
Code Cache Management in Managed
Language VMs to Reduce Memory

Consumption for Embedded Systems

Forrest Robinson

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial

fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Heechul Yun

Dr. Bo Luo

Date Defended

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213426129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Forrest Robinson certifies

That this is the approved version of the following thesis:

Committee:

Chairperson

Date Approved

i

Abstract

The compiled native code generated by a just-in-time (JIT) compiler in man-

aged language virtual machines (VM) is placed in a region of memory called the

code cache. Code cache management (CCM) in a VM is responsible to find and

evict methods from the code cache to maintain execution correctness and manage

program performance for a given code cache size or memory budget. Effective

CCM can also boost program speed by enabling more aggressive JIT compilation,

powerful optimizations, and improved hardware instruction cache and I-TLB per-

formance.

Though important, CCM is an overlooked component in VMs. We find that the

default CCM policies in Oracle’s production-grade HotSpot VM perform poorly

even at modest memory pressure. We develop a detailed simulation-based frame-

work to model and evaluate the potential efficiency of many different CCM poli-

cies in a controlled and realistic, but VM-independent environment. We make

the encouraging discovery that effective CCM policies can sustain high program

performance even for very small cache sizes.

Our simulation study provides the rationale and motivation to improve CCM

strategies in existing VMs. We implement and study the properties of several

CCM policies in HotSpot. We find that in spite of working within the bounds of

the HotSpot VM’s current CCM sub-system, our best CCM policy implementation

in HotSpot improves program performance over the default CCM algorithm by

39%, 41%, 55%, and 50% with code cache sizes that are 90%, 75%, 50%, and 25%

of the desired cache size, on average.

ii

Contents

Table of Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

2 Background 6

3 Current CCM Policies in HotSpot 9

4 Potential of Profiling Based CCM Policies 13

4.1 Performance Metric . 14

4.2 Experimental Setup . 16

4.3 Results and Observations . 19

5 Performance of Profiling Based CCM Policies in HotSpot 26

5.1 Impact of VM Implementation Choices 26

5.2 Stack-Scan No-Stop Compiler (SS-no-stop) CCM Policy 27

5.3 Reactive (Online) CCM Policy . 29

5.4 Offline-Same CCM Policy . 30

5.5 Overall Comparison of CCM Policies in HotSpot 32

6 Related Work 34

7 Future Work 37

iii

8 Conclusions 39

Bibliography 41

iv

List of Figures

3.1 Comparison of benchmark performance (execution times) with the

existing HotSpot CCM policies, (a) stop-compiler and (b) stack-

scan, different constrained code cache sizes 10

4.1 Individual benchmark plots associating hotness counts with pro-

gram execution time. The X-axis plots the interpreter hotness counts

and the Y-axis shows the corresponding program execution time. . 15

4.2 Impact of ideal CCM algorithms with different code cache sizes

compared to the ideal algorithm with unlimited size 19

4.3 Impact of using the online reactive CCM algorithm compared with

the ideal algorithm for the same cache sizes 20

4.4 Impact of using the offline-same CCM algorithm compared with

the ideal algorithm for the same cache sizes 21

4.5 Impact of using our implementation of the HotSpot stack-scan

CCM algorithm compared with the ideal algorithm for the same

cache sizes . 23

5.1 Impact of using the extended SS-no-stop CCM policy at constrained

code cache sizes as compared to performance of the same algorithm

with maximum (100%) code cache size. 28

5.2 Impact of using our implementation of the reactive CCM policy at

different constrained code cache sizes as compared to performance

of the same algorithm with maximum (100%) code cache size. . . 29

v

5.3 Impact of using our implementation of the offline-same CCM pol-

icy at different constrained code cache sizes as compared to per-

formance of the same algorithm with maximum (100%) code cache

size. 30

5.4 Average impact of the different CCM policies implemented in HotSpot

at different constrained code cache sizes as compared to perfor-

mance of the stop-compiler CCM policy with 200% code cache size. 31

vi

List of Tables

2.1 Number of the total and hot program methods, and size occupied

by the hot compiled code during the startup run for each benchmark. 7

4.1 Average number of method evictions and re-compilations for each

code cache management algorithm. 24

vii

Chapter 1

Introduction

The rise of Java in the mid-1990’s introduced managed runtime environments

or virtual machines (VM) to mainstream computing devices, including embedded

and mobile systems. High-level managed languages running within a VM, such as

Java and JavaScript, have gained extensive adoption since they typically support

high-level programming language semantics, portable binary distribution formats,

and safe and secure program execution.

VMs execute the portable architecture-independent program binaries using in-

terpretation or binary translation. Program emulation via interpretation is inher-

ently slow [23]. Therefore, modern VMs, like those included with web browsers

and most Java virtual machines (JVM), employ just-in-time (JIT) compilation

to translate (important chapters of) the input binary to native code at run-

time [10, 20]. The generated native code is stored in a region of heap memory,

called the code cache. Thus, the code cache storage enables the native code pro-

duced after JIT compilation to be reused later, without re-generating it on every

invocation of that region.

JIT compilation consumes computational resources and memory to hold the

1

generated native code at run-time. To trade-off the run-time JIT compilation

cost with overall program execution speed, many VMs employ a technique called

selective compilation to only translate and optimize the frequently used (or hot)

chapters of the program [16, 21]. Unfortunately, even with selective compilation,

the memory footprint of the code cache can become significant, especially for

memory constrained embedded devices [12, 25]. A large code cache can reduce

the memory available to the rest of the executing application, increase the fre-

quency and cost of garbage collection, and decrease overall device response time

by lowering the number of programs that are simultaneously resident in memory.

Small embedded devices, such as wearables, often feature powerful multi-core

processors, but can only accommodate modest memory capacities. 1 Our mea-

surements reveal that compiling only the hot program methods (with Oracle’s

production-grade HotSpot c1 compiler [20]) for just the startup run of the stan-

dard DaCapo benchmarks [6] results in an average code cache size of over 4MB

(see Table 2.1). Google reported that with Android 4.4, many mobile apps tend to

max out the code cache fairly quickly (which by default had been set to 1MB).2 In

fact, with Dalvik, Google recommended the JIT compiler to be entirely disabled

for low-memory devices to overcome the increase in memory consumption due

to the code cache. However, disabling JIT compilation can significantly degrade

program speed. Therefore, it is a critical research challenge to efficiently and ac-

curately determine which methods should reside in the code cache when memory

is scarce to maximize overall program performance.

The code cache management (CCM) algorithm was initially designed to main-

1Android smart-watches have adopted dual-core and quad-core ARM Cortex based proces-
sors, but typically offer not more than 512MB of memory.
https://wtvox.com/smartwatches/best-smartwatch-top-10/

2http://source.android.com/devices/tech/config/low-ram.html

2

tain program execution correctness in dynamic language VMs by evicting pre-

viously compiled regions from the code cache if the assumptions made during

compilation are later found to be incorrect. The CCM algorithm in current VMs

is also responsible for finding and evicting compiled regions to accommodate na-

tive code from later compilations if the code cache is full. The CCM algorithm

has a choice when selecting a method to purge from the code cache. Ideally, the

algorithm needs to find a method that is not currently hot and will not become

hot and trigger a recompilation in the future. Better code cache management

can enable the VM to support larger applications, and enhance performance by

allowing a greater number of (phase-specific) compilations [19], enabling more

powerful optimizations (like aggressive inlining for critical methods) [18], and en-

hancing instruction cache and instruction translation look-aside buffer (I-TLB)

performance [12].

In this work we investigate the effectiveness of different CCM strategies to

sustain program performance with lower code cache sizes. We find that the default

CCM policies supported in the HotSpot JVM produce large performance losses

even with modest code cache size pressure. We design a novel simulation-based

framework to model and evaluate the potential efficiency of different CCM policies

in a controlled and realistic environment that is isolated from VM and hardware

specific implementation factors. Encouraging results from this modeling study

provide the rationale to design and develop improved CCM methods during actual

VM executions. We extend the current CCM algorithm in HotSpot and implement

and compare new profiling based CCM policies. Even with minimal changes to

the rest of HotSpot’s code cache infrastructure, we find that better CCM policies

improve average program performance by 39%, 41%, 55%, 58%, and 50% when

3

code cache sizes are limited to 90%, 75%, 50%, 40%, and 25% of the desired cache

sizes respectively.

Thus, we make the following contributions in this work:

1. We conduct experiments to measure the impact of constrained code cache

sizes on program performance with existing CCM algorithms in HotSpot.

2. We design and build a detailed modeling framework to investigate the effec-

tiveness of different ideal, offline, and online-reactive profiling-based CCM

algorithms. The theoretical ideal CCM technique uses knowledge about

the future program behavior to select the methods to evict, and provides

a baseline to compare the efficiency of other practical CCM policies. To

understand their potential, our offline and online profiling based CCM mod-

els employ the best profiles possible with each technique by discarding the

physical costs of profile data collection.

3. We extend existing and implement new CCM policies in HotSpot, evaluate

their performance, and assess the impact of profiling overheads and other

implementation factors imposed by HotSpot on the effectiveness of CCM

techniques.

The rest of this paper is organized as follows. We present background regarding

the CCM infrastructure in the HotSpot VM in the next chapter. We describe the

experimental results with current CCM techniques in Chapter 3. We describe the

design of our simulation framework and provide results with the ideal and practical

CCM algorithms in Chapter 4. We explain the HotSpot implementation of CCM

policies, and discuss their performance and impact of physical constraints and

implementation choices on their effectiveness in Chapter 5. We present related

4

work in Chapter 6. Finally, we discuss future work and present our conclusions

from this study in Chapters 7 and 8 respectively.

5

Chapter 2

Background

Our work in this paper employs Oracle’s production-grade HotSpot Java vir-

tual machine [20,22]. In this chapter we provide a brief background on the internal

workings of HotSpot that are relevant to this current work.

HotSpot’s emulation engine includes a high-performance threaded bytecode

interpreter and multiple JIT compilers. The execution of a new program begins in

the interpreter. HotSpot uses each method’s hotness count, which is a sum of the

method’s invocation and loop back-edge counters, to promote methods to (higher

levels of) JIT compilation. The HotSpot JVM has two dynamic compilers: (a) the

c1 compiler that is quick, and generates code that is lightly optimized and with

a smaller memory footprint due to limited inlining, and (b) the c2 compiler that

optimizes code more thoroughly. More recent HotSpot releases support a tiered

compilation mode that simultaneously enables both compilers to combine their

benefits. For this work we only use the c1 compiler to allow easier experimental

setup and more precise analysis of observed results. The compilation unit in

HotSpot is a single program method.

The compiled code is stored in the code cache. The code cache in VMs typ-

6

Benchmark
Total Hot methods – startup

Methods Num Size (bytes)

avrora 3,808 630 914,944
fop 7,450 1,573 3,192,320
jython 9,100 2,226 5,574,144
luindex 3,476 532 1,127,936
lusearch 2,901 495 914,944
pmd 5,661 1,758 3,053,056
sunflow 4,457 405 1,133,056
tomcat 13,465 3,092 6,619,948
tradebeans 33,653 3,055 6,008,320
tradesoap 34,319 6,044 12,768,768
xalan 4,815 1,820 3,273,216
Average 10,567 1,741 4,058,717

Table 2.1. Number of the total and hot program methods, and size
occupied by the hot compiled code during the startup run for each
benchmark.

ically has a fixed upper bound on size to prevent excessive memory usage. The

code cache can contain different code types. For example, HotSpot maintains two

primary code types in the code cache: code that is generated by the JIT compilers

and persistent infrastructure code generated by the JVM such as adapters and the

interpreter. While earlier HotSpot versions had a single unified code cache, the

latest HotSpot release implements a segmented code cache to segregate the differ-

ent code types. A segmented code cache has been shown to reduce fragmentation

and result in lower I-Cache and I-TLB miss rates [12]. For this work, a segmented

code cache makes it easier to precisely control the size of only the segment that

holds compiled method code.

In HotSpot, a method selected for eviction by the CCM must transition

through several states before actually releasing the memory that it occupies.

Each subsequent state transition currently only happens at successive safepoints.

A CCM algorithm marks a method for eviction by changing its status to non-

entrant. A non-entrant method cannot be entered, but can exist on the call-stack

7

of an application thread. HotSpot transitions non-entrant methods to the state

zombie if the method is not on any thread’s call-stack. Zombie methods can still

be referenced by other methods via inline caches. HotSpot updates the inline

cache entries for zombie methods, if any, and then is able to release the space

they occupy. Thus, CCM algorithms in HotSpot experience a lag between when

method evictions are requested to create free space to when that space actually

becomes available to store new compiled code in the code cache.

All our experiments for this work employ 11 DaCapo Java benchmarks with

their default input size [6].1 Table 2.1 shows some relevant properties of the

different DaCapo benchmarks. For each benchmark in column 1, we show the

total number of loaded methods in column 2 of the table. Columns 3 and 4

display the number and size of the compiled (hot) program methods after the

startup iteration. Many more methods are expected to be compiled by the time

the program reaches steady-state. All our run-time experiments are performed on

a cluster of 8-core 2.84GHz Intel x86-64 machines running Fedora Linux as the

operating system. To account for inherent timing variations during the benchmark

runs, all the run-time results in this paper report the (geometric) average over 10

runs for each benchmark-configuration pair [9].

1We leave out batik, eclipse, and h2 because they fail with the default client build of HotSpot-9
without any of our modifications.

8

Chapter 3

Current CCM Policies in

HotSpot

In this chapter we assess the effectiveness of existing CCM policies in HotSpot

to sustain program performance at different constrained code cache sizes.

We design an experimental setup to systematically limit the code cache size

for each program. We first calculate the total accumulated size of all compiled

methods in the default startup program run for each benchmark, and use it as the

full code cache size for that benchmark (100% code cache size). Then, runs with

constrained code cache sizes use 90%, 75%, 50%, 40%, and 25% of this full code

cache space needed for each benchmark. Thus, the code cache size limits we use

are specific to each benchmark.

We evaluate the performance of two CCM strategies, stop-compiler and stack-

scan. The stop-compilation CCM method simply stops all JIT compilation if/when

the code cache gets full. This CCM policy is simple and fast, and was therefore

employed in several early HotSpot versions and other language VMs, such as

Android’s Dalvik.

9

0

5

10

15

20

25
P

e
rf

.
co

m
p

a
re

d
 t

o
 1

0
0

%
 C

C

Benchmarks

90% 75% 50% 40% 25%

0

2

4

6

8

10

12

14

P
e

rf
.

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

Benchmarks

90% 75% 50% 40% 25%

(a) (b)

Figure 3.1. Comparison of benchmark performance (execution
times) with the existing HotSpot CCM policies, (a) stop-compiler and
(b) stack-scan, different constrained code cache sizes

The latest stable HotSpot release uses a profiling-driven adaptive CCM method

that we call stack-scan. The stack-scan policy uses a separate thread to sweep the

code cache to remove some of the compiled code when the code cache usage gets

close to or over its maximum size limit. The sweeper associates a separate counter

with each compiled method in the code cache to keep track of method utilization.

This counter is initially set to a high value after method compilation. A method’s

counter is decremented every time the method is reached during the code cache

sweep, and is reset to its original high value if it is found on the call-stack of any

application thread. Hot methods are expected to be encountered often on some

call-stack and will therefore maintain a high counter value. Methods with lower

counter values are candidates from eviction from the code cache when pressure

is high. This policy disables compilation if the code cache is full, and restarts

compilation after the sweeper again creates adequate free space in the code cache.

Figure 3.1 plots the ratio of run-time program performance with the stop-

compiler and stack-scan CCM strategies at constrained (90%, 75%, 50%, 40%,

and 25%) code cache sizes, as compared to a baseline that uses the same (stop-

compiler or stack-scan respectively) CCM policy with 100% code cache size. While

10

the simplistic stop-compiler policy can be expected to perform poorly at very low

code cache sizes, results in Figure 3.1 show that both these CCM policies fail

to perform satisfactorily even with modest code cache constraints. On average,

program performance degrades by 14%, 62.4%, 3.9X, 5.6X, and 10.1X at 90%,

75%, 50%, 40%, and 25% code cache sizes respectively with the simple stop-

compiler policy. The more sophisticated stack-scan CCM policy does better than

stop-compiler, but the average program performance still deteriorates by 30%,

43.8%, 2.5X, 3.6X, and 5.7X at our different code cache sizes respectively.

We also observe that even with highly constrained code caches program per-

formance remains significantly better than interpretation alone, showing the im-

portance of JIT compilation. It is interesting to note that with the stop-compiler

policy, program performance always improves with an increase in code cache size,

as expected. However, this property is not maintained by the stack-scan policy.

To reduce profiling overhead, the stack-scan CCM strategy collects and employs

imprecise profiling data to guide its eviction decisions. The effect of program

performance dropping with an increase in code cache size is a result of imperfect

evictions exercised by the stack-scan policy due to poor available profile data.

We also notice that unlike the stop-compiler policy that only activates when

the code cache gets full, the stack-scan policy is also triggered at high code cache

pressures before the cache limit is actually hit. This property of stack-scan sweeper

results in a slight performance drop even in the 100% code cache case.

Thus, these results reveal that modest and high code cache pressure can have a

big negative performance impact with existing CCM strategies. Regrettably, (low

cost, but imprecise) program profiling employed by the stack-scan policy appears

to not offer acceptable benefit to performance over the stop-compiler method. In

11

the later chapters of this paper we explore if more accurate profiling data can

enable the VM to more effectively sustain program performance at small code

cache sizes.

12

Chapter 4

Potential of Profiling Based CCM

Policies

Implementation choices can affect the behavior and performance of the CCM

sub-system in a VM. For example, the layout of the code cache and the amount

of lag between issuing a method eviction request to having space available in the

code cache can influence the performance of a CCM policy. Likewise, the cost and

proficiency of dynamic profiling at run-time depends on the mechanisms supported

in the available hardware and systems software, and are subject to improvement

in future systems. It is hard to isolate the effects of such implementation features

during actual VM runs to determine the real potential of different CCM strategies

to sustain program performance at constrained memory sizes.

Therefore, we build a detailed simulation framework to compare different CCM

strategies using offline and online-reactive profiling information in a VM and

hardware-independent manner. A simulation framework allows us to effectively

control profiling accuracy, cost, and VM implementation factors, while achieving

realistic comparisons. Our simulation framework also enables us to design and

13

evaluate the performance impact of an ideal profiling strategy that can deliver

accurate and timely knowledge of all relevant aspects of future program behavior

at zero run-time cost. Thus, the ideal CCM policy is able to determine the best

methods to evict to minimize the performance impact on future program execu-

tion. In this chapter we describe our simulation framework, discuss the different

CCM algorithms that we modeled, and compare their effectiveness to manage

program speed at reduced code cache sizes.

4.1 Performance Metric

The simulations need a simple, effective and accurate performance metric to

compare the different CCM policies. In this section we describe the performance

metric we devised for our simulation runs.

Method Hotness Count: JIT compilation in a (dual-mode) JVM attempts to

improve program performance by reducing the amount of time spent by the pro-

gram in the slower execution (interpretation) mode. The profiler in the HotSpot

interpreter uses the method’s hotness count (method invocation count + loop

back-edge count) to estimate the time spent in the method. Thus, a lower total

hotness count over all program methods indicates that the program spent less

time in the interpreter and more time in high-performance compiled native code,

which should result in better performance.

If a previously compiled method is evicted from the code cache, then future

invocations of the method will execute in the interpreter, until the evicted method

becomes hot again and is recompiled. Thus, on every request to create space for a

new method compile, a good CCM algorithm should find a method to evict that

14

0e+00 1e+08 2e+08 3e+08 4e+08

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

avrora

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

fop

0.0e+00 5.0e+08 1.0e+09 1.5e+09

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

1
4
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

jython

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

luindex

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

2
e
+

0
4

4
e
+

0
4

6
e
+

0
4

8
e
+

0
4

1
e
+

0
5

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

lusearch

0.0e+00 5.0e+07 1.0e+08 1.5e+08

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

pmd

0e+00 2e+08 4e+08 6e+08 8e+08

0
e
+

0
0

1
e
+

0
5

2
e
+

0
5

3
e
+

0
5

4
e
+

0
5

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

sunflow

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

tradebeans

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

3
5
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

tradesoap

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
4
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

xalan

Figure 4.1. Individual benchmark plots associating hotness counts
with program execution time. The X-axis plots the interpreter hot-
ness counts and the Y-axis shows the corresponding program execution
time.

minimizes the (future) time spent by the program in the interpreter. Hence, better

code cache management will result in a smaller total program hotness count over

the entire program run. Our simulation framework computes the total program

hotness count as the measure of the quality of the code cache algorithm.

From Hotness Counts to Execution Time: Ultimately, we are interested

in the effect of different CCM policies on program execution time. Therefore, we

develop a mechanism to associate program hotness count with execution time.

To relate hotness counts with program run-time we execute each benchmark

with many different configurations and extract the hotness count and execution

time (program wall-time) in each run. Each selected configuration varies some

aspect of HotSpot’s default CCM algorithm and/or code cache size. We then plot

15

all the points associating hotness count and run-time for each benchmark, and

use the facilities provided by the language ‘R’ to fit a (quadratic) curve over these

points.

Figure 4.1 shows these plots for (ten) different DaCapo benchmarks (except

tomcat to allow a nicer fit on the page). The darker band around each curve (too

narrow to see on most graphs) plots the 95% confidence interval, while the broader

lighter band shows the 95% prediction interval. Thus, we can see that interpreter

hotness counts are a good indicator of overall program performance, even when

the measured execution time includes all aspects of VM execution including JIT

compilation, CCM, garbage collection, etc. The per-benchmark mathematical

equation forming the regression curve is used to associate hotness counts with

time during later simulation runs. We employ this (simulated) time to compare

different profiling policies.

4.2 Experimental Setup

In this section we describe the replay-based [17] simulation setup we use for

our experiments.

Methodology: We instrument HotSpot to generate and log the profile and exe-

cution data for our simulation experiments. We conduct two runs for each bench-

mark. In the first run, HotSpot runs the program in the interpreter alone, and

divides the execution into 10msec intervals. At the end of each 10msec interval,

HotSpot dumps the hotness counts of all program methods.

The other profile run is to determine the size of the compiled native code for

all program methods. We run the HotSpot VM in its default mode, and record

16

the space occupied by the native code generated for each compiled method in the

code cache. For each benchmark, we also measure the maximum space needed for

the code cache when all hot methods are compiled and resident in the cache.

Our evaluation runs use this profile data to simulate the operation of the code

cache manager with different method eviction algorithms and different code cache

sizes. These runs again use 100%, 90%, 75%, 50%, and 25% of the maximum code

cache space needed for each benchmark.

At the end of each 10msec interval, a method is compiled if its total hot-

ness count exceeds the default HotSpot compilation threshold. If the code cache

is full, then the code cache manager uses one of several strategies to find and evict

existing methods from the code cache. On every eviction request, each algorithm

finds contiguous space that is equal to or greater than the size of the new com-

piled method. If the new method does not occupy the entire space that is created,

then the remainder can be merged with the adjacent unoccupied blocks, whenever

possible. We experimented with the following method eviction algorithms:

Ideal: This algorithm looks into the future profile of the program to find (close

to) the ideal set of contiguous methods to evict from the code cache to

fit the new compiled method. It finds the set of methods that, combined

together as a unit, have the smallest remaining hotness counts. Thus, with

this algorithm, methods that will never be used again are given the highest

priority for deletion, and are sorted based on their size (largest size first).

Methods that will never be compiled again are given the second highest

priority and will be deleted in the order of their future hotness counts (fewer

counts first). Lowest priority is given to methods that will exceed their

compile threshold again, sorted to order later compiles first.

17

Offline: This set of algorithms attempts to simulate a CCM policy that uses

an offline profiling strategy. The algorithms use information from a prior

program run, and aggregate the information over all intervals of the pro-

file run. The profile data is used to sort methods in ascending order of

their total hotness counts over the entire run. Then, in the later measured

run, methods are selected for eviction from the code cache in the order of

lowest counts first. We study the following offline profiling schemes: (a)

Offline-same: The same input is used for the offline profiling run and the

later evaluation/measured run. (b) Offline-diff: The profiling run uses a

different input for the profiling and measured runs. We use a profile with

the DaCapo small input for measured runs with the default input. With

different inputs for the profiling and measured runs, it is possible for the

profile to not have any information about certain events (invoked methods)

in the measured run. For such methods, this algorithm assigns the lowest

priority for eviction.

Reactive: These CCM algorithms employ the online reactive profiling strategy,

where profiling data collected during the past execution of the same program

run is used to guide the CCM task to optimize the remaining program

execution. In this case the best (set of contiguous) methods to evict is

determined based on their hotness count in earlier intervals of the same

run. The following simple formula finds the hotness count for each method

by assigning progressively lower weights to older profile data:

τn+1 = α ∗ tn + (1 − α)τn (4.1)

18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
ro

g
ra

m
 p

e
rf

o
rm

a
n

ce
 r

a
ti

o

Benchmarks

90% 75% 50% 40% 25%

Figure 4.2. Impact of ideal CCM algorithms with different code
cache sizes compared to the ideal algorithm with unlimited size

where, τn+1 is the predicted hotness count for the next interval, and tn is the

actual hotness count in interval ‘n’. We experimented with several different

α values of 0, 0.1, 0.5, 0.9, 1.0. We present the results for α = 0.1, which

provided the best overall numbers.

Stop compiler: A simple CCM policy that stops JIT compilation when the code

cache gets full.

Stack scan: This is an implementation of a simplified version of HotSpot-8’s

CCM algorithm in the simulator.

4.3 Results and Observations

In this section we present the results of our experiments to evaluate and com-

pare the effectiveness of different CCM algorithms compared with an ideal profiling

approach that uses knowledge of the future program behavior.

Performance Potential with Ideal CCM Policy Figure 4.2 shows the po-

tential of ideal profiling with CCM at different constrained code cache sizes. Each

bar in this graph plots the ratio of the (simulated) program run-time with the

19

0.97

0.98

0.99

1

1.01

1.02

1.03

P
e

rf
.

co
m

p
a

re
d

 t
o

 '
id

e
a

l'

Benchmarks

90% 75% 50% 40% 25%

Figure 4.3. Impact of using the online reactive CCM algorithm com-
pared with the ideal algorithm for the same cache sizes

ideal CCM policy and indicated code cache size to the run-time with an ideal

algorithm and an unlimited code cache. An unlimited code cache never needs to

evict compiled methods from the cache. We observe that an ideal CCM algorithm

often finds the right methods to evict from the cache to minimize performance im-

pact. On average, we see very negligible performance losses with code cache sizes

restricted to 90%, 75%, and 50% of required code cache space. Even with only

40% and 25% of desired code cache size many benchmarks do not see a noticeable

performance impact with an (geometric) average performance loss of only 5% and

20% respectively. This result shows that an ideal feedback-driven CCM policy

can significantly reduce an executing program’s code cache memory requirement

with minimal performance losses in most cases.

Performance Potential of Other CCM Policies Next we compare the per-

formance effectiveness of practical CCM policies as compared to the performance

delivered by the ideal CCM strategy. The profiling driven CCM algorithms in

our simulation framework have access to the most comprehensive, accurate, and

timely profile data possible by that profiling technique with no run-time overhead.

We have also implemented these policies in HotSpot, and in the next chapter we

20

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

P
e

rf
.

co
m

p
a

re
d

 t
o

 '
id

e
a

l'

Benchmarks

90% 75% 50% 40% 25%

Figure 4.4. Impact of using the offline-same CCM algorithm com-
pared with the ideal algorithm for the same cache sizes

present evaluation and analysis of their run-time cost and impact on effectiveness.

Figure 4.3 shows the performance of the CCM algorithm when using the best

Reactive profiling strategy (for α = 0.1) as compared with the corresponding ideal

approach for the same code cache sizes. We find that a good reactive strategy

can achieve program performance close to ideal even for heavily constrained code

cache sizes. The average performance losses compared to ideal with this reactive

strategy are only 0.0%, 0.0%, 0.2%, 0.4%, and 0.8% for code cache sizes that

are 90%, 75%, 50%, 40%, and 25% of the maximum needed, respectively. These

results suggest that past program behavior is a good indicator of future program

execution for code cache management. Remember that the cost of collecting this

accurate profiling information at run-time is ignored during this simulation study.

While we only show the results for the reactive algorithm with an α of 0.1, we

note that other reactive schemes also do similarly well.

Figure 4.4 presents the performance comparison of the Offline-same code cache

eviction algorithm compared with the corresponding ideal CCM approach. We

see that with a perfectly representative offline profile, the CCM algorithm again

performs quite well. The Offline-same strategy results in an (geometric) average

performance loss of 0.0%, 0.1%, 0.6% 1.5%, and 3.8% for our five code cache

21

sizes respectively, compared to the ideal algorithm. As opposed to online profiling

approaches that collect their data during the same program run, offline profiling

strategies require a separate program execution to acquire the desired program

behavior data. This data must then be structured and aggregated for used by

adaptive VM tasks. This data aggregation can reduce the effectiveness of adap-

tive tasks by limiting its ability to customize for different sections/phases of the

program run. The higher performance loss with the offline profiling based CCM

strategy, compared with reactive-CCM, shows this negative impact of profile data

aggregation.

Offline profiling suffers from another limitation. A different input set or execu-

tion environment can cause the application’s run-time behavior to differ from its

behavior during the profiling run. The influence of this limitation on the efficiency

of the adaptive task will depend on the likeness, or lack thereof, of the profiling

and actual evaluation run. We attempt to measure the impact of this limitation

with our offline-diff CCM configuration when profile data collected during pro-

gram runs with the small DaCapo benchmark inputs are used during evaluation

runs with the default input. As expected, we see a much more noticeable per-

formance loss with this configuration. We find performance losses of 0.3%, 1.2%,

3.9%, 6.1%, and 10.1%, on average, with the Offline-diff scheme compared to

ideal for the code cache sizes of 90%, 75%, 50%, 40%, and 25% respectively.

The default stack-scan CCM policy in HotSpot uses a low-overhead sampling

based profiling mechanism, as explained earlier. The stack-scan CCM policy can

be considered an instance of a low-cost and less precise online reactive profiling

policy. The actual implementation of this policy in HotSpot has been heavily

tuned for different situations, and is associated with several flags and other tuning

22

0

1

2

3

4

5

6

7

8

9

10

P
e

rf
.

co
m

p
a

re
d

 t
o

 '
id

e
a

l'

Benchmarks

90% 75% 50% 40% 25%

Figure 4.5. Impact of using our implementation of the HotSpot
stack-scan CCM algorithm compared with the ideal algorithm for the
same cache sizes

knobs. We implemented a simpler variant of this complex policy in our simulator.

Figure 4.5 displays the the performance comparison of the stack-scan CCM

algorithm compared with the corresponding ideal CCM approach. We found that

this policy fares quite poorly and achieves performance that is 31%, 50%, 2.44X,

2.83X, and 5.77X worse over the ideal configuration, on average, at 90%, 75%,

50%, 40%, and 25% code cache sizes respectively. Thus, these simulation results

do a fair job of tracking the actual HotSpot performance numbers with the stack-

scan policy displayed in Figure 3.1(b).

Additionally, we also simulated the simpler stop-compiler strategy that simply

stops compilation if the code cache gets full. The stop-compiler algorithm is the

simplest CCM policy and was found to achieve performance that is 6%, 39%,

3.01X, 3.65X, and 6.93X worse when the code cache is constrained to 90%, 75%,

50%, 40%, and 25% of the needed code cache space respectively, on average.

Other than stop-compiler, CCM policies evict program methods when the code

cache gets full. These evicted methods will now run in the interpreter. A poor

eviction decision (that is, evicting a hot method) will result in the method quickly

becoming hot again, and will be recompiled. Thus, the greater the number of

method evictions and recompilations triggered by a CCM strategy, the poorer is

23

Strategy 90% 75% 50% 40% 25%
Evic Recom Evic Recom Evic Recom Evic Recom Evic Recom

Ideal 48.6 0.9 209.6 8.4 1068.3 477.7 2075.9 1308.5 6301.9 5225.8
Offline-same 149.5 64.5 577.8 299.4 2163.4 1526.8 3903.3 3104.9 10806.5 9695.6
Offline-diff 204.1 117.1 819.9 514.6 2895.1 2218.5 4977.6 4154.2 12969.8 11847.3
React-α = 0.1 277.9 105.0 730.6 297.6 2201.8 1413.1 3705.1 2748.6 8729.1 7524.2
Stack-scan 7459.6 6468.4 6957.8 6342.5 4900.9 4398.8 4695.8 4175.9 2594.3 2291.1

Table 4.1. Average number of method evictions and re-compilations
for each code cache management algorithm.

its quality and effectiveness. Additionally, the task of performing method evictions

and recompilations will also incur an overhead at run-time, and can be used to

further estimate the run-time cost or overhead of each CCM algorithm.

Table 4.1 shows the average number of methods evicted and re-compilations

of evicted methods performed by each of our simulated CCM strategies over all

benchmark programs. As expected, we find that strategies that result in bet-

ter performance keep more of the important methods in the cache longer. The

stack-scan CCM policy is an exception because, unlike the other strategies, it

temporarily disables compilation when the code cache gets full. For the remain-

ing CCM algorithms, fewer poor eviction decisions in turn also result in fewer

recompilations. We can see that availability of future program behavior informa-

tion allows the ideal CCM policy to often evict methods that do not need to be

recompiled later, especially at modest memory pressure. The average number of

method evictions and recompilations steadily increases with smaller/constrained

code cache sizes. In general, more effective CCM strategies predict better evic-

tion candidates, and will likely incur less overhead at run-time and exhibit better

overall performance.

In summary, our experiments in this chapter reveal several interesting and

important results.

1. We find than an ideal CCM strategy with access to detailed profile infor-

24

mation regarding future program execution can sustain efficient program

performance even with heavily constrained code cache sizes. We expect this

observation to fuel much further research in developing practical CCM poli-

cies that can realize high program speed and low memory consumption in

the code cache in actual VMs.

2. It is encouraging to observe that several profiling-based CCM algorithms

can achieve effectiveness close to the ideal policy. However, several hurdles

will need resolution to realize these policies in a real VM. Online reactive

CCM policies need to overcome the cost of profile collection at run-time.

Offline profiling CCM strategies need to not only develop mechanisms to

find representative program inputs to generate accurate offline profile data

and make it available to the VM at run-time, but may also need to inves-

tigate approaches to resolve the profile aggregation effect inherent to offline

profiling.

3. Our results also reveal that CCM strategies have the potential to be much

more effective than HotSpot’s default stack-scan CCM policy. The stack-

scan policy uses an approximate sampling-based online profiling approach

to reduce dynamic overhead. It is unclear if the stack-scan policy’s poor

performance is due to the imprecise nature of profiling data employed, or if

it is caused by implementation decisions in HotSpot. We explore and discuss

this issue further in the next chapter.

25

Chapter 5

Performance of Profiling Based

CCM Policies in HotSpot

In the last chapter we evaluated the potential effectiveness of several CCM

strategies in a controlled simulation setting that allowed us to ignore profiling

costs, and other known and unknown VM implementation issues. These simula-

tion experiments provide encouraging results on the potential of CCM algorithms

to sustain acceptable program performance even with very limited code cache

sizes. Consequently, we explored and implemented a few CCM policies to under-

stand and assess their behavior in the HotSpot JVM. In this chapter we present

an assessment of an extended stack-scan, reactive, and offline CCM policies im-

plemented in HotSpot.

5.1 Impact of VM Implementation Choices

Design and implementation choices exercised in the VM can make a large

impact on the performance delivered by the CCM policies. The method eviction

26

(or sweeper) mechanism implemented in the HotSpot JVM differs significantly

from the perfect method employed by the simulation algorithm in Chapter 4.

This difference impacts the properties of all CCM policies in HotSpot.

In particular, our simulation algorithm installs the compiled methods at the

end of each interval. At that time, if sufficient contiguous space is not available,

then the algorithm uses the selected CCM policy to find the methods to evict.

These selected methods are then evicted and space to install the new compiled

method is created instantaneously. The program execution can use the newly

compiled method immediately in the next execution interval.

In contrast, HotSpot’s sweeper mechanism works differently, and was described

earlier in Chapter 2. With HotSpot, the space needed for future compilations

needs to be made available before the compiled code is generated. Additionally,

method eviction needs to follow several stages from active to non-entrant to zom-

bie, requires several code cache sweeps, and therefore takes some time and is

not instantaneous. In our current work, we do not attempt to make changes to

the sweeper sub-system in HotSpot. Therefore, all CCM policies implemented in

HotSpot have to respect the VM’s default sweeper mechanism.

5.2 Stack-Scan No-Stop Compiler (SS-no-stop) CCM

Policy

We observe the CCM policy implemented in the latest HotSpot release (called

stack-scan) performs poorly with small code cache sizes. These results with the

default stack-scan policy were presented in Figure 3.1(b). Stack-scan is in fact

an instance of a conservative low-cost reactive CCM policy that collects very

limited profile information to guide its CCM decisions. Our simulation studies

27

0

1

2

3

4

5

6

7

8

9

10

P
e

rf
.

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

Benchmarks

90% 75% 50% 40% 25%

Figure 5.1. Impact of using the extended SS-no-stop CCM policy at
constrained code cache sizes as compared to performance of the same
algorithm with maximum (100%) code cache size.

reveal that a reactive CCM strategy (albeit, one with access to detailed profile

information) can achieve close to ideal performance numbers. Therefore, it is not

entirely clear weather the stack-scan policy’s lower than expected performance

is due to: (a) the quality of employed profile information, or (b) some other

implementation factors. We conducted a study to first alleviate the effect of

possible implementation factors.

The stack-scan CCM algorithm in HotSpot stops the JIT compiler if the code

cache gets full. The policy should restart compilation once adequate code cache

space becomes available and certain other conditions are satisfied. However, we

observed that the compiler restart rarely happens for our benchmarks. We exper-

imented with relaxing the conditions to restart compilation.

Figure 5.1 plots the performance of our most aggressive extended stack-scan

policy that does not stop method compilations even when the cache is full. Gen-

erated compiled code that does not find room in the code cache will be discarded.

We note that JIT compilation with the c1 compiler is very fast, and we found that

the few discarded compilations do not add much overhead to the overall VM exe-

cution time. We observe that this simple extension to HotSpot’s default stack-scan

implementation makes it much more efficient at sustaining program performance

28

0

0.5

1

1.5

2

2.5

3

3.5

4

P
e

rf
.

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

Benchmarks

90% 75% 50% 40% 25%

Figure 5.2. Impact of using our implementation of the reactive
CCM policy at different constrained code cache sizes as compared to
performance of the same algorithm with maximum (100%) code cache
size.

at lower code cache sizes. On average, this extended stack-scan CCM policy de-

grades program speed by 0%, 6.1%, 43.1%, 89.9%, and 3.6X when code cache size

is restricted to 90%, 75%, 50%, 40%, and 25% respectively, and as compared to a

baseline that employs the same CCM policy with 100% code cache size.

5.3 Reactive (Online) CCM Policy

Next, we implement a reactive CCM policy in HotSpot based on our Reactive

simulation setup that collects and employs more comprehensive profile informa-

tion. This reactive CCM strategy implements method-specific counters that are

incremented on each method entry and loop back-edge (in both the interpreter

and the compiler). We again employ Equation 4.1 to calculate the hotness score

of each method on every sweeper activation. This hotness score accounts for the

parameter α to appropriately account for the method’s recent hotness and past

(historical) hotness.

Our modified HotSpot sweeper evicts methods that have the smallest hotness

scores until we evict 15% of the code cache (by size), or until the score passes below

some costliness threshold. This heuristic allows the policy to keep deleting past

29

0

5

10

15

20

25

P
e

rf
.

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

Benchmarks

90% 75% 50% 40% 25%

Figure 5.3. Impact of using our implementation of the offline-same
CCM policy at different constrained code cache sizes as compared to
performance of the same algorithm with maximum (100%) code cache
size.

15% of free space as long as those additional methods evicted are cold. We found

this heuristic to reduce the number of compile failures, increase responsiveness,

and allow the VM to better handle any surges in compilation requests.

Figure 5.2 plots program performance with the reactive CCM policy in HotSpot.

Similar to our simulation setup, we again use an α value of 0.1. Thus, we can see

that the quality of profile information used by the CCM algorithm has a definite

impact on its effectiveness. On average, we find that the reactive CCM policy

leaves performance unchanged for 90% code cache size, and degrades program

speed by 1.5%, 5.5%, 13.6%, and 99.3% with code cache size that is 75%, 50%,

40%, and 25% respectively, when compared to a baseline that employs the same

reactive CCM policy with 100% code cache size. Note that the selected base-

line allows us to ignore the cost of the profiling overhead. Program performance

including the profiling overhead is presented and discussed in Section 5.5.

5.4 Offline-Same CCM Policy

An offline profiling based optimization has the benefit that there is no cost

of collecting profiling data at run-time, and can simplify VM implementation by

30

0

1

2

3

4

5

6

7

8

9

stop_comp. stack_scan (SS) SS_no_stop reactive offline

P
e

rf
.

co
m

p
a

re
d

 t
o

 s
to

p
-

co
m

p
il

e
r

C
C

M
 p

o
li

cy
 w

it
h

2
0

0
%

 C
C

 s
iz

e

Benchmarks

100% 90% 75% 50% 40% 25%

12.259.56

Figure 5.4. Average impact of the different CCM policies imple-
mented in HotSpot at different constrained code cache sizes as com-
pared to performance of the stop-compiler CCM policy with 200%
code cache size.

removing the need to support any profiling infrastructure in the VM. However,

an offline profiling based strategy requires prior training runs, and generally ag-

gregates profile data across the training runs. Profile data aggregation makes

it difficult to customize the optimization for different execution-time program

phases.

We implemented an offline CCM policy in HotSpot based on our Offline-same

simulation setup. We conduct a single training run in interpretation mode and

calculate the overall hotness (invocation + loop back-edge) counts of all program

methods. A list of methods sorted in ascending order of their hotness counts is

given to HotSpot at the start of the program’s evaluation run. The CCM policy

evicts methods from the code cache in this provided order.

Figure 5.3 shows program performance with the offline CCM policy in HotSpot.

We observe that this strategy does not perform as well as the reactive CCM poli-

cies. On average, the offline CCM policy drops performance by 5%, 46%, 4.28X,

7.38X, and 12.37X with code cache size that is 90%, 75%, 50%, 40%, and 25%

respectively, when compared to a baseline that employs the same offline CCM

policy with 100% code cache size. Thus, even with perfectly representative of-

31

fline profile data, our current implementation of this policy in HotSpot fails to

deliver acceptable effectiveness. These poor results from the offline CCM policy

contradict our observations from the simulation studies, and we will attempt to

understand and possibly resolve this behavior in future work.

5.5 Overall Comparison of CCM Policies in HotSpot

Figure 5.4 compares the effectiveness of all the HotSpot CCM policies using

a common baseline. The selected baseline is program performance with the sim-

plest stop-compiler CCM algorithm and 2X the code cache size desired by each

benchmark (200% code cache size). Remember, that 100% code cache size is

benchmark-specific, and is computed by summing the sizes of all methods com-

piled for each benchmark in the default HotSpot configuration. We use 200% code

cache size for our baseline because some CCM policies, like stack-scan, activate

when available free cache space approaches some threshold of allocated cache size,

and therefore trigger even with the 100% code cache size configuration.

From Figure 5.4 we can observe that the stop-compiler and offline CCM poli-

cies only achieve acceptable performance at very modest memory pressure, when

most methods are able to reside in the cache. At higher memory pressures, these

policies degrade quickly and significantly. The comprehensive profile data avail-

able to the reactive policy allows it to make excellent decisions about which meth-

ods to evict, but the overhead of incrementing counters at every method entry and

loop back-edge hurt execution time. Only at very heavily constrained code cache

sizes does the benefit of better eviction decisions overcome the profiling cost with

this strategy. In future work, we will further investigate the tradeoffs between

profile quality and cost for reactive CCM policies. Finally, HotSpot’s stack-scan

32

is an implementation of a low-cost reactive CCM strategy that collects and uses

approximate profile data. The effectiveness of HotSpot’s default stack-scan policy

improves significantly with our extensions, and this SS-no-stop policy achieves

the best or close-to-best overall performance results for most code cache sizes.

Compared to the default HotSpot policy, the SS-no-stop CCM implementation

improves performance by 20.4%, 39.0%, 41.3%, 54.9%, 57.8%, and 49.7% at our

various code cache pressures respectively, on average.

It is important to appreciate that all these policies still perform much better

than completely disabling JIT compilation and only using the interpreter. On

average across all our benchmarks, interpreter-only execution time is 17.35 times

worse than the stop-compiler CCM policy with 200% code cache size.

33

Chapter 6

Related Work

Code caches are used to store translated and/or optimized code in managed

language VMs and dynamic binary translators (DBT). Researchers in both these

related areas have previously investigated issues regarding code cache layout and

CCM to reduce memory consumption. In this chapter we present and compare

past research that is related to our current work in this paper.

Zhang and Krintz were among the first researchers to study and present the ef-

fect of method eviction from the code cache on memory consumption and program

speed in a JVM [25,26]. Similar to our present research, this work evaluated the

efficiency of offline and online profiling techniques to find the appropriate set of

methods to evict from the code cache. Additionally, they also studied techniques

to decide when to invoke their eviction algorithm. However, this work was con-

ducted in a compile-only JVM (Jikes RVM [1, 2]), which presents many different

properties compared to the HotSpot JVM that employs a baseline interpreter and

only compiles the hot program methods. The influence of a compile-only JVM,

and Jikes in particular, cause critical differences in the profiling techniques em-

ployed and experimental setup used as compared to our current research. More-

34

over, the simulation studies are another unique contribution of our work that

investigate the potential and properties of many different CCM algorithms in a

controlled and VM-independent environment.

Several researchers have explored code cache eviction techniques for DBTs.

Hazelwood and Smith found that a medium-grained FIFO eviction scheme achieved

better performance than a single-block FIFO scheme by lowering replacement

overhead [14]. Dynamo conducts a full cache flush at anticipated program phase

changes when the trace generation rate becomes high [5]. Intel’s Pin DBT also sup-

ports a full code cache flush [13]. DynamoRio adaptively scales up the code cache

size based on the program’s working set size, but does not implement algorithms

to evict compiled blocks to reduce memory consumption in the code cache [7].

The Strata DBT implements techniques to bound code cache memory usage by

reducing the space required for DBT-injected code [4]. Hazelwood and Smith pro-

posed a generational code cache that can transition methods from a nursery cache

to a persistent cache and evict unused code blocks from the cache [15]. Guha et al.

designed a least-recently-used (LRU) profiling policy to selectively (or partially)

flush code cache blocks for their DBT [11]. However, DBT code caches store blocks

or traces instead of program methods, have fine-grained inter-block linking, and,

in general, have different requirements compared to a managed-language JVM.

The organization of the code cache can influence the feasibility and effective-

ness of CCM algorithms. Jikes RVM allocates compiled native code to Java ob-

jects that are then placed on the common heap with other data objects [1]. Jikes

can then use the garbage collector (GC) to manage code cache objects and evict

unused compiled code. Thus, low memory consumption by code cache objects

can enable the Jikes RVM to place more data objects or reduce the frequency of

35

GC [25]. While HotSpot earlier employed a single unmanaged code cache, the

latest HotSpot release now employs a segmented code cache, with each segment

servicing a distinct type to code [12]. Oracle’s Maxine JVM also partitions their

code cache into different regions for holding the VM’s code, and that generated

by its two compilers [24]. Most DBTs employ a single code cache, but may use

either a simpler thread-private or a more space efficient thread-shared configu-

ration [8]. The Strata DBT introduced a code cache organization split between

the scratchpad and main memory to mitigate performance overhead on embedded

systems [3]. We do not vary the default code cache organization in our current

work, but plan to explore more effective code cache designs in the future.

36

Chapter 7

Future Work

There are many avenues for future work on this topic. Our immediate plan is

to further study the properties and improve the implementation of CCM policies

in HotSpot, and add other policies, such as FIFO. Second, there is little current

research to dynamically find the optimal code cache size for individual program

executions in a VM. We will investigate techniques to adaptively and quickly find

the ideal balance between performance and code cache size for each program at

run-time for memory sensitive embedded devices. Third, a smaller code cache can

result in more method evictions and recompilations. Our current work did not

measure the effect of a smaller cache size on energy consumption with different

CCM policies, which we plan to do in the future. Fourth, the placement of native

code in a code cache can influence the amount of cache fragmentation and achieved

I-Cache and I-TLB performance. We plan to better understand the impact of

these tradeoffs and develop new JIT compilation orders or native code placement

techniques in the code cache to optimize these performance factors. Fifth, we

will study mechanisms to derive accurate and low-cost profiling data, and explore

issues such as the tradeoff between profile data accuracy, quality and performance

37

benefit. Finally, the code cache subsystem includes many components, including

the CCM algorithm to find methods to evict, method eviction strategy, and code

cache layout. In the future we plan to study and redesign all these components

together to find the best overall strategy.

38

Chapter 8

Conclusions

The goal of this work is to understand the potential and evaluate the effec-

tiveness of different CCM policies to sustain program performance when code

cache sizes are too constrained to hold all the desired hot methods during pro-

gram execution in a managed-language VM. We design a creative simulation setup

to investigate the potential of an ideal and many other practical CCM policies.

We discover that an ideal CCM strategy can allow the VM to maintain close-to-

full program speed even with high code cache memory pressure. Furthermore, we

found that profiling-based practical CCM policies can realize close to ideal results.

Unfortunately, the current CCM strategy in the popular HotSpot Java VM,

based on a low-cost approximate reactive profiling mechanism, produces large

program slow-downs at small code cache sizes. We investigate this disparity in

HotSpot’s CCM strategy. We implement extensions to HotSpot’s default CCM

policy and design and re-engineer our other simulated CCM policies in HotSpot.

Our CCM algorithms in HotSpot deliver positive results and uncover many other

interesting questions that will need resolution to find an optimal CCM strategy

for future runtime systems.

39

The abundance of managed languages and the expectation from small em-

bedded devices to simultaneously support multiple resource-consuming programs

makes memory capacity management an important issue for embedded systems.

We hope that our work can guide researchers to develop/provide the necessary

hardware and software structures to maximize the efficiency of CCM techniques

for memory constrained embedded systems.

40

Bibliography

[1] Alpern, B., Attanasio, C. R., Cocchi, A., Lieber, D., Smith, S.,

Ngo, T., Barton, J. J., Hummel, S. F., Sheperd, J. C., and Mer-

gen, M. Implementing JalapeÑo in Java. In Proceedings of the 14th ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications (1999), OOPSLA ’99, pp. 314–324.

[2] Arnold, M., Fink, S., Grove, D., Hind, M., and Sweeney, P. F.

Adaptive optimization in the JalapeÑo JVM. In Proceedings of the 15th ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications (2000), OOPSLA ’00, pp. 47–65.

[3] Baiocchi, J. A., and Childers, B. R. Heterogeneous code cache: Using

scratchpad and main memory in dynamic binary translators. In Proceedings

of the 46th Annual Design Automation Conference (2009), DAC ’09, pp. 744–

749.

[4] Baiocchi, J. A., Childers, B. R., Davidson, J. W., and Hiser, J. D.

Reducing pressure in bounded DBT code caches. In Proceedings of the 2008

International Conference on Compilers, Architectures and Synthesis for Em-

bedded Systems (2008), CASES ’08, pp. 109–118.

41

[5] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo: A transparent

dynamic optimization system. In Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and Implementation (2000),

PLDI ’00, pp. 1–12.

[6] Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M.,

McKinley, K. S., Bentzur, R., Diwan, A., Feinberg, D., Framp-

ton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H.,

Moss, J. E. B., Moss, B., Phansalkar, A., Stefanović, D., Van-

Drunen, T., von Dincklage, D., and Wiedermann, B. The DaCapo

benchmarks: Java benchmarking development and analysis. In Proceedings of

the 21st annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications (2006), OOPSLA ’06, pp. 169–190.

[7] Bruening, D., Garnett, T., and Amarasinghe, S. An infrastruc-

ture for adaptive dynamic optimization. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization (2003), CGO ’03, pp. 265–275.

[8] Bruening, D., Kiriansky, V., Garnett, T., and Banerji, S. Thread-

shared software code caches. In Proceedings of the International Symposium

on Code Generation and Optimization (2006), CGO ’06, pp. 28–38.

[9] Georges, A., Buytaert, D., and Eeckhout, L. Statistically rigorous

java performance evaluation. In Proceedings of the conference on Object-

oriented programming systems and applications (2007), OOPSLA ’07, pp. 57–

76.

42

[10] Google. Chrome V8 JavaScript VM, September 2012.

https://developers.google.com/v8/intro.

[11] Guha, A., Hazelwood, K., and Soffa, M. Balancing memory and per-

formance through selective flushing of software code caches. In Proceedings of

the 2010 International Conference on Compilers, Architectures and Synthesis

for Embedded Systems (2010), CASES ’10, pp. 1–10.

[12] Hartmann, T., Noll, A., and Gross, T. Efficient code management

for dynamic multi-tiered compilation systems. In Proceedings of the 2014

International Conference on Principles and Practices of Programming on the

Java Platform: Virtual Machines, Languages, and Tools (2014), PPPJ ’14,

pp. 51–62.

[13] Hazelwood, K., Lueck, G., and Cohn, R. Scalable support for mul-

tithreaded applications on dynamic binary instrumentation systems. In

Proceedings of the 2009 International Symposium on Memory Management

(2009), ISMM ’09, pp. 20–29.

[14] Hazelwood, K., and Smith, J. E. Exploring code cache eviction granu-

larities in dynamic optimization systems. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization (2004), CGO ’04, pp. 89–99.

[15] Hazelwood, K., and Smith, M. D. Managing bounded code caches in

dynamic binary optimization systems. ACM Transactions on Architecture

and Code Optimization 3, 3 (Sept. 2006), 263–294.

43

[16] Hölzle, U., and Ungar, D. Reconciling responsiveness with performance

in pure object-oriented languages. ACM Transactions on Programming Lan-

guage Systems 18, 4 (1996), 355–400.

[17] Huang, X., Blackburn, S. M., McKinley, K. S., Moss, J. E. B.,

Wang, Z., and Cheng, P. The garbage collection advantage: Improving

program locality. In Proceedings of the 19th Annual ACM SIGPLAN Confer-

ence on Object-oriented Programming, Systems, Languages, and Applications

(2004), OOPSLA ’04, pp. 69–80.

[18] Inoue, H., Hayashizaki, H., Wu, P., and Nakatani, T. A trace-based

Java JIT compiler retrofitted from a method-based compiler. In Proceedings

of the 9th Annual IEEE/ACM International Symposium on Code Generation

and Optimization (2011), CGO ’11, pp. 246–256.

[19] Jantz, M. R., and Kulkarni, P. A. Exploring single and multilevel JIT

compilation policy for modern machines. ACM Transactions on Architecture

and Code Optimization 10, 4 (Dec. 2013), 22:1–22:29.

[20] Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Rus-

sell, K., and Cox, D. Design of the Java HotSpotTMclient compiler for

Java 6. ACM Trans. Archit. Code Optim. 5, 1 (2008).

[21] Krintz, C., Grove, D., Sarkar, V., and Calder, B. Reducing the

overhead of dynamic compilation. Software: Practice and Experience 31, 8

(December 2000), 717–738.

[22] Paleczny, M., Vick, C., and Click, C. The Java HotSpotTMserver

compiler. In JVM’01: Proceedings of the 2001 Symposium on JavaTM Virtual

44

Machine Research and Technology Symposium (Berkeley, CA, USA, 2001),

pp. 1–12.

[23] Smith, J., and Nair, R. Virtual Machines: Versatile Platforms for Sys-

tems and Processes. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2005.

[24] Wimmer, C., Haupt, M., Van De Vanter, M. L., Jordan, M.,

Daynès, L., and Simon, D. Maxine: An approachable virtual machine

for, and in, Java. ACM Transactions on Architecture and Code Optimization

9, 4 (Jan. 2013), 30:1–30:24.

[25] Zhang, L., and Krintz, C. Adaptive code unloading for resource-

constrained JVMs. In Proceedings of the 2004 ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems

(2004), LCTES ’04, pp. 155–164.

[26] Zhang, L., and Krintz, C. Profile-driven code unloading for resource-

constrained JVMs. In Proceedings of the 3rd International Symposium on

Principles and Practice of Programming in Java (2004), PPPJ ’04, pp. 83–

90.

45

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Current CCM Policies in HotSpot
	Potential of Profiling Based CCM Policies
	Performance Metric
	Experimental Setup
	Results and Observations

	Performance of Profiling Based CCM Policies in HotSpot
	Impact of VM Implementation Choices
	Stack-Scan No-Stop Compiler (SS-no-stop) CCM Policy
	Reactive (Online) CCM Policy
	Offline-Same CCM Policy
	Overall Comparison of CCM Policies in HotSpot

	Related Work
	Future Work
	Conclusions
	Bibliography

