

427

Reverse Engineering and Trade Secrets in the
Post-Alice World

Samuel J. LaRoque

I. INTRODUCTION

Consider a new software startup company, its employees working
long hours to develop a software algorithm that will be bigger, better,
and faster than the state-of-the-art already on the market. Maybe it will
allow traders to respond to changing financial markets a millisecond
faster than their competitors, or it will help airlines plan more efficient
routes to save billions of dollars in fuel each year. The company believes
this new algorithm will lead to an initial public offering worth tens of
millions of dollars and early retirement. But before it releases the
software and changes the world, it wants patent protection. It wants to
prevent others from taking the same algorithm, packaging it with a
slightly different product, and selling it for less because it had lower
development costs. The company consults with several patent lawyers
and receives discouraging news. In view of several recent Supreme
Court decisions, most notably Alice Corp. v. CLS Bank International1 in
2014, this algorithm will be nearly impossible to patent. This company
cannot use patent protection to exclude others from using the algorithm,
and the company’s success is suddenly highly uncertain. What should
the company do?

These are difficult times for software companies seeking to protect
their intellectual property. The United States Supreme Court decided
Alice in June 2014, holding that most computer software constitutes
unpatentable abstract ideas.2 Alice has therefore made software patents

* J.D. Candidate, 2018, University of Kansas School of Law; Ph. D., 2005, University of Chicago;
B.A., 1998, Cornell University. The author thanks Professor Andrew Torrance for many helpful
discussions and a careful examination of the manuscript. He also thanks Nathan Mannebach and
Beth Hanus for invaluable input. Finally, he thanks Mathew Petersen, Adam Gillaspie, Mackenzie
Sheehy, and the staff of the University of Kansas Law Review for their significant improvements to
the manuscript.
 1. 134 S. Ct. 2347 (2014).
 2. Alice, 134 S. Ct. at 2357–59; note that while Alice’s holding was arguably narrow and
limited to the claims at issue, it has since been widely interpreted by lower courts and the United

428 KANSAS LAW REVIEW Vol. 66

much more difficult to obtain and far easier to invalidate in the courts.
This has driven software companies toward other forms of intellectual
property protection for their software, including trade secrets. Trade
secrets differ from patents, however, in at least one very significant way.
Patent protection lasts for a fixed amount of time,3 but once a trade secret
is exposed, protection is lost forever.4 One legitimate way to determine a
trade secret is through reverse engineering, so software companies
turning to trade secrets must carefully protect their products against
reverse engineering by competitors or else risk losing protection.5 Yet
while patent protection for software faces more challenges than ever
before, reverse engineering of software is becoming easier.6 Software
companies therefore face significant challenges in protecting their
intellectual property, as both patent protection and trade secret protection
look increasingly weak.

This Comment explores the extent to which software companies can
go to prohibit reverse engineering of their marketed products in today’s
legal climate. As will be shown, while blanket prohibitions on reverse
engineering will probably not succeed, software companies can likely
use shrinkwrap agreements to ban reverse engineering for specific
limited purposes such as direct economic competition.

Part II of this Comment provides important background information.
Part II.A contains an overview of key software concepts needed to
understand the legal analysis that follows. Part II.B contains a summary
of the Supreme Court’s recent Alice decision and its impact in restricting
patentability for software. Part II.C begins with an overview of trade
secret law and its application to software. Part II.C.1 provides an
overview of reverse engineering as a proper means of discerning trade
secrets, and Part II.C.2 contains background on reverse engineering of
software.

Part III begins with a survey of recent results where courts have
applied contract principles to intellectual property law. Part III.A
examines how the courts have applied contract principles to copyright
law specifically. Part III.B then examines the extension of these

States Patent and Trademark Office as a broad rebuke to software patents. See infra Section II.B.
 3. Patents typically expire twenty years following the filing of the earliest related application,
after which the protected invention is dedicated to the public. 35 U.S.C. § 154(a)(2) (2015 Supp.).
 4. E.g., 1 ROGER M. MILGRIM, MILGRIM ON TRADE SECRETS § 1.05(1), (2) (2017)
[hereinafter MILGRIM] (describing loss of secrecy and subsequent termination of trade secret
protection through sale, display, or circularization).
 5. Id. at § 1.05(5).
 6. See discussion infra Section II.C.2.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 429

copyright precedents to trade secret law, challenges posed by existing
patent law, and how software companies might apply contract principles
to protect their trade secrets. Part III.B.1 examines whether a total
contractual ban on reverse engineering to discern trade secrets embedded
in a software company’s product could succeed. Part III.B.2 looks at the
more reasonable option of a limited contractual ban, one that prohibits
reverse engineering only for certain purposes. Both case law (Part
III.B.2.i) and statutory (Part III.B.2.ii) support for limited contractual
bans are discussed.

II. BACKGROUND

A. Software, Generally

A basic understanding of several major concepts in software is useful
to understand recent developments in software patentability, as well as
the benefits and challenges to protecting software with trade secrets. The
term “software” refers generally to the programs that direct the activities
on a computer system.7 While there are many kinds of software, the
focus here is on so-called “applications software.” Applications software
controls particular applications such as word processing, photo editing,
e-mail management and so on. These are the kinds of products that
consumers tend to buy “off-the-shelf”8 to install on their computers to
perform certain tasks.

Software resides in a computer’s internal memory, and is generally
placed there by transferring it from a disk or downloading it from a
source such as the Cloud or the World Wide Web. The stored software
consists of instructions that tell the computer (specifically the computer’s
processing unit) what to do. Examples of basic instructions include
adding two numbers, or moving a value from one memory location to
another. A typical application program is made up of many millions of
such instructions.

Ultimately humans write software to tell computers what to do
through the process of programming. Programming fundamentally
“involves writing a program in some code or language that the computer

 7. See generally RONALD J. TOCCI & FRANK J. AMBROSIO, MICROPROCESSORS AND

MICROCOMPUTERS: HARDWARE AND SOFTWARE 169 (6th ed. 2003) (providing a general overview
of the types of software programs).
 8. Not to be taken literally, purchasing software “off-the-shelf” is understood to include
downloading software from a website, which is now a common method of obtaining software.

430 KANSAS LAW REVIEW Vol. 66

can [understand].”9 Today’s computers are digital, rather than analog,
devices. Digital devices are designed to operate using voltage signals,
which can have only two possible values: low voltage, represented by a
zero, and high voltage, represented by a one.10 Human programmers can
write programs consisting of instructions made up of ones and zeroes,
but doing so is tedious and errors are nearly impossible to detect and
fix.11

Programmers therefore generally write computer programs in high-
level languages such as C++, Java, or Visual Basic.12 Such languages
make programmers’ task much easier by using English-language words
and combining many individual computer instructions into a single
statement.13 Computers themselves do not understand the high-level
language, however, so it must be translated into the strings of ones and
zeroes that computers recognize. For higher-performance applications,
this is done through the process of compilation. Compilers are
themselves computer programs which take each high-level statement and
translate it into the series of ones and zeroes that a particular computer
understands.14 This new, translated program—sequences of ones and
zeroes stored in the computer’s memory—is called an “object program”
consisting of “object code.”15

Because high-level languages use English-language constructs, a
programmer should be able to understand the functionality of another
programmer’s work simply by reviewing the high-level code. By
contrast, even a highly-experienced programmer probably would not
understand the meaning of thousands or millions of strings of ones and
zeroes—the object code—without a great deal of painstaking analysis.
Microsoft Word, for instance, is written by programmers in the high-
level C++ language.16 Anyone with even a basic knowledge of
programming would recognize much of the basic functionality of Word
at this level. Even the most experienced programmer, however, would
find the object code virtually impenetrable. The detailed programming
methods used to solve the various problems that Word presents would be

 9. TOCCI & AMBROSIO, supra note 7, at 170.
 10. See, e.g., id. at 35–36.
 11. Id. at 170–71.
 12. Id. at 174.
 13. Id.
 14. Id. at 175.
 15. See id. at 170.
 16. See, e.g., The Programming Languages Beacon, LEXTRAIT.COM (Mar. 5, 2016),
http://www.lextrait.com/vincent/implementations.html (graphically indicating that Microsoft Office,
which includes Word, is developed using C++).

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 431

almost totally obscured. As will be shown, selling already-compiled
code in object code format is a valuable way for software companies to
protect the secrecy of their specific approaches to problem solving.17
This has long been an alternative to patent protection, and is as important
today as ever before in view of the Supreme Court’s decision in Alice.

B. The Impact of Alice

The legal landscape for patenting software became much more
difficult in 2014 when the United States Supreme Court handed down its
decision in Alice Corp. v. CLS Bank International.18 The Court in Alice
established a much more stringent test for patentability that excludes
many software algorithms. Such algorithms often create competitive
advantages in the marketplace, as when a company’s new algorithm
leads to improvements in speed or memory use compared with its
competitors.19 These advantages can be valuable intellectual property
rights, but the patentability of many such algorithms is now highly
questionable in the wake of Alice.

The status of software patents prior to Alice was murky, but several
major cases had suggested that software was generally patentable. For
instance, the Federal Circuit signaled its acceptance of business method
patents in State Street Bank & Trust Co. v. Signature Financial Group,
Inc. in 1998.20 In doing so, it held that a computational method for
transforming data into a final share price using a series of mathematical
calculations was patent-eligible subject matter because that final share
price was a “useful, concrete, and tangible result.”21 The Federal Circuit
narrowed its view in In re Bilski in 2008, finding that the “useful,
concrete, and tangible result” test on its own was insufficient for
demonstrating patentability.22 It relied instead on the Supreme Court’s
“machine-or-transformation” test, noting that when a process was not
tied to a particular machine or apparatus (e.g., an algorithm to be run on
a generic computer) the test for patentability was simply whether it

 17. See infra note 59 and accompanying text.
 18. Alice Corp. v. CLS Bank Int’l, 134 S. Ct. 2347 (2014).
 19. Relevancy is another example, as best illustrated by Google—its success stemmed largely
from the fact that its PageRank algorithm returned more relevant results than the algorithms of its
competitors. See John Battelle, The Birth of Google, WIRED (Aug. 1, 2005, 12:00 PM),
https://www.wired.com/2005/08/battelle/?tw=wn_tophead_4.
 20. State St. Bank & Tr. Co. v. Signature Fin. Grp., Inc., 149 F.3d 1368 (Fed. Cir. 1998).
 21. Id. at 1375 (quoting In re Alappat, 33 F.3d 1526, 1544 (Fed. Cir. 1994)).
 22. In re Bilski, 545 F.3d 943, 959–60 (Fed. Cir. 2008), aff’d sub nom. Bilski v. Kappos, 561
U.S. 593 (2010).

432 KANSAS LAW REVIEW Vol. 66

transformed an article into a different state or thing.23 It further held that
transformations of data, such as those that might be carried out by a
software algorithm, were patentable under this test.24 Even when the
Supreme Court scaled back patent protection for business methods in
Bilski v. Kappos, finding that the patent statutes “[did] not suggest broad
patentability of such claimed inventions,” the Court did not go so far as
to restrict patentability for software.25 Rather, it referred to the machine-
or-transformation test as a “useful . . . investigative tool” for evaluating
patent eligibility.26

Alice changed all of this, as courts have generally interpreted the
opinion as a major rebuke to software patents.27 Alice involved patent
claims directed to mitigating so-called settlement risk, which is the risk
that only one party to a financial exchange satisfies its obligation.28 The
claims recited a computer system for exchanging financial obligations,
including software for performing the exchange.29 In analyzing these
claims, the Court relied on the two-part patentability test it set forth in
Mayo v. Prometheus Labs.30 Under this test, one first determines
whether the claims are directed to a patent-ineligible concept.31 If so,
one then determines whether the elements of the claim transform it into a
patent-eligible application.32 Applying the first part of the test, the Court
found that intermediated settlement by a third party is an abstract idea—a
patent-ineligible concept.33 It then moved on to the second part of the
test. In applying the second part, the Court found that the patent claims
were directed only to a generic computer implementation of
intermediated risk, and therefore failed to transform the abstract idea into
a patent-eligible invention.34

 23. Id. at 962.
 24. See id. at 962–63 (describing how transforming raw data into a visual depiction of a
tangible object, as in CT scanning, was patent-eligible).
 25. Bilski v. Kappos, 561 U.S. at 608.
 26. Id. at 604.
 27. See infra notes 35–40 and accompanying text (discussing software patent challenges post-
Alice).
 28. Alice Corp. v. CLS Bank Int’l, 134 S. Ct. 2347, 2349 (2014).
 29. Id.
 30. Id. at 2355 (citing Mayo Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289
(2012)).
 31. Id. (noting that patent ineligible subject matter includes “laws of nature, natural
phenomena, and abstract ideas”).
 32. Id.
 33. Id. at 2356–57.
 34. Id. at 2360.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 433

Although its ineligibility finding was limited to the claims at hand,
courts have thus far interpreted Alice’s holding as a broad rebuke of
software patents in general. Within roughly two years of the Alice
decision, 568 patents had been challenged on patentability grounds
through motions citing Alice at the Patent Trial and Appeals Board
(PTAB), district courts, and the Federal Circuit.35 Overall, these judicial
bodies applied Alice to invalidate 378 patents and patent applications out
of 568 considered in the two years following the decision, an invalidation
rate of sixty-seven percent.36 The Federal Circuit has been particularly
harsh on software patents, invalidating thirty-four of the thirty-seven
software patents it examined under Alice within two years of the
decision.37 Meanwhile, by June 2016 the USPTO had rejected more than
36,000 patent applications over Alice, of which patent applicants had
abandoned38 more than 5,000.39 Statistics from the USPTO further show
that rejection rates for software-related patents spiked after Alice and
remained high well into 2017.40

Despite its force in invalidating software patents, the scope of Alice’s
holding remains unclear. The Supreme Court did not consider Alice to
be a case about software patents, and the parties to the case agreed that
Alice Corporation itself had never actually written software.41 It is the
broad interpretation of Alice by both the Federal Circuit and lower
courts—which have thus far interpreted it as a nearly per se rule against
software patents—that has had such a profound effect.42 Despite its
substantial impact, Alice is a short case (the Supreme Court considered it
“minor”),43 and the Court spent very little time describing how to apply

 35. Jasper L. Tran, Two Years After Alice v. CLS Bank, 98 J. OF THE PAT. & TRADEMARK OFF.
SOC’Y 354, 358 (2016).
 36. Id.
 37. Id.
 38. To abandon a patent application means to cease pursuing a patent based on that
application.
 39. Tran, supra note 35, at 358–59 (citing Robert R. Sachs, Two Years After Alice: A Survey of
the Impact of a “Minor Case” (Part 2), FENWICK & WEST’S BILSKI BLOG (June 20, 2016),
http://www.bilskiblog.com/blog/2016/06/two-years-after-alice-a-survey-of-the-impact-of-a-minor-
case-part-2.html.
 40. Robert R. Sachs, #Alicestorm: April Update and the Impact of TC Heartland on Patent
Eligibility, FENWICK & WEST’S BILSKI BLOG (June 1, 2017), http://www.bilskiblog.com/
blog/2017/06/alicestorm-april-update-and-the-impact-of-tc-heartland.html.
 41. Robert R. Sachs, Two Years After Alice: A Survey of the Impact of a “Minor Case” (Part
1), FENWICK & WEST’S BILSKI BLOG (June 16, 2016), http://www.bilskiblog.com/blog/2016/06/two-
years-after-alice-a-survey-of-the-impact-of-a-minor-case.html.
 42. Id.
 43. Id.

434 KANSAS LAW REVIEW Vol. 66

each prong of its test.44 This is of no consolation to software companies,
however, who may have difficulty protecting their algorithms and
finding funding for new software ventures in the wake of so much
uncertainty.45

Alice does not appear to spell the end of software patents altogether.
The Court seemed to leave open the possibility that claims that improve
the functioning of the computer itself, or that improve on an existing
technological process, are still patent eligible.46 The Federal Circuit has
also recently upheld software patents in several high-profile cases.47 But
these cases are the exception rather than the rule. Both the federal
district courts and the Federal Circuit have repeatedly struck down
software patents as non-patentable subject matter in the wake of Alice,
finding that the claims are directed to abstract ideas.48 With the Federal
Circuit upholding just eight software patents in the more than three years
since Alice,49 software companies are struggling to find other ways of
protecting their intellectual property.

Some software companies appear to be turning to copyright
protection for their programs in the wake of Alice. Congress amended 17
U.S.C. § 101 in 1980 to expressly make software eligible for copyright,50
so there seems to be little risk that the courts will clamp down on
software copyrights as they have with patents. There are advantages to
copyrighting software, and in many instances this may be the preferred

 44. See, e.g., Alice Corp. v. CLS Bank Int’l, 134 S. Ct. 2347, 2357 (2014) (“[W]e need not
labor to delimit the precise contours of the ‘abstract ideas’ category in this case. It is enough to
recognize that there is no meaningful distinction between the concept of risk hedging in Bilski and
the concept of intermediated settlement at issue here.”).
 45. See, e.g., Alice, Abstract Ideas, and Software-Related Patents, BERKELEY TECH. L. J.:
BTLJ BLOG (Mar. 1, 2016), http://btlj.org/2016/03/alice-abstract-ideas-software-related-patents/.
 46. See Alice, 134 S. Ct. at 2359–60 (noting that the claims were invalid in part because they
did not “purport to improve the functioning of the computer itself or effect an improvement in any
other technology or technical field”).
 47. See, e.g., Bascom Glob. Internet Servs., Inc. v. AT&T Mobility LLC, 827 F.3d 1341,
1350–51 (Fed. Cir. 2016) (holding that although claims directed to filtering of internet content were
directed to an abstract idea, the claims improved on an existing technological process and therefore
did not monopolize the abstract idea); Enfish, LLC v. Microsoft Corp., 822 F.3d 1327, 1336 (Fed.
Cir. 2016) (upholding claims directed to a “self-referential” database table upon finding that they
were directed to improving the functionality of the computer itself); DDR Holdings, LLC v.
Hotels.com, L.P., 773 F.3d 1245, 1259 (Fed. Cir. 2014) (upholding claims directed to a web server
on the basis that they were directed to a specific “Internet-centric problem” rather than an abstract
idea).
 48. See supra notes 35–37 and accompanying text.
 49. Sachs, supra note 40.
 50. See, e.g., Lawrence D. Graham & Richard O. Zerbe, Jr., Economically Efficient Treatment
of Computer Software: Reverse Engineering, Protection, and Disclosure, 22 RUTGERS COMPUTER &

TECH. L.J. 61, 91 (1996).

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 435

method of IP protection. Such an analysis is beyond the scope of this
Comment. Yet copyright protection for software has at least two
significant weaknesses. First, one recent court decision appears to
significantly expand fair use protections for copying software.51 Second,
copyright protection in software is limited to an author’s original
creations. This means that coding constructs that are highly generic, or
already in the public domain, do not receive protection and are therefore
subject to copying by others.52 As a result, where generic constructs can
be used to code specific algorithms, copyright protection might actually
protect very little.

The other main alternative to patents is trade secrets. Alice has not
altered trade secret protection in any way. As this Comment will show,
trade secrets can therefore be a valuable means for protecting software if
used correctly.

C. The Trade Secret (Plus Contract) Solution

In view of tighter restrictions on software patents in the wake of
Alice, software companies are increasingly turning to trade secrets to
protect their valuable algorithms.53 But in doing so, such companies
should consider the permissive posture of existing trade secret law
toward reverse engineering. Competitors, after all, may use reverse
engineering to compromise the protections that software owners seek.

Statutory trade secret protections have evolved substantially over the
past eighty years. Trade secret law was initially compiled in the first
Restatement of Torts in 1939.54 But the primary source of trade secret
law in most jurisdictions today is the Uniform Trade Secrets Act
(UTSA), first promulgated in 1979 and now adopted by forty-seven

 51. See Oracle Am., Inc. v. Google Inc., No. C 10-03561, 2016 U.S. Dist. LEXIS 145601
(N.D. Cal. Sept. 27, 2016) (reiterating jury finding that Google’s copying of Oracle’s Java API was
protected by fair use exceptions under copyright law), appeal docketed and consolidated with No.
17-1118 (Fed. Cir. Nov. 14, 2016).
 52. See, e.g., Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 714–15 (2d Cir. 1992)
(noting that “elements taken from the public domain do not qualify for copyright protection” and
finding no copyright violation).
 53. See, e.g., Ryan Davis, Attorneys Lean Toward Trade Secrets to Avoid Alice Headaches,
LAW360 (July 17, 2015, 3:54 PM), https://www.law360.com/articles/666273/attys-lean-toward-
trade-secrets-to-avoid-alice-headaches (describing general strategy shift toward embracing trade
secrets for software in view of Alice); Stephanie Forshee, In Fintech, Trade Secrets May Be
Replacing Patent Applications, CORPORATECOUNSEL (June 21, 2017),
http://www.law.com/corpcounsel/almID/1202790865489/ (describing a shift away from patent
applications and toward trade secrets in the financial technology industry and attributing it to Alice).
 54. See MILGRIM, supra note 4, § 1.01(2)(c)(i) (2017).

436 KANSAS LAW REVIEW Vol. 66

states and the District of Columbia.55 The UTSA defines a trade secret
as information, including a program, method, or process, that “derives
independent economic value . . . from not being generally known to . . .
[or] readily ascertainable by” other persons using proper means.56 Those
“other persons” must further benefit in some way from use of the trade
secret.57 The UTSA further requires that trade secret owners make
“efforts . . . reasonable under the circumstances to maintain [this]
secrecy.”58 Computer software is well suited to these UTSA
requirements. First, the UTSA definition expressly encompasses
programs, and extends also to methods and processes which are often
embodied in software algorithms. Second, distribution of software in
object code format generally meets the basic requirement of maintaining
secrecy because it is not easily decipherable to human readers.59

The UTSA defines trade secret misappropriation generally as the
acquisition of another’s trade secret by one who knows or had reason to
know the acquisition was by improper means, or the disclosure or use of
another’s trade secret without express or implied consent where the trade
secret was acquired through improper means.60 “Improper means”
generally refers to theft, bribery, misrepresentation, and even legal
actions that fall below generally accepted standards of commercial
conduct.61

Trade secret protection historically existed almost entirely at the state
level until Congress enacted the federal Defend Trade Secrets Act
(DTSA) in May 2016.62 The DTSA provides a federal cause of action
for trade secret misappropriation.63 It closely mirrors the UTSA, and the
two acts define “trade secret” and “misappropriation” almost

 55. Id. at § 1.01(2)(b).
 56. UNIF. TRADE SECRETS ACT WITH 1985 AMENDMENTS § 1(4)(i) (UNIF. LAW COMM’N
1985).
 57. See id.
 58. Id. § 1(4)(ii).
 59. See, e.g., Data Gen. Corp. v. Grumman Sys. Support Corp., 825 F. Supp. 340, 359 (D.
Mass. 1993) (“Even those who obtained [the software] and were able to use [it] were unable to
discover its trade secrets because [the software] was distributed only in its object code form, which
is essentially unintelligible to humans.”).
 60. See UNIF. TRADE SECRETS ACT § 1(2).
 61. Id. at § 1(1).
 62. Defend Trade Secrets Act of 2016, Pub. L. No. 114-153, § 2(f), 130 Stat. 376, 382 (2016)
(codified at 18 U.S.C. §§ 1836–1839).
 63. MARK L. KROTOSKI ET AL., MORGAN, LEWIS & BOCKIUS LLP, THE LANDMARK DEFEND

TRADE SECRETS ACT OF 2016 at 7 (2016), https://www.morganlewis.com/~/media/files/publication/
morgan%20lewis%20title/white%20paper/the-landmark-defend-trade-secrets-act-of-2016-
may2016.ashx?la=en.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 437

identically.64 Under the DTSA, a trade secret owner can bring an action
in federal court if the trade secret is related to a product or service used
in interstate or foreign commerce.65 Notably, the DTSA expressly states
that it does not preempt state trade secret law.66 Trade secret owners can
therefore choose whether to bring an action in state court under state law
or in federal court under the DTSA.67

1. Reverse Engineering in Trade Secret Law

The issue of reverse engineering has a long history in trade secret
law. Reverse engineering is defined as “starting with the known product
and working backward to find the method by which it was developed,”68
and courts have traditionally recognized reverse engineering as a proper
means of learning trade secrets. In Kewanee Oil Co. v. Bicron Corp., for
instance, the United States Supreme Court explained that trade secret law
does not protect against discoveries by fair and honest means including
“so-called reverse engineering, that is by starting with the known product
and working backward to divine the process which aided in its
development or manufacture.”69

A more detailed treatment of reverse engineering comes from
Chicago Lock Co. v. Fanberg, where plaintiff lock company sued
defendant locksmiths for trade secret misappropriation when the
defendants compiled a list of key codes for the plaintiff’s locks by
contacting other locksmiths who had already picked the locks.70 The
court held not only that the reverse engineering by individual locksmiths
was not misappropriation, but that the sharing of the key codes with
other locksmiths was not misappropriation either.71 The court concluded
by noting that to hold otherwise would bring state trade secret protection
into line with the absolute monopoly afforded by patents and lead to
preemption by federal patent law.72

The UTSA does not expressly address reverse engineering in its
statutory language, but the Comments state that reverse engineering is an

 64. Compare 18 U.S.C.A. § 1839(3), (5) (West Supp. 2016), with UNIF. TRADE SECRETS ACT

§ 1(1), (2).
 65. 18 U.S.C.A. § 1836(b)(1) (West Supp. 2016).
 66. 18 U.S.C.A. § 1838 (West Supp. 2016).
 67. KROTOSKI ET AL., supra note 63, at 7–8.
 68. UNIF. TRADE SECRETS ACT § 1 cmt.
 69. Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974).
 70. Chi. Lock Co. v. Fanberg, 676 F.2d 400, 402–03 (9th Cir. 1982).
 71. Id. at 405.
 72. Id.

438 KANSAS LAW REVIEW Vol. 66

appropriate means of discerning a trade secret. Section 1 of the UTSA
defines “trade secret” in terms of a requirement that the secret be “not . . .
readily ascertainable by proper means.”73 The comments to the statute
include the following statement:

Proper means include: . . . 2. Discovery by “reverse
engineering”, that is, by starting with the known product
and working backward to find the method by which it
was developed. The acquisition of the known product
must, of course, also be by a fair and honest means, such
as purchase of the item on the open market for reverse
engineering to be lawful74

The federal DTSA takes the UTSA one step further by expressly
addressing reverse engineering in the statutory language. After defining
“misappropriation” in terms of acquisition or disclosure using improper
means, the DTSA defines “improper means” as including “theft, bribery,
misrepresentation, breach or inducement of a breach of a duty to
maintain secrecy, or espionage through electronic or other means.”75 It
then expressly excludes reverse engineering from “improper means,”
stating that the term “improper means” does not include “reverse
engineering, independent derivation, or any other lawful means of
acquisition”76 The trend is therefore clear: the courts have long held
that reverse engineering is a legitimate means of acquiring trade secrets,
the UTSA recognized this when defining trade secrets, and the federal
government has recently emphasized this in the DTSA.

2. Reverse Engineering of Software

Computer software is unique in that it cannot simply be taken apart
and examined physically like the locks in Chicago Lock. As discussed
earlier, software companies typically compile their source code into
object code prior to distributing it.77 Courts have generally held that
distribution of this object code reflects a sufficient effort to maintain
secrecy because unlike the original source code, this object code is
indecipherable to human readers.78 Object code, however, can be reverse

 73. UNIF. TRADE SECRETS ACT § 1(4)(i).
 74. Id. § 1 cmt.
 75. 18 U.S.C.A. § 1839(6)(A) (West Supp. 2016).
 76. Id. § 1839(6)(B).
 77. See supra Section II.A.
 78. See, e.g., Trandes Corp. v. Guy F. Atkinson Co., 996 F.2d 655, 663–64, 663 n.8 (4th Cir.
1993) (determining that the object code at issue met the definitional requirements for a trade secret);

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 439

engineered through computational processes to produce a rough copy of
the algorithms in the original source code; this process is often referred
to as “disassembly” or “decompilation.”79 While the reproduction is far
from exact, this rough copy may be sufficient for the reverse engineering
party to discern what makes the software faster or more efficient. A
software company might have patented such information prior to Alice,
and now might wish to protect it as a trade secret. If the information is
discerned through reverse engineering, however, trade secret protection
is no longer available and the software company may lose a valuable
edge on its competitors.

Past scholarship has largely dismissed decompilation as a legitimate
threat to software trade secrets owing to the time, effort, and expense
required.80 But it is time to reexamine the risks of decompilation in view
of recent technological advances. As an example, consider the Java
programming language. Like C or C++, Java is a high-level
programming language that must be compiled (translated) into something
the computer’s processor understands before the code is run on that
computer. Unlike C and C++, however, Java is compiled into an
intermediate version of object code called Java bytecode prior to
distribution over the web.81 Final compilation occurs on any machine
running software called the Java Virtual Machine (JVM).82 Java
bytecode is platform independent, meaning that the same high-level Java
source code can be partially compiled into Java bytecode and distributed
to many different types of machines, each of which then finishes the
compilation process.83

This platform-independence makes Java very flexible and therefore a
favorite for web-related applications because the same code can run on
many different types of machines. But it also makes Java particularly
vulnerable to reverse engineering.84 The same tools readily available to

Q-Co Indus. v. Hoffman, 625 F. Supp. 608, 617 (S.D.N.Y. 1985) (“Only the object code is
publically [sic] available; this [is] the version of the program that is intended to be read by the
computer and cannot be understood even by expert programmers.”).
 79. See, e.g., Pamela Samuelson & Suzanne Scotchmer, The Law and Economics of Reverse
Engineering, 111 YALE L.J. 1575, 1608–09 (2002) (explaining how engineers can use disassembly
or decompilation to “discern or deduce internal design details of the program”).
 80. See, e.g., id. at 1613–14.
 81. Stephen Rauh, A Java Programmer’s Guide to Byte Code, BEYOND JAVA (Jan. 5, 2015),
https://www.beyondjava.net/blog/java-programmers-guide-java-byte-code/.
 82. See id.
 83. See id.
 84. See, e.g., Ajay Yadav, Java Bytecode Reverse Engineering, INFOSEC INST.(Jan. 31, 2014),
http://resources.infosecinstitute.com/java-bytecode-reverse-engineering (“It is relatively easy to
disassemble the bytecode of a Java application, compared to other binaries.”).

440 KANSAS LAW REVIEW Vol. 66

help Java users run Java bytecode through the JVM can also be used for
disassembly as part of the reverse engineering process. Disassembly is,
after all, essentially the opposite of compilation. And because Java end-
users are closer to the compilation process, they have easier access to
disassembly tools. The Eclipse integrated development environment
(IDE) is one example of freely downloadable software that can be used
to disassemble Java bytecode and potentially reverse engineer web
applications software.85

While the object code associated with other high-level languages
such as C or C++ tends to be more resistant to reverse engineering than
Java, sophisticated disassembly tools exist for these languages as well,
and skilled software engineers may be able to reproduce the basic
functionality of a program written in these languages. Snowman, for
instance, is a new C/C++ decompiler that can be used to translate object
code into human-readable source code.86 As with many decompilers,
Snowman’s developers advertise the product toward computer virus
analysts as well as persons who have simply lost their source code.87 But
the product is not limited to these uses, and competitors could just as
easily use it to discern a software company’s protected algorithms
through reverse engineering.

Software companies seeking to protect their intellectual property
therefore face a major challenge—just as heightened patentability
standards push them toward trade secret protection, advances in reverse
engineering of software make it more difficult to protect their trade
secrets. And these companies cannot rely on trade secret law to justify
such bans. If intellectual property law alone won’t sufficiently protect
software companies looking to protect their investments post-Alice, then
where should they turn? The answer, as argued here, may be contract
law as applied to trade secrets.

III. ANALYSIS

When the courts have considered intellectual property protection in
the context of contract law, rather than intellectual property law, the
results have sometimes been more favorable to the holders of the

 85. Download Eclipse Technology That Is Right for You, ECLIPSE, https://www.eclipse.org/
downloads/ (last visited Oct. 17, 2017).
 86. Snowman, DEREVENETS.COM (June 6, 2017, 11:14 PM), http://derevenets.com/.
 87. Paul Krill, C/C++ Decompiler Translates Programs, No Source Code Needed,
INFOWORLD (Oct. 14, 2014), http://www.infoworld.com/article/2833714/c-plus-plus/snowman-
seeks-to-be-llvm-for-decompilers.html.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 441

intellectual property rights. It was not always that way. In 1988, in
Vault Corp. v. Quaid Software Ltd., the Fifth Circuit invalidated a
Louisiana statute that allowed shrinkwrap licenses88 to prohibit reverse
engineering of software for adaptability purposes.89 The Fifth Circuit
held that the provision in question “‘touche[d] upon an area’ of federal
copyright law” and was therefore preempted by the federal Copyright
Act.90 This marked a significant setback for holders of intellectual
property rights in software.

Although the next notable case did not involve a statute or reverse
engineering, and so was not directly relevant to the holding in Vault,
ProCD, Inc. v. Zeidenberg raised the hopes of software companies by
holding that shrinkwrap licenses were not per se invalid.91 There the
Seventh Circuit upheld a shrinkwrap license on a software box
instructing purchasers that they were bound by the terms of a license
inside the box, including a term barring non-commercial uses of the
software.92 Building on ProCD, two more recent cases directly
disagreed with Vault by upholding similar prohibitions against reverse
engineering in shrinkwrap software licenses. In 2003, in Bowers v.
Baystate Technologies, Inc., the Federal Circuit relied on ProCD in
upholding a shrinkwrap provision prohibiting reverse engineering.93 And
in 2005, in Davidson & Associates v. Jung, the Eighth Circuit closely
followed Bowers in upholding a similar shrinkwrap provision prohibiting
reverse engineering for interoperability purposes.94

The common theme of shrinkwrap licenses across these cases is no
coincidence. As the cases demonstrate, software companies have tried to
circumvent historically permissive policies toward reverse engineering
software by relying instead on contract principles. Meanwhile, the issue
of reverse engineering software has heightened relevance today. As
software companies in an unfriendly patent landscape increasingly turn
to trade secrets to protect their algorithms, they must deal with the very
real possibility that competitors in the industry will reverse engineer their
products to reveal their trade secrets and use those secrets to compete

 88. A shrinkwrap license is a message printed on the outside of software packaging notifying
users that they will be bound by license terms once they open the package. More common today are
electronic versions requiring users to click a button on their computer or handheld screen to agree to
terms; these are generally referred to as point-and-click agreements or clickwrap licenses.
 89. Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 270 (5th Cir. 1988).
 90. Id.
 91. ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1455 (7th Cir. 1996).
 92. Id. at 1448–50.
 93. Bowers v. Baystate Techs., Inc., 320 F.3d 1317, 1325 (Fed. Cir. 2003).
 94. Davidson & Assocs. v. Jung, 422 F.3d 630, 639 (8th Cir. 2005).

442 KANSAS LAW REVIEW Vol. 66

directly. The courts seem loath to restrict reverse engineering and the
DTSA reflects this permissive approach.

Shrinkwrap license provisions prohibiting reverse engineering for
certain purposes offer another path. The law is unsettled here, as the
cases described above demonstrate. The Fifth Circuit has held that
shrinkwrap provisions prohibiting reverse engineering are invalid, yet the
Federal Circuit and Eighth Circuit appear to allow them. Furthermore,
those cases examined the relationship between shrinkwrap prohibitions
on reverse engineering and copyright, not trade secrets. The key
question, therefore, is just how far software companies can push these
shrinkwrap licenses to protect their trade secrets from reverse
engineering.

A. Case Law Applying Contract Principles to the Protection of
Intellectual Property

To understand the extent to which software companies might rely on
contract principles to protect their trade secrets, it is useful to first review
the key cases in which software owners have used shrinkwrap terms—
successfully or not—to protect their products.

1. Vault v. Quaid

In Vault v. Quaid, the Fifth Circuit held that a Louisiana licensing
statute permitting shrinkwrap licenses to restrict reverse engineering was
preempted by federal copyright law.95 Vault produced computer
diskettes containing copyrighted code to prevent unauthorized
duplication of other companies’ software programs.96 Vault included a
license agreement with each software package prohibiting “copying,
modification, translation, decompilation or disassembly of [its]
program.”97 Quaid produced and sold diskettes containing a feature
specifically designed to unlock Vault’s protection.98 Quaid did not
dispute that it had developed its own program by reverse engineering
Vault’s,99 which violated the terms of the shrinkwrap agreement.

Vault sued, alleging that Quaid breached the license agreement by
reverse engineering Vault’s software in violation of the Louisiana

 95. Vault, 847 F.2d at 270.
 96. Id. at 256.
 97. Id. at 257.
 98. Id.
 99. Id.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 443

Software License Enforcement Act (LSLEA).100 Under the LSLEA,
software producers such as Vault could impose certain contractual terms
on purchasers so long as the license agreement accompanied the
producer’s software.101 Among those terms was one prohibiting
“adaptation by reverse engineering, decompilation or disassembly.”102

On appeal, the Fifth Circuit found the statute invalid and the license
therefore unenforceable, holding that certain provisions of the statute
“‘touched upon the area’ of federal copyright law” and were therefore
preempted by it.103 The Fifth Circuit specifically noted that § 117 of the
Copyright Act permits an owner of a computer program to adapt that
program for certain purposes.104 The court held that the LSLEA
provision prohibiting adaptation by reverse engineering touched upon
this particular area of federal copyright law and was preempted by it.105

2. ProCD v. Zeidenberg

While Vault examined a specific provision in a software license, the
seminal case examining enforceability of software shrinkwrap licenses in
other contexts is ProCD, Inc. v. Zeidenberg.106 There the Seventh
Circuit held that consumers purchasing off-the-shelf software products
were bound by the terms of the license agreements inside.107 ProCD
compiled listings from various telephone books into a computer database
and sold the software to both commercial and private consumers so they
could look up listings by simply querying the database.108 It placed a
message on every consumer software box stating that the buyer was
bound by restrictions in an enclosed license, including a prohibition on
using the application for non-commercial purposes.109 But Matthew
Zeidenberg did just that—he bought a consumer package and ignored the
enclosed license terms, setting up a corporation to resell ProCD’s listing

 100. Id. at 268.
 101. Id.
 102. Id. at 268–69.
 103. Id. at 269–70.
 104. Id.
 105. Id.
 106. 86 F.3d 1447 (7th Cir. 1996).
 107. Id. at 1448–49.
 108. Id. at 1449.
 109. Id. at 1450.

444 KANSAS LAW REVIEW Vol. 66

information to other companies for a profit.110 ProCD sued, claiming
that Zeidenberg had violated the license terms.111

On appeal, the Seventh Circuit upheld the license on the basic
contract principle of mutual assent, holding that the Uniform
Commercial Code did not preclude binding a purchaser to license terms
hidden within packaging.112 More relevant to the trade secret issue,
however, was the court’s examination of preemption. The district court
concluded that the shrinkwrap license was unenforceable in view of §
301(a) of the Copyright Act,113 which states in part that:

[A]ll legal or equitable rights that are equivalent to any
of the exclusive rights within the general scope of
copyright as specified by section 106 in works of
authorship that are fixed in a tangible medium of
expression and come within the subject matter of
copyright . . . are governed exclusively by this title.114

The Seventh Circuit reversed, holding that rights created by contract
are not “equivalent to any of the exclusive rights within the general scope
of copyright,” and that there was therefore no preemption of state
contract laws.115 It reasoned that the exclusive rights described in the
Copyright Act are rights against the world—all persons are forbidden
from copying copyrighted material, whether they agree to it or not.116
Contract rights, by contrast, affect only the parties to the contract and are
therefore not “exclusive.”117 As such, shrinkwrap terms restricting
certain uses of enclosed software were enforceable.118

3. Bowers v. Baystate

Although the Fifth Circuit in Vault held that a license provision
prohibiting certain kinds of reverse engineering was unenforceable, the
momentum has ultimately shifted from licensees back toward licensors
on the issue of reverse engineering. Bowers marked the start of that
shift. In Bowers, the Federal Circuit held that federal copyright law did

 110. Id.
 111. Id.
 112. Id. at 1452–53.
 113. Id. at 1454.
 114. 17 U.S.C. § 301(a) (2012) (emphasis added).
 115. ProCD, 86 F.3d at 1454 (quoting 17 U.S.C. § 301(a) (2012)).
 116. Id.
 117. Id.
 118. See id. at 1455.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 445

not preempt shrinkwrap license terms prohibiting reverse engineering.119
Harold Bowers invented an improvement for computer aided design
(CAD) software, which he bundled with related software and sold with a
shrinkwrap license prohibiting all reverse engineering.120 Baystate was a
competitor in the CAD industry.121 Shortly after Bowers began selling
his bundle, Baystate acquired copies of it and within months had
introduced its own substantially revised product incorporating features of
Bowers’s improvements.122 Bowers brought breach of contract claims
against Baystate for violating the terms of the shrinkwrap agreement.123

On appeal, the Federal Circuit applied First Circuit law in deciding
the contract issue because that issue was not unique to its own
jurisdiction.124 Baystate argued that the shrinkwrap reverse engineering
prohibition was preempted by the Copyright Act, but the Federal Circuit
disagreed and affirmed the district court’s judgment.125 The Federal
Circuit noted its respect for freedom of contract before squarely
addressing the preemption issue.126 It explained that § 301(a) of the
Copyright Act (requiring that all exclusive rights within the general
scope of copyright were governed exclusively by the Act) did not require
preemption so long as a state cause of action required some non-illusory
extra element.127 It relied in part on ProCD’s holding that shrinkwrap
licenses were not preempted by federal copyright law, noting the Seventh
Circuit’s observation that a copyright is a right against the world while
contracts bind only their parties.128 And it distinguished Vault on the
basis that it was limited to a state law prohibiting copying of a computer
program rather than “private contractual agreements supported by mutual
assent and consideration.”129 It therefore held that Bowers’s license
terms forbidding reverse engineering were enforceable, and that Baystate
was liable for breach of contract.130

 119. Bowers v. Baystate Techs., Inc., 320 F.3d 1317, 1323 (Fed. Cir. 2003).
 120. Id. at 1320–22.
 121. See id. at 1322.
 122. Id.
 123. See id.
 124. Id. at 1322–23.
 125. Id. at 1323.
 126. Id. at 1323–24.
 127. Id. at 1324 (citing Data Gen. Corp. v. Grumman Sys. Support Corp., 36 F.3d 1147, 1164
(1st Cir. 1994)).
 128. Id. (citing ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1454 (7th Cir. 1996)).
 129. Id. at 1325.
 130. Id. at 1326.

446 KANSAS LAW REVIEW Vol. 66

Judge Dyk dissented on the preemption issue, noting that the
majority’s holding conflicted with the Fifth Circuit’s holding in Vault
and expressing concern that this logic threatened copyright policies
generally.131 He disagreed that shrinkwrap agreements were freely
negotiated, likening them instead to contracts of adhesion where
purchasers had no other choice but to enter into the contract or avoid
buying the product altogether.132 And he disagreed with the majority’s
reasoning that there was any difference between preemption of a state
statute, as in Vault, and general common law contract principles.133

The Federal Circuit’s majority opinion in Bowers has proved
controversial.134 Nonetheless, other circuits have followed it as best
illustrated by Davidson & Assocs. v. Jung.135 In Davidson, the
defendants violated the terms of a shrinkwrap agreement when they
reverse engineered the plaintiff’s software to construct an emulator
whereby plaintiff’s games could be played for free.136 The defendants
relied on Vault in arguing that the Copyright Act preempted the
plaintiff’s state law breach-of-contract claims.137 But the Eighth Circuit
sided with the plaintiffs, finding the contract provision valid and
enforceable.138 As in Bowers, the court distinguished Vault on the basis
that it addressed a particular state statute rather than a state law contract
issue.139 And it expressly relied on Bowers in determining that the
defendants could contractually forego their reverse engineering rights
under the Copyright Act.140 It concluded that the defendants had indeed
relinquished their reverse engineering rights when they agreed to the
plaintiff’s end-user license agreement (EULA), and that the defendants
therefore breached the agreement.141

The facts underlying the reverse engineering in Davidson were
strikingly similar to those of an earlier copyright case where the court
reached the opposite result. In Sony Computer Entertainment, Inc. v.
Connectix Corp., Sony sued after Connectix reverse engineered Sony’s

 131. Id. at 1335 (Dyk, J., concurring in part and dissenting in part).
 132. Id. at 1337.
 133. Id.
 134. See, e.g., Robert W. Gomulkiewicz, Fostering the Business of Innovation: The Untold
Story of Bowers v. Baystate Technologies, 7 WASH. J.L. TECH. & ARTS 445, 446–47 (2012).
 135. 422 F.3d 630 (8th Cir. 2005).
 136. Id. at 636.
 137. Id. at 638.
 138. Id. at 639.
 139. Id.
 140. Id.
 141. Id.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 447

PlayStation software to emulate the PlayStation on other platforms.142
The Ninth Circuit held that the fair use exception to the Copyright Act
protected the defendant’s reverse engineering.143 The key distinction
between the cases, however, is that Sony did not involve a shrinkwrap
agreement. The Eighth Circuit reached its conclusion in Davidson by
applying contract principles, holding that the defendants breached the
EULA when they reverse engineered the plaintiff’s product.

Bowers and Davidson represent an encouraging trend for software
companies seeking to protect their intellectual property through
shrinkwrap agreements prohibiting reverse engineering. First the Federal
Circuit, and then the Eighth Circuit, upheld broad prohibitions on reverse
engineering, finding no preemption by federal copyright law. Yet these
cases represent the positions of only two circuits—Vault is still the law in
the Fifth Circuit, despite being nearly thirty years old. Furthermore,
these cases applied copyright law rather than trade secret law, so exactly
how these Circuits might handle trade secret protection is unclear. The
following sections explore how software companies might best approach
trade secret protection to maximize their chances of having contractual
reverse engineering restrictions upheld by the courts.

B. Application to Trade Secret Law

In considering how contract principles apply to trade secrets, it is
first important to note that contracts inherently play a more important
role in trade secrets than they do in copyright or patent law. The UTSA,
for instance, defines “improper means” as including “breach or
inducement of a breach of a duty to maintain secrecy.”144 The DTSA,
which is closely based on the UTSA, contains identical language.145
Therefore when one party knows that it is receiving secret information
from another, and expressly agrees to keep it secret by not performing
reverse engineering, such contractual terms are generally enforceable.146
Disclosure of trade secrets in violation of non-compete clauses and other
similar contractual provisions between employees and their former
employers comprises the vast majority of trade secret litigation.147 At

 142. Sony Comput. Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 598 (9th Cir. 2000) (by
reverse engineering Sony’s software, Connectix made it possible for gamers to play Sony’s
PlayStation games on their own computers).
 143. Id. at 609.
 144. UNIF. TRADE SECRETS ACT WITH 1985 AMENDMENTS § 1(1) (UNIF. LAW COMM’N 1985).
 145. 18 U.S.C.A. § 1839(6)(A) (West Supp. 2016).
 146. See MILGRIM, supra note 4, §1.05(5)(III)(C)(1).
 147. See David S. Almeling et al., A Statistical Analysis of Trade Secret Litigation in State

448 KANSAS LAW REVIEW Vol. 66

first blush, then, contractual provisions further limiting trade secret
disclosure, such as through reverse engineering, seem to fit well in trade
secret law, perhaps even better than with copyrights.

Can it be this simple? Can software companies simply argue that
preemption by the DTSA is not an issue, and count on the courts to
extend Bowers and Davidson to trade secret protection? Unfortunately
for software owners, probably not. Breach of contractual agreements to
maintain secrecy is part of the definition of trade secret misappropriation,
but trade secret law has always taken a permissive approach toward
reverse engineering.148 Banning reverse engineering outright, even
through contract, would therefore run counter to many decades of
precedent in this area.

Shrinkwrap agreements also present unique problems. First, some
courts might follow Judge Dyk and refuse to enforce them on the basis
that they are contracts of adhesion. Fortunately for software owners,
Judge Dyk’s opinion appears to be the minority view. The majorities in
Bowers and Davidson had no issue upholding a shrinkwrap agreement,
and even the Fifth Circuit in Vault struck down the agreement on
grounds of preemption rather than adhesion. Some members of the U.S.
Supreme Court have also indicated that such contracts are enforceable so
long as they are reasonable.149

The more significant problem with shrinkwrap agreements, and the
one considered here, is that wide distribution of a software program with
a shrinkwrap agreement prohibiting reverse engineering may be
challenged as an improper attempt to extend a monopoly right that is
only granted by patents, not trade secrets. Patents are more closely
related to trade secrets than copyrights because patents and trade secrets
cover very similar subject matter. Copyrights are limited to artistic
expression; they cannot cover ideas or anything having utility.150
Patents, by contrast, can cover “anything under the sun made by man.”151

Courts, 46 GONZ. L. REV. 57, 59–60 (2011) (noting that the “vast majority” of alleged
misappropriators were employees or business partners).
 148. See, e.g., Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974) (“A trade secret law,
however, does not offer protection against discovery by fair and honest means, such as by
independent invention, accidental disclosure, or by so-called reverse engineering”).
 149. See, e.g., Carnival Cruise Lines, Inc. v. Shute, 499 U.S. 585, 600 (1991) (Stevens &
Marshall, JJ., dissenting).
 150. 17 U.S.C. § 102(b) (2012) (“In no case does copyright protection for an original work of
authorship extend to any idea, procedure, process, system, method of operation, concept, principle,
or discovery, regardless of the form in which it is described, explained, illustrated, or embodied in
such work.”).
 151. Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (citing S. REP. NO. 82-1979, at 5
(1952) and H.R. REP. NO. 82-1923, at 6 (1952)).

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 449

According to the DTSA, trade secrets can cover “all forms and types of
financial, business, scientific, technical, economic, or engineering
information.”152 There is therefore substantial overlap between patent
and trade secret protections, and the more relevant question in assessing
the validity of shrinkwrap agreements in the trade secret context may be
preemption by federal patent law rather than copyright law. As
discussed below, the best solution to all of these problems may be a
narrow shrinkwrap provision that prohibits reverse engineering only for
certain purposes. To get there, however, it is necessary to first consider
the merits of a complete contractual ban on reverse engineering to
discern trade secrets in software.

1. Total Contractual Ban on Reverse Engineering

The first question for software companies to consider is whether a
shrinkwrap license prohibiting reverse engineering of trade secret-
protected code for any purpose whatsoever would survive judicial
scrutiny. As discussed above, the courts have thus far only analyzed this
question in the context of federal copyright law, not trade secret law.153
Vault, Bowers, and Davidson were copyright cases, and there is no
indication that the plaintiffs ever argued that their software was a trade
secret or that the defendants had misappropriated it.

The first issue with a total contractual ban on reverse engineering to
discern trade secrets is whether it might be preempted by federal trade
secret law, just as Vault, Bowers, and Davidson examined preemption of
contractual bans by federal copyright law. Federal trade secret law is
now governed by the DTSA, which is closely modeled on the UTSA.
Unlike the UTSA, however, the DTSA expressly excludes reverse
engineering from “improper means,” meaning that reverse engineering is
a legitimate means of discerning trade secrets under federal law.154

As for preemption, the DTSA states that “this chapter [18 U.S.C. §§
1831 et seq.] shall not be construed to preempt or displace any other
remedies, whether civil or criminal, provided by United States Federal,
State, commonwealth, possession, or territory law for the
misappropriation of a trade secret.”155 This passage has not yet been
tested in the courts, but it appears from the plain meaning that the non-
preemption condition is limited to state trade secret law and therefore

 152. 18 U.S.C.A. § 1839(3) (West Supp. 2016).
 153. See supra Section III.A.
 154. 18 U.S.C.A. § 1839(6)(B) (West Supp. 2016).
 155. 18 U.S.C.A. § 1838 (West Supp. 2016) (emphasis added).

450 KANSAS LAW REVIEW Vol. 66

would not extend to contractual bans. But it expressly states that it does
not affect state law trade secret protections, showing that it is meant to
coexist with state protections and have a much narrower scope than, for
instance, federal patent law. More broadly, a software company trying to
protect its trade secrets through a contractual ban on reverse engineering
could still rely on ProCD to argue that trade secret rights, like rights
under the Copyright Act, are rights against the world.156 Trade secret
rights, after all, “restrict the options of persons who are strangers to the
author.”157 Therefore the additional contractual ban could be justified
under the logic of ProCD.

Although software companies seeking to protect their trade secrets
through contractual bans on reverse engineering have strong arguments
that there is no preemption by federal trade secret law, preemption by
federal patent law is altogether different and much more challenging.
Two major Supreme Court decisions examining preemption by patent
law, Bonito Boats, Inc. v. Thunder Craft Boats, Inc. and Kewanee Oil
Co. v. Bicron Corp., illustrate the likely challenges such a ban would
face.158

In Bonito Boats, the Court struck down a Florida statute prohibiting
the use of a particular molding process used to duplicate unpatented boat
hulls.159 In doing so, the Court noted that the Patent Clause of the United
States Constitution carefully balances monopoly rights that stifle
competition against public disclosure that allows for a competitive
economy.160 The Court further noted the importance of committing an
invention to the public after its patent expires, faulting the statute for
protecting unpatented designs in perpetuity.161 The Court rejected the
respondent’s argument that the Florida law at issue was needed to protect
against “unfair competition.”162 The Court held instead that the law was
preempted by federal patent law because it upset patent law’s balance of
rights by providing a monopoly right in a substantive idea with no return
for the public.163

 156. ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1454 (7th Cir. 1996).
 157. Id.
 158. Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141 (1989); Kewanee Oil Co. v.
Bicron Corp., 416 U.S. 470 (1974).
 159. Bonito Boats, 489 U.S. at 168.
 160. Id. at 146.
 161. Id. at 159.
 162. Id. at 157–58.
 163. Id. at 159–60.

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 451

Despite the Court’s emphasis on the delicate balance of rights
established by patent law, software companies can likely distinguish a
total contractual ban on reverse engineering from Bonito Boats. To do
so, they could point to the Court’s emphasis on the importance of
disclosure to the public in exchange for the monopolistic right to exclude
others from using an invention.164 The Court described this exchange in
stating that “[a] state law that substantially interferes with the enjoyment
of an unpatented . . . conception which has been freely disclosed by its
author to the public at large impermissibly contravenes the ultimate goal
of public disclosure and use which is the centerpiece of federal patent
policy.”165 Patent law does indeed have substantial public disclosure
requirements. It requires that a patent specification contain a written
description clearly disclosing the patentable aspects of the invention, and
that all patent claims be sufficiently enabled by the patent specification
such that a person of ordinary skill in the relevant field can make and use
the invention.166 But trade secret law points the opposite way, requiring
privacy rather than public disclosure. Specifically, the UTSA requires
that trade secret owners take reasonable measures to maintain secrecy,167
and courts have held that shipping software in object code format meets
that requirement.168 Software companies can therefore distinguish their
trade secrets from the publicly displayed boat hulls in Bonito Boats by
pointing out that trade secrets are not in the “public domain.” Rather,
trade secrets are necessarily subject to efforts to maintain secrecy from
the public, specifically by circulating the software as indecipherable
object code. Extending protections for trade secrets, for instance by
using shrinkwrap agreements to ban reverse engineering, therefore does
not upset the delicate balance of patent law in the way that the Court
feared it would.

Other parts of Bonito Boats are more difficult to distinguish,
however, particularly when contemplating a shrinkwrap provision
imposing a total ban on reverse engineering. Although Bonito Boats did

 164. Id. at 150–151 (“The federal patent system thus embodies a carefully crafted bargain for
encouraging the creation and disclosure of new, useful, and nonobvious advances in technology and
design in return for the exclusive right to practice the invention for a period of years. . . . [T]he
ultimate goal of the patent system is to bring new designs and technologies into the public domain
through disclosure.” (emphasis added)).
 165. Id. at 156–57 (emphasis added).
 166. 35 U.S.C. § 112(a) (2012).
 167. UNIF. TRADE SECRETS ACT WITH 1985 AMENDMENTS § 1(4)(ii) (UNIF. LAW COMM’N

1985) (defining a “trade secret” in part as “the subject of efforts that are reasonable under the
circumstances to maintain its secrecy”).
 168. E.g., Q-Co Indus. v. Hoffman, 625 F. Supp. 608, 617–18 (S.D.N.Y. 1985).

452 KANSAS LAW REVIEW Vol. 66

not directly concern trade secrets, the Court addressed the close
relationship between trade secrets and reverse engineering in its
reasoning. It faulted the Florida law for prohibiting the public from
engaging in reverse engineering of products, noting that such
prohibitions had never been part of state trade secret law.169 And the
Court specifically cited Kewanee as standing for the proposition that
trade secret law does not protect against discovery by reverse
engineering.170 Some authors therefore cite Bonito Boats as a reason for
prohibiting bans on reverse engineering in relation to trade secrets.171

Kewanee provides a similar perspective on blanket contractual bans
on reverse engineering of trade secrets, and probably stands as the
greatest impediment to such a ban. There the Court held that federal
patent law did not preempt Ohio trade secret law because trade secret
protection is so much weaker than patent protection.172 As an example of
this relative weakness, the Court explained that reverse engineering was
a proper means of obtaining trade secrets, but was not a justification for
patent infringement.173 Trade secret law, the Court went on, therefore
functioned more like a “sieve” compared with patent law’s “barrier.”174
Banning reverse engineering outright would seem to convert the sieve
into a barrier and might lead courts to conclude that such bans, even
though rooted in contract, are preempted by federal patent law.

While the Supreme Court has not addressed trade secrets and
preemption by patent law in any detail since Bonito Boats and Kewanee,
other courts have noted that those decisions make it unlikely that a total
contractual ban on reverse engineering to discern trade secrets would
survive. In DVD Copy Control v. Bunner, for instance, the California
Supreme Court relied on Bonito Boats in dicta when it found that
banning reverse engineering of trade secrets through contract (in this
case, by using a form contract to redefine “improper means” of
determining trade secrets to include reverse engineering) would probably
be preempted by federal patent law.175 Software companies seeking to
protect their trade secrets are therefore unlikely to succeed in completely

 169. Bonito Boats, 489 U.S. at 160.
 170. Id. (citing Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974)).
 171. See, e.g., Pamela Samuelson, Reverse Engineering Under Siege, 45 COMM. OF THE ACM,
no. 45, 2002, at 15, 16–17 (noting the importance of Bonito Boats to any reverse engineering public
policy analysis).
 172. Kewanee, 416 U.S. at 489–90.
 173. Id. at 490.
 174. Id.
 175. DVD Copy Control Ass’n v. Bunner, 75 P.3d 1, 28 n.5 (Cal. 2003) (citing Bonito Boats,
489 U.S. at 155).

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 453

banning reverse engineering of their products through shrinkwrap
agreements.

2. Limited Contractual Ban on Reverse Engineering

Software companies need not advocate for a blanket ban on reverse
engineering, however. They could instead include a term in a
shrinkwrap agreement that bans reverse engineering of the software for
specific limited purposes such as direct economic competition. Such a
limited ban would be easier to distinguish from both Kewanee and
Bonito Boats, and there are statutory analogues in copyright law to which
software companies could point as well.

a. Case Law

The greatest case law challenges even to a limited contractual ban on
reverse engineering are still Bonito Boats and Kewanee. Those two cases
are closely intertwined because Bonito Boats relied extensively on
Kewanee, particularly when addressing the prohibitions on reverse
engineering that the Supreme Court ultimately found improper.176
Kewanee appears to be the greatest obstacle to a total contractual ban on
reverse engineering because it would strengthen the protections of trade
secret law too much. But a far more limited and narrowly targeted
contractual ban on reverse engineering would strengthen trade secret law
only slightly. If the shrinkwrap provision prohibited reverse engineering
only for direct economic competition, the public would still have the
benefit of reverse engineering for adaptability and other purposes.

In Kewanee, the Court noted that trade secret law’s permissive
approach toward reverse engineering distinguished it from patent law,
but the Court did not address the degree to which reverse engineering
might be restricted. In Bonito Boats, the Court appeared to go beyond
Kewanee by laying out in more detail what sorts of bans on reverse
engineering would be preempted by patent law. Specifically, the Court
suggested that even limited bans on reverse engineering might be
problematic.177 According to the Court, that the Florida statute did not
remove all means of reproduction was not enough to save it.178 The
Court described the law as prohibiting the public from engaging in “a
form of reverse engineering of a product in the public domain,” and said

 176. Bonito Boats, 489 U.S. at 160.
 177. See id. at 160.
 178. Id.

454 KANSAS LAW REVIEW Vol. 66

that this was a right of a patent holder, but was not part of trade secret
law.179 The Court went on to address benefits of reverse engineering,
specifically noting that it could lead to “significant advances in
technology” by incentivizing the inventor to continue to make
improvements and receive a patent.180

Even here, software companies seeking to protect their trade secrets
from reverse engineering should find it easier to distinguish a limited ban
than a broad one. As with the total ban, these companies could point out
that their underlying algorithms are not in the “public domain” in the
conventional sense, because they are circulated in an obfuscated form.
This measure is enough to qualify for trade secret protection, so it can
hardly be said to be public in the same way that the boat hulls in Bonito
Boats were placed in plain view. Second, these companies can point out
that prohibiting reverse engineering for a narrow purpose, such as direct
economic competition, does not frustrate innovation because other
companies would still be free to reverse engineer the software to improve
upon it. This still doesn’t offer software companies the level of
protection they might have had in these algorithms before Alice, but it
offers additional protection nonetheless. Furthermore, the impact of
Alice is ultimately the key point—in a post-Alice world, these contractual
trade secret protections still do not rise to the level of patent protection
and therefore are not preempted by federal patent law.

Finally, any defendant accused of violating such a shrinkwrap
provision to discern trade secrets would almost certainly rely on Vault. It
is the primary case from the circuit courts that invalidated shrinkwrap
provisions prohibiting reverse engineering because they were preempted
by federal intellectual property law, and it appears to still be good law in
the Fifth Circuit. However, the Federal Circuit in Bowers may have
interpreted Vault too broadly, and software companies seeking to protect
their trade secrets could urge a narrower interpretation.

Vault is often characterized as holding that a state law prohibiting all
copying of a computer program is preempted by the Copyright Act.181
But the statutory language at issue in Vault was actually much narrower.
The LSLEA specifically prohibited “adaptation by reverse engineering,
decompilation or disassembly,” that is, modifying the software to serve

 179. Id.
 180. Id. at 160–61.
 181. See, e.g., Bowers v. Baystate Techs., Inc., 320 F.3d 1317, 1338 (Fed. Cir. 2003) (Dyk, J.,
concurring in part and dissenting in part) (“I conclude that Vault states the correct rule; that state law
authorizing shrinkwrap licenses that prohibit reverse engineering is preempted”).

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 455

some independent purpose.182 But the LSLEA did not address reverse
engineering in any other context.183 The Fifth Circuit focused heavily on
this “adaptation” language in its preemption finding. For instance, it
pointed to § 117 of the Copyright Act which it noted “permits an owner
of a computer program to make an adaptation of that program”184 It
emphasized the adaptation limitation yet again in restating its holding
when it said “[t]he provision in Louisiana’s License Act, which permits a
software producer to prohibit the adaptation of its licensed computer
program by decompilation or disassembly, conflicts with the rights of
computer program owners under § 117 and clearly ‘touches upon an
area’ of federal copyright law.”185

Had the LSLEA allowed shrinkwrap agreements to prohibit reverse
engineering of a computer program for the narrower purpose of creating
a directly competing version, it is less clear how the Fifth Circuit would
have ruled. The Copyright Act does not expressly address the creation of
directly competing products in any of its fair use provisions.
Furthermore, prohibiting software owners from barring direct copying
runs counter to the control that the Copyright Act provides authors and
artists to determine how their work is reproduced and disseminated. The
Fifth Circuit might well have found that such a version of the LSLEA
statute—and therefore the license—was valid.

b. Statute

Moving beyond case law, at least one statutory analog suggests that a
limited ban is viable. The Digital Millenium Copyright Act (DMCA),
passed into law in 1998, amended U.S.C. Title 17 to add restrictions on
circumvention of access control measures.186 The DMCA effectively
barred reverse engineering for the purpose of circumventing access
controls by expressly permitting reverse engineering only if it was used
for interoperability purposes traditionally covered by fair use.187 With
the DMCA, Congress responded to the concerns of game developers and
other software companies that their competitors, and in many cases their
customers, were circumventing access controls to create free versions of

 182. Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 269 (5th Cir. 1988) (emphasis added).
 183. Id.
 184. Id. at 270 (emphasis added).
 185. Id. (emphasis added).
 186. 17 U.S.C. § 1201(a)(1)(A) (2012).
 187. See id. § 1201(f).

456 KANSAS LAW REVIEW Vol. 66

protected software.188 The DMCA’s restrictions on reverse engineering
were directed at stopping such circumvention.189 Although it included
fair use exceptions similar to those in the existing Copyright Act, such as
for interoperability, the existence of the DMCA demonstrates that the
federal government is concerned about certain kinds of competition
arising from reverse engineering.

The competition that gave rise to the DMCA was similar to the
problem software companies likely face from competitors looking to
steal their trade secrets, in that it involved direct economic competition
and lost profits. The DMCA suggests that the government is at least
somewhat sympathetic to this problem and willing to restrict certain
kinds of reverse engineering to address it. Although no comparable
statute exists for trade secrets, software companies seeking to protect
their secrets through limited contractual bans on reverse engineering for
direct economic competition could point to the DMCA as an example of
a successful approach that balances incentives for innovation against
complete monopolies.

But just how far might a contractual ban on reverse engineering
reasonably go? There is no fair use provision in trade secret law
comparable to the express fair use provisions of the Copyright Act and
its amendments, so it is difficult to know just where the line would be
drawn even if a court followed Vault rather than Bowers. One software-
related argument for fair use in the copyright context is that copyright
protects only expression and not ideas. Banning reverse engineering of
copyrighted software therefore improperly protects unprotectable ideas
along with protectable expression.190 Trade secrets, unlike copyrights,
can protect ideas—the UTSA and DTSA include devices, methods,
techniques, and processes as protectable subject matter, all of which
embody ideas.191 There is therefore less need for fair use in trade secrets.
This may weigh toward upholding broader bans on reverse engineering
in the trade secret context, and is at least another way for software
companies to distinguish the copyright analysis in Vault.

In view of these arguments and the various cases distinguished,
limited contractual bans on reverse engineering appear likely to pass

 188. Donna L. Lee, Comment, Reverse Engineering of Computer Programs Under the DMCA:
Recognizing a “Fair Access” Defense, 10 MARQ. INTELL. PROP. L. REV. 537, 550 (2006).
 189. Id. at 552–53.
 190. See MILGRIM, supra note 4, § 1.05(5)(II)(2) (explaining how prohibiting decompilation
might allow copyright owners to monopolize ideas and expression).
 191. 18 U.S.C.A. § 1839(3) (West Supp. 2016); UNIF. TRADE SECRETS ACT WITH 1985

AMENDMENTS § 1(4) (UNIF. LAW COMM’N 1985).

2017 REVERSE ENGINEERING AND TRADE SECRETS POST-ALICE 457

judicial scrutiny. Software companies should be cautious, however, not
to extend their bans too broadly.

IV. CONCLUSION

The Supreme Court’s decision in Alice Corp. v. CLS Bank dealt a
significant blow to software companies looking to protect their
intellectual property, but trade secrets appear to offer a way forward. As
these companies evaluate how to protect their software algorithms as
trade secrets, they should consider how best to prevent competitors from
reverse engineering their products. Trade secret law does not itself
protect against reverse engineering, but contract law can. In applying
contract principles, software companies would do best to avoid total bans
on reverse engineering. But selective bans on reverse engineering for
certain purposes such as development of directly competing products
appear much more likely to survive judicial scrutiny. They are consistent
with recent Circuit decisions in copyright law, do not directly contravene
any statutes, and appear to avoid the most significant public policy
concerns regarding reverse engineering.

A more limited ban does not create a monopoly right on par with the
near-total exclusive rights that patent protection confers, and therefore
should not conflict with Bonito Boats while respecting the more tenuous
nature of trade secret protections versus patent rights described in
Kewanee. Such a limited ban therefore seems to strike a balance
between good policy and conformance with case law and statute.
Software companies looking to protect their investments in the wake of
Alice might do well to start there.

