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Abstract 

Traditional network models use simplified pore geometries to simulate multiphase flow 

using semi-analytical correlation-based approaches. In this work, we aim at improving 

these models by (I) extending the numerical methodologies to account for pore geometries 

with convex polygon cross sections and (II) utilizing Artificial Neural Networks (ANN) to 

predict flow-related properties. Specifically, we simulate fluid displacement sequences 

during a drainage process in bundles of capillary tubes with randomly generated convex 

polygon cross-sections. In the beginning, we assume that capillary tubes are fully saturated 

with water and that they are strongly water-wet. Then, oil is injected to displace water 

during the primary drainage process. The model calculates threshold capillary pressures 

for all randomly generated geometries using Mayer-Stowe-Princen (MS-P) method and the 

minimization of Helmholtz free energy for every pore-scale displacement event. Knowing 

pore fluid occupancies, we calculate saturations, phase conductances, and two-phase 

capillary pressure and relative permeability curves. These parameters are then used as input 

to train an ANN. ANN theories and related applications have been significantly promoted 

due to the fast increasing performance of computer hardware and inheratively complicated 

nature of some research areas. Various Artificial Intelligence (AI) applications have been 

developed specifically for the oil and gas industry such as AI assisted history matching, oil 

field production and development predictions, and reservoir characterization. The 

objective of this study is to develop an ANN training and predicting workflow that can be 

integrated with the conventional pore network modeling techniques. This hybrid model is 

computationally much faster which is beneficial for large-scale simulations in 3D. It could 
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also be used to improve prediction of flow-related properties in similar rock types. 

Specifically, we are interested in the training of ANNs to predict threshold capillary 

pressures and multi-phase flowrates as a function of cross-sectional shapes and 

wettabilities given for each capillary tube of the bundle. To do so, we have generated multi-

phase flow properties for two large datasets consisting of 40,000 and 60,000 capillary tubes 

each. The predictive capability of the ANN is gauged by performing some quality control 

steps including blind test validations. We present the results primarily by demonstrating 

the calculated errors and deviations for any randomly generated bundles of capillary tubes 

from the aforementioned dataset. We show that generating high-quality training dataset is 

critical to improving model’s predictive capabilities for a wide range of pore geometries, 

e.g., shape factors and elongations.  Additionally, we demonstrate that feature selection 

and preprocessing of the input data could significantly impact ANN’s predictions. We 

analyze a wide range of structures for the ANN models. The Multi-layer perceptron (MLP) 

Neural Network with three hidden layers is adequate for dealing with the complexity and 

non-linearity of most of our studied cases. This model is approximately an order of 

magnitude faster than conventional direct calculations using a personal desktop computer 

with four cores CPU. Such improvement in the speed of calculations becomes extremely 

important when dealing with larger models, adding more dimensionality, and/or 

introducing pore connectivity in 3D. 
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1. Introduction and Problem Statement  

The first chapter includes an introduction to pore-scale network modeling (PNM) 

techniques and Artificial Neural Network (ANN) methodology. First, we start with the 

introduction of calculating threshold capillary pressures and relative permeability curves 

using PNM techniques. We then shift gears by introducing different aspects of Neural 

Network models (e.g., pre- and post-processing steps) and demonstrating some of their 

results with respect to the petroleum engineering. 

1. Pore-scale network models 

Characterization of multi-phase fluid flow through porous media is particularly important 

for a wide range of applications related to the industry or academic research settings (Blunt, 

2017) Porous media can range from geologic formations to synthetic materials designed 

for a particular purpose (e.g., gas separation (Sharak, Samimi, Mousavi, & Bozarjamhari, 

2014), catalysis, etc). With respect to the geologic formations, the challenge arises because 

of the existence of a wide range of scales, pore topologies, wettability, and hysteresis. 

These parameters impact fluid flow behaviors at larger scales of interest. An improved 

understanding of the underlying physics could help us to develop more efficient and 

reliable models to not only predict but also classify flow-related properties in a wide range 

of different porous media.  

Traditionally, large-scale reservoir simulations solve Partial Differential Equations (PDE), 

arising from continuity equations, using various schemes such as Finite Difference Method 

(FDM), Finite Volume Method (FVM) and Finite Element Method (FEM) (Kuwauchi, 

Abbaszadeh, Shirakawa, & Yamazaki, 1996). In these formulations, macroscopic flow 
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properties, such as capillary pressure and relative permeability curves are required to 

update parameters during large-scale simulations (Zolfaghari Shahrak, 2014). These 

parameters have to be either measured experimentally or modeled numerically. 

Experimental measurements usually entail uncertainty. They are also extremely time-

consuming (Alizadeh & Piri, 2014; Arshadi, Zolfaghari, Piri, Al-Muntasheri, & Sayed, 

2017; Drla, Pope, Sepehrnoorl, & Texas, 1993; Honarpour, Koederitz, & Harvey, 1986; 

Oak, Baker, & Thomas, 1990).  

As a result, physically based modeling techniques are developed for the simulation of pore-

scale fluid/fluid displacements, and hence, prediction of the capillary pressure and relative 

permeability curves. The latest developments on pore network models are listed elsewhere  

(Aghaei & Piri, 2015; Blunt, 1998; Piri & Blunt, 2005a, 2005b; Ryazanov, van Dijke, & 

Sorbie, 2009; Arsalan Zolfaghari & Piri, 2017a, 2017b). All of these models have one thing 

in common, i.e., simplified geometries are used for each pore and throat in the network. 

The model relies on the interconnection of pores and throats to accurately represent the 

inherently sophisticated pore space topology in 3D. Building a representative network of 

pores is not a trivial task, as there is no single algorithm that can be used for the extraction 

of representative networks from different rock samples (Dong, 2007; Gesho, M., 

Zolfaghari, A., Piri, M., Pereira, n.d.).  

Researchers use a variety of methods to calculate threshold capillary pressures of given 

displacements in capillary tubes. One of the most commonly used methods is MS-P 

analysis which is based on the minimization of Helmholtz free energy of the corresponding 

displacement (Lago & Araujo, 2001; Mason & Morrow, 1984; Mayer & Stowe, 1965; 

Princen, 1969a, 1969b, 1970) Various approaches were proposed by researchers to 
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calculate pore fluid configurations for different porous media. Thermodynamically 

consistent threshold capillary pressure for every possible pore fluid configuration is 

primarily used by researchers to determine the possible pore fluid occupancies under a 

wide range of flow conditions (Van Dijke & Sorbie, 2006; A. Zolfaghari & Piri, n.d.-a, 

n.d.-b). 

Most researchers used simple regular geometries in their proposed pore network models. 

Empirical correlations have been proposed to calculate threshold capillary pressures based 

on geometrical properties of pore elements (D. Fenwick & Blunt, 1998; D. H. Fenwick & 

Blunt, 1998; Van Dijke et al., 2007; Van Dijke, Lago, Sorbie, & Araujo, 2004; Van Dijke 

& Sorbie, 2003). On the other hand, in their recent work, Zolfaghari and Piri (Arsalan 

Zolfaghari & Piri, 2017a, 2017b) have adopted MS-P method to calculate entry pressures 

for any piston-like displacements relevant to two- and three-phase flow under mixed-wet 

wettability conditions. They particularly used irregular triangular, square, and circular 

cross-sectional shapes and presented the corresponding analytical equations covering a 

wide range of displacements under capillary dominated flow regimes. 

In this work, we extend the application of MS-P analysis to pore cross-sectional shapes of 

randomly generated convex polygons during drainage. We use the calculated threshold 

entry capillary pressures to determine pore fluid occupancies and hence, phase 

conductances in a bundle of parallel capillary tubes. We determine saturations and water 

and oil relative permeabilities following the calculation of multi-phase fluid conductances 

for each capillary tube. The detail of such calculations are listed elsewhere (M. H. Hui & 

Blunt, 2000; Piri, 2003). This model constitutes our base model which is then used to train 

Artifical Neural Networks (ANN) in the second part of this project. In this work, we 
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propose two ANN approaches to estimate threshold capillary pressure and relative 

permeability curves in a bundle of randomly generated capillary tubes with any arbitrary 

convex polygon cross-sectional shapes. 

 

2. Machine Learning, Neural Network, Deep Learning concepts. 

Neural Network originates from the so-called ‘perceptron’ (Rosenblatt, 1958) which 

contains 3 layers (output layer, input layer, and one hidden layer), and can approximate 

simple function. Until the 1980s the Multi-Layer Perceptron (MLP) was 

proposed(Rumelhart, Hinton, & Williams, 1986) that can somewhat overcome the 

disadvantages of perceptron, MLP is harness feed forward signal transport scheme and 

Sigmoid, Tanh, and so forth. activation functions within neurons to address the 

nonlinearities, the Back-propagation (BP) algorithm (Werbos, 1990) was used to back 

propagate the gradient for weights readjustment during training process. Then MLP with 

more layers was believed to have stronger capabilities to deal with more sophisticated real-

life problems (Bengio, 2009). However, more problems were encountered while the 

network is becoming deeper such as the solutions will be ‘trap’ with local minima and the 

preferred global minima is rarely reached (G.E. Hinton and R. Salakhutdinov, 2006a). 

Another big issue is gradient vanishing during back-propagation when widely used 

Sigmoid activation functions were applied in the deeper network (J. Hochreiter, 1991; S. 

Hochreiter & Frasconi, 2009). Hinton et al. (G.E. Hinton and R. Salakhutdinov, 2006b) 

improved the network performance regarding the gradient vanishing issue in a seven 

hidden layers network by using a ‘pretraining’ technique. Along with some new activation 

functions such as Maxout, ReLU, Leaky ReLU, and so forth. which can be used to avoid 

gradient vanishing or explode in the deep neural network (I. J. Goodfellow, Warde-Farley, 
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Mirza, Courville, & Bengio, 2013; Maas, Hannun, & Ng, 2013). The deep residual network 

even as deep as more than 100 layers without gradient vanishing issues in image 

recognition task (He, Zhang, Ren, & Sun, 2016).  

The Neural Network techniques we mentioned above perform well in various applications, 

but the neurons in each layer are connected to all neurons with adjacent layers (called fully 

connected the network). This would result in a large number of weights or parameters 

needed to be updated during training, and the network has strong probabilities to be over-

fitted and becomes less generalized for various tasks. 

Different Neural Network structures and layers with different functionalities are 

continuously being developed such as Convolutional Neural Network (CNN) (LeCun, 

Bottou, Bengio, & Haffner, 1998; Name et al., 1998), Recursive Neural Network (RvNN), 

Recurrent Neural Network (RNN) (Frasconi, Gori, & Sperduti, 1998; Sperduti & Starita, 

1997), Gate Recurrent Unit (GRU) (Cho et al., 2014), Long-Short Term Memory Network 

(LSTM) (S. Hochreiter & Urgen Schmidhuber, 1997), Sequence to sequence learning 

model(Sutskever, Vinyals, & Le, 2014), Generative Adversarial Network(GAN) (I. 

Goodfellow et al., 2014), to tackle more complex real-world problems. Recent proposed 

‘capsules’ and ‘CapsNet’ concepts by Hinton et al. use ‘dynamic routing’ mechanism 

instead of back-propagation learning scheme. This might completely change the future path 

of the deep learning community. Along with the new network structures and concepts, 

various learning enhancement techniques such as Adam optimizer (Kingma & Ba, 2015), 

training batch normalization (Windows et al., 2014), neurons ‘dropout’ (Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014) played important role in network 

generalization, stability, and robustness improvement. 
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3. Application of Machine Learning, Neural Networks in reservoir engineering and 

pore network modeling/simulations. 

Due to nonlinearity of Neural Network and some “learning” capabilities in terms of 

regression trend analysis, pattern recognition, feature extraction, multi-class classification 

and generalization, Artificial Neural Network is becoming more and more popular than 

ever before in oil and gas industry and research domain. Petroleum engineering or reservoir 

engineering subsurface problems are extremely complex and non-linear in terms of the 

rock and fluid interactions. One solution for one scenario is good does not mean it will fit 

into another scenario even they are similar based on our knowledge and understanding. 

The fact of Artificial Neural Network will allow the engineer to produce approximate 

results within acceptable tolerance for a specific problem in oil and gas industry, such as 

the permeability prediction based on well loggings, hydraulic fracturing performance 

evaluation, and prediction (Mohaghegh & Ameri, 1995). 

Simple Artificial Neural Network driven by back-propagated training scheme was used to 

predict relative permeabilities from basic rock and fluid properties such as water saturation, 

porosity, interfacial tension, and so forth. (Al-Alawi, Kalam, & Al-Mukheini, 1996; Edris 

Joonaki, 2013; Guler, Ertekin, & Grader, 1999)  Hamada et al. created Neural Network to 

estimate reservoir characterizations from seismic properties and conventional well log data 

(Hamada & Elshafei, 2010). Jreou et al. applied Neural Network to predict oil production 

of the entire oil field from basic wells information along with oil and water 

production/injection history (Jreou, 2012). A systematic workflow which leverages Neural 

Network to petroleum engineering and a case study was presented for water saturation 

prediction in Oman from various well logging data, and validated results by doing a 

comparison with conventional core measurements (Al-Bulushi, King, Blunt, & Kraaijveld, 
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2012). Reichhardt et al. use Neural Network in corporation with Kriging method to predict 

or improve the input data of conventional reservoir simulator. The porosity, permeabilities 

are predicted from well logging and seismic data in such way to do sparse data completion 

for better history matching simulation (Reichhardt & Isaiah, 2013). Some researchers 

harness Neural Network and its derivatives to replace conventional polynomial 

approximation or Kriging method which used in simulations (Bruyelle & Guérillot, 2014). 

Chaki et al. proposed Modular Artificial Neural Network (MANN) as a workflow which 

separates big task into small ones and deals them with the modular network, in the case 

study, the specific module is responsible to specific well log fraction, final reservoir 

characteristics are the combination of the separated predictions (Chaki, Verma, Routray, 

Mohanty, & Jenamani, 2014). Jamshidian et al. applied Multi-Layer Perceptron (MLP) 

network to predict Nuclear Magnetic Resonance (NMR) logging parameters instead of 

using conventional method. Shokooh et al. integrated wavelet (as activation function) and 

Artificial Neural Network to improve the permeability prediction performance (Shokooh 

Saljooghi & Hezarkhani, 2015). Zhong et al. use support vector machine (SVM) with 

mixed kernels function (MKF) ANN methods to create relationship between limited 

conventional well log suites and sparse core data, and predict CO2-reservoir oil minimum 

miscibility pressure (Zhong, 2017; Zhong & Carr, 2016), Gholanlo et al. proposed a new 

radial based function neural network to predict water saturation in carbonate reservoir 

(Gholanlo, Amirpour, & Ahmadi, 2016). With the help of evolutional optimization 

algorithms, Ahmadi et al. combined the algorithms such as GA, PSO and Artificial Neural 

Network to predict oil-water relative permeability in the reservoir from various rock-fluid 

properties, e.g., formation type, wettability type, porosity, water saturation (Ahmadi, 



11 
 

Zendehboudi, Dusseault, & Chatzis, 2016). Besides the regression problems, Neural 

Network with unsupervised learning scheme is proposed to do automated rock image 

classifications (Shu, McIsaac, Osinski, & Francis, 2017). 

In pore scale and pore network modeling as well as simulation related topics, some state-

of-the-art techniques and approaches were proposed: Miao et al. developed a new way 

which utilizing Neural Network to estimate the hydraulic conductance from direct CFD 

process for several thousands of 2D capillary tube cross-section, which save lots of 

computation time by Neural Network prediction for new tube cross-section in acceptable 

tolerance (Miao, Gerke, & Sizonenko, 2017a). Applying state-of-the-art generative 

adversarial neural network to pore network image reconstruction and statistical analysis 

was proposed by Mosser et al., the implicit realizations generate from the network can 

somewhat replace the conventional stochastic methods which used in pore network 

reconstruction (Mosser, Dubrule, & Blunt, 2017). Wonjin Yun used and compared Fully 

Connected Network (FCN) and Convolutional Neural Network (CNN) in micro-level fluid 

flow characterization in man-made micromodel fabrication and somewhat to predict the 

potential oil/water configurations in given pore network images (Yun, n.d.). Rabbani et al.  

utilize thin section images analysis to obtain pore network parameters and incorporate with 

Neural Network to do permeability estimation in carbonates (Rabbani, Assadi, Kharrat, 

Dashti, & Ayatollahi, 2017). 

In this thesis, author is using Neural Network approach to estimate entry capillary pressures 

and oil-water relative permeabilities directly from capillary geometries such that basic pore 

network modeling concepts are used to create simple bundle of capillary tubes with 

randomly generated convex polygon cross-sections, and calculate the properties of 



12 
 

simplified two-phase flows in piston-like primary drainage process, Multi-Layer 

Perceptron (MLP) neural networks are generated to predict the capillary pressures of each 

capillary tubes and water/oil relative permeabilities at specific scenario. A systematic 

workflow includes capillary tubes generating, conventional entry pressure and relative 

permeabilities calculation method and MLP training and prediction for corresponding 

properties, results validation and comparison.  
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2. Methodology 

2.1 Model description  

 

Figure 2.1 Overall workflow for the study 

Randomly shaped convex polygons or randomly shaped convex polygons with specific 

constraints were generated. Basic statistical analysis of the generated polygons plus blind 

test polygons is conducted to control the generalization of the Neural Network. All tubes 

are filled with water after the threshold capillary pressure is reached, the Non-wetting oil 
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will invade the tube and occupy the center area of the tube, wetting phase water will be 

sitting at the corners from the cross-section view. 

The configurations of the oil/water within each one of the capillary tubes are extract by 

apply thermodynamically consistent threshold capillary pressure calculations (Zolfaghari 

Shahrak, 2014), then the following water saturation is calculated for each one of the 

capillary tubes. Relative permeability curves are produced by a systematic screening 

process through all tubes to solve the dynamic flow rate for oil and water based one 

previously calculated threshold capillary pressures. Multi-layer perceptron (MLP) Neural 

Networks are created to train the results produced by direct calculations, then do blind 

prediction tests verifications to control the quality of the Neural Network. Neural Network 

structures and hyperparameters are tuned to get a better prediction in fewer computation 

costs. Also, the input sensitivity analysis is performed to reduce the unnecessary input 

parameters. Necessary data preprocessing before Neural Network training and 

postprocessing after prediction are performed based on different approach scenarios. 

2.2 Data and model generation and preprocessing (Random Polygons) 

2.2.1 Software APP for random polygon generation by using random number 

generator and some additional algorithms. 

To generate a large amount of polygon cross-section areas with or without specific 

geometrical property constraints in our study, a small polygon generator application is 

developed to allow us easily to create desired polygons into easy to access data format. See 

Figure 2.2. 
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Figure 2.2 Snapshot of the random polygon generator used in this study 

The input parameters and descriptions are listed below: 

• Num_polys: Total number of polygons to be generated. 

• Max_edges: Maximum possible edges/corners of each one of the generated 

polygons. 

• Size_base and size_factor: The two parameters will determine the size of the 

generated polygons. 

• Mesh_level and re-mesh level: These parameters will control the process of finding 

the biggest inscribed radius inside the individual polygon. 

• File _name: After finishing all polygons generating, a structured dataset will be 

saved with the input file name. 

• Constraints for the number of edges:  Limit the minimum and the maximum number 

of edges generated by this application, ranging from 3 (triangle) to an unlimited 

number. 
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• Constraints for the size of the polygon: Any polygon generated with the major axis 

direction size which outside the input range will be deprecated, and re-generate 

another polygon until the requirement is satisfied and save to file. 

• Constraints for shape factor: shape factor which can be called circularity, the valid 

range is from 0 to 0.7958 (circle). 

• Constraints for elongation factor: Defined by  (Miao, Gerke, & Sizonenko, 2017b), 

where W and L represent the width and length of the smallest found circumscribed 

rectangle, the factor ranging from 0 to 1. 

• Constraints for convexity factor which defined as the perimeter of convex hull 

divide by the perimeter of the polygon (Miao et al., 2017b) is not available here 

because all of our polygons are convex polygon based on model assumptions, 

which result in same convexity factor. 

All the constraints input can be work individually or combined to provide more flexibility 

in terms of polygon geometry.  

After each one of the polygon candidate that meet all the requirements, the programme will 

run further to automatically the relate polygon geometrical properties such as the 

geometrical center of the polygon, all inner angles and corner half angles for individual 

polygon, area, perimeter. Also, the program will use a hybrid algorithm (see algorithm 1) 

to find the biggest possible inscribed circle inside the polygon and its center coordinates. 
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Algorithm 1 Finding largest inscribed circle algorithm 

1. Create mesh grid based on the coordinates of corner points of the original polygon 

2. Do ‘binary erosion’ for the mesh grid iteratively till the threshold for specific 

number/fraction of points left 

3. Find the minimum rectangle which covers all points left from the previous step and 

does mesh grid on the rectangle. 

4. Loop all meshed coordinates and calculate the distances between the testing point and 

all edges of the polygon. 

5. Find the candidate point with the maximum value for ‘minimum distance to all edges’ 

and return the coordinates of the point and use that specific ‘minimum distance to all 

edges’ as the preferred radius. 

2.2.2 Generated specific data structure and format for flexible processing and 

storage. 

At this point, a complete single polygon generating process is finished, the program will 

repeat a certain number of times which is user input previously. Finally, all generated 

polygons with their calculated properties will be merged into structure part of a flexible 

data format, at the same time the input parameters will be merged into the unstructured part 

respectively. 

There are two original input datasets generated by using the random polygon generator:  

• Training dataset 1: The dataset contains 60,000 random polygons without any 

constraints.  The maximum generating edges was set to 10; size base is 1E-6, size 

multiplier is 5, the first level of meshing is 200, 2nd level of meshing is 100. 

• Training dataset 2: The dataset contained 40,000 polygons in total and merged into 

8 parts, each one of those parts has 5000 polygons generated by using same 

generator parameters as training dataset 1, the 8 section has different constraints in 
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terms of polygon geometry, shape factor (circularity) belongs to 0 to 0.02, 0.02 to 

0.04, 0.04 to 0.06, 0.06 to 0.07958 (circle), and elongation factor belongs to 0 to 

0.25, 0.25 to 0.50, 0.50 to 0.75, 0.75 to 1.00 respectively. The reason to create the 

second dataset is trying to make training dataset more generalized that can provide 

enough information of those polygons with ‘slim’ or ‘plate’ like shape. 

Constraints Training Dataset 1 Training Dataset 2 

All random 60,000 5,000 

𝒈𝒄𝒄 ∈ [𝟎, 𝟎. 𝟎𝟐] 0 5,000 

𝒈𝒄𝒄 ∈ [𝟎. 𝟎𝟐, 𝟎. 𝟎𝟒] 0 5,000 

𝒈𝒄𝒄 ∈ [𝟎. 𝟎𝟒, 𝟎. 𝟎𝟔] 0 5,000 

𝒈𝒄𝒄 ∈ [𝟎. 𝟎𝟔, 𝟎. 𝟎𝟕𝟗𝟓𝟖]  0 5,000 

𝒈𝒆𝒍 ∈ [𝟎, 𝟎. 𝟐𝟓] 0 5,000 

𝒈𝒆𝒍 ∈ [𝟎. 𝟐𝟓, 𝟎. 𝟓𝟎] 0 5,000 

𝒈𝒆𝒍 ∈ [𝟎. 𝟓𝟎, 𝟎. 𝟕𝟓] 0 5,000 

𝒈𝒆𝒍 ∈ [𝟎. 𝟕𝟓, 𝟏. 𝟎𝟎] 0 5,000 

Total tubes 60,000 40,000 

Table 2.1 Summary of the training dataset used in this study 

Meanwhile, five different blind verification datasets were generated for blind testing later, 

they have same generator parameters but using different constraints in terms of shape factor 

and elongation factor: 

• Blind test dataset 1: 3,000 random polygons with shape factor from 0 to 0.04. 

• Blind test dataset 2: 3,000 random polygons with shape factor from 0.04 to 0.07958. 

• Blind test dataset 3: 3,000 random polygons with elongation factor from 0 to 0.50. 

• Blind test dataset 4: 3,000 random polygons with elongation factor from 0.50 to 

1.00. 

• Blind test dataset 5: 3,000 random polygons without any shape constraints. 
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Blind test dataset Constraints Number of tubes 

Blind test 1 𝑔𝑐𝑐 ∈ [0, 0.04] 3,000 

Blind test 2 𝑔𝑐𝑐 ∈ [0.04, 0.07958] 3,000 

Blind test 3 𝑔𝑒𝑙 ∈ [0, 0.5] 3,000 

Blind test 4 𝑔𝑒𝑙 ∈ [0.5, 1.0] 3,000 

Blind test 5 All random 3,000 

Table 2.2 Summary of the training dataset used in this study 

 

2.3 Datasets generated description and statistical analysis 

After the polygon generation processes, several simple statistical analysis and plots were 

performed to check the data quality and to see if the distribution of the properties is satisfied. 

 

2.3.1 Descriptions and statistical analysis for training dataset 

First, we examined the dataset with 60,000 polygons generated without shape constraints 

and specific size and number of edges constraints.  

(1) Statistical analysis(plots) for training dataset (40,000 or 60,000 polygons) 
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Figure 2.3 Selected polygons from training dataset 1 

 

Figure 2.4 Distribution of number of edges of polygons within training dataset 1 
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Figure 2.5 Distribution of shape factors (circularity) of polygons within training dataset 1 

 

Figure 2.6 Distribution of largest inscribed radius inside polygons within training dataset 1 
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Figure 2.7 Selected polygons from training dataset 2 

 

 

 

 

Figure 2.8 Distribution of number of edges of polygons within training dataset 2 
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Figure 2.9 Distribution of shape factors (circularity) of polygons within training dataset 2   

 

Figure 2.10 Distribution of largest inscribed radius inside polygons within training dataset 2 

 

2.3.2 Descriptions and statistical analysis for blind verification dataset 

 (2) Statistic analysis(plots) for blind validation dataset (5 validation test datasets) 
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Figure 2.11 Selected polygons from blind verification dataset 1 (shape factor in [0, 0.04]) 

 

 

Figure 2.12 Distribution of number of edges of polygons within blind verification dataset 1 

(shape factor in [0, 0.04]) 
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Figure 2.13 Distribution of shape factors (circularity) of polygons within blind verification 

dataset 1 (shape factor in [0, 0.04]) 

 

Figure 2.14 Distribution of largest inscribed radius inside polygons within blind verification 

dataset 1 (shape factor in [0, 0.04]) 
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Figure 2.15 Selected polygons from blind verification dataset 2 (shape factor in [0.04, 0.07958]) 

 

Figure 2.16 Distribution of number of edges of polygons within blind verification dataset 2 

(shape factor in [0.04, 0.07958]) 
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Figure 2.17 Distribution of shape factors (circularity) of polygons within blind verification 

dataset 2 (shape factor in [004, 0.07958]) 

 

Figure 2.18 Distribution of largest inscribed radius inside polygons within blind verification 

dataset 2 (shape factor in [0.04, 0.07958]) 

 



28 
 

 

Figure 2.19 Selected polygons from blind verification dataset 3 (elongation factor in [0, 0.50]) 

 

Figure 2.20 Distribution of number of edges of polygons within blind verification dataset 3 

(elongation factor in [0, 0.50]) 
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Figure 2.21 Distribution of shape factors (circularity) of polygons within blind verification 

dataset 3 (elongation factor in [0, 0.50]) 

 

Figure 2.22 Distribution of largest inscribed radius inside polygons within blind verification 

dataset 3 (elongation factor in [0, 0.50]) 
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Figure 2.23 Selected polygons from blind verification dataset 4 (elongation factor in [0.50, 1.00]) 

 

Figure 2.24 Distribution of number of edges of polygons within blind verification dataset 4 

(elongation factor in [0.50, 1.00]) 



31 
 

 

Figure 2.25 Distribution of shape factors (circularity) of polygons within blind verification 

dataset 4 (elongation factor in [0.50, 1.00]) 

 

Figure 2.26 Distribution of largest inscribed radius inside polygons within blind verification 

dataset 4 (elongation factor in [0.50, 1.00]) 
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Figure 2.27 Selected polygons from blind verification dataset 5 (All random polygons without 

any constraints) 

 

 

Figure 2.28 Distribution of number of edges of polygons within blind verification dataset 5 (All 

random polygons without any constraints) 
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Figure 2.29 Distribution of shape factors (circularity) of polygons within blind verification 

dataset 5 (All random polygons without any constraints) 

 

Figure 2.30 Distribution of largest inscribed radius inside polygons within blind verification 

dataset 5 (All random polygons without any constraints) 
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2.4 Primary drainage threshold capillary pressure(Pcow) and water 

saturation calculations 

2.4.1 Pressure difference within non-circular cross-section capillary tube 

The pressure difference between two fluid interfaces can be obtain by applying Young-

Laplace equation (Rowell, 1998): 

 







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rr
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Where the 𝑃1 and 𝑃2 are the phase pressure for phase 1 and phase 2, 𝑟1 and 𝑟2 are principal 

radii of curvature of the contact interface. Two type of fluid-fluid contact interface within 

angular cross-section capillary tubes instead of forming only one type in circular shaped 

tubes. 

 

Figure 2.31 Main Terminal Menisci (MTM) (a) and Arc Menisci(AM) (b) (Piri, 2003) 

 

AM is formed at the corner of the angular cross-section of a capillary tube which the 

wetting phase is sitting at the corners, and non-wetting phase is located in the center of the 

tube. It is obvious that the curvature of the contact interface which formed AMs are parallel 

to the tube direction if the capillary tube is straight with same inlet and outlet cross-section 
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area. In this scenario if the equation (1) is applied with oil and water two-phase flow in the 

tube, the equation can be re-write as: 





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In a polygon cross-section two-phase flow system from AM’s perspective, the fluid-solid 

contact length within each corner can be obtained by: 

)sin(

)cos(



 
 owrb     (3) 

The fluid-fluid contact length can be obtained by: 
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Moreover, the cross-section area for the wetting phase fluid located at the corner is 

calculated by: 
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Where the 𝛼 is the corner half angle for the specific corner of the polygon cross-section, 

𝑟𝑜𝑤 represent the effective curvature radius of the fluid-fluid contact interface at the corner.  

is the contact angle between the fluid-fluid interface and the solid inner surface, note that 

the angle is the one toward the apex of the corner. 



36 
 

 

Figure 2.32 Cross-section of a polygon tube with original configuration (a) and the configuration 

after primary drainage (b), the oil-water contact at corners show the AMs 

 

2.4.2 MS-P method 

The MS-P method is short for Mayer-Stowe-Princen method (Mason & Morrow, 1984; 

Mayer & Stowe, 1965; Princen, 1969a, 1969b, 1970) which described the capillary entry 

pressure calculation method for capillary dominated fluid flow within an angular cross-

section pore/tube. The Helmholtz free energy 𝐹  is minimized to obtain the threshold 

pressure for invading fluid phase within a thermodynamically reversible and piston-like 

only displacement scenario. In such way, the fluid configuration changes for invading 

process associated threshold capillary pressure can be obtained by minimize the Helmholtz 

free energy or in other words making the derivative of Helmholtz free energy to zero. For 

example, an immiscible system which thermodynamic equilibrium is formed, the changing 

of Helmholtz energy is described as: 
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Where right-hand side of the Eq. (6) represent the changing of Helmholtz free energy 

contributed by the fluid-fluid and fluid-solid configurations changing before and after 
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invasion, the left-hand side represent the volume changing of phases during invading 

process. 

 

2.4.3 Apply MS-P method for 2 phase flow Primary Drainage displacements 

For two-phase oil displace water drainage process in this study, Eq. (6) can be re-write 

as: 

0 owowososwswsooww dAdAdAdVPdVPdF    (7) 

Combine the equation above and capillary pressure and force balance equations: 
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)cos( owowwsos       (9) 

Then we obtain: 
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Combine Eq. (10) and Eq. (2) then we have: 

0)cos( 


osowow

ow

o dLdL
r

dA
    (11) 

2.4.4 Quadratic equations derivation and solving for capillary pressure  

From the Eq. (11) the thermodynamically consistent capillary entry pressure for the piston-

like drainage process within random convex polygon cross-section tubes is derived as 

below: 
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Where 𝐴𝑝  represent the total area of the convex polygon cross-section. 𝑃 represent the 

perimeter of the polygon cross-section. 

After rearranging Eq. (12) we obtain: 
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The effective curvature radius is obtained by solving the quadratic equation for each 

convex polygon cross-section. Then the corresponding threshold capillary pressure can be 

calculated by Eq. (13) 

2.4.5 Water saturation (Sw) calculations 

From the previous section, we derived the equations for threshold capillary pressure, 

effective curvature radius, and so forth. If specific invading pressure is given for the system, 

the capillary tubes with entry capillary pressure above the given pressure will not be 

invaded, and the oil volume is zero and water volume is the volume of the tube. The tubes 

with entry capillary pressure lower than given pressure will be invaded, and the volume of 

water sitting at corners can be obtained by multiplying cross-section area and the tube 

length. The individual cross-section area within particular corner is calculated by Eq. (5), 

and the total area is a summation of all corner areas, then the rest area which occupied by 

oil in the center is given by total area minus area occupied by water. Now the volume of 
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water and oil within each one of the tubes can be calculated individually at given invading 

pressure, the total system water/oil saturation is easy to get from all individual tubes. 

2.5 Primary drainage Kro, Krw calculations 

2.5.1 Absolute permeability and conductance  

The absolute permeability as the denominator for relative permeability calculation for each 

fluid flow phase is obtained by using Darcy’s Law: 

pA

Lq
K

total
ii





    (14) 

Where the 𝜇𝑖 is the viscosity for fluid I, 𝐿 is the length, Δ𝑃 represent the pressure drop 

between inlet and outlet along length direction, 𝐴  is the area of cross-section which 

perpendicular to the fluid flow direction, 𝐾  represent the absolute permeability of the 

system, 𝑞𝑖
𝑡𝑜𝑡𝑎𝑙 represent the total flow rate of fluid 𝑖. 

The conductance of fluid phase in the tube is calculated before calculating relative 

permeabilities. The conductance can be obtained by direct solve Navier-Stokes equations 

numerically or use the empirical correlations from numerical solutions, Miao et al. use 

Neural Network to predict hydraulic conductance from the Computation Fluid Dynamics 

(CFD) software COMSOL results. In this thesis, we are not focusing on conductance 

estimation, simple correlations and interpolations methods are used in our study. There are 

three conductance calculation equations for triangular, square and circular cross-section 

(Oren, Bakke, & Arntzen, 1998; Patzek & Silin, 2001; Piri, 2003)  



26.0 tritri
tri

AG
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

25623.0 sqrsqr
sqr

AG
g       (16) 



25.0 circir
cir

AG
g        (17) 

Where 𝐺 is the shape factor of the cross-section, 𝐴 is the area of the cross-section, μ is the 

viscosity of the fluid. The conductance factor here for convex polygons are obtained by 

interpolation of the three geometries mentioned above. The actual single-phase flow rate 

from the inlet to outlet within an individual tube is calculated by: 

P
L


g
q       (18) 

Where 𝑔 is the conductance, 𝐿 is the length of the tube and ΔP is the pressure difference 

between inlet and outlet of the capillary tube. 

2.5.2 Relative permeability calculations (including sw_area) 

The relative permeabilities for the specific fluid phase in a multi-phase flow system are 

obtained by dividing the phase flow rate in the system by the total flow rate when there is 

only this fluid flow in the system: 
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From the last section, we calculated the single-phase flow rate, and in multi-phase flow, 

conductance for each fluid phase can be obtained by various methods, the equation 

proposed by Hui & Blunt (M.-H. Hui & Blunt, 2000a, 2000b) is used in our study: 
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Where Acorner is the area of the corner occupied by water, 𝛼 is corner half angle, 𝜇 is 

viscosity of the fluid sitting at corners (here is water),  𝑓 will be zero if free boundary 

condition is considered between fluid-fluid contact interface, if no-flow boundary is 

considered here then 𝑓 is set to 1. In our calculation, we consider no-flow boundary at 

interface. 

Then the total conductance of water sitting at corners are obtained by summation of the 

conductance calculate by Eq. (24): 





n

i

i
cornertotalcorner gg

1
_     (24) 

The conductance of oil which sitting in the center of the tube is calculated by the equation 

from Eq. (15, 16, 17) with the interpolated factor value. 

Then the flow rate for each phase within an individual capillary tube can be calculated by 

Eq. (18) with given test pressure, relative permeability values for certain testing pressure 

are solved. When a series of testing pressures are given, the relative permeability curves 

will be obtained by a series invading test and properties calculation process. 

2.6 Neural Network training/prediction development 

2.6.1 Overview of Neural Network approach 

In our study, various Multi-Layer Perceptron (MLP) Neural Networks are created by 

utilizing Keras(Chollet & others, 2015)., which is running on top of open sourced 
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Google Tensorflow (Abadi et al., 2016) Neural Network framework, it provides powerful 

and flexible foundations and APIs for researchers and industry users based on creating a 

computation graph.  

Several customized pre-processing and post-processing modules are written for feature 

selection, data normalization, training visualization, model prediction and blind 

verification, prediction and calculation result comparison and plotting, and so forth. 

  

Figure 2.33 Schematic plot for Multi-Layer Perceptron (MLP) network 

 

Two type of Neural Network training and prediction patterns are built for our purpose: 

• Approach 1: Build Neural Network just for threshold capillary pressure prediction 

based on the input data which related to tube cross-section geometrical properties.  

 

• Approach 2: Trying to build Neural Network and predict threshold capillary 

pressures and water, oil relative permeabilities simultaneously without building two 

separate models. The first approach is relatively easy to do because the threshold 

capillary pressures are strongly related to the geometry of the cross-section areas 



43 
 

from the derivation in previous chapters, all bundle of parallel capillary tubes is 

independent of each other in terms of entry capillary pressure and invasion status.  

In such cases, simple machine learning or Neural Network is capable of capturing 

the correlations between input parameters and output threshold capillary pressures. 

However, relative permeabilities are generated from a series invasion tests based 

on a series testing pressures. Different testing pressure will result in a different 

number of capillary tubes that is invaded, and with increasing testing pressure, the 

water-oil configurations for those tubes have already been invaded will slightly 

change, so the real-time conductances are dynamically changing then led to 

changing flow rate and relative permeability values. Testing pressures must be one 

of the input features, but it is not ‘directly’ correlate with most of the inputs, such 

as the geometrical properties of the polygons, also the number of testing pressure 

does not necessarily have the same shape with other inputs, i.e., they are not 

compatible with each other as the same input dataset.  

The first approach is straightforward and only for threshold capillary pressure estimation, 

after some Neural Network experiments, we obtained satisfactory results, but not capable 

of tackling the relative permeability problems. In this thesis, we are mainly focused on the 

second approach and present a potential way to reach the point. 

 

2.6.2 Training data formulation for Pcow, Kro, Krw prediction 

(1) Ideas 

For approach 1, there’s no need to reconstruct the original training dataset because of the 

features and properties of each one of the capillary tubes are independent of others. 
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For approach 2, the overall idea is to ‘discretize’ the original datasets in terms of the testing 

pressures for the system. In order to force Neural Network to learn the non-linear behaviors 

among inputs and outputs, input dataset is modified to standard Neural Network input 

format that each one of the polygon properties data line will be copied and repeat then 

correspond to every assigned testing pressure, and then calculate the 𝑃𝑐𝑜𝑤, 𝐾𝑟𝑜 and 𝐾𝑟𝑤, 

water-saturated area (𝑆𝑤_𝑎𝑟𝑒𝑎), water-saturated area fraction (𝑆𝑤_𝑓𝑟𝑎𝑐) for each one of 

the ‘tube, test pressure combination’. The reconstructed training dataset could be huge and 

direct calculation for that huge dataset is extremely computation expensive, so that we use 

random sampling method to extract certain number of polygons from original dataset and 

calculate all ‘discretized.’ properties as part of training data. Perform sampling at 

satisfactory times, e.g. extract 100 tubes from 5000 original tubes and calculate related 

properties then combine all results as final training dataset after doing 1000 times of 

sampling. Properties calculation on small number of capillary tubes is much faster than in 

larger dataset, so each one of the ‘sampling-capillary pressure calculation -relative 

permeability related parameters calculation’ iteration cost few seconds on my desktop 

computer, huge training dataset is constructed in small amount of time which might be 

enough in terms of individual capillary tube coverage and ‘tube - test pressure combination’ 

coverage. 

Note that the reason for creating two intermediate predicting variables 𝑆𝑤_𝑎𝑟𝑒𝑎  and 

𝑆𝑤_𝑓𝑟𝑎𝑐 is that the water saturated area within one tube is a very small number but water 

saturation (fraction) is between 0 and 1, the neural network performance will be evaluate 

when dealing with values in different order of magnitude. 
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 (2) Procedures and results 

The strategy and procedure for sampling in this study are randomly select 100 capillary 

tubes from all capillary tubes, and calculate the corresponding threshold capillary pressures. 

After finding the minimum and maximum threshold capillary pressures within the selected 

samples, a 100 evenly separated testing pressure array will be created based on the two 

values. Relative permeability related properties are calculated based on the 100 selected 

capillary tubes and the 100 testing pressures, then save all results into a specific data format. 

The program will randomly select another 100 tubes and repeat all process until 1000 

iterations reached. All results will be combined into one dataset as input for Neural 

Network training process. A dedicated application for such preprocessing and some post-

processing is developed to preprocess training/blind test datasets, see Figure 2.34. 

 

Figure 2.34 Snapshot of software tool for preprocessing and postprocessing 
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2.6.3 NN input features selection 

For approach 1, the output feature would be only 𝑃𝑐𝑜𝑤  (threshold capillary 

pressure), and the potential input parameters would be combination of geometrical 

properties of polygon cross-section area, namely, area (𝐴), perimeter (𝑃), number 

of edges/corners (𝑛), largest inscribed radius (𝑅𝑖𝑛), shape factor (𝑔_𝑐𝑐), elongation 

factor (𝑔_𝑒𝑙).  

For approach 2, besides all the input features mentioned in approach 1, the 

generated 𝑃𝑡𝑒𝑠𝑡 data array should be adding into the training dataset as well, also 

according to the ideas of approach 2 in previous section, 4 outputs were assigned 

to the training system: threshold capillary pressure 𝑃𝑐𝑜𝑤 , the oil flow rate for 

individual capillary tube at a specific testing pressure 𝑞𝑜, the water flow rate for 

individual capillary tube at specific testing pressure 𝑞𝑤 , and the actual water 

saturated cross-section area within individual capillary tube at specific testing 

pressure 𝑆𝑤_𝑎𝑟𝑒𝑎  or 𝑆𝑤_𝑓𝑟𝑎𝑐 . In such case 𝑃𝑐𝑜𝑤  and the rest 3 ‘discretized’ 

parameters can be combined and feed into Neural Network. 

 

2.6.4 Neural Network structure creation and activation functions 

For approach 1, we believe simple Neural Network structure is good enough to 

catch the correlations between input and output, but to validate our speculation, 3 

Neural Network model are generated, one base mode, one with wider hidden layer, 

one with wider and deeper hidden layers: 

• Model A1-T1-H [5]: Single hidden layer with five neurons, Training dataset 

No.1 is input for this model. (Figure 2.35) 
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Figure 2.35 Network structure for one hidden layer with 5 neurons 

 

• Model A1-T2-H [5]: Single hidden layer with 5 neurons, Training dataset 

No.2 is input for this model.  

•  Model A1-T1-H [10]: Single hidden layers with 10 neurons (Figure 2.36) 

 

Figure 2.36 Network structure for one hidden layer with 10 neurons 
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• Model A1-T1-H [5, 5] Two hidden layers with 5 neurons for each one of 

them (Figure 2.37) 

 

Figure 2.37 Network structure for two hidden layers and 5 neurons in each layer 

• Model A1-T1-H [10,10] Two hidden layers with 10 neurons for each one 

of them (Figure 2.38) 

 

Figure 2.38 Network structure for two hidden layers and 10 neurons in each layer 
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These 3 models are using all 6 input parameters as training data, a separate input 

data sensitive analysis is in 2.6.9. 

For approach 2, more complexity is adding into the system, and training dataset is 

significantly larger than the one in approach 1. We presume that more hidden layers 

with more neurons would produce better results. After some trial and errors, the 

results showed that the model with single hidden layer with fewer neurons still 

performs well (see the results in 2.6.9 sensitivity analysis). We present a network 

structure that produces better results with 3 hidden layers and 200, 100, 50 neurons 

respectively. Also in approach 2 we tried two schemes for 𝑆𝑤  training and 

prediction and created two models, which would result in 2 different post-

processing approaches:  

• Model A2-T1-H [200,100,50]-Sw_area 

In this model, besides the 𝑃𝑐𝑜𝑤 , 𝑞𝑜 , 𝑞𝑤  as output parameters, the actual 

water saturated area within individual capillary tube at specific testing 

pressure (𝑆𝑤_𝑎𝑟𝑒𝑎) was used as last output parameter during training and 

prediction process. Training dataset No.1 is input for this model. 

• Model A2-T2-H [200,100,50]-Sw_area 

Change training input to training dataset 2, rest of them are same with 

Model A2-T1-H [200,100,50]-Sw_area 

• Model A2-T1-H [200,100,50]-Sw_frac 

In this model, besides the 𝑃𝑐𝑜𝑤 , 𝑞𝑜 , 𝑞𝑤  as output parameters, the water 

saturated area fraction (𝑆𝑤_𝑓𝑟𝑎𝑐) was used as last output parameter during 

training and prediction process. Training dataset No.1 is input for this model. 
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• Model A2-T2-H [200,100,50]-Sw_frac 

Change training input to training dataset 2, rest of them are same with 

Model A2-T1-H [200,100,50]-Sw_frac 

 

In these two models, all 6 input parameters previously mentioned plus 𝑃𝑡𝑒𝑠𝑡 were 

used in training Neural Network, sensitivity analysis in terms of input parameters 

for approach 2 see section 2.6.9. 

The Neural Network structure for approach 2 is showing in Figure 2.38 (Due to 

space limitation, plot created with double hidden layers with 10 neurons in each 

one of the layers as the demonstration) 

 

Figure 2.39 Demonstration of network structure for approach 2 
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Another important setup needs to be done during Neural Network structure creation 

is to assign activation functions within each one of the layers except first input layer. 

Each one of the activation functions resides within in one neuron would do ‘input 

receiving - signal processing - forward result to next neuron’ working cycle during 

the training process. 

 

Figure 2.40 Simple schematic plot for activation function 

After multiplications and summations of inputs and weights, the corresponding 

activation function would behave like a ‘scaling’ function that re-scale the output 

values before forwarding information to neurons in next layer. Through this way, 

the non-linearities are introduced to the system which could be used to do 

approximation for any non-linear functions or non-linear system. 

Without activation functions, the feedforward process would become the results of 

linear functions, in other words, the outputs of each layer are a linear function of 

inputs from the previous layer, thereafter the inputs and outputs would of the Neural 

Network form the results of linear combinations which has poor performance for 

solving non-linear problems. For a typical regression problem in our study, there 

are three most popular activation functions used in Neural Network training: 
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• Sigmoid: Sigmoid activation function (Han & Moraga, 1995) is widely 

used activation function for quite a long period. See Eq. (25) and Figure 

2.40, the function would ‘re-scale’ input values into the range of 0 and 1. 

Sigmoid has been popularly used before but rarely used in today’s Neural 

Network structure because of the following disadvantages: 

(1) Gradient vanishing or exploding could be easily happened for Neural 

Network with more than 2 layers by using the Sigmoid function, so it 

worked well in previous one hidden layer network but failed in today’s 

deep neural network. 

(2) Non-zero-centered (output zero when the input is locating in the center 

of the range) is not suitable for maintaining training stability; the 

gradient updating process might suffering oscillations issues.  

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (25) 

 

 

 

 

Figure 2.41 Sigmoid and Tanh activation function 

• Tanh: Tanh activation function can be described as a ‘re-scaled’ version of 

the Sigmoid function, see Eq. (26) and Figure 2.40, the results from Tanh 

is scale to range from -1 to 1, the advantage of Tanh from Sigmoid is Tanh 
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is a zero-centered function which would produce more desirable non-

linearity than Sigmoid (Li, n.d.; Weisstein, n.d.)  

Tanh(𝑥) =  
2

1 + 𝑒−2𝑥
− 1 (26) 

 

• ReLU: Rectified Linear Unit (Relu) is one of the most popular activation 

functions used in Neural Networking training due to the simplicity, fast 

calculation scheme and stabilities (Glorot, Bordes, & Bengio, 2011; Maas 

et al., 2013). Compared to Tanh and Sigmoid function mentioned above, 

Relu functions has several advantages: 

(1) From the equation and function graph, Relu can be implemented by fast 

checking the threshold at zero, 𝑓(𝑥) = max (0, 𝑥) , zero will be 

produced when the input less than zero and 1 will be output when input 

is greater than 0. Without any relative computation expensive operations 

such as exponential operations in Sigmoid and Tanh functions, the 

overall computation would be much faster. 

(2) Relu function would result in much faster convergence speed regarding 

the gradient descent based optimizations, 6 times speedup compared to 

Tanh activation function was reported based on SGD optimizer 

(Krizhevsky, Sutskever, & Hinton, 2012).  

But one should be careful with controlling the learning rate when choose 

Relu as activation functions because the specific neuron might suffering 

‘deactivate’ or ‘die’ in some scenarios, such as when the neuron and Relu 

function are dealing with a large gradient which due to high learning rate, 

the unit may not be activated again then led to negative impact on the entire 
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Neural Network performance, so a small or moderate learning rate would 

produce better quality network even there is some learning speed decrease. 

𝑓(𝑥) = {
0, 𝑤ℎ𝑒𝑛 𝑥 < 0

𝑥, 𝑤ℎ𝑒𝑛  𝑥 ≥ 0
 (27) 

 

 

Figure 2.42 Rectified Linear Unit (ReLU) activation function and the training convergence 

comparison between ReLU and Tanh unit which shows 6x improvement (Krizhevsky et al., 2012; 

Li, n.d.) 

 

 

Figure 2.43 Comparison for Sigmoid, Tanh and ReLU activation function (Moujahid, 2016) 

 

Relu activation function is selected in all hidden layers within each one of the 

Neural Network models created. 
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2.6.5 Importing data preprocessing 

Preprocessing input data is necessary before feeding them into Neural Network. 

Multi-layer Perceptron Neural Network will adjust the weights by optimizing the 

gradients within each training iteration to obtain better fitting results.   

Before training, all the weights will be randomly initialized before training process. 

If the training input data is larger or even larger than several orders of magnitude 

compare to initial weights, also the weights and gradients calculations which 

involve lots of multiplication operations, the values would possibly decrese to a 

very small number, even computer is not capable of dealing with (then will be zero) 

when lots of weights are small number less than 1. On the other hand, many values 

greater than 1 present and been multiplied multiple times would result in a huge 

number, in such cases the Neural Network will encounter instability issues which 

described as gradients vanishing and/or gradients exploding (Nielsen, 2015). 

For those reasons mentioned above, the original input data usually been 

standardized or transform into a specific range, e.g., 0 to 1. In this thesis, a useful 

tool StandardScaler, MinMaxScaler in scikit-learn Python data mining, 

analysis, and machine learning package are used to preprocess all input  

data before training (Pedregosa & Varoquaux, 2011). Note that the keeping the 

scaler parameters or scaler instance is useful for inverse transforming after Neural 

Network prediction to obtain the actual predicting values. 
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2.6.6 Hyperparameter selections, NN training, and validation. 

Several hyperparameters need to be set before training: 

• Number of Epochs: Maximum number of training iterations, training will 

stop when the number is reached. For our study, 10 epochs are good enough. 

• Batch size: Number of input data samples that are passing through basic 

training cycle and updating gradients, in other words, partition big training 

task into small parts, which would result in less memory using and faster 

training process in most cases. 512 is used in this study. 

• Loss function: Defined to describe the errors for the current state of NN 

which will be incorporated with the optimizer to improve the NN 

performance during each training iteration. Many loss functions can be used 

in this task, most popular loss function for classification problem is Cross 

Entropy Loss (Goodfellow, Ian, Bengio, Yoshua, Courville, 2016), we use 

another popular loss function which mostly used in regression problem: 

Mean Squared Error or MSE loss function, 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖 −𝑛

𝑖=1

𝑎𝑐𝑡𝑢𝑎𝑙𝑖)
2  

• Optimizer: Various gradient descent based optimization algorithms can be 

applied to Neural Network training process (Ruder, 2016). The purpose of 

using optimizer is to find a set of optimal weights that minimize the errors 

(Described as loss function) within each training iteration. Widely used 

optimizer such as Stochastic gradient descent (SGD), RMSprop, Adagrad, 

Adaptive Moment Estimation (Adam) (Kingma & Ba, 2015), Adadelta, and 

so forth., could be applied to various Neural Network scenarios. Adam 
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optimizer is select for our study with default optimizer parameters from 

original article (Kingma & Ba, 2015),  

• Early stopping criteria: The training process will stop when specific 

criteria are reached, such as training R-Square score or testing R-Square 

scores, or some other customized stopping criteria can be defined to control 

the early stopping behavior. Testing R-Square score 0.995 is set as an input 

in this study. 

 

• Test fraction: Fraction value ranging from 0 to 1 which determine the 

splitting fraction of training and internal validation data, 0.2 is used in our 

study which means the program will randomly select 20% of input data as 

validation and rest of 80% data as training data. 

 

• Data scaling: Option to do preprocessing for input data or not, see detailed 

descriptions in section 2.6.5. Input data was scaled to range from 0 to 1 in 

this study.   

• Computing device options: Option for select computation device if the 

platform equipped with single or multiple Graphics Processing Unit (GPU), 

the computation expensive matrix multiplication can be transfer to GPU for 

massively parallel computing, also the number of CPU threads can be select 

for training if CPU only mode is selected.  

The Neural Network will start training after setting up all hyperparameters. Several 

customized callbacks functions will be activated during each training iteration 
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to monitor the entire training process such as writing customized logs, visualization 

and calculate R-Square scores based on each training-prediction cycle. The training 

model including all weights and Neural Network configurations will be saved 

automatically or manually as long as the training is complete. 

 

2.6.7 Post-processing for model prediction results 

 

Before doing blind tests, the dataset should also use same software application used 

in section 2.6.2 to preprocess input data but does not need to do sampling thousand 

times, just use the same ‘discretize’ scheme to run only once to reconstruct the input 

format which would be exactly same as training inputs. Meanwhile, the application 

will do all direct calculations to solve threshold capillary pressures for each one of 

the tubes and 𝐾𝑟𝑜, 𝐾𝑟𝑤 values for each one of the tubes at a series assigned testing 

pressures to prepare the calculated results for comparison later.  

The ‘MinMaxScaler’ instance with previously saved scaler parameters is loaded to 

normalize input data before feed into well trained Neural Network to make 

predictions. After preprocessing, the program will load previously saved model 

configuration file, Neural Network weights file and some other customized log file 

to construct a new computation graph then compile with same hyperparameters 

previously used. Now the compiled model can predict blind test results by feed 

preprocessed blind test input data. 

• Prediction for Approach 1: 𝑃𝑐𝑜𝑤 only: 
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In approach 1 one set of input polygon geometrical properties is correlated 

to one 𝑃𝑐𝑜𝑤, the prediction is independent with each other, so the only step 

need to be done after Neural Network prediction is inverse transform the 

results to actual value scale, then the comparison between predict values 

and calculate values can be easily perform. 

 

• Prediction for Approach 2: 𝑃𝑐𝑜𝑤, 𝑞𝑜, 𝑞𝑤, 𝑆𝑤_𝑎𝑟𝑒𝑎 or 𝑆𝑤_𝑓𝑟𝑎𝑐: 

In approach 2 the 𝑃𝑐𝑜𝑤 can be predicting directly as approach 1 does, for 𝑞𝑜 

and 𝑞𝑤, a series of summation calculations based on data grouped by each 

one of the testing pressure are performed to produce a list of summed 

oil/water flow rate at specific testing pressure. If the model train and predict 

𝑆𝑤_𝑎𝑟𝑒𝑎 , the overall water saturated area for entire system can be 

calculated by do summations for predict 𝑆𝑤_𝑎𝑟𝑒𝑎 based on data grouped by 

each one of the testing data directly; if 𝑆𝑤_𝑓𝑟𝑎𝑐 is selected to participate in 

training and predicting, the predict fraction array need to multiply the 

polygon areas array to obtain the actual water saturated area list, then do 

summation based on data grouped by each testing pressure. 

Finally, the predicted 𝑆𝑤 with respect to each testing pressure can be obtain 

by divide summation of all polygon areas. 

 

Before calculating the relative permeabilities, the fixed single oil/water flow 

rate values need to be calculated based on equation (28), (29) for each one 

of the individual tubes then do the summation. 
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𝑞𝑜𝑡𝑜𝑡𝑎𝑙
= ∑

𝑔𝑜
𝑖

𝐿𝑖
∗ Δ𝑃

𝑛

𝑖=1

 (28) 

 

𝑞𝑤𝑡𝑜𝑡𝑎𝑙
= ∑

𝑔𝑤
𝑖

𝐿𝑖
∗ Δ𝑃

𝑛

𝑖=1

(29) 

 Where 𝑔𝑜
𝑖  and 𝑔𝑤

𝑖  are calculate by: 

𝑔𝑜
𝑖 =

𝑔𝑓𝑎𝑐𝑡𝑜𝑟
𝑖 ∗ 𝑔𝑐𝑐

𝑖 ∗ 𝑎𝑟𝑒𝑎2

𝜇𝑜

(30) 

𝑔𝑤
𝑖 =

𝑔𝑓𝑎𝑐𝑡𝑜𝑟
𝑖 ∗ 𝑔𝑐𝑐

𝑖 ∗ 𝑎𝑟𝑒𝑎2

𝜇𝑤

(31) 

 To obtain 𝑔𝑓𝑎𝑐𝑡𝑜𝑟
𝑖 , some researchers use Computation Fluid Dynamics 

(CFD) method with commercial software such as COMSOL to get the values from 

direct solving the fluid flow equations (Miao et al., 2017b), also they tried to use 

Neural Network to predict hydraulic conductance. The main focusing of our study 

is trying to use Neural Network to predict 𝑃𝑐𝑜𝑤, 𝐾𝑟𝑜 and 𝐾𝑟𝑤 directly, so we jump 

over the conductance predicting and just perform simple interpolation to get the 

coefficients based on data proposed by another researcher (Piri, 2003). 

Then we will obtain the predict 𝐾𝑟𝑜, 𝐾𝑟𝑤 lists by: 

𝑝𝑟𝑒𝑑𝐾𝑟𝑜
𝑖 =

𝑝𝑟𝑒𝑑𝑞𝑜𝑃𝑖

𝑞𝑜𝑡𝑜𝑡𝑎𝑙

 (32) 

𝑝𝑟𝑒𝑑𝐾𝑟𝑤
𝑖 =

𝑝𝑟𝑒𝑑𝑞𝑤𝑃𝑖

𝑞𝑤𝑡𝑜𝑡𝑎𝑙

 (33) 
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The Neural Network prediction quality will be examined after finishing all 

postprocessing workflow, the coefficient of determination (𝑅2) (Miles, 2014) is 

calculated by 1 minus residual sum of square over total sum of square, see Eq. (34) 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖=0  

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=0

(34) 

 

Where �̅� is the mean of the predicted data (Eq. (35)), 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

(35) 

 

combined with actual and prediction data cross-plot are used for quality control, 

also the final prediction and calculate results comparison plots for  𝑃𝑐𝑜𝑤, 𝐾𝑟𝑜,  

𝐾𝑟𝑤 would be the useful verification. 

2.7 Neural Network structure analysis and adjustment 

Although some researchers proposed the Neural Network with one hidden layer can 

perform well, and can predict non-linear behaviors with arbitrary precision (Krose & Smagt, 

1996). However, with the development of deep learning theory (LeCun, Bengio, & Hinton, 

2015) and related applications which becoming more and more popular in many areas, 

wider and deeper network structure would be more representative for complex tasks. 

However, we would like to reduce the size of the network to save computation resources 

and avoid over-fitting if the prediction quality is still satisfied. The structure analysis is 

performed by changing different network structures to train and test the corresponding 

Neural Network for the same dataset and evaluate the performance. Same training 
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parameters and hyperparameters are used for the training and predicting tests; the only 

changes are network structures (Number of hidden layers and number of neurons). Since 

the training dataset 2 is more generalized than dataset 1 (see results from 3.1), training 

dataset 2 is select for network structure test for approach 1 and approach 2. 

2.8 Sensitivity analysis for input features 
 

The Artificial Neural Network or some other statistical model may have problems when 

dealing with a large number of input parameters or inputs. Not only we concern about the 

huge meaningless dataset will cost more computation time, but also there might have some 

close related input parameters in the dataset which might cause redundancy and over-fitting 

issues (May, Dandy, & Maier, 2011). We have a limited number of inputs in the study so 

that basic trial and error approaches are performed to address the impact on the network 

performance  

For approach 1, one hidden layer with 5 neurons MLP network is used for all models with 

different combinations of input parameters. For approach 2, one hidden layer with 10 

neurons MLP network is used for all testing models with a designed combination of input 

parameters. The training and validation accuracy scores would be the Neural Network 

performance indicator. 

We conducted the analysis based on keep output parameter(s) fixed and changing the input 

parameters, and evaluate the performance of different scenarios either for approach 1 or 

approach 2, see results in section 3.2. 
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2.9 Process speed analysis for conventional method and Neural Network 

approach 

The direct Multi-phase fluid flow simulation in pore-scale is time-consuming, the 

computation expensive process still needs high computation resource even in simplified 

pore-network modeling and simulation approaches, especially when more complex pore 

geometries, connectivity, and heterogeneity are introduced into the system.  

We compared the time used for conventional calculations and our Neural Network 

predictions for models with various size. The results in section 3.4 shows the benefits of 

our Neural Network approach  
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3. Results 

3.1 Results for 𝑷𝒄𝒐𝒘, 𝑲𝒓𝒐, 𝑲𝒓𝒘 validation of blind tests 

𝟑. 𝟏. 𝟏 𝑷𝒄𝒐𝒘 blind tests for Approach 1: (5 neurons single layer) 

(1) Model from training dataset 1(60,000 random polygons) 

 

Figure 3.1 Cross-plot and comparison plot for test data with shape factor from 0 to 0.04 for 

training dataset 1 by approach 1 

 

Figure 3.2 Cross-plot and comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 1 by approach 1 
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Figure 3.3 Cross-plot and comparison plot for test data with elongation factor from 0 to 0.5 for 

training dataset 1 by approach 1 

 

 

Figure 3.4 Cross-plot and comparison plot for test data with elongation factor from 0.5 to 1 for 

training dataset 1 by approach 1 
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Figure 3.5 Cross-plot and comparison plot for test data with 3,000 random polygons for training 

dataset 1 by approach 1 

 

As figures show above, most of the results from this model produced relatively 

good results in terms of either R-Square score (0.971-0.992) or the comparison 

plots, the overall correlation trends between input geometrical properties and 𝑃𝑐𝑜𝑤 

are learned, even there are some oscillations within the prediction scatter points. 

The results from test dataset 1 with smaller shape factor (0 - 0.04) has more 

oscillated scatter points and relative lower R-Square score (0.909), also obvious 

deviation from prediction and actual at high 𝑃𝑐𝑜𝑤 section can be found. One of the 

reasonable explanation is that the training dataset 1 contains all random polygons 

and most of them has the shape factor around center of the range (around 0.04), less 

number of polygons with ‘non-circular’ shape will lead to less representative of the 

trained Neural Network. 
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(2) Model from training dataset 2 

 

Figure 3.6 Cross-plot and comparison plot for test data with shape factor from 0 to 0.04 for 

training dataset 2 by approach 1 

 

 

Figure 3.7 Cross-plot and comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 2 by approach 1 
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Figure 3.8 Cross-plot and comparison plot for test data with elongation factor from 0 to 0.5 for 

training dataset 2 by approach 1 

 

Figure 3.9 Cross-plot and comparison plot for test data with elongation factor from 0.5 to 1 for 

training dataset 2 by approach 1 
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Figure 3.10 Cross-plot and comparison plot for test data with 3,000 random polygons for training 

dataset 2 by approach 1 

 

The results from test dataset 1 is improved somewhat confirmed the assumption 

from previous blind test for test dataset 1, but the rest of the blind verifications 

appeared to be slightly degradation of predicting quality which is believed due to 

the ‘non-smoothness’ properties distribution of training dataset 2 (see Figure 2.8-

2.9) 

 

𝟑. 𝟏. 𝟐 𝑷𝒄𝒐𝒘, 𝑲𝒓𝒐, 𝑲𝒓𝒘 blind tests for Approach 2: (3 hidden layers, [200,100,50]) 

(1) Model from training dataset 1(60,000 random polygons) 

(a) Output parameter include 𝑆𝑤_𝑎𝑟𝑒𝑎 
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Figure 3.11 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0 to 0.04 for 

training dataset 1 by approach 2 (Sw_area in output) 

 

Figure 3.12 Pcow comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.13 Kro/Krw comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.14 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0.04 to 0.07958 

for training dataset 1 by approach 2 (Sw_area in output) 

 

Figure 3.15 Pcow comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.16 Kro/Krw comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 1 by approach 2 (Sw_area in output) 

 

Figure 3.17 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0 to 0.5 for 

training dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.18 Pcow comparison plot for test data with elongation factor from 0 to 0.5 for training 

dataset 1 by approach 2 (Sw_area in output) 

 

Figure 3.19 Kro/Krw comparison plot for test data with elongation factor from 0 to 0.5 for 

training dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.20 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0.5 to 1 for 

training dataset 1 by approach 2 (Sw_area in output) 

 

Figure 3.21 Pcow comparison plot for test data with elongation factor from 0.5 to 1 for training 

dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.22 Kro/Krw comparison plot for test data with elongation factor from 0.5 to 1 for 

training dataset 1 by approach 2 (Sw_area in output) 

 

Figure 3.23 Pcow, Sw, Kro, Krw cross-plot for test data with all random polygons for training 

dataset 1 by approach 2 (Sw_area in output) 
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Figure 3.24 Pcow comparison plot for test data with all random polygons for training dataset 1 by 

approach 2 (Sw_area in output) 

 

Figure 3.25 Kro/Krw comparison plot for test data with all random polygons for training dataset 1 

by approach 2 (Sw_area in output) 
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Five sets of plots above represent the blind verification results by model from 

training dataset 1 in approach 2 with 𝑆𝑤_𝑎𝑟𝑒𝑎  as one of the output parameter. 

Similarly, relative bad results can be found in results from test dataset 1, low R-

Square score for 𝐾𝑟𝑤  (0.4863), good in R-Square score for 𝑃𝑐𝑜𝑤  but obvious 

deviation in comparison plot (Figure 3.12), the predict relative permeability curves 

are not acceptable as well (Figure 3.13). 

Also for the results from test dataset 4 (elongation factor belongs to (0.5,1)) shows 

the slightly worse than rest of the test data prediction (Figure 3.21 and Figure 3.22) 

can also due to the training dataset is not contain enough polygons with ‘more 

elongated’ polygons. Notably, the predictions of 𝑃𝑐𝑜𝑤 in approach 2 are much better 

than in approach 1 in terms of the final comparison plots  

 

(b) Output parameter include 𝑆𝑤_𝑓𝑟𝑎𝑐 
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Figure 3.26 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0 to 0.04 for 

training dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.27 Pcow comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 1 by approach 2 (Sw_frac in output) 
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Figure 3.28 Kro/Krw comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.29 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0.04 to 0.07958 

for training dataset 1 by approach 2 (Sw_frac in output) 
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Figure 3.30 Pcow comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.31 Kro/Krw comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 1 by approach 2 (Sw_frac in output) 
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Figure 3.32 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0 to 0.5 for 

training dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.33 Pcow comparison plot for test data with elongation factor from 0 to 0.5 for training 

dataset 1 by approach 2 (Sw_frac in output) 



83 
 

 

Figure 3.34 Kro/Krw comparison plot for test data with elongation factor from 0 to 0.5 for 

training dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.35 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0.5 to 1 for 

training dataset 1 by approach 2 (Sw_frac in output) 
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Figure 3.36 Pcow comparison plot for test data with elongation factor from 0.5 to 1 for training 

dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.37 Kro/Krw comparison plot for test data with elongation factor from 0.5 to 1 for 

training dataset 1 by approach 2 (Sw_frac in output) 
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Figure 3.38 Pcow, Sw, Kro, Krw cross-plot for test data with all random polygons for training 

dataset 1 by approach 2 (Sw_frac in output) 

 

Figure 3.39 Pcow comparison plot for test data with all random polygons for training dataset 1 by 

approach 2 (Sw_frac in output) 
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Figure 3.40 Kro/Krw comparison plot for test data with all random polygons for training dataset 1 

by approach 2 (Sw_frac in output) 

By test using 𝑆𝑤_𝑓𝑟𝑎𝑐 as one of the output parameter instead of train and predict 𝑆𝑤_𝑎𝑟𝑒𝑎, 

we found that the results from this approach is worse than 𝑆𝑤_𝑎𝑟𝑒𝑎 approach especially in 

predicting 𝑆𝑤, 𝐾𝑟𝑜, 𝐾𝑟𝑤. 
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(2) Model from training dataset 2 

(i) Output parameter include 𝑆𝑤_𝑎𝑟𝑒𝑎 

 

Figure 3.41 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0 to 0.04 for 

training dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.42 Pcow comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 2 by approach 2 (Sw_area in output) 

 

Figure 3.43 Kro/Krw comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.44 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0.04 to 0.07958 

for training dataset 2 by approach 2 (Sw_area in output) 

 

Figure 3.45 Pcow comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.46 Kro/Krw comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 2 by approach 2 (Sw_area in output) 

 

Figure 3.47 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0 to 0.5 for 

training dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.48 Pcow comparison plot for test data with elongation factor from 0 to 0.5 for training 

dataset 2 by approach 2 (Sw_area in output) 

 

Figure 3.49 Kro/Krw comparison plot for test data with elongation factor from 0 to 0.5 for 

training dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.50 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0.5 to 1 for 

training dataset 2 by approach 2 (Sw_area in output) 

 

Figure 3.51 Pcow comparison plot for test data with elongation factor from 0.5 to 1 for training 

dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.52 Kro/Krw comparison plot for test data with elongation factor from 0.5 to 1 for 

training dataset 2 by approach 2 (Sw_area in output) 

 

Figure 3.53 Pcow, Sw, Kro, Krw cross-plot for test data with all random polygons for training 

dataset 2 by approach 2 (Sw_area in output) 
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Figure 3.54 Pcow comparison plot for test data with all random polygons for training dataset 2 by 

approach 2 (Sw_area in output) 

 

Figure 3.55 Kro/Krw comparison plot for test data with all random polygons for training dataset 2 

by approach 2 (Sw_area in output) 
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The Neural Network model from training dataset 2 performed better the model from 

training dataset 1 as illustrated by the figures above. The 𝑃𝑐𝑜𝑤 predictions are desirable for 

all blind testing datasets. Results from blind test dataset 2, 3, 5 are showing nice match in 

terms of the 𝑆𝑤 , 𝐾𝑟𝑜  and 𝐾𝑟𝑤  prediction, for test dataset 1 and 4 which represent the 

samples with shape factor from 0 to 0.04 and elongation factor from 0.5 to 1.0 respectively, 

the latter one is acceptable and former one is not perfectly match but at the principle trend 

is catches by the model. 

  

 

(a) Output parameter include 𝑆𝑤_𝑓𝑟𝑎𝑐  

 

Figure 3.56 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0 to 0.04 for 

training dataset 2 by approach 2 (Sw_frac in output) 

 

 



96 
 

 

Figure 3.57 Pcow comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 2 by approach 2 (Sw_frac in output) 

 

 

Figure 3.58 Kro/Krw comparison plot for test data with shape factor from 0 to 0.04 for training 

dataset 2 by approach 2 (Sw_frac in output) 
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Figure 3.59 Pcow, Sw, Kro, Krw cross-plot for test data with shape factor from 0.04 to 0.07958 

for training dataset 2 by approach 2 (Sw_frac in output) 

 

Figure 3.60 Pcow comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 2 by approach 2 (Sw_frac in output) 
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Figure 3.61 Kro/Krw comparison plot for test data with shape factor from 0.04 to 0.07958 for 

training dataset 2 by approach 2 (Sw_frac in output) 

 

Figure 3.62 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0 to 0.5 for 

training dataset 2 by approach 2 (Sw_frac in output) 
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Figure 3.63 Pcow comparison plot for test data with elongation factor from 0 to 0.5 for training 

dataset 2 by approach 2 (Sw_frac in output) 

 

Figure 3.64 Kro/Krw comparison plot for test data with elongation factor from 0 to 0.5 for 

training dataset 2 by approach 2 (Sw_frac in output) 
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Figure 3.65 Pcow, Sw, Kro, Krw cross-plot for test data with elongation factor from 0.5 to 1 for 

training dataset 2 by approach 2 (Sw_frac in output) 

 

Figure 3.66 Pcow comparison plot for test data with elongation factor from 0.5 to 1 for training 

dataset 2 by approach 2 (Sw_frac in output) 
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Figure 3.67 Kro/Krw comparison plot for test data with elongation factor from 0.5 to 1 for 

training dataset 2 by approach 2 (Sw_frac in output) 

 

Figure 3.68 Pcow, Sw, Kro, Krw cross-plot for test data with all random polygons for training 

dataset 2 by approach 2 (Sw_frac in output) 
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Figure 3.69 Pcow comparison plot for test data with all random polygons for training dataset 2 by 

approach 2 (Sw_frac in output) 

 

Figure 3.70 Kro/Krw comparison plot for test data with all random polygons for training dataset 2 

by approach 2 (Sw_frac in output) 
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Compared to the model from training dataset 2 by approach 2 and using 𝑆𝑤_𝑎𝑟𝑒𝑎 as one 

of the output to calculate final water saturation and relative permeabilities, the results from 

model using 𝑆𝑤_𝑓𝑟𝑎𝑐 shows no advantages in terms of 𝑆𝑤, 𝐾𝑟𝑜 and 𝐾𝑟𝑤 predictions as all 

blind test results show different degrees of deviation. So, the utilizing 𝑆𝑤_𝑓𝑟𝑎𝑐 as one of 

the outputs in approach 2 is deprecated at this point.  

Also, the Neural Network trained by training dataset 2 is more capable of predicting not 

only 𝑃𝑐𝑜𝑤  in approach 1, but also 𝑃𝑐𝑜𝑤 , 𝑆𝑤 , 𝐾𝑟𝑜  and 𝐾𝑟𝑤  in approach 2. The following 

Neural Network structure analysis and input parameter sensitivity analysis will base on the 

model from training dataset 2 in both approaches. 

3.2 Results of Neural Network structure analysis and adjustment 

3.2.1 For approach 1 with training dataset 2 

Five Neural Network structures were tested by using same other parameters and training 

dataset. In specific, the structures we tested include: simple single layer 5 neurons, wider 

single layer 10 neurons, deeper double layers with 5 neurons for each one of the layer, 

wider and deeper double layers with 10 neurons for each one of the layer, and the larger 3 

layers network with [200, 100, 50] neurons. 

From the overall accuracy versus training epochs for different network structure plot, as 

we can see the final accuracy is slightly increased when the network is becoming wider 

and deeper. Larger network will produce relatively high accuracy during initial training 

iterations, but when some point is reached the results can be a little bit oscillated. The 

network with smaller size is producing relative stable training accuracy the also final 
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accuracy is acceptable such as the network with double layers and 10 neurons for each one 

of the layer. 

 In approach 1 with training dataset 2, the following 5 MLP network structures were tested: 

• Simple one hidden layer with 5 neurons [5] 

• Wider: One hidden layer with 10 neurons [10] 

• Deeper: Two hidden layers with 5 neurons in each layer [5, 5] 

• Wider and deeper: Two hidden layers with 10 neurons in each layer [10, 10] 

• Larger network (Previous training network) [200, 100, 50] 

The training and validation results show in Figure 3.71, as we can see from the plot, the 

performance of network with only one hidden layer is good even with only 5 neurons, and 

reached 0.9809 R-Square at 10 epochs, wider network with 10 neurons is converging 

slightly faster and the final accuracy is slightly better than the one with 5 neurons. 

Comparison of the network [5] and [5, 5] shows deeper network is performing better than 

single layer network and [5, 5] is more stable than the single layer with 10 neurons. The 

largest network [200, 100, 50] has the fastest converging speed and is reaching best 

validation accuracy in only 2-3 epochs and starting oscillating. The network [10, 10] is 

showing almost identical performance with largest network and more stable and smooth 

converging steps. So, for approach 1 the MLP network with two hidden layers and 10 

neurons each are good enough for 𝑃_𝑐𝑜𝑤 estimation. 
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Network Structure Input parameters Best train 𝑹𝟐 Best validation 𝑹𝟐 

[5] All 0.9810 0.9809 

[10] All 0.9856 0.9862 

[5, 5] All 0.9861 0.9863 

[10, 10] All 0.9897 0.9899 

[200, 100, 50] All 0.9885 0.9921 

Table 3.1 A summary of the best training and validation R-Square score for different network 

structures in approach 1 with training dataset 2 

 

Figure 3.71 Comparison of validation accuracy for different network structures in approach 1 
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• One hidden layer with 50 neurons [50] 

• One hidden layer with 100 neurons [100] 

• Two hidden layers with 100 neurons each [100, 100] 

• Three hidden layers with 200, 100, 50 neurons [200, 100, 50] 

From the comparison plot, apparently, the simple network with one hidden layer contains 

5 neurons produced worst results (best R-Square is 0.8779) compared to other networks, 

due to the increased complexity of the 2nd approach, the simple network is not very good 

at capturing the non-linearity in the system. However, the wider network with 10 neurons 

in one within one hidden layer shows significant improvement with around 0.9611 final R-

Square value. It is not hard to find out that when the network is becoming wider and deeper, 

the prediction accuracy is increasing correspondingly, and most of them are showing 

relatively stable and smooth training process. The best results are from the largest network 

structure [200, 100, 50] which produced the best 0.9914 final R-Square value. The 

following network model prediction results are depicting the impact from network structure 

to prediction quality, see Figure 3.72. 

Network Structure Input parameters Best train 𝑹𝟐 Best validation 𝑹𝟐 

[5] All 0.8784 0.8779 

[10] All 0.9605 0.9611 

[10, 10] All 0.9752 0.9767 

[20] All 0.9655 0.9661 

[50] All 0.9815 0.9813 

[100] All 0.9837 0.9832 

[100, 100] All 0.9905 0.9900 

[200, 100, 50] All 0.9904 0.9914 

Table 3.2 A summary of the best training and validation R-Square scores for different network 

structures in approach 2 with training dataset 2 
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Figure 3.72 Comparison of validation accuracy for different network structures in approach 2 

3.3 Results of sensitivity analysis for input features 

3.3.1 For approach 1 with training dataset 2 

One hidden layer with 5 neurons MLP network is used for this test, and various input 

parameter combinations are tested in the Neural Network training and prediction process; 

Table 3.3 shows the results of the training and validation accuracy scores for the 

combinations we tested in approach 1, and sorted by best validation 𝑅2 scores. 
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Network Structure Input parameters Best train 𝑹𝟐 Best validation 𝑹𝟐 

[5] Remove A 0.9829 0.9821 

[5] Remove R 0.9817 0.981 

[5] g_el,A 0.9812 0.9806 

[5] Remove L 0.9804 0.9804 

[5] A,E,R 0.9809 0.9804 

[5] A,L,R 0.9799 0.979 

[5] All 0.9795 0.9782 

[5] Remove g_el 0.9786 0.9777 

[5] A,E,L,R 0.9773 0.9773 

[5] E,L,R 0.9771 0.9762 

[5] g_cc,g_el,L 0.9759 0.9753 

[5] Remove E 0.9766 0.973 

[5] g_cc,R 0.9722 0.9725 

[5] g_cc,g_el,R 0.9707 0.9716 

[5] g_cc,A 0.9714 0.9712 

[5] Remove g_cc 0.9682 0.9693 

[5] g_cc,L 0.9692 0.9669 

[5] g_el,L 0.9638 0.963 

[5] A,E,L 0.9572 0.958 

[5] g_el,R 0.9557 0.9558 

[5] g_cc,g_el,A 0.9497 0.9487 

[5] g_cc,E 0.8665 0.8664 

[5] g_cc,g_el 0.8667 0.8654 

[5] g_cc,g_el,E 0.8634 0.8628 

[5] g_cc 0.8629 0.8613 

[5] g_el 0.8576 0.8584 

[5] g_el,E 0.8416 0.8386 

Table 3.3 A summary of the best training and validation R-Square scores for different input 

parameters combination in approach 1 with training dataset 2 (A is area, R is inscribed radius, E 



109 
 

is number of edges, L is perimeter, g_cc is shape factor, g_el is elongation factor, and the results 

are sorted by Best validation 𝑅2). 

 

Results in Table 3.3 illustrated the impact to the training and validation accuracy from 

various input parameters in approach 1. Select all inputs is not producing the best results 

which mean there is might have redundancy within the dataset. The model with only shape 

factor (g_cc) and elongation factor (g_el) shows relative poor performance (0.8654 R-

Square scores for validation). After additional parameters are added to the model, the 

performance increased as expected: adding perimeter shows the best result (0.9753), and 

inscribed radius (0.9716), Area (0.9487), but when adding ‘number of edges’ the result was 

even worse. When we only consider the inputs without shape factor and elongation factor 

such as ‘A, E, R’ combination, ‘A, L, R’ combination or ‘A, E, L, R’ combination, the 

results are relative good: 0.9804, 0.9790, 0.9773 correspondingly. Another observation is 

that the model with elongation factor (g_el) and area (A) is giving us 0.9806 final validation 

R-Square score by only two inputs which are more desired model regarding computation 

efficiency and performance. 

Approach 1, inputs without shape factor and elongation factor are good for most cases 

because of the correlations between the factors and geometrical properties. Model with 

elongation factor (g_el), Area (A) input combination produce very good results for only 

two input parameters. The number of edges is not giving positive contribution, even 

negative impact on results in some cases. 
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3.3.2 For approach 2 with training dataset 2 

One hidden layer with 10 neurons MLP network is used for input sensitivity analysis in 

approach 2, the Table 3.4 shows the results of the training and validation accuracy scores 

which are sorted by best validation 𝑅2 scores. 

Network Structure Input parameters Best train 𝑹𝟐 Best validation 𝑹𝟐 

[10] All 0.9803 0.9805 

[10] Remove A 0.9799 0.98 

[10] g_cc,g_el,A, R, p_test 0.9691 0.9696 

[10] Remove E 0.9699 0.9696 

[10] Remove R 0.9700 0.9691 

[10] Remove L 0.9638 0.9639 

[10] g_cc,g_el,A, E, p_test 0.9589 0.9592 

[10] g_cc,g_el,A, p_test 0.954 0.9544 

[10] g_el,A,p_test 0.9417 0.9417 

[10] g_cc,g_el,L, p_test 0.9361 0.9372 

[10] g_el,A,,R, p_test 0.919 0.9195 

[10] g_cc,A,p_test 0.9145 0.9172 

[10] g_cc,g_el,E,R,p_test 0.8668 0.8667 

[10] g_cc,g_el,R,p_test 0.8661 0.8664 

[10] g_el,R,p_test 0.8428 0.8432 

[10] g_cc, g_el,E, L, p_test 0.7779 0.778 

[10] g_cc, R, p_test 0.7399 0.7399 

[10] g_cc, g_el, p_test 0.7262 0.7257 

[10] g_cc, g_el,E, p_test 0.7196 0.7195 

Table 3.4 A summary of the best training and validation R-Square scores for different input 

parameters combination in approach 2 with training dataset 2 (A is area, R is inscribed radius, E 

is number of edges, L is perimeter, g_cc is shape factor, g_el is elongation factor, p_test is the 

testing pressure for Kro, Krw calculation and the results are sorted by best validation 𝑅2) 

 

Results in Table 3.4 shows the impact on the training and validation accuracy from various 

input parameters in approach 2. We found the best result was given by the model with all 
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input parameters (0.9805 final validation R-Square score). The models with the removal of 

one or two parameters from all inputs have the least impact on the overall validation 

accuracy scores. A similar trend with the test in approach 1 can be found that the model 

inputs with only shape factor and elongation factor do not perform well unless at least one 

parameter is added to describe somewhat the size-related information, such as when 

inscribed radius (R) is added, the score increased to 0.8664 from 0.7257. Moreover, almost 

nothing improved when the number of edges (E) is added to this model, this is similar to 

the results in approach 1, the number of edges is not essential in our training process. 

Another notable model is the ‘g_el, A, p_test’ combination which contains only three input 

parameters but performed well with validation R-Square of 0.9417; the similar trend can 

be found in the test for approach 1.  

3.4 Comparison of process speed between Neural Network and direct 

calculation approach 

The computation time is growing fast when the pore network is becoming more 

complicated, but it is still acceptable for properties calculation in the small-scale model. 

Regarding Neural Network approaches, more time will be used in preprocessing, 

training/validation, and so forth. When the model is big enough, the Neural Network 

overhead can be neglected. Table 3.5 shows the direct calculation and Neural Network 

speed test results for different model scale. Figure 3.73 shows the relative speed-up by 

using Neural Network predictions compared to direct calculations. 
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Number of tubes Tubes*Test Pressures 
Calculation time used 

for 𝑷𝒄𝒐𝒘, 𝑲𝒓𝒐, 𝑲𝒓𝒘 

NN Predict time used 

for 𝑷𝒄𝒐𝒘, 𝑲𝒓𝒐, 𝑲𝒓𝒘 

100  20,000  1 1 

500  100,000  8 3 

1,000  200,000  17 5 

2,000  400,000  41 9 

3,000  600,000  73 13 

5,000  1,000,000  99 21 

7,000  1,400,000  162 30 

10,000  2,000,000  239 42 

20,000  4,000,000  562 86 

50,000  10,000,000  1831 212 

100,000  20,000,000  4699 424 

Table 3.5 A summary of the comparison for conventional calculation speed and Neural Network 

prediction speed based on 200 testing pressures and various number of capillary tubes 

 

 

Figure 3.73 Speedup results for NN predictions compared to conventional calculations 
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From the above results, when the model is large, the conventional direct calculation 

is very time-consuming even for such a simple model with a bundle of the parallel 

capillary, not to mention the complex 3D pore-throats model with more 

connectivity.The computation time will grow exponentially with the increasing 

complexities. However, from our results, the Neural Network prediction time will 

increase just linearly with the increasing size of the model, and predict much faster 

even without help from multi-cores CPU parallel computing and GPU.  

 

4. Discussion and summary 

4.1 Summary 

• Training dataset No.2 is more representative in most cases (either in approach 1 or 

approach 2) due to the better coverage in terms of the polygon geometries. As a 

result, the training data preparation is critical for generating a generalize NN model. 

• From the results comparison plots, the model with 𝑆𝑤_𝑎𝑟𝑒𝑎 as one of output is 

perform better than the model with 𝑆𝑤_𝑓𝑟𝑎𝑐 as one of the output in approach 2. 

This observation shows the Neural Network with proper data preprocessing can 

deal with very small input and output values. 

• In approach 1, the problem is relatively simple compared to approach 2 because of 

the inputs corresponding to one output (𝑃𝑐𝑜𝑤) explicitly, and they are independent 

from each other. As the result, one hidden layer MLP network is good enough for 

predicting capillary pressures with properly select input parameters, e.g. elongation 

factor, and area of the cross-section combination. But the predicting results 

oscillation can be observed compared to calculated pressures even the overall 

accuracy is acceptable.  

• In approach 2, the problem is relatively complicated due to the relative permeability 

curves are generated by predicting intermediate parameters such as 𝑆𝑤_𝑎𝑟𝑒𝑎 (or 

𝑆𝑤_𝑓𝑟𝑎𝑐), 𝑞𝑜, 𝑞𝑤 then convert them to final results, the Neural Network is trying 
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to ‘learn’ the behavior of multi-phase flow within capillary tube with specific 

geomeatry and at specific invading pressure, which contains more nonlinearity than 

the problem in approach 1. The overall results are acceptable by apply several 

strategies for training dataset creation, pre-processing and post-processing, and 

utilizing multiple hidden layers MLP networks even single hidden layer network 

with all input parameters. The models in approach 2 can predict capillary pressures 

and intermediate parameters for relative permeabilities at same time, also the results 

for 𝑃𝑐𝑜𝑤 is more stable and smooth than the results from approach 1. 

• Data pre-processing is critical for Neural Network modeling and training. 

Appropriate pre-processing is helping Neural Network to avoid some converging 

issues, for example, the strategy for creating training dataset in approach 2 

improved the robustness of the network prediction, also the pre-scaling of the 

training and prediction dataset will help stabling training process when dealing with 

very small values. 

• The sophisticated problems may need multiple hidden layers network or even some 

new network structures. However, regarding the complexity in this study, one or 

two hidden layers MLP networks with specific data pre-processing, post-processing 

and hyperparameter tuning are satisfactory, more layers and more neurons may 

increase the expressive power of Neural Network, but may introduce unnecessary 

over-fitting issues and consume more computation resources. 

• Overall R-Square scores or some other accuracy indicator such as Mean Squared 

Error (MSE) are essential indicators for Neural Network prediction quality control, 

but the final predictions versus actual data comparison and comparison plot would 

be a better standard for the final examination. 
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4.2 Future works 

• Apply the workflow to imbibition process in pore-scale modeling and simulation. 

• Extend work to 3 phase flows 

• Extend work to concave polygons 

• Neural Network prediction for more complex ‘pore-throat-pore’ scenarios in 3D. 

• The wettability impact and wetting layer formation and collapse during 

displacements will be added to our study. 

• Data preprocessing analysis (clustering, dimensionality reduction, and so forth.) to 

reduce the redundant information within training dataset, will lead to more efficient 

training process without some unnecessary noise. 

• Improve the random polygon generator:  

o 1. Improve efficiency by introducing parallel computing scheme. 

o 2. Improve the flexibility by adding more customized constraints that can 

mimic any geometrical properties distribution from real rock samples.  

o 3. May extend to 3D to generate more complex geometries in terms of pore 

network modeling. 

o 4. Add the function to create random concave polygons and calculate related 

characteristics.  

• Build a flexible Neural Network research framework customized for pore network 

modeling and simulation of multi-phase fluid flow through porous media.  

  



116 
 

5. References 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., … Zheng, X. (2016). 

TensorFlow : A System for Large-Scale Machine Learning This paper is included in the 

Proceedings of the TensorFlow : A system for large-scale machine learning. Proc 12th 

USENIX Conference on Operating Systems Design and Implementation, 272–283. 

Aghaei, A., & Piri, M. (2015). Direct pore-to-core up-scaling of displacement processes: 

Dynamic pore network modeling and experimentation. Journal of Hydrology, 522, 488–

509. https://doi.org/10.1016/j.jhydrol.2015.01.004 

Ahmadi, M. A., Zendehboudi, S., Dusseault, M. B., & Chatzis, I. (2016). Evolving simple-to-use 

method to determine water–oil relative permeability in petroleum reservoirs. Petroleum, 

2(1), 67–78. https://doi.org/10.1016/j.petlm.2015.07.008 

Al-Alawi, S., Kalam, M. Z., & Al-Mukheini, M. (1996). Application of artificial neural networks 

to predict wettability and relative permeability of sandstone rocks. Engineering Journal of 

the University of Qatar, 9, 29–43. 

Al-Bulushi, N. I., King, P. R., Blunt, M. J., & Kraaijveld, M. (2012). Artificial neural networks 

workflow and its application in the petroleum industry. Neural Computing and Applications, 

21(3), 409–421. https://doi.org/10.1007/s00521-010-0501-6 

Alizadeh, A. H., & Piri, M. (2014). Three-phase flow in porous media: A review of experimental 

studies on relative permeability. Reviews of Geophysics. 

https://doi.org/10.1002/2013RG000433 

Arshadi, M., Zolfaghari, A., Piri, M., Al-Muntasheri, G. A., & Sayed, M. (2017). The effect of 

deformation on two-phase flow through proppant-packed fractured shale samples: A micro-

scale experimental investigation. Advances in Water Resources, 105, 108–131. 

https://doi.org/10.1016/j.advwatres.2017.04.022 

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in Machine 

Learning (Vol. 2). https://doi.org/10.1561/2200000006 

Blunt, M. J. (1998). Physically-based network modeling of multiphase flow in intermediate-wet 

porous media. Journal of Petroleum Science and Engineering, 20(3–4), 117–125. 

https://doi.org/10.1016/S0920-4105(98)00010-2 

Blunt, M. J. (2017). Multiphase Flow in Permeable Media A Pore-Scale Perspective. Cambridge 

University Press. 

Bruyelle, J., & Guérillot, D. (2014). Neural networks and their derivatives for history matching 

and reservoir optimization problems. Computational Geosciences, 18(3–4), 549–561. 

https://doi.org/10.1007/s10596-013-9390-y 

Chaki, S., Verma, A. K., Routray, A., Mohanty, W. K., & Jenamani, M. (2014). Well tops guided 

prediction of reservoir properties using modular neural network concept: A case study from 

western onshore, India. Journal of Petroleum Science and Engineering, 123, 155–163. 

https://doi.org/10.1016/j.petrol.2014.06.019 

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, 

Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical 

Machine Translation. https://doi.org/10.3115/v1/D14-1179 



117 
 

Chollet, F., & others. (2015). Keras. GitHub. 

Dong, H. (2007). Micro-Ct Imaging and Pore Network Extraction a Dissertation Submitted To 

the Department of Earth Science and Engineering of Imperial College Lodon in Partial 

Fulfilment of the Requirements for the Degree of, 1–213. 

Drla, D. E., Pope, G. A., Sepehrnoorl, K., & Texas, U. (1993). Three - Phase Gas / Oil / Brine 

Relative Permeabilities Measured Under C02 Flooding Conditions, (May), 143–150. 

Edris Joonaki, S. G. (2013). Prediction of Relative Permeability for Multiphase Flow in Fractured 

Oil Reservoirs by using a Soft Computing Approach. International Journal of Computer 

Applications, 73(16):45-(16), 45–55. https://doi.org/10.5120/12829-0286 

Fenwick, D., & Blunt, M. (1998). Network Modeling of Three-Phase Flow in Porous Media. SPE 

Journal, 3(1), 5–8. https://doi.org/10.2118/38881-PA 

Fenwick, D. H., & Blunt, M. J. (1998). Three-dimensional modeling of three phase imbibition 

and drainage. Advances in Water Resources, 21(2), 121–143. https://doi.org/10.1016/S0309-

1708(96)00037-1 

Frasconi, P., Gori, M., & Sperduti, A. (1998). A general framework for adaptive processing of 

data structures. IEEE Transactions on Neural Networks, 9(5), 768–786. 

https://doi.org/10.1109/72.712151 

G.E. Hinton and R. Salakhutdinov. (2006a). Reducing the Dimensionality of Data with Neural 

Networks, 313(July), 504–507. https://doi.org/10.1126/science.1127647 

G.E. Hinton and R. Salakhutdinov. (2006b). Reducing the Dimensionality of Data with Neural 

Networks, 313(July), 504–507. https://doi.org/10.1126/science.1127647 

Gesho, M., Zolfaghari, A., Piri, M., Pereira, F. (n.d.). Pore Network Extraction and Upscaling: A 

Big Data Approach. In CMWR Conference. Toronto ON: University of Toronto. 

Gholanlo, H. H., Amirpour, M., & Ahmadi, S. (2016). Estimation of water saturation by using 

radial based function artificial neural network in carbonate reservoir: A case study in Sarvak 

formation. Petroleum, 2(2), 166–170. https://doi.org/10.1016/j.petlm.2016.04.002 

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. AISTATS ’11: 

Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, 

15, 315–323. https://doi.org/10.1.1.208.6449 

Goodfellow, Ian, Bengio, Yoshua, Courville, A. (2016). Deep Learning. MIT Press. Retrieved 

from http://www.deeplearningbook.org/ 

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout 

Networks. https://doi.org/10.1093/bib/bbw065. 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. 

(2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems 

27, 2672–2680. https://doi.org/10.1017/CBO9781139058452 

Guler, B., Ertekin, T., & Grader, A. S. (1999). AN Artificial Neural Network baded relative 

permeability predictor, (99). 

Hamada, G. M., & Elshafei, M. A. (2010). Neural network prediction of porosity and 

permeability of heterogeneous gas sand reservoirs using NMR and conventional logs. Nafta, 

61(10), 451–465. 



118 
 

Han, J., & Moraga, C. (1995). The influence of the sigmoid function parameters on the speed of 

backpropagation learning. In J. Mira & F. Sandoval (Eds.), From Natural to Artificial 

Neural Computation: International Workshop on Artificial Neural Networks Malaga-

Torremolinos, Spain, June 7--9, 1995 Proceedings (pp. 195–201). Berlin, Heidelberg: 

Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-59497-3_175 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. 

https://doi.org/10.1109/CVPR.2016.90 

Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master’s Thesis, 

Institut Fur Informatik, Technische Universitat, Munchen, 1–71. Retrieved from 

http://www.bioinf.jku.at/publications/older/3804_2.pdf%0Ahttp://scholar.google.com/schol

ar?hl=en&btnG=Search&q=intitle:Untersuchungen+zu+dynamischen+neuronalen+Netzen#

0 

Hochreiter, S., & Frasconi, P. (2009). Gradient Flow in Recurrent Nets: The Difficulty of 

Learning LongTerm Dependencies. A Field Guide to Dynamical Recurrent Networks. 

https://doi.org/10.1109/9780470544037.ch14 

Hochreiter, S., & Urgen Schmidhuber, J. (1997). Long Short-Term Memory. Neural 

Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 

Honarpour, M., Koederitz, L., & Harvey,  a H. (1986). Relative Permeability of Reservoirs 

Petroleum, 1–1. 

Hui, M.-H., & Blunt, M. J. (2000a). Effects of wettability on three-phase flow in porous media. 

The Journal of Physical Chemistry B, 104, 3833–3845. https://doi.org/10.1021/jp9933222 

Hui, M.-H., & Blunt, M. J. (2000b). Pore-Scale Modeling of Three-Phase Flow and the Effects of 

Wettability. SPE. https://doi.org/10.2523/59309-MS 

Hui, M. H., & Blunt, M. J. (2000). Effects of wettability on three-phase flow in porous media. 

Journal of Physical Chemistry B, 104(16), 3833–3845. https://doi.org/10.1021/jp9933222 

Jreou, G. N. S. (2012). Application of neural network to optimize oil field production. Asian 

Transactions on Engineering, 2(3), 10–23. 

Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for Stochastic Optimization. International 

Conference on Learning Representations 2015, 1–15. 

https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep 

convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 

1097–1105). 

Krose, B., & Smagt, P. Van Der. (1996). An Introduction to Neural Networks. Networks. 

Kuwauchi, Y., Abbaszadeh, M., Shirakawa, S., & Yamazaki, N. (1996). Development and 

Applications of a Three Dimensional Voronoi-Based Flexible Grid Black Oil Reservoir 

Simulator. SPE Asia Pacific Oil and Gas Conference. https://doi.org/10.2118/37028-MS 

Lago, M., & Araujo, M. (2001). Threshold Pressure in Capillaries with Polygonal Cross Section. 

Journal of Colloid and Interface Science, 243(1), 219–226. 

https://doi.org/10.1006/jcis.2001.7872 



119 
 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

https://doi.org/10.1038/nature14539 

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to 

document recognition. Proceedings of the IEEE, 86(11), 2278–2323. 

https://doi.org/10.1109/5.726791 

Li, F.-F. (n.d.). CS231n Convolutional Neural Networks for Visual Recognition. Retrieved from 

http://cs231n.github.io/neural-networks-1 

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier Nonlinearities Improve Neural 

Network Acoustic Models. Proceedings of the 30 Th International Conference on Machine 

Learning, 28, 6. Retrieved from 

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf 

Mason, G., & Morrow, N. R. (1984). Coexistence of menisci and the influence of neighboring 

pores on capillary displacement curvatures in sphere packings. Journal of Colloid And 

Interface Science, 100(2), 519–535. https://doi.org/10.1016/0021-9797(84)90455-7 

May, R., Dandy, G., & Maier, H. (2011). Review of Input Variable Selection Methods for 

Artificial Neural Networks. Artificial Neural Networks - Methodological Advances and 

Biomedical Applications, (August 2016), 362. https://doi.org/10.5772/644 

Mayer, R. P., & Stowe, R. A. (1965). Mercury porosimetry—breakthrough pressure for 

penetration between packed spheres. Journal of Colloid Science, 20(8), 893–911. 

https://doi.org/10.1016/0095-8522(65)90061-9 

Miao, X., Gerke, K. M., & Sizonenko, T. O. (2017a). A new way to parameterize hydraulic 

conductances of pore elements: A step towards creating pore-networks without pore shape 

simplifications. Advances in Water Resources, 105, 162–172. 

https://doi.org/10.1016/j.advwatres.2017.04.021 

Miao, X., Gerke, K. M., & Sizonenko, T. O. (2017b). A new way to parameterize hydraulic 

conductances of pore elements: A step towards creating pore-networks without pore shape 

simplifications. Advances in Water Resources, 105, 162–172. 

https://doi.org/10.1016/j.advwatres.2017.04.021 

Miles, J. (2014). R Squared, Adjusted R Squared. In Wiley StatsRef: Statistics Reference Online. 

https://doi.org/10.1002/9781118445112.stat06627 

Mohaghegh, S., & Ameri, S. (1995). Artificial Neural Network As A Valuable Tool For 

Petroleum Engineers. Network. https://doi.org/10.1.1.112.4627 

Mosser, L., Dubrule, O., & Blunt, M. J. (2017). Reconstruction of three-dimensional porous 

media using generative adversarial neural networks. Retrieved from 

http://arxiv.org/abs/1704.03225 

Moujahid, A. (2016). A Practical Introduction to Deep Learning with Caffe and Python. 

Retrieved from http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-

caffe/ 

Name, L., Name, F., Training, O., Training, P., Darin, C., Training, R. O., … Co-investigator, N. 

(1998). Convolution Networks for Images, Speech, and Time-Series. Igarss 2014, (1), 1–5. 

https://doi.org/10.1007/s13398-014-0173-7.2 



120 
 

Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press. Retrieved from 

http://neuralnetworksanddeeplearning.com/index.html 

Oak, M. J., Baker, L. E., & Thomas, D. C. (1990). Three-Phase Relative Permeability of Berea 

Sandstone. Journal of Petroleum Technology, 42(8), 1054–1061. 

https://doi.org/10.2118/17370-pa 

Oren, P.-E., Bakke, S., & Arntzen, O. J. (1998). Extending Predictive Capabilities to Network 

Models. SPE Journal, 3(4), 324–336. https://doi.org/10.2118/52052-PA 

Patzek, T. W., & Silin, D. B. (2001). Shape Factor and Hydraulic Conductance in Noncircular 

Capillaries. Journal of Colloid and Interface Science, 236(2), 295–304. 

https://doi.org/10.1006/jcis.2000.7413 

Pedregosa, F., & Varoquaux, G. (2011). Scikit-learn: Machine learning in Python. … of Machine 

Learning … (Vol. 12). https://doi.org/10.1007/s13398-014-0173-7.2 

Piri, M. (2003). Pore-Scale Modelling of Three-Phase Flow. 

Piri, M., & Blunt, M. J. (2005a). Three-dimensional mixed-wet random pore-scale network 

modeling of two- And three-phase flow in porous media. I. Model description. Physical 

Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(2). 

https://doi.org/10.1103/PhysRevE.71.026301 

Piri, M., & Blunt, M. J. (2005b). Three-dimensional mixed-wet random pore-scale network 

modeling of two- and three-phase flow in porous media. II. Results. Physical Review E, 

71(2), 26302. https://doi.org/10.1103/PhysRevE.71.026302 

Princen, H. . (1969a). Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise 

between two cylinders. Journal of Colloid and Interface Science, 30(3), 359–371. 

https://doi.org/10.1016/0021-9797(69)90379-8 

Princen, H. M. (1969b). Capillary phenomena in assemblies of parallel cylinders. I. Capillary 

Rise between Two Cylinders. Journal of Colloid And Interface Science, 30(1), 171–184. 

https://doi.org/10.1016/0021-9797(70)90167-0 

Princen, H. M. (1970). Capillary phenomena in assemblies of parallel cylinders. III. Liquid 

Columns between Horizontal Parallel Cylinders. Journal of Colloid And Interface Science, 

34(2), 171–184. https://doi.org/10.1016/0021-9797(70)90167-0 

Rabbani, A., Assadi, A., Kharrat, R., Dashti, N., & Ayatollahi, S. (2017). Estimation of 

carbonates permeability using pore network parameters extracted from thin section images 

and comparison with experimental data. Journal of Natural Gas Science and Engineering, 

42, 85–98. https://doi.org/10.1016/j.jngse.2017.02.045 

Reichhardt, D., & Isaiah, J. (2013). Performing Reservoir Simulation with Neural Network 

Enhanced Data. 2013 SPE Digital Energy …, (March), 5–7. Retrieved from 

http://www.onepetro.org/mslib/servlet/onepetropreview?id=SPE-163691-MS 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and 

organization in …. Psychological Review, 65(6), 386–408. 

https://doi.org/10.1037/h0042519 

Rowell, R. L. (1998). Physical Chemistry of Surfaces, 6th ed. Journal of Colloid and Interface 

Science. https://doi.org/10.1006/jcis.1998.5823 



121 
 

Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv E-Prints. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 

Ryazanov, A. V., van Dijke, M. I. J., & Sorbie, K. S. (2009). Two-phase pore-network modelling: 

Existence of oil layers during water invasion. Transport in Porous Media, 80(1), 79–99. 

https://doi.org/10.1007/s11242-009-9345-x 

Sharak, A. Z., Samimi, A., Mousavi, S. A., & Bozarjamhari, R. B. (2014). Investigation of 

membrane preparation condition effect on the PSD and porosity of the membranes using a 

novel image processing technique. Journal of Applied Polymer Science, 131(4). 

https://doi.org/10.1002/app.39899 

Shokooh Saljooghi, B., & Hezarkhani, A. (2015). A new approach to improve permeability 

prediction of petroleum reservoirs using neural network adaptive wavelet (wavenet). 

Journal of Petroleum Science and Engineering, 133, 851–861. 

https://doi.org/10.1016/j.petrol.2015.04.002 

Shu, L., McIsaac, K., Osinski, G. R., & Francis, R. (2017). Unsupervised feature learning for 

autonomous rock image classification. Computers and Geosciences, 106(March 2016), 10–

17. https://doi.org/10.1016/j.cageo.2017.05.010 

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. 

IEEE Transactions on Neural Networks, 8(3), 714–735. https://doi.org/10.1109/72.572108 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning 

Research, 15, 1929–1958. https://doi.org/10.1214/12-AOS1000 

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural 

networks. Advances in Neural Information Processing Systems (NIPS), 3104–3112. 

https://doi.org/10.1007/s10107-014-0839-0 

Van Dijke, M. I. J., Lago, M., Sorbie, K. S., & Araujo, M. (2004). Free energy balance for three 

fluid phases in a capillary of arbitrarily shaped cross-section: Capillary entry pressures and 

layers of the intermediate-wetting phase. Journal of Colloid and Interface Science, 277(1), 

184–201. https://doi.org/10.1016/j.jcis.2004.05.021 

Van Dijke, M. I. J., Piri, M., Helland, J. O., Sorbie, K. S., Blunt, M. J., & Skj??veland, S. M. 

(2007). Criteria for three-fluid configurations including layers in a pore with nonuniform 

wettability. Water Resources Research, 43(12), 1–11. 

https://doi.org/10.1029/2006WR005761 

Van Dijke, M. I. J., & Sorbie, K. S. (2003). Three-phase capillary entry conditions in pores of 

noncircular cross-section. Journal of Colloid and Interface Science, 260(2), 385–397. 

https://doi.org/10.1016/S0021-9797(02)00228-X 

Van Dijke, M. I. J., & Sorbie, K. S. (2006). Existence of fluid layers in the corners of a capillary 

with non-uniform wettability. Journal of Colloid and Interface Science, 293(2), 455–463. 

https://doi.org/10.1016/j.jcis.2005.06.059 

Weisstein, E. W. (n.d.). “Hyperbolic Tangent.”From MathWorld--A Wolfram Web Resource. 

Retrieved from http://mathworld.wolfram.com/HyperbolicTangent.html 

Werbos, P. J. (1990). Backpropagation Through Time: What It Does and How to Do It. IEEE. 



122 
 

Windows, M., Os, M., When, C. P., Wei, Y., Yildirim, P., den Bulte, C., … Szegedy, C. (2014). 

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate 

Shift. Uma Ética Para Quantos?, XXXIII(2), 81–87. https://doi.org/10.1007/s13398-014-

0173-7.2 

Yun, W. (n.d.). Deep Learning : Automated Surface Characterization of Porous Media to 

Understand Geological Fluid Flow. 

Zhong, Z. (2017). STORAGE CAPACITY ESTIMATION OF COMMERCIAL SCALE 

INJECTION AND STORAGE OF CO2 IN THE JACKSONBURG-STRINGTOWN OIL 

FIELD. West Virginia University. Retrieved from 

https://search.proquest.com/docview/1900944977?accountid=14556 

Zhong, Z., & Carr, T. R. (2016). Application of mixed kernels function (MKF) based support 

vector regression model (SVR) for CO2– Reservoir oil minimum miscibility pressure 

prediction. Fuel, 184, 590–603. https://doi.org/10.1016/j.fuel.2016.07.030 

Zolfaghari, A., & Piri, M. (n.d.-a). Effects of Thermodynamically Consistent Threshold Capillary 

Pressures and Composite Menisci on Residual Oil Saturation and Relative Permeability. In 

Gordon Research Conference - Flow & Transport in Permeable Media. Lewiston, Main: 

Bates College. 

Zolfaghari, A., & Piri, M. (n.d.-b). Pore-scale Network Modeling of Two- and Three-phase Flow 

based on Thermodynamically Consistent Threshold Capillary Pressures. In Gordon 

Research Conference - Flow & Transport in Permeable Media. Lewiston, Main: Bates 

College. 

Zolfaghari, A., & Piri, M. (2017a). Pore-Scale Network Modeling of Three-Phase Flow Based on 

Thermodynamically Consistent Threshold Capillary Pressures. I. Cusp Formation and 

Collapse. Transport in Porous Media, 116(3), 1093–1137. https://doi.org/10.1007/s11242-

016-0814-8 

Zolfaghari, A., & Piri, M. (2017b). Pore-scale Network Modeling of Three-Phase Flow Based on 

Thermodynamically Consistent Threshold Capillary Pressures. II. Results. Transport in 

Porous Media, 116(3), 1093–1137. https://doi.org/10.1007/s11242-016-0814-8 

Zolfaghari Shahrak, A. (2014). Pore-Scale Network Modeling of of Two- and Three-Phase Flow 

Based on Thermodynamically Consistent Threshold Capillary Pressures. 

 


