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Abstract 

Being able to predict, with accuracy, the disease progression of patients with a given 

disease is extremely useful from the perspectives of clinicians, patients, and clinical trial 

investigators. We introduce a novel method of reducing the expected prediction error when using 

linear models, given approximate monotonicity of the response; we refer to this method as 

utilizing an “anchor.” We justify this method mathematically, and then show how to improve 

predictions arising from standard ordinary least squares (OLS) models when modelling disease 

progression in a population of patients with amyotrophic lateral sclerosis (ALS).  

We go on to show that using an anchor can be used in conjunction with more complex 

modelling schemes to further improve the predictions of ALS patients; an anchor improves both 

Bayesian hierarchical linear models and Bayesian mixture models. Furthermore, we explore 

potential covariates that may be included in the models to improve predictions, but find that only 

time of disease onset results in improved model performance.  

We also explore how well these models work in a clinical setting, rather than in a clinical 

trial. We first demonstrate the feasibility of automatically extracting patients’ data, pertaining to 

survival and disease progression, from the electronic medical record, as well as showing that our 

disease progression model is feasible for clinical patients. We then compare survival rates 

between the two populations and determine that, even after adjusting for several important 

covariates, there is a large difference between survival in the clinic setting and survival in ALS 

clinical trials. We assert that the two patient groups’ differences in disease progression and 

survival highlight the needs to understand better disease variability in the clinical setting and to 

refine the inclusion criteria in ALS trials.  
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We determine an anchor can be used to improve predictive models in ALS disease 

progression, for both simple independent OLS regressions and for far more complicated 

Bayesian hierarchical linear models. We conclude that using a Bayesian hierarchical linear 

model with an anchor is useful in both a clinical trial population of ALS patients as well as a 

dissimilar population seen in the Midwestern academic medical center ALS clinic. 
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Introduction 

 Predictive modelling, while always an important aspect of statistics, recently has enjoyed 

a meteoric surge in popularity and attention due to the advent of big data and improved machine 

learning techniques. One interesting result of this is the rise of competitive data prediction 

challenges, such as the well-known Netflix challenge (1) which tasked teams with the goal of 

trying to produce an algorithm to determine users’ ratings of given movies. Data prediction 

challenges occurred in all sorts of industrial and academic fields, including medicine (2). One 

challenge in particular, the ALS Stratification Challenge, tasked teams with trying to build 

predictive models that could predict the disease progression of patients with amyotrophic lateral 

sclerosis (ALS), also known as Lou Gehrig’s disease (3).  

ALS is a rarely occurring neurodegenerative disease that causes full-body paralysis and 

eventually death in those afflicted by it. Progression of the ALS is determined by the ALS 

Functional Rating Scale (ALSFRS) or the ALSFRS-Revised (ALSFRS-R), which is ten or 

twelve clinician-administered questions resulting in a score between zero and 40 (ALSFRS) or 

48 (ALSFRS-R). A higher score corresponds to more function, and as the disease progresses 

(causing function to deteriorate) the ALSFRS score decreases, with scores under 24 representing 

serious loss of function.  

Because ALS has large amounts of between-subject variability and is rarely occurring, 

ALS is a very difficult disease to study; trials require very large sample sizes to be adequately 

powered to accommodate the variability, which is difficult due to ALS’s rarity. To assist in this, 

the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database was created (4). 

PRO-ACT consists of data from dozens of ALS clinical trials (all individually negative, meaning 
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no significant improvement was found when using the treatment), and contains ALSFRS, lab 

values, survival information, and more for thousands of ALS patients.  

Data in PRO-ACT was used by participants in the ALS Stratification challenge to both 

train and validate models. The winners of this challenge used random forest models (3), which 

are nonparametric and consequently are difficult to explain and interpret. This was the second 

large-scale crowd-sourced ALS data prediction challenge where the winners all utilized popular 

nonparametric approaches: the first being the DREAM Phil Bowen ALS Prediction challenge by 

Prize4life (5). The result of both of these challenges was that all top-performing teams used 

nonparametric models, such as Bayesian trees and random forests. Because of the linearity of the 

ALSFRS and ALSFSR-R, a parametric predictive linear model could also be a good candidate 

for measuring ALS progression. A linear model would be especially useful because of its easily-

interpreted parameters.   

There would be many potential advantages for having a successful explainable predictive 

model for ALS progression for not only ALS patients and their doctors, but also for those who 

are interested in developing new ALS therapeutics (5). One particular hurdle to developing such 

a model comes from the fact that many patients in the challenge had very few measurements: 

some patients had as little as one single data-point with which to construct a prediction. Because 

of this, even though the disease progression was fairly linear over time (6, 7), standard linear 

modelling techniques encountered difficulties; fitting a linear model through one or even two 

points allowed for too much variability in the predictions. This led us to develop a new 

methodology to reduce the variability of predictions, which we refer to as using an “anchor.” The 

anchor is an additional data point used in the regression that is created by intelligently assuming 

a particular value for the response when the process being modelled first began. 
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In chapter one of this dissertation we describe the mathematics which prove that 

including an anchor in the context of ordinary least squares (OLS) regression will reduce the 

variability of the resulting predictions. This comes at the cost of possibly increasing the bias of 

these predictions. We then go on to show how this method can be used in modelling disease 

progression of ALS patients by modelling each patient’s disease progression independently. 

Since we have the actual disease progressions of each patient, we can easily compare the model 

that uses an anchor to one that does not, and see that the anchor results in dramatically improved 

predictive performance. Additionally, we see that the anchor allows us to make predictions much 

sooner and with less data than the traditional OLS model can.  

In chapter two, we consider a more rigorous approach of modelling the disease 

progression of ALS patients. We formally test various linear models via cross-validation, 

ultimately deciding on a Bayesian hierarchical linear model using an anchor as the best model. 

We conduct a cross-validation to assess the benefit of including various covariates in said model. 

We conclude that the only covariate that improves prediction for a patient’s disease progression 

is knowledge of when the patients first began having symptoms of ALS.  

Finally, in chapter three we discuss the feasibility of creating disease progression and 

survival data models using ALS patient data that is automatically extracted from the electronic 

medical record (EMR). We look at the differences in disease progression and survival rates 

between ALS clinic patients and clinical trial subjects. We conclude that there is an urgent need 

to better understand disease variability in ALS patients, as well as a need to refine the inclusion 

criteria in ALS clinical trials.  
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Chapter 1: Using an Anchor to Improve Linear Predictions 

1.0 Abstract 

Linear models are some of the most straightforward and commonly used modelling 

approaches. Consider modelling approximately monotonic response data arising from a time-

related process. If one has knowledge as to when the process began or ended, then one may be 

able to leverage additional assumed data to reduce prediction error. This assumed data, referred 

to as the “anchor,” are treated as an additional data-point generated at either the beginning or end 

of the process. The response value of the anchor is equal to an intelligently selected value of the 

response (such as the upper bound, lower bound, or 99
th

 percentile of the response, as 

appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in 

prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can 

be extremely effective when few individual data points are available, allowing one to make 

linear predictions using as little as a single observed data point. We develop the mathematics 

showing the conditions under which an anchor can improve predictions, and demonstrate using 

this approach to reduce prediction error when modelling the disease progression of patients with 

amyotrophic lateral sclerosis.  

1.1 Introduction 

Prediction always has been an important part of statistical modeling. With the advent of 

big data and the rise of machine learning, one may think that researchers have moved beyond 

prediction via simple linear models. This is not the case, however, especially in the field of 

medical research; a quick search of PubMed from January 2016 through July 2017 results in over 

1000 publications that utilize linear (but not generalized linear) models. This is because linear 

models are usually one of the first attempted approaches when analyzing new data, and 
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surprisingly often, they are sufficient. Linear models are simple to calculate, requiring tiny 

amounts of computing power compared to some of the more complex machine-learning 

algorithms (such as neural networks). Most importantly, linear models are very straightforward 

to interpret and explain; a direct contrast to the more sophisticated “black-box” methods that are 

dependent on large datasets. The ability to interpret and understand statistical models, or model 

intelligibility, especially is important in the field of healthcare (1). 

Yet linear models have their failings, especially when modelling a bounded response. 

Consider attempting to model the disease progression over time of a patient with amyotrophic 

lateral sclerosis (ALS), also known as Lou Gehrig’s disease. This is measured by the instrument 

known as the ALS Functional Rating Scale – Revised, or ALSFRS-R (2). The ALSFRS-R is 

always an integer between zero and 48, with 48 representing no spread of the disease and zero 

being the theoretical maximal spread of the disease. The progression of the ALSFRS-R tends to 

be very linear (3, 4), but because of its bounded nature, simple linear models have the inherent 

structural defect of creating predictions that violate the lower and upper bounds. Many 

adjustments to this problem exist; examples include truncating the prediction to 48 if the 

prediction is too large (0 if too small) (5) or performing a logistic transform on the data (6).  

If the goal is prediction (e.g., the patient’s ALSFSR-R at one year), these adjustments may not 

perform well when small amounts of observed data exist. The small number of data  

points can result in the variance of the prediction being very large, producing a large mean-

squared prediction error (MSPE). Recall the MSPE is equivalent to the sum of the variance and 

squared bias of the prediction.  

In this paper we consider a simple method to reduce the variability of linear predictions at 

the cost of potentially increasing the predictive bias. Biased linear regression itself is not new 
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(ridge regression (7) is one well-known example), but we do this in a unique way by exploiting 

our knowledge of when the process we are modeling (e.g. the patient’s disease progression) first 

began.  

Tracking the date when a patient first began noticing symptoms of ALS (their disease 

onset time) is common practice in ALS clinics and trials. From a modelling perspective, one 

could use this information in a variety of ways; the most obvious way is using it as a covariate in 

the model. Using a different approach, if we were to assume their ALSFRS-R score at roughly 

the time of their disease onset, what might their ALSFRS-R be? One could argue that the patient 

has had minimal, if any, disease progression at time of disease onset. It seems reasonable that 

one could assume their ALSFRS-R to be 48 (meaning the minimum possible disease 

progression) at this time. We could then create a new observation with ALSFRS-R score of 48 at 

the time of disease onset, and include that as one of the observations (data points) used to build 

our linear model.  

In this paper we consider using knowledge of when a process starts to create an assumed 

data point that can be used to reduce variability of linear model predictions. We found no 

previous literature on this technique in our literature search. First we show how the inclusion of 

this point mathematically reduces the variance component of the MSPE under the assumptions of 

ordinary least-squares (OLS) linear regression. Then we calculate the bias component it brings to 

the MSPE; and we deduce the condition under which this approach can reduce the MSPE in 

predication combined variance and bias. Afterwards we give an example using this approach in 

the context of modeling ALS disease progression, showing how it improves the MSPE when 

compared to a linear model lacking the extra data point. We show how it is also superior to a 

logistic transform approach. We stress that this method is a simple to understand, easy to 
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perform, and inexpensive to implement approach. It is our hope that this approach may be used 

by pragmatic researchers to improve their linear predictions and estimations at very little 

additional cost. 

1.2 Theoretical Results for Simple Linear Regression 

Here we develop the theoretical results that justify the creation and use of an extra 

assumed data point to improve modelling. We shall refer to this data point as the “anchor.” 

Consider 𝑛 − 1 ordered pairs {(𝑥𝑖, 𝑦𝑖)}, 𝑖 ∈ 1 … 𝑛 − 1, where 𝑦𝑖 is some response corresponding 

to 𝑥𝑖. As per ordinary linear regression (8), assume that 𝑥𝑖 and 𝑦𝑖 have a linear relationship, 

meaning that for some constants 𝛽0 and 𝛽1, 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖, with independent error terms 

𝜖𝑖~𝑁(0, 𝜎2).  Furthermore, assume an additional observation referred to as the “anchor” given 

by (𝑥𝑛, 𝑦𝑛), where 𝑦𝑛 is some fixed constant in ℝ.  

Consider the problem of predicting a new value 𝑦0 corresponding to a given 𝑥0, that 

typically is obtained by using the OLS estimates for 𝛽0 and 𝛽1, denoted as 𝑎 and 𝑏. Denote the 

resultant prediction for 𝑦0 that uses the first 𝑛 − 1 coordinate pairs by �̂�0
(𝑛−1)

= 𝑎(𝑛−1) +

𝑏(𝑛−1)𝑥0, and the prediction that also includes the anchor by �̂�0
(𝑛)

= 𝑎(𝑛) + 𝑏(𝑛)𝑥0. Denote the 

errors between our prediction and the truth to be 𝑒0
(𝑛−1)

= 𝑦0 − �̂�0
(𝑛−1)

 and 𝑒0
(𝑛)

= 𝑦0 − �̂�0
(𝑛)

. 

Recall that the variance of  𝑒0
(𝑛−1)

 (that was built from 𝑛 − 1 ordered pairs of data in standard 

OLS regression) is equivalent to:  

𝑣𝑎𝑟(𝑒0
(𝑛−1)

) = 𝑣𝑎𝑟(𝑦0 − �̂�0
(𝑛−1)

) = 𝜎2 (1 +
1

𝑛 − 1
+

(�̅�(𝑛−1) − 𝑥0)
2

∑ (𝑥𝑖 − �̅�(𝑛−1))2𝑛−1
𝑖=1

), 

where 𝑣𝑎𝑟(𝑒0
(𝑛)

) = 𝜎2 (1 +
1

𝑛
+

(�̅�(𝑛)−𝑥0)
2

∑ (𝑥𝑖−�̅�(𝑛))
2𝑛

𝑖=1

) represents the variance of the prediction error 

obtained from utilizing all 𝑛 data points (meaning we include the anchor).  
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We first show that 𝑣𝑎𝑟(𝑒0
(𝑛)

) ≤ 𝑣𝑎𝑟(𝑒0
(𝑛−1)

), meaning any choice of anchor will 

decrease the variance component of the MSPE. We then derive an upper bound for the bias of 

the anchor such that the MSPE will decrease; in other words, how far away from the “true” line 

can the anchor be before it makes the MSPE worse.  

Without loss of generality, we will assume the following for the observed data: 

Assume that 𝑥1, … , 𝑥𝑛−1 have been normalized, meaning that  �̅�(𝑛−1) =
∑ 𝑥𝑖

𝑛−1
𝑖=1

𝑛−1
= 0 and 

√∑ 𝑥𝑖
2𝑛−1

𝑖=1 = 1. Then the following hold: 

𝑆𝑆𝑋(𝑛−1) = ∑ 𝑥𝑖
2

𝑛−1

𝑖=1

= 1, 

�̅�(𝑛) =
𝑥𝑛

𝑛
+

𝑛 − 1

𝑛
(�̅�(𝑛−1)) =

𝑥𝑛

𝑛
, 

𝑆𝑆𝑋(𝑛) = ∑ 𝑥𝑖
2

𝑛−1

𝑖=1

+ 𝑥𝑛
2 − 𝑛(�̅�(𝑛))

2
 

= 1 + 𝑥𝑛
2 −

𝑥𝑛
2

𝑛
. 

Any collection of (𝑥𝑖, 𝑦𝑖) can be linearly transformed in the 𝑥-coordinate by subtracting the 

mean of the 𝑥’s and dividing by the Euclidean norm √|| < 𝑥1, … , 𝑥𝑛−1 > || to achieve this. It is 

interesting to point out that this transformation has no impact on the OLS estimators for 𝜎2. 

Theorem 1: For any anchor point (𝑥𝑛, 𝑦𝑛), with 𝑦𝑛 a fixed constant, 𝑣𝑎𝑟(𝑒0
(𝑛)

) ≤ 𝑣𝑎𝑟(𝑒0
(𝑛−1)

). 

Proof: Let 𝑎, 𝑏 be the OLS estimated intercept and slope through the points (𝑥1, 𝑦1) … (𝑥𝑛, 𝑦𝑛). 

In other words, 𝑎 and 𝑏 are the regression estimates for 𝛽0 and 𝛽1. Since 𝑦0 and �̂�0
(𝑛)

 are 

independent, 
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𝑣𝑎𝑟(𝑒0
(𝑛)

) = 𝑣𝑎𝑟(𝑦0 − �̂�0
(𝑛)

) = 𝑣𝑎𝑟(𝑦0) + 𝑣𝑎𝑟(𝑎 + 𝑏𝑥0). Utilizing our assumptions on 

𝑥1, … , 𝑥𝑛−1, the inequality 𝑣𝑎𝑟(𝑒0
(𝑛)

) ≤ 𝑣𝑎𝑟(𝑒0
(𝑛−1)

) holds if and only if: 

𝑣𝑎𝑟(𝑦0) + 𝑣𝑎𝑟(𝑎 + 𝑏𝑥0) ≤ 𝑣𝑎𝑟(𝑒0
(𝑛−1)

) 

= 𝜎2 (1 +
1

𝑛 − 1
+

(�̅�(𝑛−1) − 𝑥0)
2

𝑆𝑆𝑋(𝑛−1)
) 

= 𝜎2 (1 +
1

𝑛 − 1
+

(0 − 𝑥0)2

1
). 

Which simplifies as follows: 

𝜎2 + 𝑣𝑎𝑟(𝑎) + 𝑥0
2𝑣𝑎𝑟(𝑏) + 2𝑥0𝑐𝑜𝑣(𝑎, 𝑏) ≤ 𝜎2 (1 +

1

𝑛 − 1
+ 𝑥0

2), 

𝑣𝑎𝑟(𝑎) + 𝑥0
2𝑣𝑎𝑟(𝑏) + 2𝑥0𝑐𝑜𝑣(𝑎, 𝑏) ≤ 𝜎2 (

1

𝑛 − 1
+ 𝑥0

2). 

We next consider the individual terms 𝑣𝑎𝑟(𝑎), 𝑣𝑎𝑟(𝑏),  and 𝑐𝑜𝑣(𝑎, 𝑏). For convenience 𝑆𝑆𝑋 

denotes 𝑆𝑆𝑋(𝑛) and �̅� denotes �̅�(𝑛). 

Part 1: variance of slope 

𝑣𝑎𝑟(𝑏) = 𝑣𝑎𝑟 (∑
(𝑥𝑖 − �̅�)

𝑆𝑆𝑋

𝑛

𝑖=1

𝑦𝑖) = ∑
(𝑥𝑖 − �̅�)

𝑆𝑆𝑋2

𝑛

𝑖=1

2

𝑣𝑎𝑟(𝑦𝑖). 

Recall 𝑣𝑎𝑟(𝑦𝑖) = 𝜎2 if 𝑖 ≤ 𝑛 − 1 and 𝑣𝑎𝑟(𝑦𝑛) = 0 since 𝑦𝑛 is a constant. Thus: 

𝑣𝑎𝑟(𝑏) =
𝜎2

𝑆𝑆𝑋2
∑(𝑥𝑖 − �̅�)2

𝑛−1

𝑖=1

=
𝜎2

𝑆𝑆𝑋2
∑(𝑥𝑖

2 + �̅�2 − 2𝑥𝑖�̅�)

𝑛−1

𝑖=1

. 

Utilizing the assumption that ∑ (𝑥𝑖
2)𝑛−1

𝑖=1 = 1 and that ∑ (𝑥𝑖)
𝑛−1
𝑖=1 = 0, 

𝑣𝑎𝑟(𝑏) =
𝜎2

𝑆𝑆𝑋2
(1 + (𝑛 − 1)�̅�2). 

Or equivalently 
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𝑣𝑎𝑟(𝑏) = 𝜎2
𝑛2 + 𝑛𝑥𝑛

2 − 𝑥𝑛
2

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
.   

 

Part 2: variance of intercept 

Since 𝑣𝑎𝑟(𝑦𝑛) = 0: 

𝑣𝑎𝑟(𝑎) = 𝑣𝑎𝑟 (∑ (
1

𝑛
−

�̅�(𝑥𝑖 − �̅�)

𝑆𝑆𝑋
) 𝑦𝑖

𝑛

𝑖=1

) = 𝜎2 ∑ (
1

𝑛
−

�̅�(𝑥𝑖 − �̅�)

𝑆𝑆𝑋
)

2𝑛−1

𝑖=1

 

= 𝜎2 ∑ (
1

𝑛2
+

�̅�2(𝑥𝑖 − �̅�)2

𝑆𝑆𝑋2
− 2

�̅�(𝑥𝑖 − �̅�)

𝑛𝑆𝑆𝑋
)

𝑛−1

𝑖=1

 

= 𝜎2 (
𝑛 − 1

𝑛2
+

�̅�2(1 + (𝑛 − 1)�̅�2)

𝑆𝑆𝑋2
+ 2

(𝑛 − 1)�̅�2

𝑛𝑆𝑆𝑋
). 

Which is equivalent to  

𝑣𝑎𝑟(𝑎) = 𝜎2
𝑛𝑥𝑛

4 + 2𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

4 − 𝑥𝑛
2 − 1

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
. 

Part 3: covariance of intercept and slope 

Consider 𝑐𝑜𝑣(𝑎, 𝑏). We use the property that 𝑐𝑜𝑣(∑ 𝑐𝑖𝑦𝑖 , ∑ 𝑑𝑖𝑦𝑖) = 𝜎2∑(𝑐𝑖𝑑𝑖) and the 

fact that any covariance or variance term involving 𝑦𝑛 is 0, since 𝑦𝑛 is a constant.  

𝑐𝑜𝑣(𝑎, 𝑏) = 𝑐𝑜𝑣 (∑ (
1

𝑛
−

�̅�(𝑥𝑖 − �̅�)

𝑆𝑆𝑋
) 𝑦𝑖

𝑛

𝑖=1

, ∑
(𝑥𝑖 − �̅�)

𝑆𝑆𝑋

𝑛

𝑖=1

𝑦𝑖) 

= 𝑐𝑜𝑣 (∑ (
1

𝑛
−

�̅�(𝑥𝑖 − �̅�)

𝑆𝑆𝑋
) 𝑦𝑖

𝑛−1

𝑖=1

, ∑
(𝑥𝑖 − �̅�)

𝑆𝑆𝑋

𝑛−1

𝑖=1

𝑦𝑖) 

= 𝜎2  ∑ (
1

𝑛
−

�̅�(𝑥𝑖 − �̅�)

𝑆𝑆𝑋
) (

(𝑥𝑖 − �̅�)

𝑆𝑆𝑋
)

𝑛−1

𝑖=1

 

=
𝜎2

𝑆𝑆𝑋
 ∑ (

𝑥𝑖 − �̅�

𝑛
−

�̅�(𝑥𝑖 − �̅�)2

𝑆𝑆𝑋
)

𝑛−1

𝑖=1
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=
−𝜎2

𝑆𝑆𝑋
 (

𝑛 − 1

𝑛
(�̅�) +

�̅�

𝑆𝑆𝑋
(1 + (𝑛 − 1)�̅�2) ) 

Or equivalently 

𝑐𝑜𝑣(𝑎, 𝑏) = −𝜎2
𝑥𝑛(𝑛𝑥𝑛

2 + 2𝑛 − 𝑥𝑛
2 − 1)

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
. 

Part 4: Proving the inequality 𝒗𝒂𝒓𝒏(𝒆𝟎) ≤ 𝒗𝒂𝒓𝒏−𝟏(𝒆𝟎) 

Recall, 𝑣𝑎𝑟(𝑒0
(𝑛)

) ≤ 𝑣𝑎𝑟(𝑒0
(𝑛−1)

) is equivalent to the following: 

𝑣𝑎𝑟(𝑎) + 𝑥0
2𝑣𝑎𝑟(𝑏) + 2𝑥0𝑐𝑜𝑣(𝑎, 𝑏) ≤ 𝜎2 (

1

𝑛 − 1
+ 𝑥0

2), 

that is true if and only if 

0 ≤ 𝑥0
2 (1 −

𝑛2 + 𝑛𝑥𝑛
2 − 𝑥𝑛

2

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
) + 𝑥0 (2

𝑥𝑛(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
)

+ (
1

𝑛 − 1
−

𝑛𝑥𝑛
4 + 2𝑛𝑥𝑛

2 + 𝑛 − 𝑥𝑛
4 − 𝑥𝑛

2 − 1

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
). 

The right hand side of the inequality is quadratic in 𝑥0
2 with form 𝑔(𝑥0) = 𝐴𝑥0

2 + 𝐵𝑥0 + 𝐶. Note 

the coefficients 𝐴, 𝐵, 𝐶 simplify in the following way: 

𝐴 =
(𝑛 − 1)𝑥𝑛

2(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
, 

𝐵 =
2𝑥𝑛(𝑛𝑥𝑛

2 + 2𝑛 − 𝑥𝑛
2 − 1)

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
, 

𝐶 =
(𝑛𝑥𝑛

2 + 2𝑛 − 𝑥𝑛
2 − 1)

(𝑛 − 1)(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
. 

Since 𝐴 > 0 for 𝑛 > 2, then 𝑔(𝑥0) is an upward-facing parabola. Also, the discriminant, given 

by 𝐵2 − 4𝐴𝐶, is equal to zero: 
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𝐵2 − 4𝐴𝐶 =
4𝑥𝑛

2(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)2

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)4

− 4
(𝑛 − 1)𝑥𝑛

2(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2

(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)

(𝑛 − 1)(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)2
 

=
4𝑥𝑛

2(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)2

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)4
−

4𝑥𝑛
2(𝑛𝑥𝑛

2 + 2𝑛 − 𝑥𝑛
2 − 1)2

(𝑛𝑥𝑛
2 + 𝑛 − 𝑥𝑛

2)4
 

= 0, 

meaning there is exactly one root in 𝑔(𝑥0). Therefore, it must be true that 𝑔(𝑥0) ≥ 0 and  

𝑣𝑎𝑟(�̂�0
(𝑛)

) ≤ 𝑣𝑎𝑟(�̂�0
(𝑛−1)

) as desired. 

∎ 

Thus we see that any choice of anchor necessarily will result in a reduction in the 

variance of the prediction of 𝑦0, that is equivalent to a reduction of the variance component of 

the MSPE. However, we still need to consider the bias. Recall that the typical OLS estimators for 

slope and intercept are unbiased. We next consider how much bias can be introduced before 

utilizing the anchor that no longer benefits the MSPE of our predictions. It will be shown that 

any choice of an anchor (𝑥𝑛, 𝑦𝑛) such that 𝑦𝑛 ≠ 𝛽0 + 𝛽1𝑥𝑛 will introduce bias to the model. Note 

that the bias is a direct function of 𝛽0 and 𝛽1, that rarely are known in practice. Again, let �̅� 

denote �̅�(𝑛) and 𝑆𝑆𝑋 denote 𝑆𝑆𝑋(𝑛) = ∑ 𝑥𝑖
2𝑛

𝑖=1 . 

Theorem 2: Using anchor point (𝑥𝑛, 𝑦𝑛) results in biasing the slope by   

𝐸(𝑏 − 𝛽1) =
(𝑛 − 1)𝑥𝑛(𝑦𝑛 − 𝛽0) + 𝛽1𝑛

𝑛𝑆𝑆𝑋
− 𝛽1. 

 

Proof: Recall 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 and that the OLS estimate for 𝛽1, denoted by 𝑏, is given by  

𝑏 =
∑ (𝑥𝑖 − �̅�)𝑦𝑖

𝑛
𝑖=1

𝑆𝑆𝑋
=

∑ (𝑥𝑖 −
𝑥𝑛

𝑛 ) 𝑦𝑖
𝑛
𝑖=1

𝑆𝑆𝑋
. 
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We first derive 𝐸(𝑏): 

𝐸(𝑏) = 𝐸 (
∑ (𝑥𝑖 −

𝑥𝑛

𝑛 ) 𝑦𝑖
𝑛
𝑖=1

𝑆𝑆𝑋
) 

= 𝐸 (
∑ (𝑥𝑖 −

𝑥𝑛

𝑛 ) 𝑦𝑖
𝑛−1
𝑖=1

𝑆𝑆𝑋
+

(𝑥𝑛 −
𝑥𝑛

𝑛 ) 𝑦𝑛

𝑆𝑆𝑋
). 

Recall that 𝑦𝑛 is a nonrandom constant, and hence 𝐸(𝑦𝑛) = 𝑦𝑛. Then: 

𝐸(𝑏) =
1

𝑆𝑆𝑋
𝐸 (∑ (𝑥𝑖𝑦𝑖 −

𝑦𝑖𝑥𝑛

𝑛
)

𝑛−1

𝑖=1

) +
1

𝑆𝑆𝑋
(𝑥𝑛 −

𝑥𝑛

𝑛
) 𝑦𝑛 

=
1

𝑆𝑆𝑋
𝐸 (∑{𝑥𝑖𝑦𝑖  }

𝑛−1

𝑖=1

− �̅�𝑛−1𝑥𝑛 (
𝑛 − 1

𝑛
)) +

1

𝑆𝑆𝑋
(𝑥𝑛 −

𝑥𝑛

𝑛
) 𝑦𝑛. 

Note that the OLS estimate for 𝛽0 when not using the anchor point is given by  

𝑎(𝑛−1) = �̅�(𝑛−1) − 𝑏(𝑛−1)�̅�(𝑛−1) = �̅�(𝑛−1) since �̅�(𝑛−1) = 0. Similarly, 𝑏(𝑛−1) = ∑ {𝑥𝑖𝑦𝑖  }𝑛−1
𝑖=1 . 

Since these are the unbiased OLS estimators for 𝛽0 and 𝛽1 when ignoring the anchor point, then 

it must be that 𝐸(�̅�(𝑛−1)) = 𝛽0 and 𝐸(∑ {𝑥𝑖𝑦𝑖 }
𝑛−1
𝑖=1 ) = 𝛽1. Then we have 

𝐸(𝑏) =
1

𝑆𝑆𝑋
(𝛽1 − 𝛽0𝑥𝑛 (

𝑛 − 1

𝑛
)) +

1

𝑆𝑆𝑋
(𝑥𝑛 −

𝑥𝑛

𝑛
) 𝑦𝑛 

=
1

𝑆𝑆𝑋
(𝛽1 + 𝑥𝑛𝑦𝑛 − 𝛽0𝑥𝑛 (

𝑛 − 1

𝑛
) −

𝑥𝑛𝑦𝑛

𝑛
) 

=
1

𝑆𝑆𝑋
(𝛽1 + (

𝑛 − 1

𝑛
) 𝑥𝑛𝑦𝑛 − 𝛽0𝑥𝑛 (

𝑛 − 1

𝑛
)) 

=
1

𝑆𝑆𝑋
(𝛽1 + 𝑥𝑛 (

𝑛 − 1

𝑛
) (𝑦𝑛 − 𝛽0)). 

Or equivalently 

𝐸(𝑏) =
(𝑛 − 1)𝑥𝑛(𝑦𝑛 − 𝛽0) + 𝛽1𝑛

𝑛𝑆𝑆𝑋
, 
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that means the bias 𝑏 is given by 

𝐸(𝑏 − 𝛽1) =
(𝑛 − 1)𝑥𝑛(𝑦𝑛 − 𝛽0) + 𝛽1𝑛

𝑛𝑆𝑆𝑋
− 𝛽1. 

∎ 

Theorem 3: Using anchor point (𝑥𝑛, 𝑦𝑛) results in biasing the intercept by   

𝐸(𝑎 − 𝛽0) =
𝛽0(𝑛 − 1)(𝑥𝑛

2 + 1) − 𝛽1𝑥𝑛
2 + 𝑦𝑛

𝑛𝑆𝑆𝑋
− 𝛽0. 

Proof: Recall that the OLS estimate for 𝛽0, denoted by 𝑎, is given by  

𝑎 = �̅�(𝑛) − 𝑏�̅� = �̅�(𝑛) −
𝑏𝑥𝑛

𝑛
. 

We first calculate 𝐸(𝑎): 

𝐸(𝑎) = 𝐸(�̅�(𝑛)) −
𝑥𝑛

𝑛
𝐸(𝑏) 

=
1

𝑛
𝐸 ((𝑛 − 1)�̅�(𝑛−1) + 𝑦𝑛) −

𝑥𝑛

𝑛
𝐸(𝑏). 

Again, recall that 𝐸(�̅�(𝑛−1)) = 𝛽0 and that 𝐸(𝑦𝑛) = 𝑦𝑛. We derived 𝐸(𝑏) in Theorem 2. Thus: 

𝐸(𝑎) =
(𝑛 − 1)

𝑛
𝛽0 +

𝑦𝑛

𝑛
−

𝑥𝑛

𝑛2𝑆𝑆𝑋
((𝑛 − 1)𝑥𝑛(𝑦𝑛 − 𝛽0) + 𝛽1𝑛), 

that can be reduced to  

𝐸(𝑎) =
𝛽0(𝑛 − 1)(𝑥𝑛

2 + 1) − 𝛽1𝑥𝑛 + 𝑦𝑛

𝑛𝑆𝑆𝑋
. 

Therefore the bias of the intercept is  

𝐸(𝑎 − 𝛽0) =
𝛽0(𝑛 − 1)(𝑥𝑛

2 + 1) − 𝛽1𝑥𝑛 + 𝑦𝑛

𝑛𝑆𝑆𝑋
− 𝛽0. 

∎ 

Corollary: The overall bias induced by using anchor point (𝑥𝑛, 𝑦𝑛) is given by 
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𝐸(�̂�0 − 𝑦0) = 𝐸(𝑎 + 𝑏𝑥0 − 𝛽0 − 𝛽1𝑥0) 

=
𝛽0(𝑛 − 1)(𝑥𝑛

2 + 1) − 𝛽1𝑥𝑛 + 𝑦𝑛

𝑛𝑆𝑆𝑋
− 𝛽0 + 𝑥0 {

(𝑛 − 1)𝑥𝑛(𝑦𝑛 − 𝛽0) + 𝛽1𝑛

𝑛𝑆𝑆𝑋
− 𝛽1}. 

Corollary: The anchor point introduces no bias, meaning �̂�0
(𝑛)

 is unbiased, only if 𝑦𝑛 = 𝛽0 +

𝛽1𝑥𝑛. 

Proof:  Recall from Theorem 2 we have  

𝐸(𝑏) =
1

𝑆𝑆𝑋
(𝛽1 − 𝛽0𝑥𝑛 (

𝑛 − 1

𝑛
)) +

1

𝑆𝑆𝑋
(𝑥𝑛 −

𝑥𝑛

𝑛
) 𝑦𝑛. 

Then if 𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛 the following holds: 

𝐸(𝑏) =
1

𝑆𝑆𝑋
(𝛽1 − 𝛽0𝑥𝑛 (

𝑛 − 1

𝑛
) + 𝑥𝑛 (

𝑛 − 1

𝑛
) (𝛽0 + 𝛽1𝑥𝑛)) 

=
1

𝑆𝑆𝑋
(𝛽1 + 𝛽1

𝑥𝑛
2(𝑛 − 1 )

𝑛
) =

1

𝑆𝑆𝑋
𝛽1 (1 +

𝑥𝑛
2(𝑛 − 1)

𝑛
) = 𝛽1 (

𝑆𝑆𝑋

𝑆𝑆𝑋
) = 𝛽1. 

Thus 𝑏 is unbiased when 𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛. Recall from Theorem 3 that 

𝐸(𝑎) =
1

𝑛
𝐸 ((𝑛 − 1)�̅�(𝑛−1) + 𝑦𝑛) −

𝑥𝑛

𝑛
𝐸(𝑏) 

=
1

𝑛
((𝑛 − 1)𝛽0 + 𝛽0 + 𝛽1𝑥𝑛) −

𝑥𝑛

𝑛
𝛽1. 

Using the derivation above for 𝐸(𝑏) = 𝛽1. This then simplifies to be 

𝐸(𝑎) = 𝛽0, 

meaning 𝑎, 𝑏 are unbiased and therefore 𝐸(�̂�0
(𝑛)

) = 𝐸(𝑎 + 𝑏𝑥0) = 𝛽0 + 𝛽1𝑥0 = 𝑦0. 

∎ 

Theorem 4: Utilizing anchor point (𝑥𝑛, 𝑦𝑛) reduces the overall MSPE when the following 

inequality holds: 
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(
𝛽0(𝑛 − 1)(𝑥𝑛

2 + 1) − 𝛽1𝑥𝑛 + 𝑦𝑛

𝑛𝑆𝑆𝑋
− 𝛽0 + 𝑥0 {

(𝑛 − 1)𝑥𝑛(𝑦𝑛 − 𝛽0) + 𝛽1𝑛

𝑛𝑆𝑆𝑋
− 𝛽1})

2

≤ 

 

𝑥0
2 (

(𝑛 − 1)𝑥𝑛
2(𝑛𝑥𝑛

2 + 2𝑛 − 𝑥𝑛
2 − 1)

𝑛2𝑆𝑆𝑋2
) + 𝑥0 (

2𝑥𝑛(𝑛𝑥𝑛
2 + 2𝑛 − 𝑥𝑛

2 − 1)

𝑛2𝑆𝑆𝑋2
)

+
(𝑛𝑥𝑛

2 + 2𝑛 − 𝑥𝑛
2 − 1)

(𝑛 − 1)𝑛2𝑆𝑆𝑋2
. 

Proof: Consider the following inequality 

𝑀𝑆𝑃𝐸(𝑛) ≤ 𝑀𝑆𝐸(𝑛−1). 

This is equivalent to  

𝑏𝑖𝑎𝑠2(𝑒0
(𝑛)

) + 𝑣𝑎𝑟(𝑒0
(𝑛)

) ≤ 𝑏𝑖𝑎𝑠2(𝑒0
(𝑛−1)

) + 𝑣𝑎𝑟(𝑒0
(𝑛−1)

) 

𝑏𝑖𝑎𝑠2(𝑒0
(𝑛)

) ≤ 𝑣𝑎𝑟(𝑒0
(𝑛−1)

) − 𝑣𝑎𝑟(𝑒0
(𝑛)

). 

But recall 𝑏𝑖𝑎𝑠2(𝑒0
(𝑛−1)

) = 0, and that 𝑣𝑎𝑟(𝑒0
(𝑛−1)

) = 𝜎2 (1 +
1

𝑛−1
+ 𝑥0

2). The remaining 

pieces, 𝑏𝑖𝑎𝑠2(𝑒0
(𝑛)

) and 𝑣𝑎𝑟(𝑒0
(𝑛)

), were derived in Theorem 2 and Theorem 3, and substituting 

them in to this inequality results in the formula given in the statement of Theorem 4. 

∎ 

Thus, we see that any choice of anchor point will reduce the variance of prediction, but 

will increase the bias of the prediction depending on how far away the anchor point is from the 

“true” regression line. Therefore, using an anchor may be beneficial or not, depending on how 

much bias is added. 

The bound calculated in Theorem 4 potentially could be used as a decision rule for 

determining if using an anchor is beneficial or not. Unfortunately, one needs to know the true 

values of 𝛽0 and 𝛽1 in order to use Theorem 4’s result. In practice, one tends not to know the true 
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regression parameters, although with sufficiently informed prior knowledge, precise estimates 

may exist. Thus, when deciding whether to use an anchor or not, we suggest comparing the 

anchor model to a standard model using a cross-validation approach. We show an example of 

this in the results section. 

Before moving to the application section, we note that many of the ideas in this paper 

have Bayesian connections. For example, consider performing a Bayesian analysis of classical 

regression. When using the standard noninformative prior distribution, the posterior mean 

estimates for the slope and intercept terms (and their standard errors) are equivalent to those 

obtained under frequentist OLS (9). It follows that Theorems 1-4 still hold under the Bayesian 

paradigm, meaning that an anchor can be used to reduce the variance of posterior predictions. 

1.3 Application to ALS Prediction  

We next consider using an anchor to improve linear models that pertain to predicting 

disease progression in patients with ALS. Note that the theory developed in part (2) applies to a 

single OLS regression (prediction for the individual). The following example expands on this by 

showing how using an anchor can improve the average prediction error across several OLS 

regressions (prediction for each of several individuals). 

Our data come from the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) 

database (10). In 2011, Prize4Life, in collaboration with the Northeast ALS Consortium, and 

with funding from the ALS Therapy Alliance, formed the PRO-ACT Consortium. The data 

available in the PRO-ACT Database have been volunteered by PRO-ACT Consortium members 

(https://nctu.partners.org/PRO-ACT/).   

Recall ALS disease progression is tracked by the ALSFRS-R, our outcome variable, that 

is an integer value between zero and 48, where 48 represents the minimal amount of disease 

https://nctu.partners.org/PRO-ACT/
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progression and zero represents the maximal progression. For each patient, we model the 

ALSFRS-R versus time (in days). Specifically, time is measured in days from trial baseline, 

meaning 𝑥 = 0 corresponds to the beginning of the trial and 𝑥 = 365 corresponds to the 365
th

 

day after the trial began. On this scale, a patient’s disease onset time is typically negative, as it 

happened before the trial began. We required patients to have the following: (1) at least two 

recorded ALSFRS-R scores before 3 months, for model building purposes; (2) non-missing 

value for time of disease onset; (3) at least one year between the baseline and last ALSFRS-R 

score for MSPE-validation purposes. This resulted in 1,606 patients, with an average ± standard 

error (SE) of 12 ± 4.54 time-points per patient (and 3 ± 0.96 visits in the first three months). 

Note that we are now considering longitudinal data. Volumes have been written on 

modelling strategies for data such as this; hierarchical models, mixed models, time series, and 

machine learning algorithms all would make good candidates for the modeling of this. However, 

to demonstrate how using the anchor-point improves OLS regression, we simply will model each 

patient independently with: (1) a standard OLS regression model and (2) with an OLS regression 

model using an anchor. Note that the ALSFRS-R follows a fairly linear decline, although each 

patient exhibits wide variation in their patient-specific progression rates, justifying using linear 

models (Figure 1.1). The assumed data point, or anchor, used in the anchor model comes from 

assuming minimal disease progression at the time of disease onset. In other words, each patient’s 

data is augmented with the additional data point given by the ordered pair (𝑥𝑜𝑛𝑠𝑒𝑡, 48), since 48 

is the ALSFRS-R corresponding to minimal progression.  
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Figure 1.1: For nine randomly selected subjects, we plotted their ALSFRS-R versus time. The 

leftmost black square is the anchor, the rightmost square is the true value 𝑌𝑘, and the gray 

triangles are observed scores. The dashed black lines denote days 0 and 92 of the trial, meaning 

observations between the two dashed lines were used for model fitting. 

We will compare the standard model versus the anchor model by comparing their ability 

to predict each patient 𝑘′𝑠 first ALSFRS-R score after 365 days (1 year), observed at time 𝑥𝑘,0, 

using only ALSFRS-R scores measured before 92 days (3 months). Specifically for both models 

we calculate  
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√𝑀𝑆𝑃𝐸 = √∑ (�̂�𝑘 − 𝑌𝑘)
21606

𝑘=1

1606
, 

where �̂�𝑘 is the predicted ALSFRS-R score for patient 𝑘 at time 𝑥𝑘,0 and 𝑌𝑘 is the true ALSFRS-

R score at time 𝑥𝑘,0. Because we know the ALSFRS-R is bounded between 0 and 48, any model 

prediction that falls outside these bounds will be truncated to the closest boundary value before 

evaluating the MSPE. To assist in visualizing this data, Figure 1.1 shows the progression of the 

ALSFRS-R versus time for nine subjects (simple random sample without replacement). 

The anchor model results in slightly more biased predictions compared to those of the standard 

model, as expected. However, as demonstrated in the methods section, the variance of these 

errors is much smaller for the anchor model (Figure 1.2). The resulting root MSPE of the anchor 

model is 7.8 while the standard model’s MSPE is 13.0; we observe a large drop in prediction 

error when including the anchor.  
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Figure 1.2: The raw prediction error for the anchor and standard models. The models’ mean error 

as measured by �̂�𝑘 − 𝑌𝑘 was 3.1 and 2.1 respectively, with standard deviations of 7.1 and 12.7. 

It can be shown that for some patients, the prediction from the standard model is closer to 

the truth than the prediction from the anchor model. Perhaps we should only use the anchor 

model when the increase in bias is negligible. We could explore this by taking the difference 

between the prediction from the anchor model �̂�(𝑎) and the standard model �̂�(𝑠); if this 

difference is sufficiently small in magnitude then the increase in bias from using the anchor 

model is negligible on average. In other words, for each patient consider calculating 𝑇𝑘 = �̂�𝑘
(𝑎)

−

�̂�𝑘
(𝑠)

, and then defining the prediction for patient 𝑘 as 

�̂�𝑘 = {
�̂�𝑘

(𝑎)
   𝑖𝑓 |𝑇𝑘| ≤ Γ

�̂�𝑘
(𝑠)

    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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for some constant Γ. Figure 1.3 shows how this changes the MSPE for various values of Γ, as 

well the result from changing the rule to be �̂�𝑘 = �̂�𝑘
(𝑎)

   𝑖𝑓 |𝑇𝑘| ≥ Γ instead (meaning choose the 

anchor model if the difference in the model predictions is large). From Figure 1.3 we see that 

naively using the anchor model for all patients outperforms any of the Γ and 𝑇𝑘 decision-rule 

hybrids for this dataset. 

 

Figure 1.3: Shows the resulting MSPE for various cutoffs of Γ. Note that since the MSPE is 

bounded below by the anchor model (√𝑀𝑆𝑃𝐸 = 7.78), this shows that the anchor model is 

uniformly better than the linear model (√𝑀𝑆𝑃𝐸 = 12.95) for this data. 

Finally, we compare the anchor model to that of a logistic transform model. The logistic 

transform is a model that is more advanced yet also more difficult to calculate and interpret. We 
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fit the logistic transform model by taking each ALSFRS-R score, dividing it by its maximum of 

48, and fitting the resultant data (that is bounded between 0 and 1) with a logistic regression 

model. In other words, for a given patient we fit the following model: 𝑙𝑜𝑔𝑖𝑡 (
𝑦𝑖

48
) = 𝛽0 + 𝛽1𝑥𝑖 +

𝜖𝑖𝑗, where 𝜖𝑖𝑗 are independent errors that follow 𝑁(0, 𝜎2), 𝛽0 and 𝛽1 are the intercept and slope 

parameters, 𝑥𝑖 is the time-point associated with ALSFRS-R score 𝑦𝑖. The MSPE of this model 

comes to be 14.65, significantly higher than the MSPE for either the standard OLS model or the 

anchor model. 

1.4 Discussion 

In this paper, we discussed a simple and computationally inexpensive technique that may 

improve the predictive power in linear models. This method consists of creating an additional 

assumed data point, referred to as an anchor, and including it in the OLS regression. It has been 

shown in this paper that including an anchor theoretically decreases prediction variance at the 

cost of potentially increased bias. We demonstrated how using an anchor can improve linear 

predictions from modelling disease progression in ALS patients. 

Fitting the anchor model can be performed as easily and efficiently as a standard OLS 

regression, yet it has the potential to be a much stronger predictive model. Furthermore, the 

interpretations of the anchor model’s parameters remain largely unchanged from that of OLS 

regression, which is a huge advantage over other models. The interpretability of the parameters is 

arguably one of the most attractive parts of linear models.  

We imagine that using an anchor in the way we have demonstrated will be of particular 

use when modelling a bounded linear process where one can obtain a measure of when the 

process first began and/or ended. The bounds give a justification for choosing the 𝑦-value of the 

anchor; without bounds it may be difficult to justify a value without first looking at the data, 
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potentially leading to overfitting. However, as long as monotonicity approximately holds, one 

could still use something such as the 99
th

 percentile of the response if no bound exists. 

While the results in this paper are done under the assumptions of frequentist OLS 

regression, it is in no way limited to this. The idea of using this additional data point easily can 

extend to other families of models such as generalized linear models, hierarchical models, and 

mixed models. For example, one dramatically can improve the model performance in the ALS 

example by switching from independent linear regressions for each patient to a Bayesian 

hierarchical model; this allows patients to borrow information from one another and results in 

improved estimators due to shrinkage (11). This model is improved even further when it 

becomes a Bayesian hierarchical model that uses an anchor for each patient (12). 

Deciding when to include an anchor for modelling is not straightforward. If the goal is 

estimation, the induced bias may not be worth the reduced variability in estimates. While we 

developed a theoretical bound for when an anchor will improve the MSPE, it depends on having 

theoretical knowledge of the underlying linear process, which is rarely possible in practice. Thus, 

we recommend using cross-validation to compare using an anchor versus a more standard 

approach, as we performed in our ALS example. Because some sort of cross-validation is good 

standard practice when evaluating predictive models, we feel that this is a very small price to pay 

for a potentially dramatic improvement in predictive error. 
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Chapter 2: Using an Onset-Anchored Bayesian Hierarchical Model to Improve Predictions 

for Amyotrophic Lateral Sclerosis 

2.0 Abstract 

Background: Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a 

rare disease with extreme between-subject variability, especially with respect to rate of disease 

progression. This makes modelling a subject’s disease progression, which is measured by the 

ALS Functional Rating Scale (ALSFRS), very difficult. Consider the problem of predicting a 

subject’s ALSFRS score at 9 or 12 months after a given time-point.  

Methods: We obtained ALS subject data from the Pooled Resource Open-Access ALS Clinical 

Trials Database, a collection of data from various ALS clinical trials. Due to the typical linearity 

of the ALSFRS, we consider several Bayesian hierarchical linear models. These include a 

mixture model (to account for the two potential classes of “fast” and “slow” ALS progressors) as 

well as an onset-anchored model, in which an additional artificial data point, using time of 

disease onset, is used to improve predictive performance.  

Results: The onset-anchored model had a drastically reduced predictive mean-square-error, 

when compared to the Bayesian hierarchical linear model or the mixture model under a cross-

validation approach.  No covariates, other than time of disease onset, consistently improved 

predictive performance in either the Bayesian hierarchical linear model or the onset-anchored 

model. 

Conclusions: Augmenting patient data with an additional artificial data point, or onset anchor, 

can drastically improve predictive modelling in ALS by reducing the variability of estimated 

parameters at the cost of a slight increase in bias. This onset-anchored model is extremely useful 

if predictions are desired directly after a single baseline measure (such as at the first day of a 
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clinical trial), a feat that would be very difficult without the onset anchor. This approach could be 

useful in modelling other diseases that have bounded progression scales (e.g. Parkinson’s 

disease, Huntington’s disease, or inclusion-body myositis). It is our hope that this model can be 

used by clinicians and statisticians to improve the efficacy of clinical trials and aid in finding 

treatments for ALS. 

2.1 Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a rare neuro-degenerative disease that exhibits 

extreme between-subject variability. Progression of ALS typically is measured by the ALS 

Functional Rating Scale (known as the ALSFRS), or with additional respiratory questions (the 

revised ALSFRS-R). The ALSFRS is a physician-reported outcome on a scale of 0 – 40 that 

grades common activities of daily living like dressing, eating, and walking. An ALSFRS score of 

40 corresponds to normal function, and this score will decrease as the disease progresses. The 

ALSFRS, that is usually non-increasing,  has been shown to decrease in a linear fashion over the 

course of a typical clinical trial (6 months to 1 year) (1, 2), although the linearity is disputed over 

long periods of time (3).  

Faster disease progression consistently is associated with lowered survival (2, 4-8). Many 

of the clinical measurements shown to be associated with survival (e.g. region of symptom onset 

and Riluzole use) are not significantly associated with disease progression (9-11). Riluzole is the 

only FDA-approved drug for ALS. As rates of progression on the ALSFRS often are used in 

phase II and III clinical trials, more accurate predictive models would help researchers in 

improving trial efficiency.  

Our aim was to develop a predictive Bayesian hierarchical model that could be used to 

predict individual ALSFRS scores at one year from trial beginning using at most the first three 
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months of clinical trial data. Our baseline model is a Bayesian hierarchical linear model, which is 

similar to a linear mixed effects model. We then compared the predictive power of this baseline 

model to those provided by a Bayesian mixture model and a Bayesian onset-anchored 

hierarchical linear model. The onset-anchored model leverages an additional data point for each 

patient, which assumes maximum ALSFRS score at the time of disease onset. Note that the 

approach of using an onset-anchor is applicable in modelling other diseases that use a bounded 

rating scale (Parkinson’s disease, Huntington’s disease, etc.). We additionally consider variable 

selection to improve model predictive accuracy, as well as consider model robustness when less 

than three months of data are available. 

2.2 Methods 

Study population.  The datasets analyzed during this study are available in the Pooled 

Resource Open-Access ALS Clinical Trials database (PRO-ACT) 

(https://nctu.partners.org/ProACT/) (12).  In 2011, Prize4Life, in collaboration with the 

Northeast ALS Consortium, and with funding from the ALS Therapy Alliance, formed the PRO-

ACT Consortium. The data available in the PRO-ACT Database have been volunteered by PRO-

ACT Consortium members. As of December 2015, PRO-ACT had 4,838 unique subjects, each 

having at least one reported ALSFRS or ALSFRS-R score. As PRO-ACT is a collection of data 

from clinical trials, we further subset this data only to include subjects that were receiving 

placebos. This resulted in 1,301 subjects to be considered for analysis. One patient was dropped 

later due to having no data entered for disease onset time, bringing the final number of subjects 

to 1,300. For more demographic information on these subjects, see Table 2.1.  

  

https://nctu.partners.org/ProACT/
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Categorical Counts 

Sex Male: 812  Female: 488 

 Race White: 1218 Black: 22 Latino: 13 

 

Asian: 12 Indian: 1 Other: 34 

Riluzole Use Yes: 600 No: 358  Not Reported: 342 

 Continuous Mean SD 

 Age (at trial start) 55.5 11.9 

 Onset Time (days from trial start) -658.4 456 

 Number of ALSFRS scores 9.3 4.5 

  

Table 2.1:  Demographic data for n=1,300 ALS subjects from the PRO-ACT database considered 

for analysis. 

For these 1,300 subjects, we used ALSFRS scores to measure disease progression. The 

ALSFRS score is bounded between zero and 40, and typically is non-increasing. Patients with 

ALSFRS-R scores, the revised ALSFRS, had their scores converted to the ALSFRS by summing 

the scores from the first nine questions of the ALSFRS-R (that concern motor and bulbar 

function) as well as the score from the first respiratory question, R1: Dyspnea. 
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Model comparison. Our objective was to build a predictive model with which we could 

use the first three months of a subject’s data to determine their ALSFRS score at one year. As 

very few subjects had a measurement at exactly one year, we instead used the model to predict 

each subject’s first score after day 365, denoted as 𝐹𝑅𝑆365. Three months was chosen as the 

cutoff because: 1) this was the window used in the DREAM ALS Stratification Prize4Life 

Challenge; 2) three months represented a reasonable amount of time for making 12-month 

predictions; and 3) this was a time frame with utility for both adaptive trial designs and for 

imputing missing data. Ideally, this model would be accurate even when less than three months 

of subject data are available.  

Large amounts of variability are inherently associated with any ALS model. Bayesian 

hierarchical models excel at capturing many sources of variability that can be reported via 

posterior predictive credible intervals. A credible interval is preferable for its interpretability; in 

the framework of a Bayesian model, there is a 95% chance that a subject’s 𝐹𝑅𝑆365 is within the 

95% credible interval. Note to control the type I error rate, the gold standard for confidence 

intervals is 90% or 95%. A credible interval, being a statement of probability, has no such 

restriction, and thus is useful with even lower credible levels, such as 70% or 80% (13). 

We considered three types of models that are described below: A Bayesian hierarchical 

linear model, a Bayesian hierarchical mixture model, and a Bayesian onset-anchored hierarchical 

linear model. Note that these models are all linear with respect to time. This is largely because a 

patient in PRO-ACT typically has only one ALSFRS measurement per month, which causes 

more complicated models, such as 3-parameter sigmoidal curves, to suffer from convergence 

problems. Linearity also is convenient because the slope parameter can be used as a simple-to-

interpret measure of the disease’s rate of progression. 
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The models were compared using their posterior mean-square-error (MSE) that resulted 

from a cross-validation analysis. Cross-validation entails splitting the data into a training set with 

which to build the model, and a validation set with which to assess the model’s predictive power 

(13). The MSE is defined as the sum of the squared difference between the predicted 𝐹𝑅𝑆365 and 

the observed 𝐹𝑅𝑆365 for each subject in the validation set, and is adjusted for the size of the 

validation set.  

In order to be in the validation set, subjects needed at least one ALSFRS score after one 

year from baseline. Again, as the ALSFRS score at one year specifically was not observed for 

most patients, we instead predicted 𝐹𝑅𝑆365, the subject’s first score after 365 days. Of subjects 

who had at least one year of data, average 𝐹𝑅𝑆365 was 386.7 days, with standard deviation of 

23.7 days and maximum of 577 days. The same training and validation sets were used to validate 

all three models. 

 All analyses were done using R (14), OpenBUGS (15), and the R package R2openBUGS 

(16). Pseudo-code that describes the model in more detail is provided in the appendix (A2). 

Bayesian hierarchical linear model. Since ALS seems to progress linearly over most 

one year time frames in the PRO-ACT database, we started with a linear hierarchical Bayes 

mixed effects model with weak and uninformative priors. Specifically, the ALSFRS for subject 𝑖 

at time 𝑡 is modeled as: 

𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡)~𝑇3(𝑎𝑖 + 𝑏𝑖𝑡, 𝜎2) 

restricted to 𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡) ∈ [0,40], that easily is done in OpenBUGS. 𝑇3 denotes the centered 

non-standardized t-distribution with three degrees of freedom and non-standardized variance 𝜎2. 

Note that a standardized t-distribution with three degrees of freedom would instead have a 

variance of one. Parameters 𝑎𝑖 and 𝑏𝑖 are the subject-specific intercept and slope term. A t-
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distribution with three degrees of freedom was chosen because a normal distribution was too 

narrow in the tails. Additionally, we observed that the residuals from simple linear regression on 

subjects (with sufficient amounts of data) followed a 𝑇3 distribution extremely well (see Figure 

2.1). 

 

Figure 2.1: QQ plots for the residuals obtained from fitting simple linear regression models on 

subjects that had at least 5 ALSFRS measurements. 

Continuing the model description, the hyper-parameters 𝑎𝑖 and 𝑏𝑖, in turn, have the 

following distributions: 

𝑎𝑖~𝑁(𝑝0, 𝜎0
2) 

𝑏𝑖~𝑁(𝑝1, 𝜎1
2) 
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Where 𝑏𝑖 is restricted to be non-positive. Weak priors from the literature and discussions with 

clinicians were assumed for 𝑝0 and 𝑝1. Specifically, Castrillo-Viguera et. al. (17) reported that 

the ALSFRS-R decline in one database is roughly -0.92 units per month with a standard error of 

0.08. This translates to roughly an ALSFRS decline of -.025 per day, and leads us to the 

following priors: 

𝑝0~𝑁(33, 32) 

    𝑝1~𝑁(−0.025, 0.32) 

Where the increased error in 𝑝1 allows for more strength in the analysis to come from the data. 

Generally subjects with low baseline ALSFRS scores are not enrolled in clinical trials, and the 

prior for 𝑝0 was chosen to reflect this while still allowing a wide range of potential starting 

ALSFRS values. Uninformative priors were assigned to the remaining variables.  

Such a Bayesian model, aside from the weakly informed priors on 𝑝𝑖, was suggested by 

Gomeni et al. (18) . A key advantage to hierarchical modelling in this way is that it allows for 

shrinkage of error resulting from sample means (19, 20), and also lets subjects with fewer data 

points “borrow” information from the remaining population. The Bayesian analysis also has 

advantages with respect to interpretability (especially in a clinical setting). This model will be 

referred to as the “linear model”.  
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Bayesian hierarchical linear mixture model. A mixture model is useful when each 

subject belongs to one of several groups, each group having their own specific progession 

distributions. Specifically, Gomeni et al. (18), suggested that ALS subjects could be classified as 

either “fast” or “slow” progressors. To model this, we assume each subject is either a fast or slow 

progressor, and assume that each group has their own average rate of disease progression 

(parameterized by the mean of the subject-specific slope). We further assume the slope 

parameter for fast progressors strictly is steeper (more negative) than those of slow progressors. 

 The ALSFRS for subject 𝑖 at time 𝑡 is still 𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡)~𝑇3(𝑎𝑖 + 𝑏𝑖𝑡, 𝜎2), but now we let 

𝑏𝑖~𝑁(Λ, 𝜎1
2). This starts the mixture process, with Λ being either Λ1 or  Λ2 = (Λ1 + 𝑐), where 𝑐 

is a positive constant, with probability Pr(Λ = Λ𝑖) = 𝜋𝑖. Finally, we use the following priors, 

𝜋𝑖~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1,1), Λ1~𝑁(0, 𝜎Λ1
). The remaining parameters from the mixture, such as 𝑐 and 

𝜎Λ1
, are assigned uninformative positive priors . All other priors and parameters are specified as 

in the linear model (2.2.1). This model shall be referred to as the “mixture model”.  
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Bayesian onset-anchored hierarchical linear model. This model resembles the linear 

model in structure, but uses an idea first introduced by Proudfoot et al. (21). The idea was to 

create an additional artificial data-point, referred to as the “onset-anchor”. We do this by 

assuming that each subject had an ALSFRS score of 40 (the maximum possible score) at their 

time of disease onset (see Figure 2.2). Aside from this artificial data point, the parameters and 

model specification remain identical to those given in the linear model. This model is referred to 

as the “onset-anchored model”.   

 

Figure 2.2: Ordinary least-squares estimates for two models: the linear model uses data from 

zero to three months only, while the onset-anchored model includes an additional artificial data-

point. This time point is given as (𝑥, 𝑦) = (time-point of disease onset-time, maximal ALSFRS 

of 40). 
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Assuming the maximum possible ALSFRS score at disease onset time was an idea first 

introduced by Proudfoot et al. (21). They used this assumption to create a slope between the 

onset anchor and the first observed ALSFRS score that then was used as a predictor for 

measuring a patient’s disease progression. Our onset-anchored model, however, treats this 

additional artificial data point as an observed value (specifically, a leverage point) in the 

modelling framework. 

Considering the simplicity of this approach, the addition of a non-random leverage point 

to aid in model prediction is a surprisingly novel technique. This method will, however, result in 

a biased linear regression model.  Recall that the MSE of any prediction is composed of the sum 

of the square of the bias and the variance of the prediction. In order for this biased model to 

predict 𝐹𝑅𝑆365 well, the reduction in prediction variance needs to dramatically outweigh the 

increase in prediction bias.   
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Covariate selection using the onset-anchored model. After choosing a “winner” from 

the three models mentioned above (the onset-anchored model), we wished to determine which 

clinical features, if any, improved predictive accuracy when used as covariates in the model. 

Clinical features considered were height, symptom onset time, sex, age, race, individual sub-

questions of the ALSFRS, forced vital capacity (FVC, both liters and percent predicted of 

normal), respiratory rate, weight, Riluzole use (yes/no), and site of onset (bulbar/limb). Many lab 

measurements are included in PRO-ACT, yet due to their sparse nature, only lab features that 

were present in at least 90% of the subjects were considered. Albumin has been shown to be 

associated with ALS survival (22) and was included for analysis even though it was only present 

in 86% of subjects. The following lab features were considered in our analysis: chloride, serum 

aspartate aminotransferase (AST), glucose, sodium, blood urea nitrogen (BUN), potassium, 

bilirubin, alanine transaminase (ALT), creatinine, and albumin. 

Many of these features were repeated measures. To use them as covariates, they were 

truncated to at most three months, then collapsed to slope and intercept (baseline) measures. 

Specifically, we performed a linear regression on the feature with respect to time, and extracted 

the ordinary least squares estimates for the slope and intercept. While true baseline data would be 

preferable over the ordinary least squares intercept estimator, baseline data were frequently not 

available. Therefore the ordinary least squares intercept estimator was chosen for homogeneity. 

Collapsing longitudinal predictors has been successfully employed in other ALS predictive 

models (23, 24), and greatly simplifies the modeling process. All features were normalized using 

their sample means and variances for ease of analysis and interpretability.  

As we were more interested in predictive power, our criteria for feature selection was 

improvement to the average MSE resulting from predicting 𝐹𝑅𝑆365 in repeated cross-validation 
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analysis (using 90% of the data as the training set and 10% as the validation set), rather than the 

statistical significance given by a small p-value. Deviance information criterion (DIC) also was 

considered in assessing whether features improved the model or not. 

To assess each covariate we randomly subset the overall data into 300 subjects with non-

missing entries. While multiple imputation could be used here, we chose only to use complete 

cases to drastically reduce computation time as well as eliminate potential convergence 

problems. We then used cross-validation on this subset of 300 subjects to obtain posterior 

distributions of the MSE for the onset-anchored model using the covariate and the baseline 

onset-anchored model for which did not use the covariate. The average difference in MSE 

between the two models then was computed, and this entire process (starting with subsetting to 

300 subjects) was repeated 100 times for each covariate. Specifically, we compared the average 

difference in MSE of the following two models (for the full model specification, see appendix 

A1): 

Covariate onset-anchored model: 

𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡)~𝑇3(𝑏0𝑖 + 𝑏1𝑖𝑡, 𝜎2) 

                 𝑏0𝑖~𝑁(𝑝00 + 𝑝01𝑋𝑖, 𝜎0
2) 

                 𝑏1𝑖~𝑁(𝑝10 + 𝑝11𝑋𝑖, 𝜎1
2) 

  

Baseline (no covariate) onset-anchored model:  

𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡)~𝑇3(𝑏0𝑖 + 𝑏1𝑖𝑡, 𝜎2) 

                 𝑏0𝑖~𝑁(𝑝00, 𝜎0
2) 

                 𝑏1𝑖~𝑁(𝑝10, 𝜎1
2) 
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Where 𝑋𝑖 is the subject-specific covariate, 𝑡𝑖 is time for subject 𝑖. The slope of subject 𝑖 is 

𝑏1𝑖 which, in the covariate model, is a function depending on 𝑋𝑖. Similarly, 𝑏0𝑖 is the subject-

specific intercept. As per hierarchical modelling, we assume priors only for the hyper-parameters 

𝑝𝑗𝑘 (𝑗 = 0,1 and 𝑘 = 0,1). As per the linear model, the following weak priors were assumed: 

𝑝00~𝑁(33, 32) 

𝑝10~𝑁(−0.025, 0.32) 

Uninformative priors were assigned for the remaining parameters in both models.   

 

2.3 Results 

We investigated the predictive power of three types of Bayesian hierarchical models: 

linear, mixture, and onset-anchored. In a Bayesian framework, when cross-validating a model, 

the resultant MSE has a posterior distribution that takes into account all of the sources of 

variation within the model. Specifically, these sources of variation include: 1) variation within 

the model; 2) variation of the posterior parameters; and 3) the variation of the posterior 

predictive distribution. Therefore, it is important not only to lower the MSE but also to decrease 

its variance. Of the three models, the onset-anchored model not only had the smallest MSE but 

also had the MSE with the smallest variance (Figure 2.3). Note that the DIC between the onset-

anchored model and the standard linear model cannot be compared, because the additional data 

point in the onset-anchored model results in a different likelihood.  

The MSE for the onset-anchored model not only is smaller in terms of expectation (In Figure 

2.3 the means of the MSE for the onset-anchored, mixture model, and linear model were 51.1, 

68.5, and 73.7 respectively) but also has the smallest variance. We also considered a mixture 

model that utilized the additional data point given by the onset anchor. This complex model 
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performed about as well as the more parsimonious onset-anchored model, that can be seen by 

their nearly overlapping MSE distributions in Figure 2.3.  

 

Figure 2.3: Comparison of posterior MSE distribution for four types of hierarchical models: 

linear, onset-anchored, mixture, and mixture with the additional data-point used in the onset-

anchored model. This is from a single cross-validation analysis, but this separation of 

distributions is typical. 

We next attempted to find which covariates or features could consistently improve the 

MSE of the onset-anchored model, or decrease the DIC.  While many clinical and lab predictors 

had nonzero effects on the posterior slope and intercept (meaning 𝑝11 and/ or 𝑝01 were nonzero), 

very few predictors consistently improved the MSE, and among those that did, the improvement 

to the MSE was very small (Table 2.2). Some variables, such as FVC: Subject Liters (slope) and 

forced vital capacity (FVC): Percent Normal (slope) reduced DIC (each reduced DIC by about 

3.45); however, they did not contribute towards a meaningful improvement in predictive power. 

Of the 53 covariates tested, only “disease onset time” resulted in an improvement to the MSE 
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that was on average greater than one percent. This is most likely due disease-onset time giving a 

slight bias correction to the model. The next best covariates were subject’s 3-month slope of 

FVC (in raw liters) and 3-month slope of the first question from the ALSFRS: Q1, Speech.  
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Covariate Name 

Median % MSE 

reduction (negative values 

signify an increase to the 

MSE) 

IQR for % 

MSE 

reduction 

Mean DIC adjustment 

(larger values result in 

larger DIC) 

Onset Time 0.0174 0.027 2.8 

FVC: Subject Liters (slope) 0.0095 0.02 -3.5 

Q1: Speech (slope) 0.0081 0.0187 0.8 

Diagnosis Time 0.0059 0.0183 -2.1 

Q7: Turning in Bed(slope) 0.0052 0.0182 -3.5 

Q8: Walking (slope) 0.0052 0.0254 -2.2 

AST (slope) 0.0043 0.0179 -0.3 

Q5: Cutting (slope) 0.0043 0.0202 -1.5 

Q6: Dressing/Hygiene (slope) 0.0039 0.0223 -1.9 

ALT (slope) 0.0034 0.0166 0.1 

Q2: Salivation (slope) 0.0032 0.0195 1.7 

Q9: Climbing Stairs (slope) 0.003 0.0232 -2 

AST (intercept) 0.0028 0.0162 0.8 

FVC: Percent Normal (slope) 0.0025 0.0225 -3.4 

Race 0.0021 0.0156 -0.1 

ALT (intercept) 0.0021 0.0182 -0.7 

Bilirubin Total (slope) 0.0019 0.0196 -0.5 

Respiratory Rate (intercept) 0.0017 0.0146 0.3 

Q2: Salivation (intercept) 0.0013 0.0203 -1.4 

Creatinine (intercept) 0.0011 0.0152 -0.7 

Age 0.001 0.0185 -2.1 

Q1: Speech (intercept) 0.001 0.0224 2.2 

Potassium (slope) 0.001 0.0136 -0.9 

Onset Site: Bulbar 0.001 0.0171 -0.5 

Height 0.0009 0.0169 0.8 

Weight (slope) 0.0009 0.0174 -1.7 

Sodium (intercept) 0.0008 0.0188 1 

Bilirubin Total (intercept) 0.0008 0.0183 0.8 

Sex 0.0006 0.0169 -0.4 

Q10: Respiratory (slope) 0.0006 0.0153 0.8 

Q4: Handwriting (slope) 0.0006 0.0206 -0.7 

Weight (intercept) 0.0006 0.0181 -0.5 

Q5: Cutting (intercept) 0.0002 0.0224 -4.1 

Table 2.2: Median reduction to MSE, in percentage, for covariates which improved the MSE.  

The inter-quartile range for the percent reduction as well as average difference in DIC is shown 

as well. 
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Recall that several of these clinical values have been found to be associated with survival, 

including Forced Vital Capacity (FVC), age of onset, and site of onset (bulbar or limb, which can 

help differentiate subtypes of ALS). However, none of these covariates have been consistently 

useful for modelling ALSFRS progression (9); this is consistent with our findings. Riluzole use, 

in particular, worsened MSE by a median of 0.09% (see appendix A3 for expanded Table 2.2). 

Again, this is not surprising as Riluzole has only a weak effect on survival and has not been 

shown to be consistently associated with decreased disease progression (10, 25).   

To appropriately predict the ALSFRS for a given subject at one year from trial onset 

using data collected up to three months after trial onset, a measure of uncertainty must be 

reported as well. Since a Bayesian analysis instead was performed, we can obtain 95% credible 

intervals for each subject’s 𝐹𝑅𝑆365. Figures 2.4 and 2.5 give a sample of posterior distributions 

from a cross-validation for nine randomly-selected subjects’ 𝐹𝑅𝑆365, as well as their 95% 

credible intervals and true 𝐹𝑅𝑆365 (the subject’s first score at, or after, 365 days). To further 

demonstrate the improved predictive power of the onset-anchored model, this is done for both 

the standard linear model (Figure 2.4) as well was the onset-anchored model (Figure 2.5).  
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Figure 2.4: Posterior predictive distributions for a random sample of subjects’ 𝐹𝑅𝑆365 obtained 

through cross-validation utilizing the standard linear model. 
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Figure 2.5: Posterior predictive distributions for a random sample of subjects’ 𝐹𝑅𝑆365 obtained 

through cross-validation utilizing the onset-anchored model. 

It can be noted that the credible intervals for the linear model are very wide, 

encompassing nearly the full range of the disease. The onset-anchored model drastically reduces 

the length of these credible intervals. In repeated cross validation, the 95% credible interval 

contained the true 𝐹𝑅𝑆365 for a given subject roughly 73% of the time. As the time of data 

collection used to make the prediction increases from three months, this prediction becomes 

more accurate.  

The performance of the onset-anchored model vastly is superior to that of the linear 

model when the length of time for data collection is short. Figure 2.6 shows that the onset-
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anchored model, using only baseline data, typically outperforms a linear model using many 

months of subject data. Figure 2.6 also shows that the onset-anchored model performs well even 

when the window for data capture is restricted to less than three months, including when only a 

baseline measurement is available for each subject.  

 

Figure 2.6: The effect of changing the number of months of data used for prediction in both the 

linear and onset-anchored models. This effect is measured by the MSE (and associated 90% 

credible interval) resulting from a single cross-validation analysis for both models. 

Recall that, while MSE of prediction drastically is reduced when using the onset-

anchored model, it is in fact a biased model. The additional data point causes the model typically 

to underestimate the rate of disease progression, resulting in a higher predicted 𝐹𝑅𝑆365 than 
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observed. Using the onset-anchored model resulted in a prediction bias of, on average, about two 

(on the ALSFRS scale). For comparison, the linear model typically was unbiased.  

Finally, it is typical to measure progression of ALS by the slope of the ALSFRS. An 

advantage to using the Bayesian framework is that the ALSFRS slope for subject 𝑖, defined 

previously as 𝑏1𝑖, is specified in the model likelihood, and therefore, has a posterior distribution. 

Thus, one can then obtain a posterior estimate and credible interval for slope from this 

distribution. In other words, when using this model one easily can predict slope for a given 

subject in addition to 𝐹𝑅𝑆365. Examples of the posterior predictive distributions for the ALSFRS 

slope using three months of data, with 90% credible intervals, is provided in Figure 2.7 for the 

same nine subjects used in Figures 2.4 and 2.5. As the onset-anchored model performs well even 

when using only baseline data, subject slopes could be predicted using this model as soon as a 

baseline ALSFRS score has been established.  
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Figure 2.7: Posterior predictive distributions for a random sample of subjects’ ALSFRS slope 

obtained through cross-validation utilizing the onset-anchored model. The regression estimate of 

the ALSFRS slope (dotted line) was calculated using ordinary least squares on subject’s full 

data. 

2.4 Discussion 

We explored three different Bayesian hierarchical predictive models with the goal of 

modelling ALS disease progression. These models were linear, mixture, and onset-anchored. The 

onset-anchored model that uses an additional data point by assuming the maximum ALSFRS 

score at time of disease onset (e.g. 40), is the best model in terms of predictive accuracy via 

cross-validation. This is especially noticeable when the window for data capture is very small, 

such as only using a baseline ALSFRS score.  
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While linear over the course of a typical clinical trial, progression of the ALSFRS could 

become curvilinear over long periods of time. This is reinforced further by the fact that it is 

bounded between zero and 40, and typically is non-increasing. Predictive models that attempt to 

account for this non-linear progression suffer from a disparity between the number of subject-

specific data points and the necessary number of model parameters. We hypothesize that using 

the onset-anchor helps to “balance” this prediction (see Figure 2.2), while also enabling 

shrinkage on the slope estimator. The result is a model that has reduced variability of parameter 

estimates (at the cost of a small increase in bias), which enables a large reduction in overall 

prediction MSE.  

Using three months of subjects’ data, we found that very few clinical features improved 

prediction as measured by the MSE of repeated cross-validation analysis. Among those features 

that did consistently improve the MSE, the improvement was rarely more than a one percent 

reduction. This corroborates findings by Creemers et al. (9) who found the quality of evidence 

among disease progression prognostic factors to be low at best. The covariate that offered the 

largest and most consistent improvement to the model’s prediction was disease onset time. As 

disease onset time is also a key part of the onset-anchor model, this stresses its importance and 

supports other studies that have shown onset time strongly is associated with disease progression 

as well as survival (5, 6, 23). 

From a practical point of view, a model that only requires time of disease onset and three 

months of progression data eases both patient and clinician burden by requiring less overall 

measurements.  The Bayesian modeling approach proposed here can help inform the design of 

adaptive studies, and can be used as an imputation scheme to conduct trials more quickly (26-

28). Finally patients with ALS are routinely interested in charting their own progression, as well 
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as trying interventions that might include treatments for spasticity or pain, or supplements geared 

towards slowing disease progression. In conjunction with a self-administered ALSFRS, the 

onset-anchored model then becomes a predictive tool that an ALS patient can use aid them in 

tracking their disease and assess the utility of self-administered interventions. 

While the idea of using an additional data point as used by the onset-anchored model is 

simple, it is surprisingly novel. Creating biased models to improve predictive MSE is not 

uncommon, and is used in ideas like fixed-point regression or ridge regression. However, using 

an artificially created data point and treating it as observed data is something that, to the best of 

our knowledge, is something that has never been used before. We have found no literature where 

it theoretically is discussed or practically used. This methodology could be applied to any 

longitudinal data where the onset time of the process being modelled is known. Other diseases 

that have bounded rating scales that measure progression, including Parkinson’s disease or 

Huntington’s disease, might benefit tremendously from predictions that use an onset-anchor. 

One limitation to the current study is that subjects who died before the clinical trial had 

progressed a full year were not candidates for cross validation, and hence did not directly 

contribute to the MSE. However, the Bayesian framework allows these subjects to be included in 

building the model, where their often-increased rates of disease progression contribute to the 

variability of the model. Specifically, subjects who died prior to one year still contributed 

towards key model variables, including the distributions of rate of progression, effects of 

covariates, and variability measures throughout the model. Subjects who died prior to one year 

also had, on average, a lower predicted 𝐹𝑅𝑆365 than subjects who survived past one year. This is 

expected since a faster progression is associated with lowered survival. 
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Another limitation is the width of the posterior predictive distributions among individual 

subjects’ 𝐹𝑅𝑆365. These distributions express a combination of variation within the model, 

variation of the posterior parameters, and variation of the posterior predictive distribution. Due to 

the heterogeneity of ALS, it is not unexpected that 𝐹𝑅𝑆365 can range widely at the individual-

patient level. This will remain a limitation of any predictive model until better factors that more 

strongly are associated with disease progression (rather than survival) are discovered.  

The onset-anchored model’s inherent bias is another limitation of the model. This is the 

typical concern with any biased linear model, but in this case we can see that the reduction in the 

onset-anchored model’s MSE is worth the tradeoff. A possible solution might be to investigate a 

bias-correction term that would utilize disease-onset time as well as the number of days after the 

start of the trial that is associated with 𝐹𝑅𝑆365.  

One final limitation worth pointing out is that disease-onset time, a critical feature of the 

onset-anchored model, is a problematic variable. This variable typically comes from patient 

memory, and as a result is subject to recall bias. Proudfoot et al. point out that while this bias 

exists, using patient-recalled onset time is still a useful predictor for disease progression (21), 

and this is corroborated by our model. 

2.5 Conclusions 

In this paper we considered the problem of predicting an ALS patient’s ALSFRS score at 

one year, given up to three months of data. Three different Bayesian hierarchical predictive 

models were considered: linear, mixture, and onset-anchored. The onset-anchored model that 

leverages an additional artificial data point that assumes the maximum ALSFRS score of 40 at 

the patient’s time of disease onset, is the best model with respect to predictive accuracy under 
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cross-validation. The onset-anchored model is simple to implement, and potentially is applicable 

to various other diseases that measure progression by bounded rating scales. 

The effect of many covariates (lab values, demographic information, etc.) on these 

predictions was assessed via repeated cross-validation. The result is that time of disease onset is 

the only covariate that provides a consistent improvement to predictions, but this is a very small 

improvement. This highlights the urgent need to develop a better understanding of the 

mechanism behind ALS progression.  

The onset-anchored model has an added benefit over the other models in that it allows 

predictions to be made as soon as a patient has a baseline ALSFRS score. In other words, as soon 

as the first ALSFRS measure is taken in a clinical trial, the model can be utilized for endpoint 

prediction of the ALSFRS. We hope this model can be used by clinicians and statisticians to 

improve the efficacy of clinical trials and aid in finding treatments for ALS.  
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Chapter 3: Automated Data Extraction of Electronic Medical Records to Model ALS 

Survival and Progression   

3.0 Abstract 

Objective: To assess the feasibility of using automated capture of Electronic Medical Record 

(EMR) data for future amyotrophic lateral sclerosis (ALS) clinical research by comparing a 

University of Kansas Medical Center (KUMC) ALS data to an established ALS clinical trial 

population provided by The Pooled Resource Open-Access ALS Clinical Trials database (PRO-

ACT).  

Methods: We used an Informatics for Integrating Biology and the Bedside search discovery tool 

to identify and extract 219 ALS patients from the KUMC EMR, which were compared to 1300 

placebo-arm subjects from PRO-ACT. Bayesian hierarchical modelling provided estimates of 

disease progression as measured by the ALS Functional Rating Scale. Two different Cox 

proportional hazards models were used to investigate the effect of KUMC membership on 

survival. 

Results: KUMC patients were typically older at disease onset, were more likely to have bulbar 

onset, had slower ALS progression, and had improved survival rates versus subjects in PRO-

ACT. We found the following to be associated with improved survival: younger age, more time 

from ALS onset to baseline measure, limb (versus bulbar) onset, and higher baseline BMI, 

forced vital capacity, and ALS Functional Rating Scale scores.  

Conclusion: We show the feasibility of using automated data extraction from the EMR to model 

and track disease progression in ALS.  Differences in disease progression and survival in the 

KUMC patients compared to the PRO-ACT placebo controls highlight the need to better 
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understand disease variability in the clinical setting, and to refine the inclusion criteria in ALS 

trials. 

3.1 Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a fatal neuro-degenerative disease. While over 

50 clinical trials have been conducted over the last two decades, none have been successful save 

riluzole and edaravone, that at best offer modest improvements in survival or function (1). While 

many studies may have failed because the drugs were ineffective, a recurring theme in ALS is 

underpowered trials with indeterminate results.  Two major hurdles to conducting ALS trials are 

the rarity of ALS (3.9 in every 100,000 people in the U.S. (2)) and the disease’s heterogeneity. 

Obtaining historic controls or creating predictive models from Electronic Medical Record 

(EMR) data would be one way to improve inexpensively the power and efficiency of ALS trials 

(3, 4). The wide use of EMRs, and the development automated abstraction of de-identified data, 

create opportunities to: 1) better understand ALS disease progression and determinates of 

survival in the clinical setting; 2) use clinical data to enrich existing placebo-arm data sets to 

improve the power of trials; and 3) leverage this electronic infrastructure to run clinical trials – 

including EMR-based screening, randomization, and data collection.  For these approaches to be 

valid, we need to demonstrate the feasibility of modeling disease progression using EMR-

captured clinical data.  

Here we compared statistical models built with EMR-captured patient data from our ALS 

clinic at the University of Kansas Medical Center (KUMC) to a typical ALS clinical trial 

population provided by The Pooled Resource Open-Access ALS Clinical Trials database (PRO-

ACT) (5). KUMC’s EMR is provided by Epic. 
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3.2 Methods 

Study design. We conducted a retrospective chart review of patients at the KUMC ALS 

Clinic. To do this efficiently, we used the KUMC Healthcare Enterprise Repository for 

Ontological Narration (HERON), powered by Informatics for Integrating Biology and the 

Bedside (i2b2), a discovery tool that allows searches of de-identified EMR data (6, 7). This 

allowed us to extract ALS patient data from the EMR for analysis, with records dating from 

summer 2012 to early 2017. This data include information on patient demographics, disease 

progression, and survival. Survival data captured by HERON comes from both the EMR and 

from the Social Security Death Index (8). This data then were verified and augmented by a 

manual chart review (Table 3.1).  

 Information extracted from 

HERON 

Information extracted from chart 

review 

Demographic 

data 

Subject age*, ethnicity*, race*, 

gender*, marital status, religion, 

date of birth 

Date of disease onset*, date of 

diagnosis*, site of disease onset*, ALS 

family history 

Longitudinal 

data 

ALSFRS-R and its sub scores*, 

BMI*, FVC (raw and percent-

predicted)* 

Negative inspiratory force (NIF) 

Medication 

history 

 Riluzole*, Nuedexta, Vitamin use  

Other Death status*, date of death* Non-invasive positive pressure 

ventilation (NIPPV) status, date of 

NIPPV, NIPPV type 

Table 3.1: Specific data extracted from the KUMC EMR by HERON, and data added from 

manual chart review. Asterisk (*) denotes the data was also available in PRO-ACT. 
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Study populations. 

University of Kansas Medical Center (KUMC) ALS Clinic data. The ALS clinic at 

KUMC serves roughly four state regions across the Midwest (Kansas, Missouri, Oklahoma, 

Arkansas). At each visit, patient data collected by the clinician are entered in the EMR (EPIC 

EMR system, Epic Systems Corporation, 2015). Using HERON, we extracted data from patients 

who met the criteria of having at least one ALS Functional Rating Scale – Revised (ALSFRS-R) 

score, that measures ALS progression. Patients’ ALSFRS-R is recorded in-clinic by a research 

coordinator and entered into a document flow sheet. Only patients seen in the ALS specialty 

clinic with a known diagnosis of motor neuron disease have ALSFRS-R scores in the EMR. 

Initially, the KUMC data from HERON covered 357 subjects and 2,848 individual clinical visits. 

We eliminated patient encounters not pertaining to ALS, death, or respiratory progression. We 

further eliminated patients whose first and last ALSFRS-R scores occurred less than 90 days 

apart or had a diagnosis other than ALS (such as primary lateral sclerosis). This resulted in 219 

unique subjects and 960 clinical records.  
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Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) data. In 2011, 

Prize4Life, in collaboration with the Northeast ALS Consortium, and with funding from the ALS 

Therapy Alliance, formed the PRO-ACT Consortium. The data available in the PRO-ACT 

Database have been volunteered by PRO-ACT Consortium members 

(https://nctu.partners.org/PRO-ACT/) (5). We used PRO-ACT records prior to December 1, 

2015, which had 4,838 unique subjects with progression information (ALSFRS-R scores, or, 

more commonly, ALSFRS scores). Only subjects that were assigned to the placebo arm of their 

trials were considered so as to not contaminate our statistical models with unknown effects from 

various therapeutics. This resulted in 1,301 subjects and 11,773 patient records. Demographic 

information, including a comparison between the PRO-ACT data and the KUMC data, is given 

in the results section. 

Outcomes. The specific variables we obtained pertaining to demographic, disease 

progression, and survival are provided in Table 3.1. Disease progression of ALS typically is 

measured by the ALSFRS-R that consists of twelve physician-administered questions. Each 

question is on a 0 – 4 scale, with the overall score of 48 representing normal function (9). The 

ALSFRS-R has become the standard for measuring disease progression, and easily can be 

converted to the previous version, the ALSFRS. The ALSFRS, typically reported in older 

clinical trials, is the first 10 questions of the ALSFRS-R (meaning a score of 40 represents 

normal function on the ALSFRS).  

For this study, we utilized the ALSFRS (rather than the ALSFRS-R) in order to 

maximize the data available from the PRO-ACT database. Note that in ALS trials, the ALSFRS 

typically declines by one ALSFRS point per month (10). 
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Statistical methods.  

Disease progression. We used a Bayesian hierarchical linear model (with error terms 

following a 𝑇 distribution with three degrees of freedom) to model disease progression of the 

KUMC and PRO-ACT cohorts. While a Random Forest approach, such as performed by Taylor 

et al. (11), is accurate in predicting future ALSFRS-R scores, a hierarchical model allows us to 

easily estimate cohort-level disease progression rates. Quantile-quantile plots showed a 𝑇 

distribution with three degrees of freedom was more appropriate than the normal distribution for 

both the KUMC and PRO-ACT error terms.  

A linear model was selected due to the known typical linear decline of the ALSFRS (12, 

13) that was confirmed via visual inspection of the KUMC data. Some authors have disputed this 

in favor of a quadratic model (14, 15), but we found the quadratic term to be insignificant via 

deviance information criterion (DIC). A major advantage to utilizing a linear model is the 

convenience of using the ALSFRS slope parameter as an easily-interpreted measure of disease 

progression.  

The model is described as 𝐴𝐿𝑆𝑖(𝑡)~𝑇3(𝑎𝑖 + 𝑏𝑖𝑡, 𝜎2), restricted to 𝐴𝐿𝑆𝑖 ∈ [0,40], with 

patient-specific intercept 𝑎𝑖~𝑁(𝑝0, 𝜎0
2) and slope 𝑏𝑖~𝑁(𝑝1, 𝜎1

2). This means the posterior 

distribution of 𝑝1 models the cohort-level disease progression. Weak priors were assumed from 

𝑝0 and 𝑝1 (Supplement Appendix A1), and 𝑏𝑖 was restricted to be non-positive. This approach is 

the Bayesian analogue to the linear mixed effects model.  

The predictive power of this model can be improved by using an “onset-anchor”. This is 

equivalent to augmenting each subject’s data with an additional fixed data-point given by 

assuming maximal ALSFRS score at time of their disease onset (16). This causes a slight bias in 

the model at the cost of drastically reduced variability. Since the mean squared error (MSE) of 
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prediction is equivalent to the sum of the variability (variance) and the square of the bias, a large 

reduction in variability at the cost of a slight increase in bias can result in models with superior 

predictions. We also adjusted for time of disease onset, which acts as a bias-correction term.  

Survival. We used disease-onset time as the baseline survival time for all patients rather 

than time of first clinical visit. This is necessary to create a common baseline time for measuring 

survival, as there is no reason to suggest that patients’ first clinical visit would be distributed 

equivalently across the two data sets. Survival then was modelled utilizing the Cox proportional 

hazards model. Note that time of disease onset typically is dependent on patients recalling when 

they first began having symptoms, which can be error-prone (16).  

An advantage to the Cox model is that we can test models that use several covariates at 

once. This allows us to consider the KUMC membership (versus PRO-ACT) effect on survival, 

after adjusting for other significant variables (17). To obtain such a model, we used a 

“backwards with forward looks” approach, only considering records without missing data.  

Covariates of interest were those that previously have been shown to be independently associated 

with survival in ALS. These include rate of ALS progression (15, 18-20), forced vital capacity 

(FVC) (21, 22), age at symptom onset (23, 24), site of symptom onset (13, 20, 23, 25), and body 

mass index (BMI) (22, 23). Specifically, we considered the following baseline covariates: sex, 

riluzole use, years from onset to baseline, age, FVC (percent predicted), BMI, ALSFRS score, 

diagnostic delay (months between disease onset and diagnosis of ALS), and site of disease onset. 

Certain data were omitted for extreme sparsity (such as negative inspiratory force) or for not 

being available in both data sets (such as marital status). All analyses were done using R (version 

3.2.4) (26) and OpenBUGS (version 3.2.3 rev 1012) (27). 
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3.3 Results 

Comparison of datasets. Race and gender were similar across the two datasets (Table 

3.2). Both were roughly 60% male and predominantly white, agreeing with reports published by 

the United States Center for Disease Control (CDC) (2). The typical site of disease onset was in 

the limbs, although limb onset was more prevalent in PRO-ACT. Both had roughly the same 

percentage of observed deaths; however,  the follow-up time for the KUMC patients was on 

average longer than those in PRO-ACT. KUMC patients had roughly half the average total 

number of clinical visits versus PRO-ACT subjects. 

 KUMC PRO-ACT 

Number of patients 219 1300 

Percent Female/Male 44/ 56 38/ 62 

Percent Caucasian / Non-Caucasian 90/ 10 94/ 6 

Percent Limb onset / Bulbar / Other 66/ 30/ 4 79/ 20/ 1 

Percent using riluzole Yes / No / Unknown 72/ 28/ 0 46/ 28/ 26 

Percent deceased during follow up 35 32.1 

Mean Follow-up time days (SD) 436.7 (309.5) 294.7 (164) 

Mean Age at disease onset (SD) 60.1 (11.4) 53.7 (12.0) 

Mean Number of months from onset to diagnosis (SD) 23.08 (33.45) 11.5 (8.8) 

Mean First recorded ALSFRS score (SD) 28.2 (6.3) 29.63 (5.8) 

Mean Years from onset to first clinical record (SD) 2.5 (3.2) 1.8 (1.3) 

Mean FVC percent predicted at baseline (SD) 69 (21) 78 (21) 

Mean BMI at baseline (SD) 27.37 (5.7) 25.6 (4.7) 

Mean number of visits (SD) 4.38 (2.27) 9.06 (4.4) 

Table 3.2: Comparison of KUMC and PRO-ACT information. Baseline is defined as the time of 

a patient’s first recorded ALSFRS score. 

Other differences between the two cohorts included: 1) average age at disease onset, that 

was older in the KUMC dataset; 2) subjects at KUMC had lower initial ALSFRS scores and 

baseline FVC (percent normal); 3) the number of months from disease onset to diagnosis 

(diagnostic delay) was longer in KUMC than PRO-ACT, with increased variability – a result of 

14 KUMC patients with diagnostic delay greater than five years, whereas PRO-ACT had only 

one.  
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Analysis of disease progression. Cohort-level disease progression was modelled by the 

posterior distribution of 𝑝1 (see methods), that portrays the possible ALSFRS slopes of a given 

cohort (Figure 3.1). We observed that PRO-ACT subjects had more rapid disease progression 

(typical difference of 0.17 ALSFRS points per month, or 2.00 points per year). The 90% credible 

interval for KUMC disease progression was (-0.89, -0.76), compared to (-1.02, -0.95) for PRO-

ACT. The only variable that consistently improved the predictions given by the model, via cross-

validation, was time of disease onset. 

 

Figure 3.1: Posterior estimates of cohort-level disease progression for KUMC and PRO-ACT 

patients, given both as kernel densities (A) and boxplots (B). As the progression is measured as 

the change in ALSFRS score per month, a more negative value corresponds to a more rapid rate 

of disease progression. 



   66 

 

Analysis of survival. Median survival time from disease onset was 2.8 years for KUMC, 

compared to 2.2 years for PRO-ACT. The raw Kaplan-Meier survival curves (unadjusted for 

other covariates) obtained from the left-truncated, right-censored model is given in Figure 3.2. 

Note that the KUMC survival curve is never below the PRO-ACT survival curve, which allowed 

us to proceed with the Cox model. 

 

Figure 3.2: Kaplan-Meier survival curves for KUMC and PRO-ACT subjects. Where the 

horizontal line intersects the curve represents the median survival time, equivalent to where the 

y-axis is 0.5. 

The final Cox model for the two datasets included KUMC/PRO-ACT membership, 

riluzole use, years from onset to baseline, age at baseline, FVC at baseline (percent normal), 

BMI at baseline, and ALSFRS total at baseline. However, our modelling approach used complete 
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cases only (meaning subjects only were included if they had no missing data among the 

considered covariates), so this model includes only 78 of the 219 KUMC patients and 619 of 

1,300 PRO-ACT subjects. This is due to a large amount of missing baseline BMI and FVC 

information. The effects of each covariate, along with standard errors, are given in Table 3.3 

under “Model 1”. KUMC membership, longer time from onset to baseline, younger age, and 

larger baseline FVC, BMI, and ALSFRS resulted in an improved survival time. Riluzole use was 

associated with a relatively strong decrease in survival.  

Model 1 (Complete cases only) 

 

Covariate Fitted coefficient Standard error P-value 

KUMC membership -2.0136 0.2804 <0.0001 

Riluzole use  1.4540 0.1450 <0.0001 

Years from onset to baseline  -1.1557 0.1794 <0.0001 

Age (baseline)  0.0424 0.0061 <0.0001 

FVC (baseline, percent normal) -0.0229 0.0047 <0.0001 

BMI (baseline) -0.0599 0.0151   0.0001 

ALSFRS total (baseline) -0.0785 0.0116 <0.0001 

 

Model 2 (All subjects) 

 

Covariate Fitted coefficient Standard error P-value 

KUMC membership -0.7411 0.1418 <0.0001 

Years from onset to baseline -0.7369 0.1177 <0.0001 

Age (baseline)  0.0383 0.0042 <0.0001 

ALSFRS total (baseline) -0.1071 0.0071 <0.0001 

Site of onset (limb onset)  -0.3330 0.1020   0.0011 

Table 3.3: Coefficient values for the best fitting Cox survival models. Model 1 is found by only 

considering to complete cases (no missing data). This model may be misleading because it 

utilizes a small subset of the KUMC and PRO-ACT subjects. Model 2 utilizes all KUMC and 

PRO-ACT subjects but disregards baseline BMI and FVC as potential covariates. 

Eliminating baseline BMI and FVC in model selection (each are associated 

independently with survival after controlling for KUMC/PRO-ACT membership) results in a 

Cox model that utilizes all 219 subjects from KUMC and 1,300 from PRO-ACT. In this model, 

we again see that KUMC membership, longer time from onset to baseline, younger age, and 
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larger baseline ALSFRS resulted in an improved survival time (Table 3.3). Additionally, limb 

onset was associated with improved survival time. Note that the individual effect of group 

membership has been reduced greatly in this model; being in the KUMC cohort still results in 

improved survival, but the effect is not as before. 

3.4 Discussion  

A barrier to EMR data abstraction is the development of tools to automate the data 

extraction and the creation of a common data dictionary to pool data across multiple sites.  As 

part of KUMC’s participation in the Patient Centered Outcomes Research Institute (PCORI) 

sponsored Greater Plains Collaborative, a consortium of nine academic centers across the 

Midwest, we had access to HERON, a data abstraction tool using i2b2 technology.  This enabled 

us easily to extract patient data from the KUMC EMR, which has fields vital for measuring 

disease progression and survival in ALS. The KUMC ALS clinic routinely has been collecting 

the ALSFRS and FVC to track progression and manage care in the clinic. We demonstrated the 

feasibility of: (1) electronically extracting this data from KUMC’s EMR, and (2) successfully 

using this data to create models of KUMC patient progression and survival.  

As a positive control for the approach, our survival analyses corroborate previously found 

survival results.  Our models showed strong evidence that the number of years from ALS onset 

to first clinical visit, age, and first recorded ALSFRS score are associated with survival 

(significant in all considered survival models). There was supporting evidence that site of disease 

onset, baseline FVC, and baseline BMI also are associated with survival (significant in one of the 

two considered survival models). All explanatory variables had the expected beneficial or 

detrimental effect on survival (18-25). We were able to extract several key survival variables 

from the EMR and confirm that they were significant while modelling survival. 
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As more clinics use their EMR systems to capture important measures accurately for 

ALS, such as the ALSFRS, it will become possible to leverage large, complete, EMR-based, 

ALS datasets. These datasets will create opportunities to design new varieties of trials and hasten 

ALS treatment discovery. One simple improvement to ALS trials would come from using EMR 

data to augment trial data, as either a placebo arm or as historical controls. In order for this to be 

feasible, we need a better understanding of the variability and progression of patients in the clinic 

setting. Despite seeing the same clinical predictors of survival as other studies, we found ALS 

data derived from the clinic were different in both progression and survival when compared to 

participants recruited for clinical trials as represented by PRO-ACT. Our statistical models 

revealed that the subjects in PRO-ACT had faster disease progressions than KUMC patients. 

Even  though KUMC patients were more likely to be older and have bulbar onset (commonly 

associated with shorter survival time (13, 20, 23, 25)), KUMC patients still had improved 

survival versus PRO-ACT subjects, even after adjusting for significant survival predictors.  

This raises a flag of caution; these preliminary results suggest that the rich source of 

patient data from the EMR may not correspond to what we have been seeing in ALS trials, even 

after adjusting for baseline differences between the clinic and PRO-ACT. Before using this 

approach larger data sets for modeling progression and survival in the clinic setting may be 

required. It also raises the question, how generalizable are the results of ALS trials to the general 

population?  

One major reason for the differences between these two datasets are the trial 

inclusion/exclusion criteria. In most of the PRO-ACT trials, these criteria were designed to select 

patients early in the disease process (symptom onset within 2-3 years of study entry, baseline 

FVC > 60-75% predicted), with the hope of increasing the likelihood for patients to survive to 
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the end of the trial. Recent advances in our understanding of ALS progression has revealed this 

likely is due to  the  heterogeneous patient group selected by inclusion/exclusion criteria  that 

includes both slow and rapid progressing patients (28).   

A simple solution would be to modify the inclusion/exclusion criteria of trials to be more 

representative of the general population; however, the resulting increased patient variability 

would require larger studies. Yet this is readily solvable: with a more general trial population, we 

would be free to use the EMR to augment greatly the control population for these trials. 

Networks such as the Greater Plains Collaborative could provide placebo or standard-of-care 

arms in a variety of designs that could make such large-scale studies possible.  

In our analysis, riluzole use was associated with decreased survival. However, the 

datasets in this paper do not represent a true unbiased population, as patients were not 

randomized to riluzole.  Patients included here self-selected for riluzole use.  As a result, this 

association most likely was due to confounding or some unknown bias; perhaps only the very 

sick or rapidly deteriorating person decided to take riluzole.  

A limitation to this study is that the KUMC data comes from one ALS clinic. Follow up 

would require validation of the approach in a multi-center cohort.  However, this study serves as 

proof of principle that data automatically abstracted from the EMR can be used for modeling 

disease progression and survival in ALS. An additional limitation is data missing from the EMR.  

In order to use EMR-collected data for more sophisticated analysis, clinicians and clinic staff 

will need to ensure complete data entry that includes concomitant medications, participation in 

clinical trials, vital statistics, and agreement on a common minimal ALS data set. For example, 

information on patients’ usage of PEG tubes may be of interest, but was not captured in the 

EMR.  
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In the future, data abstracted from the EMR may fill multiple roles in ALS research, 

including using computable phenotypes for study screening (3), modeling the effect of 

repurposed drugs and supplements, the effects of drugs taken for other medical conditions on 

progression or survival, and running pragmatic studies to determine the best symptomatic 

treatments or timing of interventions (BIPAP, PEG) on clinical outcomes (4). EMR data could 

also be used as a concurrent standard of care control arm, and could be useful in creating large-

sample predictive models (29).  This study serves as proof of concept for the approach of using 

automatically abstracted data from the EMR to model progression and survival. 
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Summary and Future Directions 

Predicting disease progression for patients with ALS could be useful for patients, doctors, 

and clinical trial investigators. Patients could self-track and compare their progression rates to 

those predicted in order to assess the effectiveness of self-administered therapeutics. Doctors 

could use predictions to help their patients to assess how their disease will progress and patients 

plan their future actions accordingly. Clinical trial investigators could benefit immensely from 

predictive models as well. These models could be used in adaptive designs to make better-

informed decisions on randomization schemes and early stopping rules. They could also serve as 

mechanisms for performing imputation.  

Two challenges when predicting ALS disease progression are (1): the sparsity of data, 

which is due to the rareness of ALS, and (2): the heterogeneity of progression rates among 

patients. Because the disease tends to decline in a linear fashion, linear models are appropriate 

for modelling ALS progression. Linear models enjoy a plethora of advantages over other models 

with respect to interpretability, but suffer from large prediction variance when a subject has few 

observed data points. We sought to improve this prediction variance by exploiting knowledge of 

when a patient first began having ALS symptoms. We could use this knowledge to create an 

additional data point (an anchor) that could then be used to reduce the variability of the linear 

predictions.  

We demonstrated that an anchor could be used theoretically, or in practice, when 

modeling several ALS patients’ disease progressions under a standard OLS framework (chapter 

one). We also considered more complex models, such as the Bayes hierarchical linear model, 

and found that using an anchor resulted in improvements with respect to model prediction 

(chapter two). We sought to build the best predictive model for ALS disease progression that we 
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could: this entailed analyzing various potential covariates for improvements to prediction, and 

rigorously testing these models via repeated cross-validation. Finally, we demonstrated that these 

models could be used for both ALS data from the University of Kansas Medical Center’s ALS 

clinic (automatically extracted via the EMR), as well as from the PRO-ACT database of ALS 

clinical trials (chapter three). 

Future works include the comparison of our model to more recently popularized ALS 

predictive models that utilize random forest approaches. We ultimately would like to expand the 

work in chapter three to multiple clinics (rather than solely the clinic at KUMC), so as to get a 

more representative sample of the general ALS population. Finally, one of the key purposes to 

developing ALS predictive models is to use them to design efficient clinical trials which could 

hasten the development of new ALS therapeutics. Therefore it would be prudent to develop the 

framework for a Bayesian adaptive clinical trial that would incorporate these predictive models 

to test new ALS treatments. This framework then could be compared to frequentist designs via 

simulation, incorporating historical ALS data to demonstrate the advantage of using predictive 

models in ALS trial design. It would be our hope that this design could be used in the future to 

assist in developing of new ALS therapeutics. 
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Appendix 

Appendix A1: Full model description 

Let 𝑋𝑖 be a covariate and 𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡) the ALSFRS score for subject 𝑖 at time 𝑡. In this, 𝜎2 is the 

precision parameter of the non-standardized 𝑇 distribution (3 degrees of freedom), which is 

defined as the inverse of the variance. The linear and onset-anchored hierarchical models are 

then defined as follows: 

𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡)~𝑇3(𝑏0𝑖 + 𝑏1𝑖𝑡, 𝜎2); 𝐴𝐿𝑆𝐹𝑅𝑆𝑖(𝑡) ∈ [0,40] 

             𝑏0𝑖~𝑁(𝑝00 + 𝑝01𝑋𝑖, 𝜎0
2); 𝑏0𝑖 ∈ [0,40] 

             𝑏1𝑖~𝑁(𝑝10 + 𝑝11𝑋𝑖, 𝜎1
2); 𝑏1𝑖 ∈ (−∞, 0] 

𝑝00~𝑁(33, 0.111) 

𝑝01~𝑁(0, 0.0001) 

𝑝10~𝑁(−0.025, 11) 

𝑝11~𝑁(0,0.0001) 

𝜎2~Γ(0.001, 0.001) 

𝜎0
2~Γ(0.001, 0.001)  

𝜎1
2~Γ(0.001, 0.001) 
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Appendix A2: BUGS code (R2 OpenBUGS format)  

for (i in 1:N) #N is number of subjects. 

      { 

        for (j in 1:J[i]) #J is a vector containing the number of entries for each subject.  

        { 

          ALSmu[Jtot[i]+j] <-b0[i]+b1[i]*delta[Jtot[i]+j]   

          ALS[Jtot[i]+j] ~ dt(ALSmu[Jtot[i]+j], err, 3)%_%I(0,40) 

           

        } 

        b1_mean[i] <- p10 + p11*covariate[Jtot[i]+1]  

        b0_mean[i] <- p00 + p01*covariate[Jtot[i]+1]  

         

        b1[i]~dnorm(b1_mean[i],err1) %_%I(,0) 

        b0[i]~dnorm(b0_mean[i],err0) %_%I(0,40) 

         

        #predictive draws 

        predmu[i] <-b0[i]+b1[i]*365 

        pred365[i] ~ dt(predmu[i], err, 3) %_%I(0,40) 

         

      } 

       

##priors 

      p00 ~ dnorm(33, 0.111) 

      p01 ~ dnorm(0, 0.00001) 

      p10 ~ dnorm(-0.025, 11) 

      p11 ~ dnorm(0, 0.00001) 

       

      err~dgamma(0.001, 0.001) 

      err1~dgamma(0.001, 0.001) 

      err0~dgamma(0.001, 0.001) 

 

Appendix A3: Full table the effects of covariates on prediction under the onset anchored 

model 

Covariate Name 

Median % MSE reduction 

(negative values signify an 

increase to the MSE) 

IQR for % 

MSE 

reduction 

Mean DIC 

adjustment (larger 

values result in 

larger DIC) 

Onset Time 0.0174 0.027 2.8 

FVC: Subject Liters (slope) 0.0095 0.02 -3.5 

Q1: Speech (slope) 0.0081 0.0187 0.8 

Diagnosis Time 0.0059 0.0183 -2.1 

Q7: Turning in Bed(slope) 0.0052 0.0182 -3.5 
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Q8: Walking (slope) 0.0052 0.0254 -2.2 

AST (slope) 0.0043 0.0179 -0.3 

Q5: Cutting (slope) 0.0043 0.0202 -1.5 

Q6: Dressing/Hygiene (slope) 0.0039 0.0223 -1.9 

ALT (slope) 0.0034 0.0166 0.1 

Q2: Salivation (slope) 0.0032 0.0195 1.7 

Q9: Climbing Stairs (slope) 0.003 0.0232 -2 

AST (intercept) 0.0028 0.0162 0.8 

FVC: Percent Normal (slope) 0.0025 0.0225 -3.4 

Race 0.0021 0.0156 -0.1 

ALT (intercept) 0.0021 0.0182 -0.7 

Bilirubin Total (slope) 0.0019 0.0196 -0.5 

Respiratory Rate (intercept) 0.0017 0.0146 0.3 

Q2: Salivation (intercept) 0.0013 0.0203 -1.4 

Creatinine (intercept) 0.0011 0.0152 -0.7 

Age 0.001 0.0185 -2.1 

Q1: Speech (intercept) 0.001 0.0224 2.2 

Potassium (slope) 0.001 0.0136 -0.9 

Onset Site: Bulbar 0.001 0.0171 -0.5 

Height 0.0009 0.0169 0.8 

Weight (slope) 0.0009 0.0174 -1.7 

Sodium (intercept) 0.0008 0.0188 1 

Bilirubin Total (intercept) 0.0008 0.0183 0.8 

Sex 0.0006 0.0169 -0.4 

Q10: Respiratory (slope) 0.0006 0.0153 0.8 

Q4: Handwriting (slope) 0.0006 0.0206 -0.7 

Weight (intercept) 0.0006 0.0181 -0.5 

Q5: Cutting (intercept) 0.0002 0.0224 -4.1 

Q3: Swallowing (slope) -0.0003 0.0214 -0.3 

Q10: Respiratory (intercept) -0.0005 0.0189 -0.4 

Albumin (slope) -0.0006 0.0183 0.2 

Albumin (intercept) -0.0006 0.0184 -0.6 

Creatinine (slope) -0.0007 0.0192 1 

Chloride (slope) -0.0008 0.0201 -0.9 

Used Riluzole -0.0009 0.0196 -0.6 

FVC: Percent Normal (intercept) -0.0012 0.0177 -0.3 

Blood Urea Nitrogen (intercept) -0.0012 0.017 -1.5 

Potassium (intercept) -0.0012 0.015 0.6 

Q3: Swallowing (intercept) -0.0015 0.016 -0.5 
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FVC: Subject Raw Liters (intercept) -0.0016 0.0216 -1.9 

Sodium (slope) -0.0018 0.0187 -0.2 

Chloride (intercept) -0.0021 0.0188 0.2 

BloodUrea Nitrogen (slope) -0.0022 0.02 -1.2 

Respiratory Rate (slope) -0.0027 0.0174 -1.4 

Q7: Turning in Bed (intercept) -0.0039 0.029 -5.9 

Q4: Handwriting (intercept) -0.0043 0.0209 -4.2 

Q6: Dressing/Hygiene (intercept) -0.005 0.0238 -7.8 

Q8: Walking (intercept) -0.0123 0.0226 -1.7 

Q9: Climbing Stairs (intercept) -0.0139 0.0232 -2.8 
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Appendix B1: My Experience at the KUMC ALS Clinic 

 While researching ALS at KUMC, I had the opportunity to visit the KUMC ALS clinic 

and meet actual patients who suffered from the disease. A commonly known struggle with 

studying ALS is the heterogeneity of the disease, and this was very apparent through the data. 

However, I truly experienced the between-subject variability first hand while visiting the clinic. 

Of the three different patients I met, each of them had drastically different manifestations of ALS 

symptoms.  

The first, a middle-aged woman with an incredible optimism, couldn’t move her legs and 

was bound to a wheelchair. Her left arm was beginning to show weakness as well. The next, an 

elderly man, had complete control of his limbs, but was unable to speak or control his mouth, 

resulting in a constant trickle of drool coming from his mouth. The man spoke by writing on a 

notepad he kept with him. The final patient I met had not had the disease for long, and still had 

complete control of her limbs and head; however she had a pervasive muscle weakness 

throughout her body that was worsening over time. 

From my research that ultimately came down to working with spreadsheets and electronic 

data, I knew that ALS was a devastating disease. Seeing it in firsthand in these people, many of 

whom came with their spouses, family members, or children, was tragic. Yet, the amount of 

positivity and hope displayed by the patients was overwhelming. They were excited and 

interested in my research, and were very much intrigued by the idea of being able to predict how 

their disease would progress over the next year. Knowing that my work may be able to improve 

the lives of these patients, in even a small way, gave me a tremendous amount of motivation. 

Truly, it is imperative that as biostatisticians that we remember that the trials we design and 

analyze are: (1) being performed on real people, with all the complexities that entails, (2) have 
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the potential to benefit thousands, if not millions, and (3) give patients hope; hope of a new 

treatment, hope of a cure, or hope of an improved quality of life. Keeping all of this in mind, 

while not getting lost in the numbers and calculations, can be difficult, but remembering these 

facts is of paramount importance. My visit to the ALS clinic was a great reminder of that. 
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Appendix B2: ALSFRS and ALSFRS-R Questionnaire 

The response to each question, from top to bottom, is worth four, three, two, one, or zero 

points. The ALSFRS is found by summing the scores from items one through ten. The ALSFRS-

R is found by summing the scores from items one through twelve.  

1. Speech 

 4: Normal speech processes 

 3: Detectable speech disturbance 

 2: Intelligible with repeating 

 1: Speech combined with nonvocal communication 

 0: Loss of useful speech 

2. Salivation 

 4: Normal 

 3: Slight but definite excess of saliva in mouth; may have nighttime drooling 

 2: Moderately excessive saliva; may have minimal drooling 

 1: Marked excess of saliva with some drooling 

 0: Marked drooling; requires constant tissue or handkerchief 

3. Swallowing 

 4: Normal eating habits 

 3: Early eating problems-occasional choking 

 2: Dietary consistency changes 

 1: Needs supplemental tube feeding 

 0: NPO (exclusively parenteral or enteral feeding) 

4. Handwriting 
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 4: Normal 

 3: Slow or sloppy; all words are legible 

 2: Not all words are legible 

 1: Able to grip pen but unable to write 

 0: Unable to grip pen 

5. Cutting food with gastrostomy 

 4: Normal 

 3: Somewhat slow and clumsy, but no help needed 

 2: Can cut most foods, although clumsy and slow; some help needed 

 1: Food must be cut by someone, but can still feed slowly 

 0: Needs to be fed 

6. Dressing and hygiene 

 4: Normal function 

 3: Independent and complete self-care with effort or decreased efficiency 

 2: Intermittent assistance or substitute methods 

 1: Needs attendant for self-care 

 0: Total dependence 

7. Turning in bed 

 4: Normal 

 3: Somewhat slow and clumsy, but no help needed 

 2: Can turn alone or adjust sheets, but with great difficulty 

 1: Can initiate, but not turn or adjust sheets alone 

 0: Helpless 
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8. Walking 

 4: Normal 

 3: Early ambulation difficulties 

 2: Walks with assistance 

 1: Non-ambulatory functional movement only 

 0: No purposeful leg movement 

9. Climbing stairs 

 4: Normal 

 3: Slow 

 2: Mild unsteadiness or fatigue 

 1: Needs assistance 

 0: Cannot do 

10. Dyspnea 

 4: None 

 3: Occurs when walking 

 2: Occurs with one or more of the following: eating, bathing, dressing (ADL) 

 1: Occurs at rest, difficulty breathing when either sitting or lying 

 0: Significant difficulty, considering using mechanical respiratory support 

11. Orthopnea 

 4: None 

 3: Some difficulty sleeping at night due to shortness of breath. Does not routinely use 

more than two pillows 

 2: Needs extra pillow in order to sleep (more than two) 
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 1: Can only sleep sitting up 

 0: Unable to sleep 

12. Respiratory insufficiency 

 4: None 

 3: Intermittent use of BiPAP 

 2: Continuous use of BiPAP 

 1: Continuous use of BiPAP during the night and day 

 0: Invasive mechanical ventilation by intubation or tracheostomy 
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