonological association network, one-phoneme metric network, and phonological network of
Vitevitch (2008). The phonological association network and the one-phoneme metric network
were derived from collected participant responses on an association task (Chapter 2), whereas the
phonological network of Vitevitch (2008) was created using a corpus of words. Both the one-

phoneme metric network and the phonological network of Vitevitch (2008) use an edge



58

definition defined by a one phoneme difference (through addition, substitution, or deletion)
between a pair of words (Luce & Pisoni, 1998), whereas the phonological association network
places edges between cue and response pairs.

It is interesting to note that the phonological association network and the one-phoneme
metric resulted in similar macro-level structures. Both networks would be described as having
small-world structure, but not scale-free structure. Indeed, the exponential curve better fits both
networks with similar RMSE values than a power-law function, which is the signature of a scale-
free network. In addition, the phonological association and one-phoneme metric networks have
small-world-ness values greater than 1 (724.79 and 1157.50, respectively). These findings for the
phonological association and one-phoneme metric networks are consistent with the macro-level
structure of the well-studied phonological network of Vitevitch (2008), providing evidence that
phonological association data can be used to construct a meaningful representation of
phonological similarity.

Despite having some similar macro-level features, the location of nodes differed
remarkably between the phonological association network and the one-phoneme metric network,
despite using the same data source. The phonological association network had substantially more
nodes in the giant component (98.2%) than the one-phoneme metric network (50.9%). This is
further supported by the fact that the one-phoneme metric network had substantially more nodes
in islands (16.3%) and hermits (32.8%) than the phonological association network (1.6% and
0.2%, respectively). These differences in node location may be due to the way in which edges
are defined in each network. In the phonological association network, edges are placed between
cue and response pairs resulting in a higher probability of edge placement than in the one-

phoneme metric network where edges are more restricted by the one phoneme difference
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definition. Indeed, examination of how node location changes from the phonological association
network to the one-phoneme metric network supports this assertion.

Next, both the phonological association network and the one-phoneme metric network
show evidence of assortative mixing by degree, or that high degree nodes tend to be connected to
other high degree nodes. However, it appears that the one-phoneme metric network is more
influenced by this assortative mixing than the phonological association network as evidenced by
its higher Pearson’s r correlation (0.67 and 0.44, respectively). One explanation for this finding
could be that the nodes in the phonological association network had higher degree (i.e., more
unique responses) than nodes in the one-phoneme metric network, which could reduce the
correlation. However, it was found that node degree was similar between the phonological
association network and the one-phoneme metric network, which fails to support this possibility.

Another potential explanation for the difference in Pearson’s r strength for assortative
mixing by degree between the phonological association network and the one-phoneme metric
network could be related to the number of nodes lacking the possibility for out-degree in the
phonological association network. Recall that only cue words have the potential for both in- and
out- degree, whereas response words (that are not cues) will only have in-degree. This means
that a degree for response words may be underestimated, and thus influencing differences in
degree findings. Indeed, it is often part of the protocol to obtain associations from the responses
that were provided in a second run of the task as a way to combat this issue. Although not perfect
as new responses can still be generated, this helps to address the concern of edge directionality
and degree being biased when examining only one run of the association task. Therefore,

continued data collection is needed to determine if the difference in assortative mixing between
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the phonological association network and the one-phoneme metric network is due to bias in the
present data, or if this is a true difference between these two networks.

Lastly, both the phonological association network and the one-phoneme metric network
have significant community structure in their giant components with many communities.
Interestingly, both networks have more communities than that of the phonological network of
Vitevitch (2008). The greater number of communities is likely due to the larger number of nodes
located in the giant components of the one-phoneme metric network, and especially the
phonological association network. Communities in the one-phoneme metric network and
phonological association networks were large, on average, and nodes in each community
overlapped in several ways through phonological position (maintenance of initial or rhyme) and
morphology (maintenance of stems, prefixes, or suffixes). These findings are important for
understanding how phonological similarity is represented in the mental lexicon.

In conclusion, the comparison between the phonological association network, the one-
phoneme metric network, and the phonological network of Vitevitch (2008) provide evidence
that phonological association data is a viable source for understanding how phonological
similarity is represented and organized in the mental lexicon. The differences that do emerge
between these networks show that additional factors must be taken into consideration when
understanding the representation of and processing in the phonological system of the mental
lexicon. For example, the position of phonological overlap and morphology organized islands
and communities in the giant components of the networks, which often resulted in greater than a
one-phoneme difference.

The results of this study provide new insight into the structure of phonological similarity

in the mental lexicon. However, these measures are descriptive in nature. Future research should
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directly test the influence of these network structures in behavioral experiments. Importantly, the
phonological network of Vitevitch (2008) has already been tested with a variety of spoken word
recognition and production tasks (Vitevitch & Luce, 2016; Vitevitch, et al., 2014). The same
studies could be done with the phonological association network structure measures to determine
if the differences in network structure influence language processing. For example, degree of a
word was similar between the phonological association network and the one-phoneme metric
network, but clustering coefficient was not strongly correlated for a word in the phonological
association network and the one-phoneme metric network. Therefore, testing the effect of
phonological association clustering coefficient is particularly important for replication of
previous findings, and understanding of association data influences the representation of

phonological similarity in the mental lexicon.
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Chapter 4: Age-Related Phonological Networks
Introduction

The way in which phonological similarity is represented in the mental lexicon may be
influenced by several factors. In the previous chapter, an examination of two edge types
(associations and one-phoneme differences) provided evidence that phonological similarity can
be defined by a range of phoneme differences and may be influenced by location of phonological
overlap and morphology. Another factor that may influence the structure of the phonological
network is age. Indeed, vocabulary knowledge increases with age (Verhaegen, 2003), which
would be predicted to change the underlying structure of the mental lexicon.

Recent work examining semantic networks across adulthood provides evidence that
semantic networks change with increasing age (Dubossarsky, De Deyne, & Hills, 2017). Using
semantic association data, they found that semantic networks had a U-shaped trajectory across
the lifespan with participants aged 10 — 84 years. Specifically, they reported network structure
change for in- and out- degree, average shortest path length, and clustering coefficient. In- and
out- degree were small in adolescence, increased sharply and remained high across early
adulthood, and finally began to decline across mid- to late adulthood. Average shortest path
length was high in adolescence, declined sharply and remained low across early adulthood, and
finally began to increase across mid- to late adulthood. Finally, clustering coefficient decreased
across adolescence, early, and middle adulthood, with a slight increase in late adulthood. Taken
together, these findings suggest that the semantic association network is sparse in adolescence,
grows increasingly denser across early adulthood, and becomes sparser again into late adulthood

(Dubossarsky, et al., 2017).
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In addition to examining semantic network change across the lifespan, other types of
language networks should also be examined. This study will examine the structure of the
phonological association network across adulthood. It is not as clear how phonological network
structure might be influenced by age. On the one hand, vocabulary increases with age resulting
in more nodes and edges being added to the network. The addition of these nodes and edges
could change the overall structure of the entire mental lexicon. However, words added later in
life tend to be longer and of lower frequency, and are more likely to reside in islands or as
hermits in the phonological network (Siew, 2013). Therefore, the addition of these words would
have little influence on macro- and meso- level network measures that mostly only consider the
giant component, resulting in the appearance of little network change over time.

Other age-related factors, like hearing loss and cognitive decline, might also affect
phonological network structure. For example, older adults are known to perform less well on
speech recognition tasks than younger adults, and this difference could be due to changes in
auditory perception and cognition with age (Humes & Dubno, 2009; Schneider, Pichora-Fuller,
& Daneman, 2009). In addition, evidence already shows that network structure also influences
spoken word recognition, such that older adults have more difficulty identifying words with
many phonological neighbors than words with few phonological neighbors (Sommers, 1996).
These findings suggest that it becomes more difficult to disambiguate similar sounding words
with increasing age, which may affect the responses that older adults provide on a phonological
association task and the structure of phonological association networks across adulthood.

Understanding how the mental lexicon changes with age is important given the current
behavioral findings of language processes that change with age. For example, word retrieval

tends to be more disrupted in older adults than younger adults as evidenced by an increase in tip-
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of-the-tongue (TOT) states (Burke, et al., 1991). TOTs are thought to occur due to a disruption in
phonological processing, but not semantic processing. Specifically, the prominent explanation
given by the Transmission Deficit Hypothesis is that there is a disruption in processing in the
phonological system whereby all of the needed phonological information for word production is
not available (Burke, et al., 1991).

Furthermore, studies have shown that priming of phonology before a TOT elicitation task
reduces the probability of TOT occurrence, and priming of phonology after indication of being in
a TOT state increases word retrieval (James & Burke, 2000). In addition, fewer TOT states have
been reported for words with high phonological degree than words with low phonological degree
(Vitevitch & Sommers, 2003). Taken together, these results suggest that not just the process, but
also the structure of the phonological system is important to the explanation of word retrieval
failures. But what is not known is how age may impact the structure of the phonological system,
contributing to the increase in TOT states across adulthood. Therefore, this study will compare
the phonological network structure of young, early middle, and late middle adults as a starting
point for understanding how age impacts language processing at the phonological level.

Method

The previously examined phonological association data was used to construct three age-
related phonological association networks. The three age groups were 18-34, 35-54, and 55+
years, representing young, early middle, and late middle adulthood. There were 408 participants
in the 18-34 years old age group (M = 25, SD = 5), 287 participants in the 35-54 years old age
group (M =44, SD = 6), and 323 participants in the 55+ years old age group (M = 62, SD = 6).

Only cue words from the previous phonological association task that were seen by at least

one participant in each age group were included in the network construction. There were 5,028
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of the original cue words that were seen by all three age groups. Of these cue words, participants
provided responses to 5,003 words. The number of responses provided by participants to the cue
words differed in each age group (see Table 10), with many cue-response pairs provided by only

one or two participants.

Table 10.
Proportion of Cues in Each Age Group by Number of Responses Received for a Cue Word.
Proportion of Cues
Number of Responses Young Adult Early Middle Late Middle
to a Cue Word Data Adult Data Adult Data
1 36.1% 49.9% 42.9%
2 38.1% 35.4% 36.3%
3 20.4% 12.6% 16.3%
4 5.1% 2.1% 4.1%
5 0.2% 0.1% 0.4%
6 <0.1%

The final set of cue and response words for each age group was compared to the set of
cue and response words for the aggregated phonological association network (see Table 11). A
one-way ANOVA compared word length as measured by the number of phonemes from each
age-related network, and the aggregated network was significant, F(3, 25362) = 300.03, p <
.0001. A Tukey’s HSD post-hoc analysis indicated that words in the aggregated network were
significantly longer than words in all the age-related networks, all ps <.0001, with no difference
amongst words in the age-related networks. A one-way ANOVA comparing log word frequency
from each age-related network and the aggregated network was significant, F(3, 24975) =
430.11, p <.0001. A Tukey’s HSD post-hoc analysis indicated that words in the late middle

adult network were significantly higher in frequency than words in the other age-related
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networks and the aggregated network, all ps <.0001. Words in the aggregated network were also
significantly lower in frequency than words in the age-related networks, all ps <.0001. Words in

the young adult and early middle adult networks were not significantly different in frequency.

Table 11.

Word Length and Frequency in Each Age-Related Phonological Association Network and the
Aggregated Phonological Association Network.

Young Adult Early Middle Late Middle Aggregated
Network Adult Network | Adult Network | Network
M SD M SD M SD M SD
Length 5.28 221 5.25 2.18 5.29 1.92 5.81 2.02
Word Frequency 1.93 0.93 1.91 0.93 2.15 0.94 1.88 0.92

Construction of the age-related phonological networks was done using igraph (Csardi &
Nepusz, 2006; Ognyanova, K., 2017) in R (R Core Team, 2017). The cue words and their
responses were used as nodes in the network, and directed, weighted edges were placed between
cue-response pairs.

Similar to the previous network comparisons, comparably-sized random networks were
also created for each age-related phonological network. The random networks were created with
the same number of nodes and edges as its counterpart age-related phonological network, and
were used to determine the “small-worldness” of the network of interest.

Analysis

As done in the previous chapter for network comparisons, several standard measures
were used to describe and compare the age-related phonological networks, and included
weighting of edges in the calculation of these measures. This study focused on macro-level

descriptions of the network, like small-world and scale-free structure, determined by measuring



the average shortest path length, average clustering coefficient, and degree distribution of the
network. In addition, the location of nodes in the network, mixing by degree, and community
structure were also determined to further describe the macro- and meso- levels of the network.
Each of these measures were calculated for each age-related phonological network and their
comparably-sized random networks, and compared to the aggregated phonological association
network described in the previous chapter. Table 12 presents the results for these network

measures for each network type.
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Table 12.

Network Structure Measures for the Young, Early Middle, and Late Middle Adult Phonological

Networks.
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Young Adult Phonological Network. The young adult phonological network was

created by representing cue words seen by all three age groups and their responses as nodes and

placing an edge between each cue and response pair generated by young adults (aged 18-34

years). This definition leads to a network containing 10,426 (5,028 cues + 5,398 unique

responses) nodes and 15,399 edges. These nodes resided in one of three places: the giant

component, an island, or as a hermit. There were 7,966 nodes (76.4%) in the giant component.

2,435 nodes (23.4%) located in islands, and 25 hermit nodes (0.2%). There were 703 islands that

ranged in size from 2 to 27 nodes (see Figure 17). Islands were mostly organized by

phonological overlap in the thyme position, and often involved a suffix that was consistent

between words (see Table 13).

impeses
impose
impossible dispose
responsible
possible
shabby
crabby
cabb

flabby abbey Y

scabby tabby

distemper

disturbed
discerned

discouraged

reaeting

acting

attracting

Figure 17. Example islands from the Young Adult Phonological Network.
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Table 13.

Proportion of Islands in the Young Adult Phonological Network with Different Types of
Overlap.

Type of Overlap Proportion of Islands
Phonological Overlap

Alliteration 36.3%

Rhyme 61.8%

Partial Rhyme 21.1%
Morphological Overlap

Prefix 1.6%

Suffix 52.5%

Stem 12.9%

Note Islands can overlap by more than one type.

The young adult phonological network was examined for small-world structure. Recall
that having a small-world structure indicates that the network is easy to traverse despite its large
size, and is hallmarked by having a similar average shortest path length and larger average
clustering coefficient than a comparably-sized random network (Watts & Strogatz, 1998). The
average shortest path length of the young adult phonological network was 22.73, whereas the
average shortest path length of the comparably-sized random network was 18.68. Using network
analysis convention where the difference in values is no greater than 1.5 times in magnitude, the
average shortest path length values for the young adult phonological network and the random
network are were significantly different. The average clustering coefficient of the young adult
phonological network was 0.09, whereas the comparably-sized random network had an average
clustering coefficient of 0.0001. The average clustering coefficient values for the young adult
phonological network and the random network were significantly different by several

magnitudes according to network analysis convention. In addition, “small-world-ness”



71

(Humphries & Gurney, 2008) for the young adult phonological network was 541.94. Therefore,

these measures indicate that the young adult phonological network has a small-world structure.
Next, an analysis was conducted to determine if the young adult phonological network

could be classified as having a scale-free structure. Recall that having a scale-free structure

suggests that many nodes have few edges and few nodes have many edges. This is indicated by

the degree distribution following a power-law function when plotted on a log-log scale. Figure

18 displays the log-log plot for the degree distribution of the young adult phonological network.

The power-law function was best fit by the equation y = 2.45x 7275, RMSE = 2.03, whereas the

exponential curve was best fit by the equation y = 0.43e~939% RMSE = 0.14. Since the

exponential curve better fits the data than the power-law function, the young adult phonological

network does not have a scale-free structure.
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Figure 18. Log-log plot of degree distribution for the Young Adult Phonological Network. The

power-law function is represented in red and the exponential curve is represented in blue.
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Mixing by degree was also examined in the young adult phonological network. Recall
that assortative mixing by degree occurs when nodes with high degree tend to be connected to
other nodes with high degree. On the other hand, disassortative mixing by degree occurs when
nodes with high degree tend to be connected to nodes with low degree. To determine the kind of
mixing pattern of the young adult phonological network, a Pearson’s correlation between a
node’s degree and each of its neighbor’s degree was examined. A correlation of 7 (15399) =
0.37, p <.0001, was found suggesting that an assortative mixing by degree pattern exists in the
young adult phonological network.

Finally, the community structure of the young adult phonological network was examined.
In total, there were 100 communities in the giant component as determined by the Louvain
method (Blondel, et al., 2008) with a modularity of 0.95. A modularity value higher than 0.3 is
indicative of significant community structure (Clauset, et al., 2004). Figure 19 depicts different
communities in the giant component by color. These communities ranged in size from 10 to 212
nodes (M = 79.66, SD = 36.45). Communities overlapped in several ways phonologically and/or
morphologically, resulting in smaller groupings of nodes organizing within a community (see

Figure 20).



Figure 19. Giant component of the Young Adult Association Network. Color represents
communities.
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twisters plisters
lasses \
grasses sisters
molasses
glasses
acids masses d’ies cistern curds
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Figure 20. Example community from the Young Adult Phonological Network.

Early Middle Adult Phonological Network. The early middle adult phonological

network was created by representing cue words seen by all three age groups and their responses

as nodes and placing an edge between each cue and response pair generated by early middle

adults (aged 35-54 years). This definition leads to a network containing 10,404 nodes (5,028
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cues + 5,376 unique responses) and 14,318 edges. These nodes resided in one of three places: the
giant component, an island, or as a hermit. There were 7,351 nodes (70.7%) in the giant
component, 3,028 nodes (29.1%) located in islands, and 25 hermit nodes (0.2%). There were 853
islands that ranged in the size from 2 to 25 nodes (see Figure 21). Similar to the young adult
phonological network, islands were mostly organized by phonological overlap in the rhyme

position, and often involved a suffix that was consistent between words (see Table 14).

disrupt accompanying
interrupt banjgupt company
corzupt accompany
abrupt accompanies
refilled weekend
weaken
pecan
rebuild guild
deacon
spilled build
beacon
milled bacon

Figure 21. Example islands from the Early Middle Adult Phonological Network.
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Table 14.

Proportion of Islands in the Early Middle Adult Phonological Network with Different Types of
Overlap.

Type of Overlap Proportion of Islands
Phonological Overlap

Alliteration 40.9%

Rhyme 65.6%

Partial Rhyme 16.5%
Morphological Overlap

Prefix 0.7%

Suffix 55.0%

Stem 12.0%

Note Islands can overlap by more than one type.

The early middle adult phonological network was examined for small-world structure.
The average shortest path length of the early middle adult phonological network was 20.01,
whereas the average shortest path length of the comparably-sized random network was 21.64.
Using network analysis convention where the difference in values is no greater than 1.5 times in
magnitude, the average shortest path length values for the early middle adult phonological
network and the random network were significantly different. The average clustering coefficient
of the early middle adult phonological network was 0.09, whereas the comparably-sized random
network had an average clustering coefficient of 0.0003. The average clustering coefficient
values for the early middle adult phonological network and the random network were
significantly different by several magnitudes according to network analysis convention. In
addition, “small-world-ness” (Humphries & Gurney, 2008) for the early middle adult
phonological network was 311.97. Therefore, these measures indicate that the early middle adult
phonological network has a small-world structure.

Next, an analysis was conducted to determine if the early middle adult phonological

network could be classified as having a scale-free structure. Figure 22 displays the log-log plot
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for the degree distribution of the early middle adult phonological network. The power-law
function was best fit by the equation y = 2.25x~17>, RMSE = 1.81, whereas the exponential
curve was best fit by the equation y = 0.57e7%4** RMSE = 0.11. Since the exponential curve
better fits the data than the power-law function, the early middle adult phonological network

does not have a scale-free structure.
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Figure 22. Log-log plot of degree distribution for the Early Middle Adult Phonological Network.
The power-law function is represented in red and the exponential curve is represented in blue.

Mixing by degree was also examined in the early middle adult phonological network. A
correlation of 7 (14318) = 0.37, p < 0.0001, was found suggesting that an assortative mixing by
degree pattern exists in the early middle adult phonological network.

Finally, the community structure of the early middle adult phonological network was
examined. In total, there were 104 communities in the giant component as determined by the
Louvain method (Blondel, et al., 2008) with a modularity of 0.96. A modularity value higher

than 0.3 is indicative of significant community structure (Clauset, et al., 2004). Figure 23 depicts
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different communities in the giant component by color. These communities ranged in size from
6 to 208 nodes (M = 70.67, SD = 37.18). Communities overlapped in several ways
phonologically and/or morphologically, resulting in smaller groupings of nodes organizing

within a community (see Figure 24).

Figure 23. Giant component of the Early Middle Adult Phonological Network. Color represents
communities.
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Figure 24. Example community from the Early Middle Adult Phonological Network.

Late Middle Adult Phonological Network. The late middle adult phonological network
was created by representing words seen by all three age groups and their responses as nodes and

placing an edge between each cue and response pair generated by older adults (aged 55 years and
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older). This definition leads to a network containing 10,857 nodes (5,028 cues + 5,829 unique
responses) and 15,496 edges. These nodes resided in one of three places: the giant component, an
island, or as a hermit. There were 8,175 nodes (75.3%) in the giant component, 2,657 nodes
(24.5%) located in islands, and 25 hermit nodes (0.2%). There were 712 islands that ranged in
size from 2 to 48 nodes (see Figure 25). Like the young and middle adult phonological networks,
islands were mostly organized by phonological overlap in the thyme position, and often involved

a suffix that was consistent between words (see Table 15).

debasement assay
complacent
replacement yeinforcemen
displacement
P buffet
. disappointment
disharment PP .
appointment
anointment replay
pleasers L cireus
cireuit
circle
tweezers circa
cireular .
freezers circulate circumnavigate

Figure 25. Example islands from the Late Middle Adult Phonological Network.
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Table 15.

Proportion of Islands in the Late Middle Adult Phonological Network with Different Types of
Overlap.

Type of Overlap Proportion of Islands
Phonological Overlap

Alliteration 41.1%

Rhyme 70.2%

Partial Rhyme 16.3%
Morphological Overlap

Prefix 2.7%

Suffix 57.9%

Stem 13.3%

Note Islands can overlap by more than one type.

The late middle adult phonological network was examined for small-world structure. The
average shortest path length of the late middle adult phonological network was 21.33, whereas
the average shortest path length of the comparably-sized random network was 21.24. Using
network analysis convention where the difference in values is no greater than 1.5 times in
magnitude, the average shortest path length values for the late middle adult phonological
network and the random network were not significantly different. The average clustering
coefficient of the late middle adult phonological network was 0.09, whereas the comparably-
sized random network had an average clustering coefficient of 0.0002. The average clustering
coefficient values for the late middle adult phonological network and the random network were
significantly different by several magnitudes according to network analysis convention. In
addition, “small-world-ness” (Humphries & Gurney, 2008) for the late middle adult
phonological network was 529.91. Therefore, these measures indicate that the late middle adult
phonological network has a small-world structure.

Next, an analysis was conducted to determine if the late middle adult phonological

network could be classified as having a scale-free structure. Figure 26 displays the log-log plot
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for the degree distribution of the late middle adult phonological network. The power-law
function was best fit by the equation y = 2.12x~2%% RMSE = 1.69, whereas the exponential
curve was best fit by the equation y = 0.61e~%4** RMSE = 0.12. Since the exponential curve
better fits the data than the power-law function, the late middle adult phonological network does

not have a scale-free structure.
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Figure 26. Log-log plot of degree distribution for the Late middle adult Phonological Network.
The power-law function is represented in red and the exponential curve is represented in blue.

Mixing by degree was also examined in the late middle adult phonological network. A
correlation of 7 (15496) = 0.35, p < 0.0001, was found suggesting that an assortative mixing by
degree pattern exists in the late middle adult phonological network.

Finally, the community structure of the late middle adult phonological network was
examined. In total, there were 106 communities in the giant component as determined by the
Louvain method (Blondel, et al., 2008) with a modularity of 0.95. A modularity value higher

than 0.3 is indicative of significant community structure (Clauset, et al., 2004). Figure 27 depicts
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different communities in the giant component by color. These communities ranged in size from
9 to 197 nodes (M = 77.12, SD = 38.28). Communities overlapped in several ways
phonologically and/or morphologically, resulting in smaller groupings of nodes organizing

within a community (see Figure 28).

Figure 27. Giant component from the Late Middle Adult Phonological Network. Color
represents communities.
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Figure 28. Example community from the Late Middle Adult Phonological Network.

Correlation between Networks. The previous network examinations focused on macro-

and meso- level network structure. However, it is also important to identify differences in the

structure of a word in each age-related network. These findings may provide additional insight

into how phonological similarity is represented in the mental lexicon at different points across

adulthood. Specifically, an analysis was done to assess how the age-related networks overlapped

with one another, as well as how properties of individual words in each network (location,

degree, and clustering coefficient) changed with age.
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Although the three age-related networks were similar in size and all three had the same
cue words, the responses that were made to those cue words differed. For instance, there were
differences in the number of total responses and the number of unique responses that were made
to the cue words across age groups. When comparing the young adult network to early middle
adult network, there were 3,628 edges in common (23.6% of the young adult edges and 25.3% of
early middle adult edges). When comparing the early middle adult network to the late middle
adult network, there were 3,724 edges in common (26.0% of early middle adult edges and 24.0%
of late middle adult edges).

Furthermore, an examination of the nodes for the overlapping edges between age-related
networks was done. The overlapping edges between the young adult and early middle adult
networks consisted of 4,428 nodes. These nodes tended to reside in the giant component of the
young adult network (82.6%) and in the giant component of the early middle adult network
(78.5%). The overlapping edges between the early middle adult and late middle adult networks
consisted of 4,513 nodes. These nodes tended to reside in the giant component of the early
middle network (77.8%) and in the giant component of the late middle adult network (81.4%).
These findings suggest that although about a quarter of the network is consistent across
adulthood with that consistency occurring mostly in the giant component. Therefore, it is the
periphery of the network (i.e., the islands) that tend to change across adulthood.

The location of nodes in each age-related network was further examined by looking at all
cue nodes, rather than just those nodes that were consistent between networks. The location of
these cue nodes was categorized into either located in the giant component, an island, or as a
hermit for each network, and assessed from the young adult phonological network to the middle

adult phonological network and from the middle adult phonological network to the late middle
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adult phonological network. Given the restriction of data to only those cues seen by all three age
groups, the location of nodes could change in only one of three ways: from the giant component
to an island, from an island to the giant component, or remained in the same location in both
networks. The proportion of nodes for each type of location change and at each assessment are

given in Table 16.

Table 16.

Proportion of Nodes for Each Type of Location Change from the Young to Early Middle Adult
Network and from the Early Middle to Late Middle Adult Network.

From the Young Adult From the Early Middle
Network to Early Middle | Adult Network to the Late
Adult Network Middle Adult Network
Count of | Proportion of | Count of | Proportion of
Type of Location Change Nodes Nodes Nodes Nodes
Giant Component to Island 1122 14.8% 777 10.0%
Island to Giant Component 734 9.7% 1097 14.2%
Same Location 5725 75.5% 5868 75.8%

Of the 10,401 nodes (cue and response words) in the young adult phonological network,
only 7,582 (72.9%) nodes were also in the early middle adult phonological network. The location
of most of these nodes remained in the same location from young adulthood to early middle
adulthood. Of those nodes that did change in location, more nodes “broke away” from the giant
component (i.e., moved from the giant component to an island) than became incorporated into
the giant component (i.e., moved from an island to the giant component).

Of the 10,379 nodes (cue and response words) in the early middle adult phonological
network, only 7,742 (74.6%) nodes were also in the late middle adult phonological network. Like
the previous results, the location of most nodes remained in the same location from early middle

adulthood to late middle adulthood. However, of those nodes that did change in location, the
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opposite result was found. More nodes were incorporated into the giant component than nodes
that “broke away” from the giant component. In sum, these location change findings continue to
show that most words remain in the same location across adulthood, and that what does change
tends to be in the periphery of the network.

Next, the degree of words in each network was examined. The young adult phonological
network had an average degree of 2.96 (SD = 2.69). The early middle adult phonological
network had an average degree of 2.78 (SD = 2.40). And, the late middle adult phonological
network had an average degree of 2.86 (SD = 2.52).

As done in the previous chapter’s network comparison, a Pearson’s correlation between
the degree of a word in one network with the degree of the same word in another network was
also calculated. A correlation was determined between the young adult phonological network
and the early middle adult phonological, and between the early middle adult phonological
network and the late middle adult phonological network. Each correlation included only those
nodes (cue and response words) in the former network that were also in the latter network, as
done in the previous location change analysis. The degree of words in the young adult
phonological network and the degree of words in the early middle adult phonological network
were correlated, 7 (7582) = .62, p <.0001 (see Figure 29). Also, the degree of words in the early
middle adult phonological network and the degree of words in the late middle adult phonological
network were correlated, » (7742) = .62, p <.0001 (see Figure 30). Therefore, the degree of a

node is similar across adulthood.
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Figure 29. Scatterplot of Young Adult Phonological Network and Early Middle Adult
Phonological Network degrees. Darker blues represent a larger proportion of the data.
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Lastly, clustering coefficient was also examined using Pearson’s correlations between the
young adult and early middle adult phonological networks, and between the early middle adult
and late middle adult phonological networks. Again, each correlation included only those nodes
(cue and response words) in the former network that were also in the latter network. The
clustering coefficient of words in the young adult phonological network and the clustering
coefficient of words in the early middle adult phonological network were correlated,  (7582) =
.22, p <.0001 (see Figure 31). The clustering coefficient of words in the early middle adult
phonological network and the clustering coefficient of words in the late middle adult
phonological network were correlated, » (7742) = .21, p <.0001 (see Figure 32). Therefore, the

clustering coefficient of a node may be similar across adulthood.
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Figure 31. Scatterplot of Young Adult Phonological Network and Early Middle Adult
Phonological Network clustering coefficients.
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Discussion

The three age-related phonological networks resembled the previous aggregated
phonological association network, but to a lesser extent. For example, the phonological
association network had more nodes and edges as compared to each age-related network. This
larger network size may have also contributed to the aggregated phonological association
network having a larger proportion of nodes located in the giant component, with a smaller
average path length and higher average clustering coefficient than each age-related phonological
network. In addition, all the age-related networks, like the phonological association network, can
be described as having small-world, but not scale-free, structure. Finally, assortative mixing by
degree and significant community structure were also found in each of the age-related networks,

like the aggregated phonological association network.
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When comparing the three age-related phonological networks to each other, there appears
to be minimal differences in network structure across adulthood. This is in stark contrast to the
observation that semantic network structure significantly changes across adulthood
(Dubossarsky, et al., 2017). Specifically, Dubossarsky, et al. (2017) found in the semantic
association network that in- and out- degree declined across adulthood, average shortest path
length increased adulthood, and average clustering coefficient declined across early to middle
adulthood with a small increase in late adulthood. In the present phonological association
network, degree, average shortest path length, and average clustering coefficient were similar
across adulthood. It is intriguing that the semantic network changes, but not the phonological
network. One potential explanation for changes in semantic network structure, but not
phonological network structure, is that the way in which we associate words through meaning
and sound differs. Specifically, meaning-based associations may be more likely to change over
time as individuals encounter new words and experiences, leading to changes in semantic
associations and their structure across adulthood. However, the way in which words are
phonologically constructed must follow certain rules, limiting the likelihood of changing
phonological association and their structure across adulthood.

One aspect of phonological network structure that showed evidence of age-related change
was the location of nodes across time. In the present findings, most nodes remained in the same
location, but those nodes that did change location differed in direction from young to early
middle adulthood and from early middle to late middle adulthood. Specifically, the young to
early middle adulthood nodes that changed location were likely to move from the giant
component to islands, and may be reflective of word learning (e.g., through higher education

and/or career training). For example, a new word may make a known word sound more similar to
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the new word than to other known words, and potentially lead to the formation of an island. On
the other hand, the early middle to late middle adulthood nodes that changed location were more
likely to move from the islands to the giant component, and may be reflective of age-related
sensory or cognitive changes. For example, the notion that older adults have more difficulty
identifying words with high phonological degree (Sommers, 1996), may lead to words sounding
more similar with increasing age and a shift of nodes from islands to the giant component.

In addition to this age-related network structure change, the set of words used in each
network had some differences from each age network and the aggregated network. The age-
related networks had shorter words than the aggregated network and had higher word frequency
than the aggregated network, especially the late middle adult network. These findings suggest
that those items that all individuals, regardless of age, are likely to respond with will be short and
of high frequency, with age-related differences in longer, lower frequency words. In addition, the
overlap in edges between the age networks also differed with only roughly 25% of edges being
consistent from one age network to the next, and these consistent edges are likely to reside in the
giant component of the network, where shorter, higher frequency words are often found.

The present findings, though, should be interpreted with caution. Compared to the
aggregated phonological association network, the age-related phonological networks had higher
average path lengths. smaller clustering coefficients, fewer nodes in the giant component, and
more nodes in islands. Indeed, the current age-related phonological network structures may be
an underestimate of what is truly represented in the mental lexicon due to the sparse data
available. For example, many of the cues were only seen by one participant in each age-related
network, whereas cue words were seen by at least six participants in the aggregated phonological

association network. Thus, there may not be enough data to capture the true phonological
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network structure of each age group. Continued collection of phonological association data is
needed for a more complete understanding of how phonological network structure may change
or remain stable across adulthood.

In addition, the lack of change in phonological network structure might also be due to the
lack of data available from participants in older adulthood (75 years and older). The present
sample is more representative of early and late middle adulthood, where phonological network
structure may not yet be affected by the cognitive changes that typically accompany aging. In
addition, the participants that did complete the association task are unlikely to have cognitive
deficits due to the computer literacy skills required to complete the task online via Amazon
Mechanical Turk. Therefore, it would also be important to collect data not just from healthy
older adults, but also to include a more representative sample of adulthood.

In sum, this study provides an initial examination of phonological network structure
across adulthood. The current results suggest that phonological network structure, using
phonological association data, does not change significantly with age. However, continued
collection of data and testing of network structure using behavioral experiments are necessary.
For example, even though the structure does not appear to change with age, processing within
the network is affected by other age-related changes, like sensory and cognitive declines. In other
words, even though the structure does not change, this structure may not be as helpful for
language processing in older adulthood. For example, the evidence that phonological degree
impacts spoken word recognition in older adults (Sommers, 1996) and that tip-of-the-tongue
states increase with age (Burke, et al., 1991), but can be reduced by high phonological degree
(Vitevitch & Sommers, 2003), suggests that phonological network structure plays an integral role

in the ability to perceive and produce words across adulthood. Behavioral tests can continue to
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examine how phonological network structure influences language processes in older adulthood
to better understand how an un-changing network structure could disrupt or aid in those language
processes.

Lastly, although the phonological network does not seem to change significantly across
adulthood, the semantic network has been shown to do so. Changes in one type of language
network may influence processing not just in that network, but other types of language networks
as well. For example, in a word production task, one must access semantic information to select
the correct target word and phonological information to produce that selected word. The
increasing sparseness of the semantic network with age may result in more difficult or slowed
processing. This disruption may then lead to increased difficulty in moving from the semantic
system to the phonological system, resulting in slowed production, speech errors, or word
retrieval failures. Therefore, understanding how these different types of language networks
connect and influence each other requires the need for more complex network analyses that

examine multiple layers simultaneously.
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Chapter 5: Analysis of a Multiplex
Introduction

Typically, only one network is examined at a time to examine language structure and
processes. That is, only the semantic network or only the phonological network would be
examined. However, research has shown that both the semantic and phonological systems are
important during word retrieval, and that these systems can interact (e.g., Dell & O’Seaghdha,
1992). Therefore, it is important to understand how the semantic and phonological networks
connect or overlap.

In Network Science, multiple networks can be examined simultaneously by creating
“layers” in the network. Specifically, a multiplex network is one in which nodes are shared
between layers, but edges are different in each layer. To date, there is one multiplex network that
represents different aspects of the mental lexicon (Stella, et al., 2017). This multiplex includes
529 words with edges placed between words in 4 different layers: 1) semantic free association
norms, 2) shared features indicated by synonym relationships, 3) co-occurrence norms, and 4)
phonological similarity defined by the one-phoneme metric. Importantly, this multiplex structure
has been shown to be a more powerful predictor of word acquisition in children than structural
information from a single-layer alone or conventional psycholinguistic measures, like age of
acquisition (Stella, et al., 2017). Therefore, examining the whole multiplex provides novel
insight into language processes.

This chapter continues to examine multiplex structure of the mental lexicon by using a
larger number of words and using a similar edge definition in each layer. Specifically, the
present multiplex includes a semantic layer using the semantic association data from S. De

Deyne and a phonological layer using the phonological association data from Chapter 2. An
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analysis of the semantic association network was compared to the phonological association
network, and the individual semantic and phonological layers were compared to the aggregated
multiplex network. Since multiplex analysis is an emerging, cutting-edge area of Network
Science, the tools to fully analyze a large multiplex are not available. Indeed, the multiplex to be
examined exceeds the computational limits of the one existing program MuxViz (De Domenico,
Porter, & Arenas, 2015) that has been used to analyze small multiplex network, like in Stella, et
al. (2017). Therefore, an additional analysis was done looking at degree of words in the
individual layers and in the multiplex to further assess the current multiplex structure given that
degree has been shown to influence several language processes in single-layer networks.
Method

Cue and response items from S. De Deyne’s semantic association data were used.
Semantic associations were gathered by presenting a cue word to participants and asking them to
provide up to three responses that immediately came to mind. The data provided by S. De Deyne
included only the first responses that participants provided to over 10,000 cue words. The
number of participants and participant-level data were not currently available at the time of this
analysis. However, there were significantly more unique cue-response pairs for first responses
only (N =429,401) than that obtained in the phonological association task in Chapter 2 (N =
32,297), suggesting a significantly larger sample size for the semantic association data than the
phonological association data.

For the present semantic association network analysis and multiplex analysis, only data
using the same cue and response words from the phonological association task in Chapter 2 were
used. This was done for two reasons: 1) to ease interpretation of network comparison to only

those words common to both tasks, and 2) to create a multiplex where nodes are identical in each
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layer. Therefore, there was a total of 9,297 cue words and 5,451 unique response words that
matched the phonological association data.

The nodes in the semantic association network were cue and response words, and edges
were placed between cue and response pairs. Edges were directed, as done in the previous
phonological association network. However, frequency of cue-response pairs was not available,
and thus weighting could not be determined.

The semantic association network was compared to a comparably-sized random network.
The random network was only used to determine “small-world-ness” of the semantic network. In
addition, the semantic association network was also compared to the phonological association
network analyzed in Chapter 2. The semantic association and phonological association networks
were combined into one network to assess multiplex structure. Network generation and analysis
were conducted using the igraph package (Csardi & Nepusz, 2006; Ognyanova, K., 2017) in R
(R Core Team, 2017).

Lastly, data from the English Lexicon Project (Balota, et al., 2007) was used to assess the
influence of multiplex structure on behavioral data. Specifically, visual lexical decision and
naming reaction time were used in this analysis. Previous work has shown that visual lexical
decision and picture naming are influenced by single-layer semantic degree (e.g., Dufabeitia,
Avilés, & Carreiras, 2008) and phonological degree (e.g., Yates, 2005; Yates, Locker, &
Simpson, 2004), providing an opportunity to test the influence of aggregated multiplex degree
(semantic + phonological degree) and multidegree (number of multilinks). Only words that have
semantic degree, phonological degree, and multidegree were included in this analysis (N =

4,864).
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Analysis

As done in the previous chapters for network comparisons, several standard measures
were used to describe the semantic association network. This study focused on macro-level
descriptions of the network, like small-world and scale-free structure, determined by measuring
the average shortest path length, average clustering coefficient, and degree distribution of the
network. In addition, the location of nodes in the network, mixing by degree, and community
structure were also determined to further describe the macro- and meso- levels of the network.
Each of these measures were calculated for the semantic association network and its comparably-
sized random network, and compared to the phonological association network described in the

Chapter 2. Table 17 presents the results for these network measures for each network type.



Table 17.

Network Structure Measures for the Semantic Association Network and Phonological

Association Network.
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Network Measures

Semantic Association
Network (SAN)

Phonological Association
Network (PAN)

Network Size

Nodes = 14,794
Edges = 239,483

Nodes = 20,617
Edges = 56,747

Location of Nodes'

GC = 14,794 (100.0)

GC = 20,253 (98.2)

Islands =0 Islands = 322 (1.6)
Hermits =0 Hermits =42 (0.2)
Small-World Structure? Avg. Path Len =3.77 Avg. Path Len =9.80
Avg. C=10.09 Avg. C=0.12
S=42.12 S =724.79

Scale-Free Structure’

P.L.RMSE = 1.37
Exp. RMSE =0.16

P.L. RMSE = 0.64
Exp. RMSE = 0.03

Mixing by Degree*

r=0.03,p <0.0001

r=0.44, p <0.0001

Community Structure®

12 Communities
Mod =0.32

70 Communities
Mod = 0.86

of its neighbors.

!GC = Giant Component, with proportion of nodes in parentheses

2Average Shortest Path Length (Avg. Path Len.) and Average Clustering Coefficient (Avg.
(), and Small-world-ness (S) from Humphries & Gurney (2008).

3Scale-Free Structure is determined by comparing the Root Mean Square Error (RMSE) of
the Power-Law (P.L.) function to an alternative Exponential (Exp) curve.

“Mixing by Degree is determined by the correlation between the degree of a node and each

SModularity (Mod.) is a measure of the significance of community structure in the network,
and values above 0.3 are considered significant (Clauset, Newman, & Moore, 2004).

Semantic Association Network. The semantic association network was created by

representing words as nodes and placing an edge between each cue and response word pairs.

This definition leads to a network containing 14,794 nodes and 239,483 edges. Nodes only

resided in one large giant component. Hermits were not expected given the restricted selection of

words to match the phonological association network. Islands were likely not present in this

analysis given the high number of edges compared to the number of nodes.

The semantic association network was examined for small-world structure. Recall that

having a small-world structure indicates that the network is easy to traverse despite its large size,
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and is hallmarked by having a similar average shortest path length and larger average clustering
coefficient than a comparably-sized random network (Watts & Strogatz, 1998). The average
shortest path length of the semantic association network was 3.77, whereas the average shortest
path length of the comparably-sized random network was 3.74. Using network analysis
convention where the difference in values is no greater than 1.5 times in magnitude, the average
shortest path length values for the semantic association network and the random network were
not significantly different. The average clustering coefficient of the semantic association network
was 0.09, whereas the comparably-sized random network had an average clustering coefficient
of 0.002. The average clustering coefficient values for the semantic association network and the
random network were significantly different by several magnitudes according to network
analysis convention. In addition, “small-world-ness” (Humphries & Gurney, 2008) for the
semantic association network was 42.12. Therefore, these measures indicate that the semantic
association network has a small-world structure.

Next, an analysis was conducted to determine if the semantic association network could
be classified as having a scale-free structure. Recall that having a scale-free structure suggests
that many nodes have few edges and few nodes have many edges. This is indicated by the degree
distribution following a power-law function when plotted on a log-log scale. Figure 33 displays
the log-log plot for the degree distribution of the semantic association network. The power-law
function was best fit by the equation y = 1.41x~ 16>, RMSE = 1.37, whereas the exponential
curve was best fit by the equation y = 0.003e~%%°9* RMSE = 0.16. Since the exponential curve
better fits the data than the power-law function, the semantic association network does not have a

scale-free structure.
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Figure 33. Log-log plot of degree distribution for the Semantic Association Network. The
power-law function is represented in red and the exponential curve is represented in blue.

Mixing by degree was also examined in the semantic association network. Recall that
assortative mixing by degree occurs when nodes with high degree tend to be connected to other
nodes with high degree. On the other hand, disassortative mixing by degree occurs when nodes
with high degree tend to be connected to nodes with low degree. A Pearson’s correlation of
(239498) = 0.03, p <.0001, was found. The r value close to 0 suggests that there was no
correlation between a node’s degree and each of its neighbor’s degree; therefore, the semantic
association network does not show evidence of mixing by degree.

Finally, the community structure of the semantic association network was examined. In
total, there were 12 communities in the giant component as determined by the Louvain method
(Blondel, et al., 2008) with a modularity of 0.32. A modularity value higher than 0.3 is indicative
of significant community structure (Clauset, et al., 2004). Figure 28 depicts different
communities in the giant component by color. These communities ranged in size from 317 to

2,165 nodes (M = 1232.83, SD = 585.94).
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Figure 34. Giant component of the Semantic Association Network. Color represents
communities.

Correlation between Networks. The previous network examination focused on macro-
and meso- level network structure. However, it is also important to identify differences in the
structure of a word in the semantic association network as it compares to the phonological
association network. These findings will provide additional insight into how network structure is
related in different types of mental lexicon networks. Specifically, the location of a word in each
network was examined, as well as a word’s degree and clustering coefficient in each network,
using the words that are common to both networks.

First, the location of words in each network was examined, as well as how that location
may have differed (or remained the same) between networks. Location of words was categorized
as being located in the giant component, an island, or as a hermit for each network. Location of
nodes from the semantic association network to the phonological association network could

change in one of three possible ways: from the giant component of the semantic network to an
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island of the phonological network, from the giant component of the semantic network to a
hermit in the phonological network, or located in the giant component of both networks. (Recall
that there were no islands or hermits in the semantic association network). Table 18 provides the
proportion of nodes for each type of location change. Most nodes were in the giant component

of both networks.

Table 18.

Proportion of Nodes for Each Type of Location Change from the Semantic Association Network
to the Phonological Association Network.

Type of Location Change Count of Proportion of
Nodes Nodes
Giant Component to Island 14558 98.4%
Giant Component to Hermit 196 1.3%
Same Location 40 0.3%

Next, the degree of words in each network was examined. The semantic association
network had an average degree of 32.38 (SD = 45.54), whereas the phonological association
network had an average degree of 7.02 (SD = 6.22). A Pearson’s correlation between the degree
of'a word in the semantic association network and the degree of the same word in the
phonological association network showed that degree between networks was correlated,

(14794) = .46, p <.0001 (see Figure 35). Therefore, words have similar degree in each network.
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Figure 35. Scatterplot of Semantic Association Network and Phonological Association Network
degree.

Lastly, the clustering coefficient of words in each network was examined. A Pearson’s r
correlation between the clustering coefficient of a word in the semantic association network and
the clustering coefficient of the same word in the phonological association network was not

correlated, » (14794) =-0.02 p <.0001.
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Figure 36. Scatterplot of Semantic Association Network and Phonological Association Network
clustering coefficient.
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Multiplex Network Analysis. The multiplex structure analysis follows that of Stella, et
al. (2017) by comparing average degree, average clustering coefficient, average shortest path
length, and the mixing pattern of each individual layer to the aggregated multiplex network (see
Table 19). The mean degree of the multiplex was 28.74 (SD = 44.63). The average clustering
coefficient of the multiplex was 0.09 (SD = 0.17). The average shortest path length of the
multiplex was 3.83. And, a Pearson’s correlation of » (20575) = 0.03, p <.0001, was found. The
r value close to 0 suggests that there was no correlation between a node’s degree and each of its
neighbor’s degree; therefore, the multiplexn network does not show evidence of mixing by

degree.

Table 19.

Network Structure Measures for the Semantic Association Layer, Phonological Association
Layer, and Multiplex.

Semantic Phonological Multiolex
Network Measures Layer Layer P
Average Degree 32.38 5.52 28.74
Averag§ Clustering 0.09 0.12 0.09
Coefficient
Average Shortest
Path Length 3.77 9.80 3.83
Mixing by Degree 0.03 0.44 0.03

In addition to comparing the aggregated multiplex to each of its individual layers, an
analysis assessing edge overlap was also done. Specifically, multilinks and degree of
multiplexity were analyzed to assess how much the semantic and phonological layers of the
multiplex overlapped. Multilinks are the number of instances where there are multiple edges

between a pair of nodes (Bianconi, 2013). In total, there were 4,034 node pairs that had at least
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one multilink (i.e., both a semantic and phonological edge between them). Examples of node
pairs with a multilink include bracelet — anklet, anxiety — anxious, and cake — bake. The
degree of multiplexity extends upon multidegree to determine the ratio of node pairs with
multilinks to all connected node pairs (Kapferer, 1969). In this analysis, the degree of
multiplexity was 0.01, suggesting a very small amount of overlap between the layers.

Individual nodes with multilinks were further assessed by examining how a node’s
multidegree compared to its semantic degree and its phonological degree. The average
multidegree (i.e., number of multilinks) was 3.57 (SD = 4.80). A node’s multidegree was
compared to the same node’s semantic degree and phonological degree using Pearson’s
correlations. Multidegree for a node was correlated with the semantic degree of the same node,
(5067) = .36, p <.0001, and was also correlated with the phonological degree of the same node,

(5067) = .41, p <.0001 (see Figures 37 and 38).
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Figure 37. Scatterplot of Multidegree and Semantic Layer degree.
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Figure 38. Scatterplot of Multidegree and Phonological Layer Degree.

Lastly, the location of nodes with at least one multilink were assessed. These nodes
resided in the giant component of the semantic association network and tended to reside in the
giant component of the phonological association network. Specifically, 99.4% of nodes with at
least one multilink resided in the giant component of the phonological association network with
the remaining 0.6% of nodes residing in an island.

Multiplex Behavioral Analysis. To further assess the multiplex structure, two regression
analyses were conducted predicting lexical decision reaction time and naming reaction time from
semantic degree, phonological degree, aggregated multiplex degree (semantic + phonological
degree), and multidegree (number of multilinks), as well as an interaction between semantic
degree and phonological degree. Previous results indicate that words with higher semantic
degree were responded to faster than words with lower semantic degree in a visual lexical
decision task (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Dunabeitia, Avilés, &
Carreiras, 2008; Yates, Locker, & Simpson, 2003) and word naming task (Dufabeitia, et al.,

2008). Words with higher phonological degree were also responded to faster than words with
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lower phonological degree in a visual lexical decision task (Yates, 2005; Yates, Locker, &
Simpson, 2004) and word naming task (Yates, 2005). Aggregated multiplex degree, multidegree,
and the interaction between semantic and phonological degree will provide new insight into how
examination of multiple layers simultaneously impacts language processing. The log of each
measure of degree was taken given the skewed distribution of this data.

Stepwise modeling building was conducted using R (R Core Team, 2017) to determine
the best model that only includes predictors that contribute significantly to the model. In this
procedure, both forward and backward stepwise modeling occurred to determine the predictors
of the final model. In both the lexical decision and naming regression analyses, the final models

included all degree measures (see Table 20 and 21).

Table 20.

Regression Analysis Predicting Lexical Decision Reaction Time from Different Measures of
Degree.

Estimate | Std. Error | p-value
Intercept 858.61 9.76 <.0001
Log Semantic Degree 56.65 8.68 <.0001
Log Phonological Degree 21.64 4.33 <.0001
Log Aggregated Multiplex Degree -86.88 11.20 <.0001
Log Multidegree 10.74 2.45 <.0001
Log Semantic Degree * Log Phonological Degree -11.72 1.04 <.0001




Table 21.

Regression Analysis Predicting Naming Reaction Time from Different Measures of Degree.
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Estimate Std. Error | p-value
Intercept 794 .81 8.11 <.0001
Log Semantic Degree 62.88 7.22 <.0001
Log Phonological Degree 10.17 3.60 <.01
Log Aggregated Multiplex Degree -89.26 9.31 <.0001
Log Multidegree 3.11 2.03 0.13
Log Semantic Degree * Log Phonological Degree -6.11 0.86 <.0001

For the regression analysis predicting lexical decision reaction time, all measures of

degree were significant. Interestingly, as the aggregated multiplex degree of a word increased,

reaction time also decreased, but as multiplex degree of a word increased, reaction time

increased. Having many connections decreased lexical decision time, as long as those

connections did not overlap in the multiplex. The interaction between semantic and phonological

degree was also significant (see Figure 39). When semantic degree is low, phonological degree

did not have a large effect on lexical decision reaction time. However, as semantic degree

increased, reaction time also increased, especially when phonological degree was low.
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Figure 39. Interaction of semantic and phonological degree on lexical decision reaction time.

For the regression analysis predicting naming reaction time, all measures of degree were
significant except for multidegree, although this predictor added significantly to the model. As
the aggregated multiplex degree of a word increased, reaction time also decreased. The
interaction between semantic and phonological degree was also significant (see Figure 40)
following the same interaction pattern as the lexical decision regression analysis. When semantic
degree is low, phonological degree did not have a large effect on lexical decision reaction time.
However, as semantic degree increased, reaction time also increased, especially when

phonological degree was low.
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Figure 40. Interaction of semantic and phonological degree on naming reaction time.

Discussion

A semantic association network was compared to a phonological association network
using the same nodes, and then combined into a multiplex network to assess the amount of
overlap between these two networks. The semantic association network and the phonological
association network were different in certain aspects of their structure, although both networks
would be described as having small-world, but not scale-free structure.

Despite both networks having all, or almost all, of their nodes in a large giant component,
the two networks differed in their average shortest path length and average clustering coefficient.
Specifically, the semantic association network had a smaller average path length and a smaller

average clustering coefficient than the phonological association network. This is surprising given
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the significantly larger number of edges placed in the semantic association network than the
phonological association network. This finding suggests that having a large number of edges
does not necessarily equate to having a more structured network. This is also evident in the
smaller number of communities and smaller modularity value for the semantic association
network as compared to the phonological association network, as well as the lack of assortative
mixing by degree in the semantic association network.

The semantic association network results should be taken with caution. It is possible that
the large number of edges in the semantic association network diluted network structure findings.
For example, the current dataset did not have available frequency of responses. Including
weights to edges might have changed network structure values, or could have been used to
eliminate less frequently, and potentially irrelevant, associations. In addition, it is not known
whether the sample of participants used to acquire the semantic association data is similar to the
sample of participants used to acquire the phonological association data. Differences in
participant demographics, like age and education, could substantially impact the kind of
responses that were given and change the structure of the network. Another existing semantic
association data set, the University of South Florida Free Association Norms (Nelson, McEvoy,
& Schreiber, 1998), could be used as a comparison to the semantic association data set provided
by S. De Deyne to further assess the reliability of the present network analysis.

Nevertheless, a multiplex was created to assess the amount of overlap between the
semantic association and phonological association networks. In the multiplex, a semantic layer
and a phonological layer were created where edges connect words according to that layer’s
association data. The multiplex network structure resembled more closely the semantic

association layer than the phonological association layer. In addition, there was a small overlap
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between the semantic and phonological association layers providing evidence that these layers
contribute different information in the representation of the mental lexicon. This corroborates the
notion that words meaning and sound are mostly unrelated (with the exception of onomatopoeia)
(Hockett & Hockett, 1960). Interestingly, for those nodes with at least one multilink, their
multidegree was correlated with their semantic and phonological degree, and these nodes tended
to reside in the giant component of each layer.

Taken together, this multiplex that considers associations in both the semantic and
phonological layers resembles the multiplex of Stella, et al. (2017) whose multiplex considers
different measures of semantic, syntactic, and phonological relationships. Specifically, the
present multiplex was like Stella et al.’s (2017) multiplex in average degree, average shortest
path length, and mixing pattern. However, the two multiplex networks diverge in average
clustering coefficient. The average clustering coefficient of Stella et al.’s multiplex was higher
than the average clustering coefficient in the present multiplex. This difference may be due to the
additional layers of information that are included in Stella et al.’s (2017) multiplex.

Since analysis of more sophisticated measures of the multiplex structure is not possible
due to current computational limitations, an additional analysis was conducted examining how
different measures of degree of single-layer networks and the multiplex influence behavioral
performance. The regression analyses assessing visual lexical decision and naming of words
showed that both single-layer network and multiplex degree measures contribute to the
prediction of performance. In previous work, higher degree in the single-layer semantic network
and higher degree in the single-layer phonological network led to faster visual lexical decision
and naming reaction times. However, in the present analysis, an interaction was found that

provides new evidence of how semantic and phonological degree interact. It is interesting to note
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that increasing semantic degree had the reverse effect in this analysis, such that higher semantic
degree resulted in slower lexical decision and naming tasks, especially when phonological
degree was small. This contradictory finding may be due to the much larger range in semantic
degree in the present analysis (from 1 to 900), whereas previous findings only look at high
versus low semantic degree with a much smaller range. For example, in Dunabeitia, Avilés, and
Carreiras (2008), high semantic degree ranged from 30 — 39.6 and low semantic degree ranged
from 5.6 — 8.1.

In addition, the regression analyses conducted in this study show that consideration of
multiple layers of information is necessary to fully understand language processes. The
aggregated multiplex degree, multidegree, and the interaction between semantic and
phonological degree were all contributed significantly to the regression analyses. Although
aggregated multiplex degree and the interaction between semantic and phonological degree
could be analyzed without creating a multiplex, multidegree is unique to a multiplex
examination. Therefore, the multiplex provides a novel way to assess overlap and interaction
between language systems that could not be done with single-layer network analyses alone.

These regression analyses highlight that examination of the entire mental lexicon
structure is important to visual word processing. Continued research can explore the effect of
multiplex structure on spoken word processing and word retrieval. In addition, other multiplex
measures may prove even more predictive of language processes than multidegree, which only
assesses the overlap between layers. For example, multiplex closeness centrality was the most
predictive variable in Stella, et al. (2017) assessing word acquisition in children.

Given the current data available, the semantic association network and the phonological

association network exhibit small-world structures that overlap minimally. However, these
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networks differ dramatically in their number of edges, which may influence the present network
structure findings. In particular, the phonological association network may be too sparse, given
the small number of cue word presentations to each participant (ranging from 6-8), leading to
potentially missing phonological associations that should be represented and the inability to truly
distinguish a viable edge from a spurious edge. On the other hand, the semantic association
network may be diluted by edges, given the large number of cue-response pairs provided by S.
De Deyne (429,401 pairs) with no indication of frequency of response weight and/or the ability
to filter edges. Therefore, the present analysis provides only an initial examination of a multiplex

of semantic and phonological associations.
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Chapter 6: General Discussion

Language processes are known to involve multiple systems of information, including
semantics and phonology. Research from the emerging, interdisciplinary field of Network
Science provides evidence that structure is crucial to understanding those processes. The newest
frontier in the application of Network Science to psycholinguistics is to move beyond
examination of single-layer networks that examine only one system at a time, and instead
consider the entire mental lexicon using a multiplex network. A multiplex network provides the
ability to understand how different systems overlap and interact during language processes.

The present work is the first to describe the multiplex structure of a network representing
semantic and phonological relationships amongst words. This multiplex uses association data to
link words in both layers, providing a common measure of similarity, and uses a large dataset.
Only one other multiplex language network has been examined that also considers semantic and
phonological, as well as syntactic, relationships among words, but does so with a limited set of
words and for word acquisition in children (Stella, et al., 2017). Therefore, this work continues to
contribute to the investigation of how multiplex structure influences language processes by using
a much larger dataset representing the adult mental lexicon.

To construct the present multiplex, phonological association data was collected, while
semantic association data was obtained from an existing dataset. Phonological associations have
been used by researchers to assess phonological similarity; however, a large dataset has not been
made available for research use. The present collection of phonological associations provides an
initial dataset that can continue to be expanded and used to better understand how people think
about phonological similarity. Indeed, age was examined as one factor that influenced

association responses. As age increased, more time was spent on the association task and more
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secondary and tertiary responses were made. In addition, adults in early and late middle
adulthood had to complete the task via Amazon Mechanical Turk. Given the computer literacy
skills required to use Amazon Mechanical Turk this suggests that the individuals in this sample
were high functioning adults. Therefore, it would be important to continue collecting association
data from a larger, more diverse sample of adults, including adults over the age of 75 years.

An alternative method to defining phonological similarity is to assess the amount of
overlap in phonemes between words. One method that has been well-studied is a one-phoneme
difference through substitution, deletion, or addition of a phoneme (Luce & Pisoni, 1998).
Indeed, this definition of phonological similarity has also been used to construct a single-layer
phonological network, and the resulting phonological structure has been shown to influence
several language processes (Vitevitch, et al., 2014).

The phonological association data collected in the present study was used to construct a
phonological network, which was then compared to the network structure of the one-phoneme
metric network of Vitevitch (2008). Interestingly, these two networks share small-world
properties, assortative mixing by degree, and significant community structure, but represent
phonological similarity in different ways. Behavioral tests can be used to further compare the
structure of these two types of phonological networks and to better understand how each type of
phonological network contributes to language processes. Even if similar effects on language
processing are found, the results would suggest that the one-phoneme metric would provide an
easier method to achieve the same results, but the phonological association data would provide
the opportunity to weight links by frequency, adding an additional piece of information to the

network.
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The present phonological association data also provided the opportunity to examine how
phonological network structure may change across adulthood. Interestingly, this examination
found little change in phonological network structure with increasing age, which is in contrast to
what has already been shown for the semantic network structure. Phonological processing has
been shown to be disrupted with increasing age in word retrieval processes (e.g., increase in tip-
of-the-tongue states), so it is necessary to further understand how the lack of change in
phonological network structure may be contributing to inefficient phonological processing. It
should be noted, though, that the present results may be an underestimate as data is sparse for
each age-related network. For example, many cues were only responded to by one person in each
age group. In addition, the data does not include many participants over the age of 75, limiting
the analyses to adults through late middle adulthood. Significant cognitive changes, like word
retrieval difficulties, tend to emerge in older adulthood. Therefore, it may be the case that the
lack of change in the structure of the phonological network seen in the present analysis is due to
the inability to adequately examine the phonological network structure for individuals over 75
years. Future work can continue to collect phonological association data from adults of all ages,
but particularly those over the age of 75, to obtain a better representation of age-related changes
in phonological network structure. Behavioral testing and simulations of the phonological
network structure across adulthood can also provide insight into how processing is impacted by
the lack of change in phonological network structure.

The present work, thus far, has focused on the single-layer phonological network
structure. However, as stated previously, examining a multiplex that includes semantic and
phonological layers of information is necessary given that these systems are connected and can

interact during word processing. The multiplex examined in this study consisted of a semantic
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association layer and a phonological association layer. The two layers were found to overlap
minimally. In addition, a regression analysis using step-wise model building provided evidence
that inclusion of predictors that account for single-layer and multiplex structure are needed for
prediction of visual lexical decision and naming. The present multiplex analysis focused on
degree, but future work can continue to explore the effect of other multiplex measures. For
example, in the Stella et al. (2017) multiplex analysis, the measure of closeness centrality was
most important in the multiplex, and may serve as a useful predictor in the present multiplex
analysis as well. One drawback to the current multiplex analysis is the size of the dataset. Given
current computational power the large size of the multiplex network made more complex
analyses impossible. However, the field of Network Science (and computational power)
continues to develop. Alternative methods of testing the multiplex structure through behavioral
experiments will provide a way to continue the effort of understanding how multiplex structure
influences language processes.

In sum, Network Science provides a useful method for examining the structure of
representations in the mental lexicon. Single--layer network have provided evidence that
structure is critical for understanding language processes. Methods and analyses to test the
multiplex structure of the mental lexicon are the new frontier in the application of Network
Science to psycholinguistics. As the computational methods continue to develop, there will be a
better understanding of the overlap and interaction between systems of information. In
conjunction with the computational methods, behavioral experiments will provide a way to test
theories and explore how network structure can be used to understand changes in language
processes across the lifespan. Importantly, understanding processes is important to

psycholinguistic research, but in order to understand those processes, one must also fully
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understand the structure in which those processes take place. And Network Science provides the

tools needed to do so.
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Network Measure

Level of Analysis

Description

Degree

Micro-Level

The number of immediate connections of a given
node

Clustering Micro-Level The likelihood that nodes of a particular node are

coefficient also connected to each other

Shortest Path Length | Micro-Level The shortest path, or number of edges to be
crossed, from a given node to some other node in
the network

Communities Meso-Level Sub-groupings of nodes that are more connected

to each other than to other sub-groupings

Average Clustering

Macro-Level

The average of all nodes’ clustering coefficient in

Coefficient the network
Average Shortest Macro-Level The average of all shortest path lengths of all
Path Length possible pairs of nodes in the network

Degree Distribution

Macro-Level

A plot using a logarithmic scale that shows the
frequency of each value of degree for all nodes in
the network

Location

Macro-Level

Nodes can reside in one of three locations of the
network: a giant component, an island (or smaller
component), or as an isolated hermit (not
connected to any other node), where components
are groupings of nodes connected to each other,
but not connected to any other component

Small-World
Structure

Macro-Level

Similar average shortest path length and higher
average clustering coefficient than a comparably-
sized random network

Scale-Free Structure

Macro-Level

A degree distribution that follows a power-law,
which contrasts with the Poisson distribution of a
comparably-sized random network

Aggregated Multiplex The sum of all layers’ degree in the multiplex. In

Multiplex Degree the present analysis, this is the sum of semantic
and phonological degree for a given word.

Multidegree Multiplex The number of multilinks for a given node, where

a multilink is placed between a pair of nodes if
they are connected in each layer of the network. In
the present analysis, multilinks are placed between
pairs of nodes that are connected in both the
semantic and phonological layers.




Appendix B.

Homograph Cue Words and Sentences.

absent
abuse
addict
address
adept
advocate
affect
aged
alloy
ally
alternate
articulate
associate
attribute
bass
beloved
blessed
bow
buffet
certificate
close
closer
combat
combine
compact
complex

compliment
compress
concert
conduct
conflict
confound
conglomerate
congress
conserve
console

She was absent from class today.
Don't abuse the animals.

The addict needed help.

She wrote her address on the paper.
She is an adept leader for our company.
We advocate for change.

That will affect the results.

He aged very quickly.

The alloy was stronger than steel.
You are my ally

Let's alternate between the two teams.
Please articulate your perspective.
My associate will help you out.
Sensitivity is his best attribute.

He caught a bass on his fishing trip.
My beloved toy has broken.

She felt blessed after the experience.
He shot the bow in the field.

I was stuffed after eating at the buffet.
He received a certificate at the meeting.
They are about to close.

He moved closer to the screen

The combat waged on for months.
Combine the toys into one basket.

She dropped her compact on the floor.
The math problem was complex.

He received a nice compliment on his
performance.

Compress the material into a ball.
They danced all night at the concert.

They conduct business together frequently.

The conflict was resolved.

His explanation will confound you.

The new conglomerate is very powerful.
Congress will discuss the proposed law.
Conserve your energy.

The video game console is broken.
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construct
content
contents
contest
contract
contrast
converse
convert
convict
coordinate
crooked
decrease
defect
delegate
deliberate
desert
desolate
digest
document
documents
dove
drawer
drawers
duplicate
elaborate
entrance
escort
estimate
evening
excess
excise
excuse
exploit
extract
fragment
frequent
gnome
graduate
hinder
house
implement

I will construct a new building.
He is content with his job.

Include a table of contents in your paper.

She won the contest.
She signed the contract.

The contrast between the images was stark.

They plan to converse over dinner.
I will convert to the latest upgrade.
The judge will convict the criminal.
He will coordinate the event.

He walked with a crooked cane.
Submarines decrease rapidly

The toy had a defect.

They delegate tasks equally in the group.

She made a deliberate decision.
The desert was extremely hot.

The desolate landscape was frightening.

Cows digest food quickly.

The document was signed.

The documents were signed.

The dove flew out of the cage.

The dresser drawer is struck.

The dresser drawers are stuck.

You will receive a duplicate copy.
Please elaborate on your reasoning.
She came through the entrance

The visitor had an escort team.
They will estimate the cost of service.
This evening is beautiful.

The excess was donated.

The excise tax was very steep.

Her excuse was accepted.

They will exploit the services offered.
The machines extract the material.
The fragment was thrown away.
Frequent attendance is noticed.

I gave her a garden gnome.

They graduate next weekend.

Do not hinder my momentum.
They bought a new house.

That farming implement is broken.



initiate
integral
interest
intimate
invalid
lead
leading
legitimate
lineage
live

lives
lower
minute
moderate
mow
multiply
number
object
offense
ornament
pace
pedal
perfect
postulate
prayer
precedent
predicate
preposition
present
presents
produce
progress
project
protest
raven
read
rebel
recall
record
recover
reflex

I will initiate the project.

You are an intergral part of the team.
You will pay interest on the loan.
The couple had an intimate dinner.
Your password is invalid.

I will lead the event.

She is leading the event.

That is a legitimate excuse.

Their lineage traces back hundreds of years.

The live show was amazing.

She lives peacefully.

The river is lower than usual.

One minute equals 60 seconds.

That was a moderate amount of money.
He will mow the grass.

Multiply the numbers to get the answer.
Here is my number.

The object is round.

The offense scored ten points.

The ornament glittered on the tree.

My pace improved by two minutes.
The last flower pedal fell off.

I will work to perfect my timing.

I postulate the existence of aliens.

The congregation said a prayer.

This serves as a prescedent for future cases.
The company will predicate a change in policy.

There is a preposition in this sentence
He received a present.

He received many presents.

We produce that computer.

Her progress report had high marks.
The class project is due tomorrow.
The protest was peaceful.

The black raven flew overhead.

The teacher said to read carefully

We rebel against that idea.

I recall that memory.

The record played all night.

The police will recover the stolen watch.
Her reflex to the ball was quick.
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refuse
reject
relay
release
research
reside
resume
river
row
rowing
secretive
segment
separate
sewer
shower
showers
singer
SOW
stingy
subject
subordinate
suite
supply
survey
tarry
tear
tears
tower
unused
use
used
vice
viola
wicked
wind
wound

We refuse to accept.

I reject your offer.

We won the relay race.

He will release the animal

He will research that topic.

I reside over there

She will resume after the break.

The river was flowing quickly.
Row the boat.

The rowing team won the gold medal.
He is secretive about his new job.

I have a segment of an orange.
They are a separate group

The sewer system smelled awful.
He took a long shower.

He is restricted to two showers a day.
That singer has a beautiful voice.
The sow played in the mud pit.

She is stingy with her money.

That was a hard subject to learn.

He is in a subordinate position.
They reserved the honeymoon suite.
Please supply the drinks.

She took the survey in class.

They tarry for the boat to arrive.

He had a tear in his eye.

He had tears in his eyes.

He is at the top of the tower

That is an unused glass.

Let's use this chair.

She used up the remaining supplies.
Their vice is gambling.

She played beautiful music with her viola.
She had a wicked laugh.

A strong wind came with the storm.

The wound needed immediate medical attention.
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