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Abstract: We compare four discretization methods, all based on entropy: the original C4.5 approach
to discretization, two globalized methods, known as equal interval width and equal frequency per
interval, and a relatively new method for discretization called multiple scanning using the C4.5
decision tree generation system. The main objective of our research is to compare the quality of these
four methods using two criteria: an error rate evaluated by ten-fold cross-validation and the size of
the decision tree generated by C4.5. Our results show that multiple scanning is the best discretization
method in terms of the error rate and that decision trees generated from datasets discretized by
multiple scanning are simpler than decision trees generated directly by C4.5 or generated from
datasets discretized by both globalized discretization methods.
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1. Introduction

Mining data with numerical attributes requires discretization. Among many discretization
techniques, discretization based on entropy is one of the most successful methods [1–31]. Entropy was
used for discretization applied to ranking data [7]. A special kind of discretization for data with
many attributes was presented in [25]. Discretization combined with semi-supervised learning was
presented in [3]. Many papers emphasizing the importance of discretization to data mining were
recently published [13,17,18,28,29,31].

In this paper, we present the results of our experiments conducted on 17 numerical datasets
using the C4.5 decision tree generation system, combined with four discretization methods: the
original C4.5 approach to discretization, two globalized methods, known as equal interval width and
equal frequency per interval, and a relatively new method for discretization called multiple scanning.
The original approach to discretization included in the C4.5 system, as well as discretization based on
equal interval width and equal frequency per interval are well known. Multiple scanning, introduced
in [15,32], was very successful when combined with rule induction and a classification system of LERS
(learning from examples based on rough sets) [33].

In multiple scanning, during every scan, the entire attribute set is analyzed. For all attributes,
the best cut point is selected. At the end of a scan, some sub-tables that still need discretization are
created. The entire attribute set of any sub-table is scanned again, and the best corresponding cut points
are selected. The process continues until the stopping condition is satisfied or the required number
of scans is reached. If necessary, discretization is completed by another discretization technique,

Entropy 2016, 18, 69; doi:10.3390/e18030069 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213425604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 69 2 of 11

called dominant attribute[15,32]. In the dominant attribute method, initially we select the best attribute.
For this attribute, the best cut point is selected using conditional entropy. This process continues until
the same stopping criterion is satisfied. The stopping criterion used in this paper is based on rough
set theory.

The main objective of our research is to compare the quality of these four discretization methods
using two criteria: an error rate evaluated by ten-fold cross-validation and the size of the decision
tree generated by C4.5. Experimental results presented in [32] show that multiple scanning is the best
discretization method among these four discretization methods. In [32], four discretization techniques
were compared using a rule-based methodology. Experiments were conducted using the MLEM2
(modified learning from examples module, Version 2) rule induction algorithm [34] and the LERS
classification system. There is a possibility that the results of [32] depend on the choice of experimental
setup. Therefore, to remove this bias, we changed the original setup and conducted new experiments
using the standard C4.5 decision tree generation methodology. Our new results fully support the
results of [32]. For 17 numerical datasets, four sets of experiments were conducted: first, the C4.5
system was used to compute an error rate using ten-fold cross-validation; then, the same datasets were
discretized using two globalized methods (equal interval width and equal frequency per interval) and
multiple scanning, and for such discretized datasets, the same C4.5 system was used to establish an
error rate.

The same methodology, based on computing the C4.5 error rate, was used in [23] to compare
nine successful and well-known discretization methods using 11 datasets. Seven of these 11 datasets
(australian, bupa, glass, ionosphere, iris, pima and wine recognition) were also used in our experiments.
For any of these seven datasets, the best result accomplished using our methods is better than the
corresponding best result cited in [23]. Thus, our choice for the four discretization methods is well
justified: we used very efficient methods. Our results show that the multiple scanning discretization
technique is significantly better than the internal discretization used in C4.5 and two globalized
discretization methods: equal interval width and equal frequency per interval in terms of the error rate
computed by ten-fold cross-validation (two-tailed test, 5% level of significance). Additionally, decision
trees generated from data discretized by multiple scanning are significantly simpler than decision trees
generated directly by C4.5 and decision trees generated from datasets discretized and both globalized
discretization methods.

The main idea of the multiple scanning method, giving the same chance to all attributes, is highly
successful. In each consecutive step of this method, every attribute is taken into account. In other
discretization methods, some attributes may be eliminated to begin with.

2. Discretization

Let a be a numerical attribute with domain [ai, aj]. A partition of the domain [ai, aj] into k intervals:

{[ai0 , ai1), [ai1 , ai2), ..., [aik−2
, aik−1

), [aik−1
, aik ]},

where ai0 = ai, aik = aj, and ail < ail+1
for l = 0, 1, ..., k − 1, determines a discretization of a.

The numbers ai1 , ai2 , ..., aik−1
are called cut points. In this paper, corresponding intervals are denoted

as follows:
ai0 ..ai1 , ai1 ..ai2 , ..., aik−2

..aik−1
, aik−1

..aik .

An example of a dataset with numerical attributes is presented in Table 1. In this table, all cases
are described by variables called attributes and one variable called a decision. The set of all attributes
is denoted by A. The decision is denoted by d. The set of all cases is denoted by U. In Table 1, the
attributes are length, width and height, while the decision is quality. Additionally, U = {1, 2, 3, 4, 5, 6, 7}.
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For a subset S of the set U of all cases, an entropy of a variable v (attribute or decision) with values v1,
v2, ..., vn is defined by the following formula:

HS(v) = −
n

∑
i=1

p(vi) · log p(vi),

where p(vi) is a probability (relative frequency) of value vi in the set S, i = 0, 1, ..., n. All logarithms in
this paper are binary.

Table 1. An example of a dataset with numerical attributes.

Case Attributes Decision

Length Width Height Quality

1 3.9 1.7 1.4 very-low
2 3.9 1.8 1.4 low
3 4.3 1.8 1.5 medium
4 4.3 1.9 1.6 medium
5 4.7 1.7 1.5 medium
6 4.7 1.9 1.6 high
7 4.7 1.8 1.6 high

The conditional entropy of the decision d given an attribute a is:

HS(d|a) = −
m

∑
j=1

p(aj) ·
n

∑
i=1

p(di|aj) · log p(di|aj),

where p(aj) is the probability of value aj of the attribute a and p(di|aj) is the conditional probability of
the value dj of the decision d given aj; a1, a2, ..., am are all values of a, and d1, d2, ..., dn are all values of d.
Discretization based on the conditional entropy of the concept given the attribute is considered to be
one of the most successful discretization techniques [2,5,6,9,11,12,14,15,19,24,26,27].

Let a be an attribute and q be a cut point that splits the set S into two subsets, S1 and S2.
The conditional entropy HS(d|q) is defined as follows:

|S1|
|U| HS1

(a) +
|S2|
|U| HS2(a),

where |X| denotes the cardinality of the set X. The cut point q for which the conditional entropy
HS(d|q) has the smallest value is selected as the best cut point.

2.1. Stopping Criterion for Discretization

A stopping criterion of the process of discretization, described in this paper, is the level of
consistency [5], based on rough set theory [35,36]. For any subset B of the set A of all attributes,
an indiscernibility relation IND(B) is defined, for any x, y ∈ U, in the following way:

(x, y) ∈ IND(B) if and only if a(x) = a(y) for any a ∈ B,

where a(x) denotes the value of the attribute a ∈ A for the case x ∈ U. The relation IND(B) is
an equivalence relation. The equivalence classes of IND(B) are denoted by [x]B and are called
B-elementary sets. Any finite union of B-elementary sets is B-definable.

A partition on U constructed from all B-elementary sets of IND(B) is denoted by B∗.
{d}-elementary sets are called concepts, where d is a decision. For example, for Table 1, if B = {length},
B∗ = {{1, 2}, {3, 4}, {5, 6, 7}} and {d}∗ = {{1}, {2}, {3, 4, 5}, {6, 7}}. In general, arbitrary X ∈ {d}∗ is
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not B-definable. For example, the concept {1} is not B-definable. However, any X ∈ {d}∗ may be
approximated by a B-lower approximation of X, denoted by BX and defined as follows:

{x | x ∈ U, [x]B ⊆ X}

and by B-upper approximation of X, denoted by BX and defined as follows:

{x | x ∈ U, [x]B ∩ X 6= ∅}.

In our example, B{1} = ∅ and B{1} = {1, 2}. The B-lower approximation of X is the greatest
B-definable set contained in X. The B-upper approximation of X is the least B-definable set containing
X. A level of consistency [5], denoted by L(A), is defined as follows:

L(A) =
∑X∈{d}∗ |AX|

|U| .

Usually, the requested level of consistency for discretization is 1.0, i.e., we want the discretized
dataset to be consistent. For example, for Table 1, the level of consistency L(A) is equal to 1.0, since
{A}∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} and, for any X from {quality}∗ = {{1}, {2}, {3, 4, 5}, {6, 7}}, we have
AX = X. Additionally, L(B) ≈ 0.286, where B = {length}.

2.2. Equal Interval Width and Equal Frequency per Interval

Some discretization methods are obvious. To this category belong the equal interval width and equal
frequency per interval methods [14]. These methods are applied to a single attribute at a time, so they
are called local [14]. Note that a discretization method is called global if it depends on all attributes [14].
In the local discretization method, the user must specify a positive integer k, a number of intervals
required for discretization. In the former method, the domain of a numerical attribute a should be
divided into k intervals that are approximately equal. In the latter method, the domain of the numerical
attribute a should be divided into k intervals, each containing approximately an equal number of cases.

These two methods were converted to global methods, using the idea of entropy, in [5]. First,
all numerical attributes are discretized using k = 2. After that, we need to compute the level of
consistency for the set of all discretized attributes. If the level of consistency satisfies the requirement,
the discretization is done. If not, the worst attribute must be selected for further discretization.

For an attribute a, let ad denote the discretized attribute. Let Ad denote the set of all discretized
attributes. For any partially-discretized attribute ad, we define a measure of quality, called the average
block entropy, in the following way:

M(ad) =
∑B∈{ad}∗

|B|
|U|H(B)

|{ad}∗|

A partially-discretized attribute ad with the largest M(ad) is the worst attribute [5]. The worst
attribute is the subject of additional discretization for k + 1 intervals. The rest of the algorithm is
defined by recursion. These new methods of discretization are called the globalized version of equal
interval width and the globalized version of equal frequency per interval. As follows from [2], both methods
are quite successful.

We will illustrate the globalized version of equal frequency per interval method by applying this
method to Table 1. We need to compute the values of cut points for the first iteration. These cut points
are: 4.5 for length, 1.85 for width and 1.55 for height. Table 2 presents the partially-discretized dataset.
The partitions on U corresponding to partially-discretized attributes are:
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{lengthd}∗ = {{1, 2, 3, 4}, {5, 6, 7}},
{widthd}∗ = {{1, 2, 3, 5, 7}, {4, 6}},
{heightd}∗ = {{1, 2, 3, 5}, {4, 6, 7}}.

The partition (Ad)∗ is {{1, 2, 3}, {4}, {5}, {6}, {7}}.
Thus, the level of consistency, after the initial discretization, is L(A) ≈ 0.571. In order to find the

worst attribute, we compute the average block entropy for all initially discretized attributes. For the
attribute lengthd,

M(lengthd) =
1
2
(

4
7
((−1

4
· log

1
4
)(2) + (−1

2
· log

1
2
)) +

3
7
(−1

3
· log

1
3
− 2

3
· log

2
3
) ≈ 0.625.

Table 2. Partially-discretized Table 1 using equal frequency per interval: Part I.

Case Attributes Decision

Lengthd Widthd Heightd Quality
1 3.9..4.5 1.7..1.85 1.4..1.55 very-low
2 3.9..4.5 1.7..1.85 1.4..1.55 low
3 3.9..4.5 1.7..1.85 1.4..1.55 medium
4 3.9..4.5 1.85..1.9 1.55..1.6 medium
5 4.5..4.7 1.7..1.85 1.4..1.55 medium
6 4.5..4.7 1.85..1.9 1.55..1.6 high
7 4.5..4.7 1.7..1.85 1.55..1.6 high

Additionally, M(widthd) ≈ 0.829 and M(heightd) ≈ 0.625. The worst attribute is widthd. We need
to compute new cut points for widthd with k = 3. The new cut point is 1.75. This time: {widthd}∗ = {{1, 5},
{2, 3, 7}, {4, 6}}, so (Ad)∗ = {{1}, {2, 3}, {4}, {5}, {6}, {7}}, and the new level of consistency L(Ad) is 0.714.
The average block entropy, for widthd with k = 3, is 0.417. This time, the worst attribute is lengthd. The
third cut point for lengthd is 4.1. This time (Ad)∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}. Table 3 presents the
new discretized table. Furthermore, the level of consistency (Ad)∗ for Table 3 is one, so the process of
discretization is done.

Table 3. Partially-discretized Table 1 using equal frequency per interval: Part II.

Case Attributes Decision

Lengthd Widthd Heightd Quality

1 3.9..4.1 1.7..1.75 1.4..1.55 very-low
2 3.9..4.1 1.75..1.85 1.4..1.55 low
3 4.1..4.5 1.75..1.85 1.4..1.55 medium
4 4.1..4.5 1.85..1.9 1.55..1.6 medium
5 4.5..4.7 1.7..1.75 1.4..1.55 medium
6 4.5..4.7 1.85..1.9 1.55..1.6 high
7 4.5..4.7 1.75..1.85 1.55..1.6 high

2.3. Multiple Scanning

In the multiple scanning discretization method, the entire attribute set is scanned t times; t is
a parameter selected by the user. In our experiments, we applied t = 1, 2, ..., until the error rate, a result
of ten-fold cross-validation, computed by C4.5, was the same for two consecutive values of t. Initially,
for each attribute, the best cut point is selected, using the minimum of conditional entropy HS(d|q),
for all possible values of q. During the next scans (i.e., for t = 2, 3, ...), the entire attribute set is scanned
again; for each attribute, we identify one cut point: for each block X of (Ad)∗, the best cut point is
selected, the best cut point among all such blocks is accepted as the best cut point for the attribute. If
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the requested parameter t is reached and the dataset needs more discretization since L(Ad) 6= 1, the
dominant attribute technique is used for remaining discretization.

Let us discretize Table 1 using the multiple scanning method. First, we need to compute the
conditional entropy HU(d|q) for each attribute q and for all possible cut points for each attribute.
The first attribute is length, with two possible cut points: 4.1 and 4.5. The corresponding conditional
entropies are:

Hlength(4.1, U) =
2
7
(−1

2
· log

1
2
)(2) +

5
7
(−2

5
· log

2
5
− 3

5
· log

3
5
) ≈ 0.980,

Hlength(4.5, U) =
4
7
((−1

4
· log

1
4
)(2)− 1

2
· log

1
2
) +

3
7
(−1

3
· log

1
3
− 2

3
· log

2
3
) ≈ 1.250.

For the attribute length, the better cut point is 4.1. For the attribute width, there are two possible
cut points: 1.75 and 1.85, with Hlength(1.75, U) = 1.373 and Hlength(1.85, U) = 1.659; the better
cut point is 1.75. For the attribute height, there are two possible cut points: 1.45 and 1.55, with
Hheight(1.45, U) = 0.980 and Hheight(1.55, U) = 1.251; the better cut point is 1.45. A partially-discretized
dataset, after the first scan, is presented in Table 4.

For Table 4, (Ad)∗ = {{1}, {2}, {3, 4, 6, 7}, {5}}, and L(Ad) = 0.429. The remaining discretization is
conducted using the dominant attribute method for the sub-table presented in Table 5.

Table 4. Partially-discretized Table 1 using multiple scanning, after the first scan.

Case Attributes Decision

Lengthd Widthd Heightd Quality

1 3.9..4.1 1.7..1.75 1.4..1.45 very-low
2 3.9..4.1 1.75..1.9 1.4..1.45 low
3 4.1..4.7 1.75..1.9 1.45..1.6 medium
4 4.1..4.7 1.75..1.9 1.45..1.6 medium
5 4.1..4.7 1.7..1.75 1.45..1.6 medium
6 4.1..4.7 1.75..1.9 1.45..1.6 high
7 4.1..4.7 1.75..1.9 1.45..1.6 high

Table 5. A sub-table of the dataset presented in Table 1.

Case Attributes Decision

Length Width Height Quality

3 4.3 1.8 1.5 medium
4 4.3 1.9 1.6 medium
6 4.7 1.9 1.6 high
7 4.7 1.8 1.6 high

It is clear that the attribute length is the best attribute (with the smallest entropy) and that the
remaining cut point is 4.5 for the attribute length. As a result, we obtain Table 6, for which L(Ad) = 1.
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Table 6. Partially-discretized Table 1 using multiple scanning and the dominant attribute.

Case Attributes Decision

Lengthd Widthd Heightd Quality

1 3.9..4.1 1.7..1.75 1.4..1.45 very-low
2 3.9..4.1 1.75..1.9 1.4..1.45 low
3 4.1..4.5 1.75..1.9 1.45..1.6 medium
4 4.1..4.5 1.75..1.9 1.45..1.6 medium
5 4.5..4.7 1.7..1.75 1.45..1.6 medium
6 4.5..4.7 1.75..1.9 1.45..1.6 high
7 4.5..4.7 1.75..1.9 1.45..1.6 high

2.4. Interval Merging

In the discretization techniques presented in this paper, except the internal discretization method
of C4.5, the last step is an attempt to merge intervals. During merging intervals, we want to reduce the
number of intervals while preserving consistency. The corresponding algorithm has two steps:

• safe merging: for any discretized attribute ad and for any two neighboring intervals i..j and j..k,
if both intervals belong to the same concept, these intervals are merged (or replaced by the
interval i..k);

• proper merging: for any discretized attribute ad and for any two neighboring intervals i..j, j..k, if
the new interval i..k, the result of merging, does not reduce the level of consistency L(Ad), these
intervals are merged (or replaced by the new interval i..k).

In Table 3, we may merge intervals 1.75..1.85 and 1.85..1.9 of the attribute widthd. Additionally, we
may merge the only two intervals 1.4..1.55 and 1.55..1.6 of the attribute heightd, so the attribute heightd

becomes redundant. Table 7 presents the final, discretized table by the equal frequency per interval
method.

In Table 6, we may merge both intervals of the attribute heightd; so finally, the table discretized by
the multiple scanning method is identical to Table 7.

Table 7. Table 1 discretized using equal frequency per interval.

Case Attributes Decision

Lengthd Widthd Quality

1 3.9..4.1 1.7..1.75 very-low
2 3.9..4.1 1.75..1.9 low
3 4.1..4.5 1.75..1.9 medium
4 4.1..4.5 1.75..1.9 medium
5 4.5..4.7 1.7..1.75 medium
6 4.5..4.7 1.75..1.9 high
7 4.5..4.7 1.75..1.9 high

3. Experiments

We conducted experiments on 17 datasets with numerical attributes presented in Table 8.
These datasets, except bankruptcy, were taken from the Machine Learning Repository stored at the
University of California, Irvine. The bankruptcy dataset is a well-known dataset used by Altman to
predict the bankruptcy of companies [37].
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Table 8. Datasets.

Dataset Number of

Cases Attributes Concepts

Abalone 4177 8 29
Australian 690 14 2
Bankruptcy 66 5 2

Bupa 345 6 2
Connectionist Bench 208 60 2

Echocardiogram 74 7 2
Ecoli 336 8 8
Glass 214 9 6

Image Segmentation 210 19 7
Ionosphere 351 34 2

Iris 150 4 3
Leukemia 415 175 2

Pima 768 8 2
Spectrometry 25,931 152 –

Wave 512 21 3
Wine Recognition 178 13 3

Yeast 1484 8 9

Four discretization methods were used:

• Original C4.5 discretization scheme,
• Globalized version of the equal interval width,
• Globalized version of the equal frequency per interval, and
• Multiple scanning.

For all four discretization methods, an error rate was estimated using the ten-fold cross-validation
procedure of C4.5, with the level of consistency equal to 100%. Table 9 presents error rates for all four
discretization methods.

Table 10 shows the size of decision trees generated by the C4.5 system.

Table 9. Error rates for C4.5, globalized versions of equal interval width (GVEIW), equal frequency per
interval (GVEFI) and multiple scanning (MS).

Data Set C4.5 GVEIW GVEFI MS

Abalone 80.58 76.90 76.87 75.58
Australian 16.09 13.33 12.46 13.48
Bankruptcy 6.06 10.61 3.03 3.03

Bupa 35.36 34.49 35.94 29.28
Connectionist Bench 25.96 25.00 29.33 16.83

Echocardiogram 28.38 31.08 27.03 14.86
Ecoli 22.02 28.57 30.65 22.02
Glass 33.18 33.18 41.12 24.77

Image Segmentation 12.38 18.10 19.52 11.90
Ionosphere 10.54 10.83 13.11 5.98

Iris 5.33 4.00 12.67 4.67
Leukemia 21.45 24.34 21.20 21.20

Pima 25.13 24.87 27.34 24.09
Spectrometry 0.99 1.32 1.45 1.13

Wave 26.37 27.54 25.59 23.05
Wine Recognition 8.99 9.55 10.11 3.93

Yeast 44.41 56.54 57.82 51.75
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Table 10. Tree size for C4.5, globalized versions of equal interval width (GVEIW), equal frequency per
interval (GVEFI) and multiple scanning (MS).

Data Set C4.5 GVEIW GVEFI MS

Abalone 2367 18,711 28,236 9220
Australian 63 39 41 13
Bankruptcy 3 6 3 3

Bupa 51 27 17 11
Connectionist Bench 35 48 35 31

Echocardiogram 9 16 8 5
Ecoli 43 109 61 57
Glass 45 186 70 58

Image Segmentation 25 37 47 24
Ionosphere 35 34 33 24

Iris 9 4 11 4
Leukemia 61 53 68 33

Pima 43 33 37 27
Spectrometry 151 229 139 62

Wave 85 107 62 55
Wine Recognition 9 18 19 11

Yeast 371 913 662 362

For the analysis of the experimental results, we used the Friedman rank sum test combined
with multiple comparisons, with a 5% level of significance. We conclude that the multiple scanning
discretization method is associated with a significantly smaller error rate than all three remaining
discretization methods: the original C4.5 discretization method and the globalized versions of the
equal interval width and equal frequency per interval discretization methods. The differences between
the performance of C4.5, the globalized versions of the equal interval width and equal frequency
per interval discretization methods and multiple scanning are statistically insignificant. Additionally,
decision trees generated by C4.5 from datasets discretized by multiple scanning are simpler than
decision trees generated by C4.5 from datasets discretized by both globalized versions of equal interval
width and equal frequency per interval.

4. Conclusions

We present results of our experiments using four different discretization techniques based on
entropy. These discretization techniques were validated by conducting experiments on 17 datasets
with numerical attributes. Our results show that the multiple scanning discretization technique is
significantly better than the internal discretization used in C4.5 and two globalized discretization
methods: equal interval width and equal frequency per interval in terms of an error rate computed
by ten-fold cross-validation (two-tailed test, 5% level of significance). Additionally, decision trees
generated from data discretized by multiple scanning are significantly simpler than decision trees
generated directly by C4.5 and decision trees generated from discretized datasets and both globalized
discretization methods.

Our results show that multiple scanning is the best discretization method in terms of the error
rate and that decision trees generated from datasets discretized by multiple scanning are simpler than
decision trees generated by both global discretization methods.
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