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Abstract 

Orthographic effects in spoken word recognition and phonological effects in visual word 

recognition have been observed in a variety of behavioral experimental paradigms, strongly 

suggesting that a close interrelationship exists between phonology and orthography. However, 

the metrics used to investigate these effects, such as consistency and neighborhood size, fail to 

generalize to words of various lengths or syllable structures, and do not take into account the 

more global similarity structure that exists between phonological and orthographic 

representations in the language. To address these limitations, the tools of Network Science were 

used to simultaneously characterize the phonological as well as orthographic similarity structure 

of words in English within a phonographic multiplex. In this paper, I analyze a section of the 

phonographic multiplex known as the phonographic network of language, where links are placed 

between words that are both phonologically and orthographically similar to each other, i.e., a link 

would be placed between words such as ‘pant’ (/p@nt/) and ‘punt’ (/p^nt/). Conventional 

psycholinguistic experiments (auditory naming and auditory lexical decision) and an archival 

analysis of the English Lexicon Project (visual naming and visual lexical decision) were 

conducted to investigate the influence of two network science metrics derived from the 

phonographic network—phonographic degree and phonographic clustering coefficient—on 

spoken and visual word recognition. Results indicated a facilitatory effect of phonographic 

degree on visual word recognition, and a facilitatory effect of phonographic clustering 

coefficient on spoken word recognition. The present findings have implications for theoretical 

models of spoken and visual word recognition, and for increasing our understanding of language 

learning and language disorders.   
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Chapter 1 
 

Phonological and Orthographic Effects in Spoken and Visual Word Recognition 
 
1.1 Introduction 
 

Orthographic effects in spoken word recognition and phonological effects in visual word 

recognition have been observed in a variety of behavioral experimental paradigms, strongly 

suggesting that a close interrelationship exists between phonology and orthography. This 

dissertation uses the tools of network science and conventional psycholinguistic tasks to examine 

how the phonological and orthographic relationships among words in the language influence 

word recognition.  

Extending our understanding of phonological and orthographic influences on word 

recognition is of particular importance given the recent movement to ensure the standardization 

of reading abilities for schoolchildren across the nation. This was exemplified by the enactment 

of the No Child Left Behind Act in 2002, which requires states to assess the reading skills of 

students at the end of third grade in order to determine whether students have acquired adequate 

reading skills. Given that approximately 8.5 million schoolchildren suffer from dyslexia, a 

specific impairment in reading despite normal intelligence (National Institutes of Neurological 

Disorders and Stroke, 2015) and that state-of-the-art interventions that are time-consuming and 

expensive to administer only lead to somewhat modest reading improvements (Torgesen et al., 

2001), it is imperative that language researchers expand their horizons and consider how new 

approaches, such as the network science approach, could lead to new insights into an age-old 

problem.  

1.2 Roadmap of dissertation 
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Chapter 1 provides an overview of the prior work investigating orthographic effects in 

spoken word recognition and phonological effects in visual word recognition, in particular 

focusing on the effects of consistency and neighborhood size, which have emerged as the main 

metrics used to investigate these effects. Prior work ultimately fails to (1) generalize to words of 

various lengths or syllable structures, and (2) take into account the more global similarity 

structure that exists between phonological and orthographic representations in the language.  

In Chapter 2, an alternative approach, the network science approach, is proposed to 

address the limitations of prior work. The tools of network science allow us to characterize, 

simultaneously, the phonological as well as orthographic similarity structure of words (of all 

lengths) in the language. A brief introduction to network science, and examples of how this 

approach has been used to further our understanding of language processes, are provided in this 

section. The phonographic network, where words are connected to both phonologically and 

orthographically similar words, is introduced in Chapter 3. The results of a computational 

analysis of the structural characteristics at various levels (macro-, meso-, and micro-) of the 

phonographic network are described. Given that the structure of the phonographic network at 

varying levels is meaningful (i.e., not merely random), the next section of the dissertation 

examines whether the structure of the phonographic network has any influence on spoken and 

visual language processing. In particular, the investigation will focus on the influence of two 

micro-level network metrics derived from the phonographic network on language processing: (i) 

phonographic degree and (ii) phonographic clustering coefficient.  

Chapters 4 and 5 detail the results of psycholinguistic experiments (speeded naming; 

auditory lexical decision) that investigated the influence of phonographic degree and 

phonographic clustering coefficient on spoken word recognition. Chapter 6 detail the results of 
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an archival analysis of speeded naming and visual lexical decision data from the English Lexicon 

Project that was conducted to investigate the influence of phonographic degree and phonographic 

clustering coefficient on visual word recognition. Results indicated a facilitatory effect of 

phonographic degree on visual word recognition, and a facilitatory effect of phonographic 

clustering coefficient on spoken word recognition. The present findings have theoretical 

implications for models of word recognition as well as practical implications for language 

learning and language disorders. These implications are discussed in the final chapter. 

1.3 Phonological effects in visual word recognition 
 

As it is typically presumed that the writing system builds upon spoken language 

(Liberman, 1992), phonology is expected to play an important role in reading. Therefore the key 

theoretical debate centers on delineating the extent to which phonology is automatically 

implicated in visual word processing. In investigating this issue, researchers (either explicitly or 

implicitly) employ the working hypothesis that increased phonological complexity leads to less 

efficient lexical processing (Katz & Frost, 1992). Phonological complexity can be generally 

defined as the extent to which a word conforms to the grapheme-to-phoneme correspondence 

rules of a language (Frost, 1998; Venezky, 1970) and can be operationalized in various ways. 

This includes distinguishing whether (non)words are (pseudo)homophones or not, whether words 

have regular or irregular pronunciations, whether words are consistent or inconsistent, and the 

size of a word’s phonological neighborhood. If reading printed words were indeed mediated by 

phonology, then one would expect that more phonologically complex words are accessed more 

slowly and less accurately as compared to less phonologically complex words.  

The results from the visual word recognition literature are generally consistent with this 

hypothesis. For instance, the homophone effect refers to the finding that homophones, words that 
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have different spellings and meanings but sound identical (for instance, “rose”/“rows” and 

“boar”/”bore”), are more slowly processed in the presence of homophone foils (Ferrand & 

Grainger, 2003; J. Grainger & Ferrand, 1994; Van Orden, 1987). A somewhat analogous effect 

also exists for pseudohomophones—letter strings that do not represent any real English words 

but sound like a real English word. Response times to decide that pseudohomophones such as 

“brane”, which sounds like “brain”, were nonwords in a lexical decision task were slower as 

compared to nonword controls like “slint”, which does not map onto any phonological 

representations of real English words (Besner & Davelaar, 1983; Braun, Hutzler, Ziegler, 

Dambacher, & Jacobs, 2009; Ferrand & Grainger, 1992). 

1.3.1 Feedforward consistency effects 

Apart from considering the phonological complexity of whole words, researchers have 

also characterized the phonological complexity of words at varying grain sizes—at the level of 

smaller units like letters and phonemes, and larger units like syllables, onsets, and rimes. One of 

the more commonly used and well-established measures of phonological complexity of words 

are consistency measures, which focus on the distributions of pronunciations associated with 

word bodies (Cortese & Simpson, 2000). Bodies are letter patterns that correspond to rimes, and 

rimes are vowels and consonants that follow the vowel (coda). Feedforward consistent words 

contain bodies that can only be pronounced in one way (e.g., “-ade” can only be pronounced as /-

eId/, as in “wade”|/weId/ and “fade”|/feId/), whereas feedforward inconsistent words contain 

bodies that can be pronounced in several different ways (e.g., “-ave” can be pronounced as /-eIv/ 

as in “wave”|/weIv/ or “-æv” as in “have”|/hæv/). The feedforward consistency effect refers to 

the finding where words containing bodies with inconsistent pronunciations are more slowly 

processed in a number of visual word recognition tasks (Cortese & Simpson, 2000; Jared, 1997; 
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Jared, McRae, & Seidenberg, 1990; Stone, Vanhoy, & Van Orden, 1997; Ziegler, Montant, & 

Jacobs, 1997). 

One way to quantify a word’s level of (in)consistency is to calculate a feedforward 

consistency ratio that ranges from 0 to 1. Note that the use of the term “feedforward” reflects 

spelling-to-sound inconsistencies and not the sound-to-spelling inconsistencies as described in 

the spoken word recognition literature. The consistency ratio is the summed frequency of a 

word’s friends (words whose orthographic bodies are pronounced in the same way as that of the 

target word’s body) relative to the summed frequency of a word’s friends and enemies (words 

whose orthographic bodies are pronounced differently from that of the target word’s body). 

Therefore, words with more enemies than friends tend to have low consistency values and words 

with more friends than enemies tend to have high consistency values. However, the typical 

approach in these studies is to compare consistent words against highly inconsistent words (Jared 

et al., 1990; Stone et al., 1997; Ziegler et al., 1997), which disregards the fact that a range of 

consistency ratios exists among words. 

1.3.2 Phonological neighborhood effects 

Some recent work has found that the number of phonological neighbors also influences 

visual word processing tasks. Phonological neighbors are words that differ from a target word by 

the substitution, addition, or deletion of a single phoneme at any word position (Luce & Pisoni, 

1998). However, in an effort to be consistent with the definition of an orthographic neighbor in 

the visual word recognition literature (where orthographic neighbors are words that differ from a 

target word by only the substitution of a single letter at any word position; Coltheart, Davelaar, 

Jonasson, & Besner, 1977), researchers viewed phonological neighbors as words that differ from 

a target word by the substitution of a single phoneme at any word position (not surprisingly the 



	 6  

two measures are highly correlated). These studies reported that the processing of words with 

many phonological neighbors is facilitated as compared to words with few phonological 

neighbors (Grainger, Muneaux, Farioli, & Ziegler, 2005; Yates, 2005; Yates, Locker, & 

Simpson, 2004) Yates (2005) argued that more phonological neighbors lead to an increase in 

activation within the phonological system, which reduces the time required to produce the 

phonological code for the target word. The motivation for studying the influence of phonological 

neighborhood size on visual word recognition rests on the argument that the size of a word’s 

phonological neighborhood better reflects the magnitude of phonological activation during 

lexical processing, whereas measures like homophony, regularity, and consistency attempt to 

capture the relationship between orthographic and phonological codes (Yates, 2005; Yates et al., 

2004).  

1.4 Orthographic effects in spoken word recognition 
 

Seidenberg and Tanenhaus’s (1979) paper was one of the first to show that knowledge of 

orthography does influence the processing of spoken words. Using a rhyme detection task, 

Seidenberg and Tanenhaus showed that the time taken to decide if two words rhymed was 

influenced by their orthographic similarity. Participants took a longer time to decide that  “tie” 

and “rye” (orthographically dissimilar pair) rhymed as compared to “tie” and “pie” 

(orthographically similar pair). This was an important finding at that time because it showed that 

orthographic information was activated during the processing of auditory stimuli, suggesting that 

both phonological and orthographic features are encoded in word representations (Seidenberg & 

Tanenhaus, 1979).  

Subsequently, several studies have also found orthographic effects in online tasks such as 

naming (Ziegler, Ferrand, & Montant, 2004; Ziegler, Muneaux, & Grainger, 2003), auditory 
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lexical decision (Dich, 2011; Roux & Bonin, 2013; Ziegler & Ferrand, 1998; Ziegler et al., 2004, 

2003), semantic and gender categorization (Peereman, Dufour, & Burt, 2009), phonological 

priming (Chéreau, Gaskell, & Dumay, 2007; Slowiaczek, Soltano, Wieting, & Bishop, 2003), 

and serial recall (Pattamadilok, Lafontaine, Morais, & Kolinsky, 2010). More recently, the use of 

online measures such as electrophysiological measures in EEG studies (Perre, Midgley, & 

Ziegler, 2009; Zou, Desroches, Liu, Xia, & Shu, 2012) and eyetracking in the visual world task 

(Salverda & Tanenhaus, 2010) has provided additional evidence for the co-activation of 

orthographic information while processing auditory stimuli. 

To recapitulate, orthographic effects have been observed in a variety of tasks using a 

variety of online measures of language processing, such as reaction time, ERPs, and looking 

time. Together, the presence of orthographic effects obtained across a vast variety of tasks and 

experimental paradigms, in particular tasks which do not require an explicit analysis of the 

stimuli (as in Seidenberg and Tanenhaus, 1979), provide converging evidence for the presence of 

orthographic effects in spoken word recognition. More importantly, these findings raise key 

questions about the nature of lexical representations that are stored within long-term memory and 

the cognitive processes that support lexical retrieval.  

1.4.1 Feedback consistency effects 

One of the most robust orthographic effects found in the studies cited above is the 

feedback consistency effect. The feedback consistency effect refers to the finding where words 

containing sound-to-spelling inconsistencies are more slowly and less accurately responded to in 

lexical decision and word naming tasks (Ziegler & Ferrand, 1998; Ziegler et al., 2004, 2003). 

Note that the use of the term “feedback” reflects sound-to-spelling inconsistencies (i.e., multiple 
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spellings associated with a particular phonological unit or segment), and not the spelling-to-

sound (feedforward) inconsistencies as described in the visual word recognition literature. 

Consistency can be defined on the basis of a word’s onset or rime, although feedback 

consistency is typically defined as a function of the spelling consistency of phonological rimes of 

words given the dominance of the onset-rime syllable structure in English (Kessler & Treiman, 

1997; Treiman, Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995). Feedback consistent 

words contain phonological rimes that can only be spelled in one way (e.g., /^k/ can only be spelt 

as “-uck”, as in “duck” and “luck”), whereas feedback inconsistent words contain phonological 

rimes that can be spelled in several different ways (e.g., /ip/ can be spelt as “-eep” as in “deep” or 

“-eap” as in “heap”).  

Similar to feedforward consistency, it is possible to calculate a feedback consistency ratio 

that reflects a word’s degree of feedback inconsistency in a similar manner. The consistency 

ratio is the summed frequency of a word’s friends (friends are words whose phonological rimes 

are spelled in the same way as that of the target word’s rime) relative to the summed frequency 

of a word’s friends and enemies (enemies are words whose phonological rimes are spelled 

differently from that of the target word’s rime).  

1.4.2 Orthographic neighborhood effects 

Another well-established finding in this area is that the size of the orthographic 

neighborhood (ON) influences spoken language processing. Orthographic neighborhood size 

represents the number of words that can be produced by changing a letter in a target word of the 

same length (i.e., Coltheart’s N; Coltheart et al., 1977). Based on this definition, “bat”, “cot”, and 

“cap” are orthographic neighbors of the word “cat”. Studies have shown that when phonological 

neighborhood (PN) size is controlled for, ON size facilitates spoken word recognition—high ON 
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words are produced and recognized more quickly and accurately than low ON words (Muneaux 

& Ziegler, 2004; Ziegler et al., 2003).  

Ziegler and colleagues (2003) investigated PN and ON effects in auditory lexical decision 

and shadowing by factorially manipulating PN and ON sizes such that there were four sets of 

words: Words from dense PNs and dense ONs (PN+ON+), words from dense PNs and sparse 

ONs (PN+ON-), words from sparse PNs and dense ONs (PN-ON+), and words from sparse PNs 

and sparse ONs (PN-ON-). They found an inhibitory main effect of PN and a facilitatory main 

effect of ON.  Ziegler and colleagues (2003) proposed that the facilitatory ON effect resulted 

from the consistency of sublexical mappings between phonology and orthography. Consider 

PN+ON- words—these words tend to be inconsistent because if a word has many phonological 

neighbors but only a few orthographic neighbors this implies that that word has a “common” 

phonology but “rare” spelling. In comparison PN+ON+ words tend to be more consistent 

because they have a “common” phonology and “common” spelling. This explanation was 

supported by additional post-hoc analyses, which showed that the ON effect disappeared when 

feedback consistency was included as a covariate. In addition, it should be noted that Ziegler and 

colleagues found an inhibitory PN effect in spoken word recognition tasks, whereas Yates and 

colleagues found a facilitatory PN effect in visual word recognition tasks. On the other hand, ON 

effects appear to be facilitatory in both visual and spoken word recognition tasks. The 

asymmetric nature of PN and ON effects in visual and auditory tasks is intriguing and may hint 

at differences in the way that phonological and orthographic information influence lexical 

processing in different modalities; however, to date, there has not been any attempt to account 

for and integrate these findings within a single model.  

1.5 Limitations of current approaches  
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Although metrics such as consistency and neighborhood size represent some attempt to 

capture the relationship between orthography and phonology, they are ostensibly interpreted as 

lexical characteristics of individual words. The operationalization of these measures appears to 

capture some aspect of similarity among words in a language—neighborhood size is calculated 

based on evaluating the orthographic or phonological similarity of a target word to other words 

in the lexicon (Coltheart et al., 1977; Luce & Pisoni, 1998), and consistency is determined by 

calculating how often the body of the target word is pronounced or spelt among words that also 

share the same body or rime (Kessler & Treiman, 1997). Nevertheless these current metrics do 

not capture the overall similarity structure of a language because the way in which these metrics 

have been operationalized restricts their applicability to a subset of words within the entire 

mental lexicon and/or represents a particular aspect of language structure (phonological or 

orthographic similarity) rather than the interrelationship between phonology and orthography.  

In order to make continued progress in our understanding of phonological and 

orthographic influences on language processing the field may need to consider an alternative 

framework that represents aspects of the relationship between orthography and phonology that 

are not captured by current approaches and which explicitly considers more global aspects of 

similarity among words in a language. Such a framework could also promote a more elegant 

theoretical approach to studying language processing because it considers how lexical processes 

and mechanisms operate within a complex language structure that emerges from the 

interrelationships among orthographic and phonological representations. This approach 

exemplifies the idea that a complete understanding of how a system functions is not possible 

without taking into account the structural properties of the system (Strogatz, 2001).  
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In this case, a complete understanding of the cognitive mechanisms that support language 

processing should seriously consider how these mechanisms occur within the overall linguistic 

system. As Stone et al. (1997) point out, it is not necessarily a bad thing to try to account for 

similar results with different models or theories because pluralism of ideas and theories may lead 

to the discovery of critical common principles that guide lexical processing (Stone & Van Orden, 

1994). Moreover, an alternative framework may lead to the development of common metrics that 

may provide a different perspective on these issues, which may also lead one to ask new 

questions that one would not ordinarily consider with the contemporary approach.  

The asymmetric nature of phonological neighborhood and orthographic neighborhood 

effects in visual and auditory tasks is one intriguing theoretical question that could be addressed 

via this alternative framework. Ziegler and colleagues (2003) found an inhibitory phonological 

neighborhood effect in spoken word recognition tasks, whereas Yates and colleagues (2004; 

2005; also Grainger et al., 2005) found a facilitatory phonological neighborhood effect in visual 

word recognition tasks. On the other hand, orthographic neighborhood effects appear to be 

facilitatory in both visual and spoken word recognition tasks (Ziegler et al., 2003).  

These findings hint at differences in the way that phonological and orthographic 

information influence lexical processing in different modalities. However, to date, it is not clear 

why the effects of similarity on lexical processing differ across different modalities. Furthermore 

there has been little attempt to account for and integrate these findings within a single model or 

framework that considers both the phonological and orthographic structure of language. 

Language researchers have studied the influence of phonological similarity and orthographic 

similarity on word recognition as if they were two separate distinct influences (i.e., manipulate 

phonological neighborhood size while controlling for orthographic neighborhood size, and vice 
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versa). However, the evidence for phonological effects in visual word recognition and 

orthographic effects in spoken word recognition strongly suggests that we should consider the 

influences of phonological similarity and orthographic similarity in tandem.  

In Chapter 2, the emerging field of network science is introduced and I demonstrate how 

the network science approach can provide language researchers with the tools to characterize the 

phonological and orthographic structure of language within a single framework. A network of 

words can be constructed based on a simple operationalization of phonological and orthographic 

similarity among words, the structure of which can be further investigated and quantified as 

common metrics of phonological and orthographic similarity. 

 
 

Chapter 2 
 

Network Science and Language Networks 
 

Network science is an emerging interdisciplinary field, where mathematical techniques 

are used to characterize and analyze the topology or structure of complex networks in various 

domains (Barabási, 2009; Watts, 2004). Examples of these complex networks include friendship 

networks on social media websites (Lewis, Kaufman, Gonzalez, Wimmer, & Christakis, 2008), 

air transportation networks (Cardillo et al., 2013), the World Wide Web and the Internet (Albert, 

Jeong, & Barabási, 1999), the human brain (Bullmore & Sporns, 2009), and the mental lexicon 

(Steyvers & Tenenbaum, 2005; Vitevitch, 2008). 

Networks consist of nodes (also known as vertices in the network science literature) that 

are connected to each other via links (also known as edges in the network science literature). For 

instance, nodes can represent individuals in a social network, or airports in an air transportation 

network. The links that connect individual nodes in networks typically represent relationships 
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that exist between pairs of nodes. In a social network, a link could be placed between individuals 

who are friends with each other on a social media website such as Facebook. In an air 

transportation network, links represent the presence of flights between airports. The nodes that 

connect to a target node are also known as neighbors of that node. 

Network science offers researchers a theoretical framework as well as a comprehensive 

suite of methodological tools and techniques to study complex networks. The tools of network 

science allow researchers to derive a variety of network measures that describe the structure of 

the network. These include metrics that describe the network’s global or macro-level structure 

(e.g., average path length, average clustering coefficient, overall degree distribution), meso-level 

structure (i.e., the level that falls between the macro- and micro-levels; e.g., community 

structure), as well as local or micro-level structure (e.g., degree, clustering coefficient of 

individual nodes).   

Complex network scientists recognize that studying the relationships between individual 

entities allows us to understand the global behavior of the larger system in ways that cannot be 

discerned from studying each entity on its own (Wilson, 1998). Moreover, it is important to 

study the structure of complex networks because network structure affects the processes that 

occur within these networks (Strogatz, 2001). For instance, the structure of the social network 

affects the way in which information spreads among people, and the structure of air 

transportation networks affects the way air travel is rerouted when there are major airport 

closures.  

The tools of network science have been used to study the structure of the mental lexicon, 

which consists of all the words that a person knows that are stored in long-term memory. 

Language researchers have used these tools to model phonological (Vitevitch, 2008), 
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orthographic  (Kello & Beltz, 2009), and semantic (Hills, Maouene, Maouene, Sheya, & Smith, 

2009; Solé, Corominas-Murtra, Valverde, & Steels, 2010; Steyvers & Tenenbaum, 2005) 

language networks of words in the mental lexicon. In these networks, each node represents a 

word, but the ways in which links are assigned to nodes differ. In the phonological network, 

links connect pairs of words that are phonologically similar to each other. In the orthographic 

network, links connect pairs of words that are orthographically similar to each other. Below I 

briefly discuss prior computational and psycholinguistic work conducted with respect to the 

phonological network and the orthographic network of language. 

2.1 The phonological language network 

The phonological network examined in Vitevitch (2008) consisted of the phonological 

transcriptions of 19,340 words obtained from the 1964 Merriam-Webster Pocket Dictionary. In 

this network, nodes represented phonological word forms and connections represented 

phonological similarity between words. Two words were considered phonologically similar if the 

first word could be transformed to the other by either substituting, adding, or deleting one 

phoneme in any position (Landauer & Streeter, 1973; Luce & Pisoni, 1998). For instance, the 

word /kæt/ (“cat”) would be connected to /æt/ (“at”), /bæt/ (“bat”), and /skæt/ (“scat”). The 

phonological network consisted of a giant component (the largest connected component of the 

network), several lexical islands (smaller connected components of the network), and hermits 

(nodes that do not connect to any other nodes). Vitevitch (2008) found that the giant component 

possessed a small-world structure (i.e., short average path length and high average clustering 

coefficient when compared to a random network of a similar size), a degree distribution that 

resembled a truncated power law, and assortative mixing by degree (i.e., nodes with several 

neighbors tend to be connected to nodes with several neighbors; (Newman, 2002). 
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Prior work by Vitevitch and colleagues have demonstrated that the local or micro-level 

structure of the phonological network influences spoken word recognition and production, word 

learning, and short- and long-term memory processes (Chan & Vitevitch, 2009, 2010; Goldstein 

& Vitevitch, 2014; Vitevitch, Chan, & Roodenrys, 2012). Chan and Vitevitch (2009; 2010) 

showed that the clustering coefficient, C, of a word had measureable effects on a variety of 

psycholinguistic tasks such as perceptual identification, lexical decision, and picture naming. 

Clustering coefficient, C, is a micro-level network science metric that represents the extent to 

which neighbors of a word are also neighbors of each other. The phonological neighbors of high 

C words tend to be neighbors of each other, whereas the phonological neighbors of low C words 

do not tend to be neighbors of each other. Therefore C is one network science metric that can 

quantify the local or micro-level structure of a node (i.e., by considering the immediate neighbors 

of a node). Chan and Vitevitch (2009; 2010) found a processing advantage for low C words as 

compared to high C words.  

The structure of the phonological network at levels other than the micro-level has also 

been found to influence lexical processing. Vitevitch and Goldstein (2014) found a processing 

advantage for “keywords”—a set of words that, when removed, would cause the network to 

fracture into several smaller components—as compared to non-keywords with comparable 

lexical characteristics. Vitevitch, Chan, and Goldstein (2014) analyzed instances of failed lexical 

retrieval by participants and found that the errors reflected the presence of high assortative 

mixing by degree (a macro-level metric) in the phonological network. Assortative mixing by 

degree refers to the tendency for highly connected nodes to be connected to other highly 

connected nodes in the network (Newman, 2002), and represents one aspect of the macro- level 

structure of the phonological network. In another study, Siew and Vitevitch (2016) showed that 
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the network component that words resided in (i.e., giant component or lexical islands) affected 

how quickly words were retrieved from the mental lexicon. Together, these findings suggest that, 

in addition to the micro-level (as exemplified by the clustering coefficient network metric), the 

macro-level structure of the phonological network also has important implications for 

understanding lexical processes. 

Ultimately, this body of research has shown that the structure at different levels of the 

phonological network influences various aspects of lexical processing. The tools of network 

science have allowed language researchers to explore the structure of the phonological network 

at different levels of analysis, adding depth to the investigation and providing new insights into 

the psychological mechanisms that support lexical processing. 

2.2 The orthographic language network 

In contrast to the phonological network, there has not been as much research that has 

made use of the tools of network science to study the orthographic language network. One 

exception is the analysis conducted by Kello and Beltz (2009), who constructed an orthographic 

word form network whereby links were placed between words that were substrings of other 

words. For instance, the word “air” would be connected to the words “fair” and “aired”. This 

network had a tree-like branching structure: Shorter word forms (such as “air”) were usually 

found at the higher sections of the network (“trunks”) and longer word forms (such as “faired”) 

were usually found at the lower sections of the network (“branches”).  

According to Kello and Beltz (see also Ferrer i Cancho & Solé, 2003; Zipf, 1949), 

language systems need to strike a balance between memory constraints while maximizing the 

efficiency of disambiguating between different lexical representations. One universal feature of 

such systems is the presence of scale-free or power laws. With respect to the orthographic 
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language system, in order to maximize distinctiveness between word forms, there should be little 

substring overlap among word forms. On the other hand, to minimize memory costs of storing 

word forms in long term memory, substrings should be reused as much as possible. Based on the 

need to balance between these two competing constraints in the orthographic lexicon, Kello and 

Beltz predicted, and subsequently found, evidence of a scale-free degree distribution with respect 

to the number of outgoing links per node (i.e., the number of times a given word form was a 

substring of another word form) in the orthographic network.  

It is important to note that Kello and Beltz’s operationalization of orthographic similarity 

(i.e., placing links between words that were substrings of other words) differs significantly from 

the way orthographic similarity has been typically operationalized in the psycholinguistic 

literature, where words are considered to be orthographically similar if they differ by the 

substitution of a single letter (Coltheart et al., 1977). In the network examined in Vitevitch 

(2008), the phonological network of language was constructed using a commonly used metric of 

phonological similarity and no assumptions were made with regards to the ultimate structure of 

the network. In contrast, the orthographic network described in Kello and Beltz was constructed 

using a somewhat non-traditional definition of orthographic similarity with an a priori 

assumption of the existence of a scale-free degree distribution. It is unclear if a similar degree 

distribution would be observed in the orthographic language network if a more commonly used 

metric of orthographic similarity were used to specify the links between words instead.  

It is also important to note that Kello and Beltz merely conducted a computational 

analysis of the orthographic network. To date, there has not been any behavioral or experimental 

work investigating how the network structure of the orthographic lexicon might influence lexical 

processing. However, the results of a recent paper by Iyengar and colleagues (2012) suggest that 
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the orthographic structure of language could have key implications for navigating the mental 

lexicon. Participants played a word-morph game where they had to find a sequence of words 

such that the first word could be transformed to the second word (of the same length) by 

changing a single letter. For example, the sequence of words to get from “try” to “pot” was “try-

toy-ton-tot-pot”. Note that this particular definition of orthographic similarity, that is, the 

substitution of one letter within the word, is more similar to the way in which phonological 

similarity was defined in the phonological network as described earlier. Iyengar and colleagues 

found that participants were much faster at the game when they learned to make use of 

“landmark” words to find the sequence of words. These landmark words were nodes in the word-

morph network of three-letter English words that had high closeness centrality—a network 

science measure indicating the inverse of the sum of distances of a node to all other nodes in the 

network. High closeness centrality words were “close” to many other words in the network. 

Iyengar et al.’s findings strongly suggest that the network structure of orthographic word forms 

(albeit one that contained only three-letter words) has behavioral consequences as one navigates 

the mental lexicon and there could be similar implications for lexical retrieval.  

2.3 Introduction to multiplexes  

As reviewed above, the application of network science to the field of psycholinguistics 

has led to several new discoveries and has greatly contributed to our understanding of cognitive 

and language processes. However, the language networks that have been examined to date do not 

truly reflect the multiplexity inherent in language. That is, words can be phonologically, 

orthographically, and semantically related to each other. To date, language networks have been 

constructed based on a single type of relationship among words and analyzed independently of 

other types of language networks. The network constructed by Vitevitch (2008) was based on 
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phonological similarity among words, whereas the network constructed by Kello and Beltz 

(2009) considered orthographic relations among words. The recent movement in network science 

toward characterizing multiple types of relationships among nodes within the same network (i.e., 

the multiplex) suggests that both phonological as well as orthographic relationships among 

words should (and could!) be represented within a single language network in order to truly 

reflect the multiplexity of linguistic structure.  

The study of multiplex networks is one of the fastest growing research areas within 

network science. A multiplex network (also known as a multi-layer network or simply a 

multiplex) consists of multiple layers of networks, whereby the connections within each layer 

represent a different type of relationship among a common set of nodes (Battiston, Nicosia, & 

Latora, 2014). Figure 1 shows a simple multiplex. As network scientists are recognizing that real 

world complex networks are inherently multiplex in nature, that is, nodes can be related to each 

other in more than one way, much of the recent research activity in this area has been directed 

toward establishing a consistent mathematical and theoretical framework for modeling multiplex 

networks (Battiston et al., 2014; Kivelä et al., 2014), as well as developing computational tools 

for analyzing multiplex networks (De Domenico, Porter, & Arenas, 2015). Network scientists 

have also adapted and re-conceptualized a number of network metrics such that they would be 

more appropriate for analyzing the structure of the multiplex (for an overview, see Boccaletti et 

al., 2014).  
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Figure 1. A two-layer multiplex. The same nodes are represented in both layers, and the 

connections within each layer represent a different type of relationship among nodes (Battiston et 

al., 2014).  

 

There are various ways in which multiplexity can manifest in real world complex 

networks. For instance, different kinds of relationships such as platonic, romantic, sexual 

relationships can exist between people (Lewis et al., 2008). Constructing a social network based 

on a single type of connection is merely a crude approximation to reality. In an interbank 

network, banks can be related to each other via different types of financial transactions (Bargigli, 

di Iasio, Infante, Lillo, & Pierobon, 2015). Considering only a single type of financial transaction 
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can lead to a poor approximation of underlying systemic risk in the banking industry (Bargigli, 

Iasio, Infante, Lillo, & Pierobon, 2015). In the air transportation network, the flights that connect 

airports are not identical: some flights are provided by major airlines, others by budget airlines, 

and yet others by cargo airlines (Cardillo et al., 2013). A more complete picture of the air 

transportation network can only be obtained by considering the different kinds of flights that 

connect airports. From these examples, it is clear that multiplexity is an inherent feature of most 

real world complex networks.  

Given that past work has demonstrated how the tools of network science can be used to 

quantify the structure of language networks and further our understanding of lexical processes, 

constructing a phonographic multiplex to characterize, simultaneously, the phonological and 

orthographic structure of language could provide us with new, sophisticated metrics that take 

into account both the phonological and orthographic structure of language and offer new ways to 

investigate the interrelationship between phonology and orthography and their influence on 

lexical processes. 

 
 

Chapter 3  
 

The Phonographic Network of Language 
 

A phonographic multiplex was constructed with phonological and orthographic layers. 

The phonological layer was identical to the phonological network constructed by Vitevitch 

(2008). The orthographic layer consisted of the same words (nodes) in the phonological network, 

except that the connections in this layer would be based on orthographic similarity. Words would 

be connected to each other if they differed by the substitution, addition, or deletion of a single 

letter in any word position. Such an operationalization would not only be consistent with the 
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operationalization of phonological similarity in the phonological network, but represents an 

approach of defining similarity relations among words that has a long history in the field of 

psycholinguistics (e.g., Coltheart et al., 1977; Greenberg & Jenkins, 1964). Note that this would 

lead to an orthographic layer in the phonographic multiplex that is quite different from that of the 

orthographic word form network constructed by Kello and Beltz (2009)—recall that Kello and 

Beltz placed links between words that were substrings of other words. Placing a link between 

two words that can be transformed into the other via the substitution, addition, or deletion of a 

letter would be more consistent with the way in which orthographic similarity has 

operationalized in the psycholinguistic literature (Coltheart et al., 1977), and is not an ad hoc 

metric used to impose a scale-free degree distribution on the language network (Kello & Beltz, 

2009). 

According to the multiplex literature, three different types of multilinks are possible in a 

two-layer multiplex. Nodes can be connected to each other (i) in both layers, (ii) only via layer 1, 

or (iii) only via layer 2 (Bianconi, 2013; Menichetti, Remondini, Panzarasa, Mondragón, & 

Bianconi, 2014). In the phonographic multiplex, words can be (i) phonologically and 

orthographically related to each other, (ii) only phonologically related to each other, or (iii) only 

orthographically related to each other. Examining the nature of the overlap of links among nodes 

in the phonological and orthographic layers in the phonographic multiplex could be particularly 

relevant for studying the interrelationship between phonology and orthography.  

For the purposes of the dissertation, I focus on analyzing the part of the phonographic 

multiplex where the phonological and orthographic links overlap. That is, the section consisting 

of multilink (i)—links that are found in both the phonological and orthographic layers of the 

multiplex. The phonographic network (named after the phono-logical and ortho-graphic layers 
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of the multiplex) was constructed by using the links that represented both phonological and 

orthographic similarity from the phonographic multiplex.    

Below I describe the results of a computational analysis of the structure of the 

phonographic network at the macro- and meso-levels. It is important to first demonstrate that the 

structure of the phonographic network is indeed meaningful (i.e., not merely random) as 

compared to other real world networks, before investigating whether the structure of the 

phonographic network (as exemplified by multiplex metrics) influences spoken and visual word 

recognition.   

3.1 Structural characteristics at the macro-level  

The phonographic network consisted of 5,896 nodes and 11,702 edges. The largest 

connected component of the phonographic network, also known as the giant component, 

consisted of 3,292 nodes (approximately 55.8% of the entire phonographic network) and 9,583 

links. The remainder of the phonographic network consisted of several (~800) lexical islands, 

smaller connected components of the network that are not connected to the giant component. 

Note that not all words from the original set of 19,340 were represented in the phonographic 

network. The words that were not represented are essentially “hermits” in the phonographic 

network, because they were not phonologically and orthographically similar to any words.  

In the network science literature, most real world networks possess very large giant 

components, where almost all nodes are connected to form a single connected component 

(Newman, 2001). In contrast, the proportion of nodes found in the giant components of the 

phonological networks of various languages such Spanish and Mandarin vary from 34% to 66% 

(Arbesman, Strogatz, & Vitevitch, 2010). The proportion of nodes residing in the giant 
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component of the phonographic network is small relative to other real-world networks, but 

comparable to the phonological language networks.  

Below, I further examine the structure of the phonographic network. In order to provide a 

baseline for making comparisons of the structure of the phonographic network, a similarly sized 

random network was constructed by randomly placing links between nodes (Erdös & Rényi, 

1960).  

3.1.1 Average path length  

The average path length of the (largest component of the) phonographic network was 

7.14. On average, approximately seven links had to be traversed to connect any two nodes in the 

giant component of the phonographic network. The average path length of a random network 

with the same number of nodes and edges was 4.79. Although the average path length of the 

phonographic network was somewhat larger than that of a comparably sized random network, 

the conventions used in network science (with the range of 1.5 of the value obtained from a 

random graph = 7.18) would consider these values comparable (Watts & Strogatz, 1998).  

3.1.2 Clustering coefficient  

The average clustering coefficient of the (largest component of the) phonographic 

network was 0.284. The average clustering coefficient of a random network with the same 

number of nodes and edges was 0.002. The average clustering coefficient of the phonographic 

network was much larger by several orders of magnitude than that of a comparably sized random 

network. This indicates that the neighbors of a given node in the phonographic network are more 

likely to be neighbors of each other, as compared to the neighbors of a given node in the random 

network.  
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According to Watts and Strogatz (1998), a small-world network has (i) an average path 

length that is comparable to the average path length of a random network, but (ii) a clustering 

coefficient that is much larger than the average clustering coefficient of a random network with 

the same number of nodes and edges. Several real world networks, such as the network of 

scientific collaborations (Newman, 2004a) and the human brain (Bullmore & Sporns, 2009), 

possess these two characteristics and are said to have a small-world structure. Despite their large 

sizes, these networks are relatively easy to navigate due to its small average path length and large 

average clustering coefficient relative to a comparably sized random network with randomly 

placed links (Kleinberg, 2000). The results of the present analyses suggest that, similar to the 

phonological (Vitevitch, 2008) and semantic (Steyvers & Tenenbaum, 2005) networks of 

language, the phonographic network has the features of a small-world network.   

3.1.3 Degree distribution  

In the network science literature, the number of connections per node is referred to as the 

degree of the node. The degree distribution refers to the proportion of nodes that have a given 

number of links. If a degree distribution resembles a normal distribution, most nodes have the 

average number of connections per node. If a degree distribution resembles a power law, many 

nodes have few connections (low degree) and a few nodes have many connections (high degree). 

A power law degree distribution is a common feature of several real world networks (Albert & 

Barabási, 2002). Therefore, analyzing the degree distribution of a network can reveal additional 

information regarding the overall structure of the network. In order to be consistent with prior 

theoretical analyses, the degree distribution of words found in the largest component of the 

phonographic network, rather than of the entire network, was analyzed.  
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Various distributions (power law, log-normal, exponential) were fit to the degree 

distribution of the giant component of the phonographic network. The results indicate that the 

degree distribution of the giant component of the phonographic network was best fit by a log-

normal distribution (Kolmogorov-Smirnov statistic = 0.0129, p = .78), and not by a power law 

(Kolmogorov-Smirnov statistic = 0.0677, p < .001) or exponential distribution (Kolmogorov-

Smirnov statistic = 0.0281, p < .001). Note that non-significant p-values indicate that the degree 

distribution did not significantly differ from the fitted distribution, whereas significant p-values 

indicate that the degree distribution significantly differed from the fitted distribution.  

The degree distributions of phonological networks of different languages (e.g., English, 

Spanish, Basque; see Arbesman et al., 2010) resembled a truncated power law. The degree 

distribution of the semantic network resembled a power law (Steyvers & Tenenbaum, 2005). For 

the phonographic network, the degree distribution was best fit by a log-normal distribution.  A 

log-normal distribution indicates that the logarithm of the variable of interest (in this case, 

degree) is normally distributed. Both log-normal and power law distributions are examples of 

heavy- or fat-tailed distributions, where higher probabilities of extreme values tend to occur (i.e., 

nodes with very high degree) as compared to a normal distribution.  

Characterizing the degree distributions of networks can give us clues about the network 

growth mechanisms that might have led to the present structure observed in the complex 

networks (however, see D’Souza, Borgs, Chayes, Berger, & Kleinberg (2007) for an alternative 

to network growth mechanisms that shapes network structure). For instance it has been shown 

that preferential attachment, the process by which new nodes that are added to the network are 

more likely to connect to nodes with several connections, leads to the formation of networks with 

power law degree distributions (Barabási, 2009).  Preferential attachment is also known as the 



	 27  

“rich gets richer” phenomena—because nodes that already have several connections (these are 

“rich” nodes) are more likely to gain new connections as the network grows over time (these 

nodes get “richer”) and this leads to a network structure where very few nodes have most of the 

connections and most nodes only have few connections. Power law degree distributions appear 

to be a key feature of several real world complex networks (Barabási & Albert, 1999).  

Some work has suggested that a log-normal degree distribution might be indicative of a 

combination of both random attachment and preferential attachment (Jackson & Rogers, 2007). 

In random attachment nodes are simply added randomly to the network.  With respect to the 

phonographic network, it should be noted that it was constructed by essentially extracting the 

part of the phonographic multiplex where the phonological and orthographic links overlapped. It 

is possible that the log-normal degree distribution, which is mathematically closely related to a 

power law (Mitzenmacher, 2004), was merely a by-product of the way in which the 

phonographic network was constructed. However, it might also be the case that the log-normal 

degree distribution reflects the influence of somewhat different network growth mechanisms as 

compared to the semantic and phonological language networks. For instance, whereas one has to 

be taught explicitly how to read (i.e., literacy skills are obtained via explicit instruction), the 

acquisition of speech and meaning are not explicitly taught to native speakers of a language—

and this might be reflected in the differences between the degree distributions of various types of 

language networks.  

3.2 Structural characteristics at the meso-level  

In addition to delineating the overall topology of a network (i.e., the macro-level), the 

tools of network science also permit us to investigate the meso-level of a network that is 

typically exemplified by a network’s community structure. Community structure refers to the 
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presence of several smaller groups of nodes within a larger network, where smaller groups form 

such that there are many connections among nodes within a group, but few connections exist 

between nodes belonging to different groups (Newman & Girvan, 2004). Communities have 

been commonly observed in real world networks such as the structure of the human brain (Wu et 

al., 2011), the World Wide Web (Newman, 2004), as well as the phonological network of 

language (Siew, 2013). The community structure of networks is of interest to network scientists 

because it reveals additional information of the network structure that may not be observable at 

the coarse, top-most level of analysis, nor by examining the individual nodes that comprise the 

system (Lancichinetti, Kivelä, Saramäki, & Fortunato, 2010; Onnela et al., 2012). 

A preliminary community detection analysis was conducted on the giant component of 

the phonographic network and on the random network. Modularity, Q, is a measure of the 

density of links within communities as compared to the density of links between communities 

(Newman, 2006). Positive Q values that are close to the maximum value of 1.0 indicate the 

presence of high quality communities, where the density of links within communities is high 

relative to the density of links between communities (Fortunato, 2010). Using the Louvain 

community detection algorithm, 28 communities with Q = 0.820 were detected in the 

phonographic network. The large positive modularity value implies the presence of robust 

community structure in the phonographic network—which was also observed in the 

phonological language network (Siew, 2013). In comparison, 38 communities with a much lower 

Q of 0.377 were detected in the random network. 

The above analyses of the phonographic network at both the macro- and meso-levels 

reveal that several features of its overall network structure converge with those observed in other 

real world networks. Similar to the phonological language network, the phonographic network 
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possesses a small-world structure (i.e., short average path length and high average clustering 

coefficient), a “small” giant component, and robust community structure. However, the degree 

distribution of the phonographic network appeared to follow a log-normal distribution whereas 

the degree distribution of the phonological networks of English, Spanish, Basque, and Hawaiian, 

languages from different language families resembled a truncated power law (Arbesman et al., 

2010). Overall, this analysis strongly suggests that the structure of the phonographic network is 

meaningful (i.e., not merely random) and is worth exploring further.  

3.3 Structural characteristics at the micro-level  

The above analyses demonstrate how the tools of network science can be used to examine 

the structure of the phonographic network at varying levels of analysis. The next step is to 

examine whether the structure of the phonographic network has any influence on spoken and 

visual language processing. In particular, the present investigation will focus on the influence of 

two micro-level network metrics derived from the phonographic network on language 

processing: (i) phonographic degree and (ii) phonographic clustering coefficient. This 

dissertation represents a first step in what will be a continuing line of research that will 

investigate how the structure of the phonographic network at other levels of analysis (marco-, 

meso-levels) influences spoken and visual word recognition.  

3.3.1 Phonographic degree  

Phonographic degree refers to the number of words that are both phonological and 

orthographic neighbors of a given word. Therefore, phonographic neighbors differ from the 

target word by the substitution, deletion, or addition of one phoneme and the substitution, 

deletion, or addition of one letter. For instance, the phonographic neighbors of ‘peep’ /pip/ 

include ‘deep’ /dip/, ‘keep’, /kip/, and ‘pep’ /pɛp/, among others. Note that, as shown in the case 
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of ‘pep’ /pɛp/, it is possible that a phonographic neighbor differs from the target word by the 

substitution of one phoneme and the deletion of one letter—rather than by the substitution of one 

phoneme and one letter, or the addition of one phoneme and one letter, and so on. As an 

additional example, consider the word ‘pant’ /p@nt/: Its phonographic neighbors include ‘punt’ 

/p^nt/ and ‘past’ /p@st/, but not ‘panel’ /p@nL/ (phonological neighbor) and ‘want’ /wcnt/ 

(orthographic neighbor). Based on the words in the giant component of the phonographic 

network, the mean phonographic degree was 5.82 (SD = 4.56) with a range from 1 to 26.  

In the visual word recognition literature, there is a small body of research in the literature 

investigating the influence of phonographic neighborhood size on language processing (Adelman 

& Brown, 2007; Muneaux & Ziegler, 2004; Peereman & Content, 1997). The general finding is 

that the presence of phonographic neighbors facilitates naming of visually presented words 

(Adelman & Brown, 2007; Peereman & Content, 1997). In other words, there appears to be a 

processing advantage for words with several phonographic neighbors as compared to words with 

few phonographic neighbors. To date there has not been any work studying the role of 

phonographic neighbors in spoken word recognition. Based on the past literature, one would 

predict a facilitatory effect of phonographic degree on visual word recognition. On the other 

hand, for spoken word recognition, it is unclear if the presence of more phonographic neighbors 

would facilitate or inhibit recognition. The presence of more phonographic neighbors could 

inhibit recognition by contributing greater competition among activated neighbors (Luce & 

Pisoni, 1998). However, recall that these metrics are obtained from the phonographic network, 

which represents the part of the phonographic multiplex where the phonological and 

orthographic layers overlap. Therefore these metrics can be said to quantify the extent to which 

the structures of the phonological and orthographic neighborhoods of a given word are consistent 
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with each other, and one would predict that the presence of more phonographic neighbors would 

facilitate processing in the first layer of the multiplex (e.g., phonological) by providing more of a 

“boost” in activation in the second layer of the multiplex (e.g., orthographic).  

3.3.2 Phonographic clustering coefficient   

Another micro-level multiplex metric to investigate is the clustering coefficient (C) of 

overlapping (i.e., phonographic) neighbors in the phonographic network. Clustering coefficient is 

a particularly interesting micro-level metric to explore because it is a measure of the internal 

structure of a word’s local neighborhood. If phonographic C indeed influences the speed and 

accuracy of lexical retrieval this would suggest that it is important to further explore how the 

structure of the phonographic network at the meso- and macro-levels might also influence 

language processing. Based on the words in the giant component of the phonographic network, 

the mean phonographic C was 0.284 (SD = 0.278) with values covering the full range of C from 

0 to 1. A word with high phonographic C would have phonographic neighbors that tend to also 

be neighbors of each other whereas a word with low phonographic C would have phonographic 

neighbors that do not tend to be neighbors of each other. Consider the following two words: 

‘mold’ and ‘pant’. Both ‘mold’ and ‘pant’ have 14 phonographic neighbors; however, ‘mold’ has 

a higher phonographic C (0.440) as compared to ‘pant’ (phonographic C = 0.121). As shown in 

Figure 2 below, the phonographic neighbors of ‘mold’ tend to also be phonographic neighbors of 

each other (greater density of connections within the phonographic neighborhood), whereas the 

phonographic neighbors of ‘pant’ do not tend to be phonographic neighbors of each other (lower 

density of connections within the phonographic neighborhood).  
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Figure 2. The phonographic neighborhood of ‘mold’ (high phonographic C) is shown on the left 

and the phonographic neighborhood of ‘pant’ (low phonographic C) is shown on the right. Both 

words have the same number of phonographic neighbors, but differ in the level of 

interconnectivity within their neighborhoods. Nodes are labeled with conventional orthography 

and a computer readable phonological transcription.  

 

Given previous work showing that the local network structure of the phonological 

network influences lexical retrieval (Chan & Vitevitch, 2010), one might also expect that the 

internal structure of the phonographic neighborhood, in addition to its absolute size, would also 

affect the speed and accuracy of lexical processes. Specifically, Chan and Vitevitch found an 

inhibitory effect of phonological C on various spoken word recognition tasks. Based on the 

literature, one might also expect phonographic C to exert an inhibitory effect on both visual and 

spoken word recognition. Nevertheless, it is important to note that phonological C metric used by 

Chan and Vitevitch was based on the (single) phonological layer of the phonographic 

multiplex—whereas phonographic C measures the internal structure of a word’s phonographic 
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neighborhood (based on both layers of the phonographic multiplex). A greater value of 

phonographic C indicates greater similarity in the phonological and orthographic neighborhood 

structures of a given word. Given past work on “conspiracy models” of word pronunciation 

which has shown that words with more consistent neighbors tend to be more quickly named 

(e.g., Taraban & McClelland, 1987), one would expect that the activation dynamics that occur 

among similar phonological and orthographic network structures would also “conspire” and lead 

to the facilitation, rather than inhibition, of lexical retrieval. In the following chapters, 

conventional psycholinguistic experiments and an archival analysis of behavioral data from a 

language database will be conducted to examine the influence of phonographic degree and 

phonographic clustering coefficient on spoken and visual word recognition.  

 

Chapter 4 

Experiment 1: Auditory Naming Task 

In Experiment 1, a conventional psycholinguistic task was used to examine how 

phonographic degree and phonographic C might influence spoken word recognition. In the 

auditory naming task, participants repeated the words they heard out loud as quickly and 

accurately as possible.  

The traditional approach in psycholinguistics is the factorial experiment, which entails 

the selection of two sets of words that are closely matched on a number of variables while 

manipulating the variable of interest. As linguistic variables tend to be correlated with each other 

(e.g., words with high phonological degree also tend to occur frequently in the language 

(Frauenfelder, Baayen, & Hellwig, 1993)), it is sometimes difficult to select stimuli that are 

perfectly matched on all extraneous variables. One solution is to use a multilevel modeling 
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approach to statistically control for these variables. Therefore, multilevel models will be used to 

analyze the data from Experiments 1 and 2.  

4.1 Method 

Participants. Sixty native English speakers were recruited from the Introductory 

Psychology subject pool at the University of Kansas. All participants had no previous history of 

speech or hearing disorders and received partial course credit for their participation. 

Materials. Two sets of monosyllabic English words were selected as stimuli. The first set 

consisted of words with either high or low phonographic degree and the second set consisted of 

words with either high or low phonographic C. There were a total of 160 words: 40 high 

phonographic degree words, 40 low phonographic degree words, 40 high phonographic C words, 

and 40 low phonographic C words.  

The stimuli were also chosen so as to capture a representative range of lexical variables, 

while excluding words that had an extreme value of any of the following lexical characteristics: 

number of phonemes, number of letters, subjective familiarity, word frequency, phonological 

degree, phonological C, phonological neighborhood frequency, two measures of phonotactic 

probability (positional segment probability and biphone probability), orthographic degree, 

orthographic C, orthographic neighborhood frequency, two measures of bigram frequency 

(average bigram frequency counts and sum of bigram frequency counts by position). In addition 

to the key variables of interest (i.e., phonographic degree and phonographic clustering 

coefficient), these lexical variables will be included as covariates in the multilevel model.   

A male native speaker of American English produced the stimuli by speaking at a normal 

speaking rate into a high-quality microphone in an Industrial Acoustics Company sound-

attenuated booth. Individual sound files for each word were edited from the digital recording 
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with SoundEdit16 (Macromedia, Inc). The Normalization function in SoundEdit16 was used to 

ensure that all sound files were comparable in amplitude. Stimuli durations were equivalent 

across high and low phonographic degree words, t(78) < 1, p = .36, and across high and low 

phonographic C words, t(78) < 1, p = .48. 

Table 1 shows the means and standard deviations of various psycholinguistic 

characteristics of high and low phonographic degree and high and low phonographic C words. A 

list of the stimuli is provided in Appendix A.  
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Phonographic degree. Phonographic degree refers to the number of words that are both 

phonological and orthographic neighbors of a given word. Therefore, phonographic neighbors 

differ from the target word by the substitution, deletion, or addition of one phoneme and the 

substitution, deletion, or addition of one letter. High phonographic degree words had a mean 

phonographic degree of 5.78 (SD = 1.00) and low phonographic degree words had a mean 

phonographic degree of 3.55 (SD = 0.60), t (78) = 12.09, p < .001. High phonographic C words 

had a mean phonographic degree of 6.85 (SD = 3.51) and low phonographic C words had a mean 

phonographic degree of 7.35 (SD = 3.88), t (78) < 1, p = .55. 

Phonographic clustering coefficient. The phonographic clustering coefficient, C, refers to 

the extent to which the phonographic neighbors of a word are also neighbors of each other. To 

calculate clustering coefficient, the number of connections between neighbors of a target word 

was counted and divided by the number of possible connections that could exist among the 

neighbors. Therefore, the clustering coefficient is the ratio of the actual number of connections 

existing among neighbors to the number of all possible connections among neighbors if every 

neighbor were connected. The value of the clustering coefficient ranges from 0 to 1; when C = 1 

all neighbors of a word are neighbors of each other; when C = 0 no neighbors of the word are 

neighbors of each other. High phonographic degree words had a mean phonographic clustering 

coefficient of 0.283 (SD = 0.146) and low phonographic degree words had a mean phonographic 

clustering coefficient of 0.321 (SD = 0.278), t (78) < 1, p = .44. High phonographic C words had 

a mean phonographic clustering coefficient of 0.326 (SD = 0.123) and low phonographic C 

words had a mean phonographic clustering coefficient of 0.163 (SD = 0.079), t (78) = 7.04, p < 

.001. 
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Subjective familiarity. Subjective familiarity was measured on a seven-point scale 

(Nusbaum, Pisoni, & Davis, 1984). The rating scale ranged from 1, You have never seen the 

word before, to 4, You recognize the word, but don’t know the meaning, to 7, You recognize the 

word and are confident that you know the meaning of the word. High phonographic degree 

words had a mean familiarity value of 6.83 (SD = 0.24) and low phonographic degree words had 

a mean familiarity value of 6.86 (SD = 0.25), t (78) < 1, p = .56. High phonographic C words had 

a mean familiarity value of 6.81 (SD = 0.31) and low phonographic C words had a mean 

familiarity value of 6.83 (SD = 0.23), t (78) < 1, p = .69. Therefore, both sets of words were 

considered highly familiar.   

Word frequency. Word frequency refers to how often a given word occurs in a language. 

Log-base 10 of the raw frequency counts from Kučera and Francis (1967) were used. High 

phonographic degree words had a mean word frequency of 1.88 (SD = 0.55) and low 

phonographic degree words had a mean word frequency of 2.04 (SD = 0.65), t (78) = 1.19, p = 

.24. High phonographic C words had a mean word frequency of 1.95 (SD = 0.65) and low 

phonographic C words had a mean word frequency of 1.97 (SD = 0.73), t (78) < 1, p = .90. Log-

base 10 of the frequency counts from the more current SUBTLEXUS corpus (Brysbaert & New, 

2009) were also obtained from the English Lexicon Project (Balota et al., 2007). Based on these 

frequency counts, High phonographic degree words had a mean word frequency of 2.40 (SD = 

0.69) and low phonographic degree words had a mean word frequency of 2.65 (SD = 0.77), t (78) 

= -1.50, p = .14. High phonographic C words had a mean word frequency of 2.68 (SD = 0.83) 

and low phonographic C words had a mean word frequency of 2.63 (SD = 0.71), t (78) < 1, p = 

.80. 
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Number of phonemes. High phonographic degree words had a mean word length of 3.83 

phonemes (SD = 0.59) and low phonographic degree words had a mean word length of 3.80 

phonemes (SD = 0.61), t (78) < 1, p = .85. High phonographic C words had a mean word length 

of 3.60 phonemes (SD = 0.55) and low phonographic C words had a mean word length of 3.60 

phonemes (SD = 0.55), t (78) < 1, p = 1.00. 

Phonological degree. Phonological degree refers to the number of words that are 

phonologically similar to a given word (also known as phonological neighborhood density in the 

psycholinguistic literature). Phonological similarity was defined as the substitution, addition, or 

deletion of one letter in a given word to form a phonological neighbor (Luce & Pisoni, 1998). 

High phonographic degree words had a mean phonological degree of 11.83 (SD = 4.27) and low 

phonographic degree words had a mean phonological degree of 10.85 (SD = 5.06), t (78) < 1, p = 

.35. High phonographic C words had a mean phonological degree of 14.30 (SD = 6.85) and low 

phonographic C words had a mean phonological degree of 14.98 (SD = 7.11), t (78) < 1, p = .67.    

Phonological clustering coefficient. The phonological clustering coefficient refers to the 

extent to which the phonological neighbors of a word are also neighbors of each other. The 

phonological clustering coefficient was calculated in the same manner as phonographic 

clustering coefficient (as described above), except that the density of connections was calculated 

among phonological, rather than phonographic, neighbors. High phonographic degree words had 

a mean phonological C of 0.294 (SD = 0.073) and low phonographic degree words had a mean 

phonological C of 0.286 (SD = 0.085), t (78) < 1, p = .64.  High phonographic C words had a 

mean phonological C of 0.272 (SD = 0.063) and low phonographic C words had a mean 

phonological C of 0.249 (SD = 0.080), t (78) = 1.45, p = .15.    
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Phonological neighborhood frequency. Phonological neighborhood frequency refers to 

the average frequency of the phonological neighbors of a target word. High phonographic degree 

words had a mean phonological neighborhood frequency of 1.83 (SD = 0.29) and low 

phonographic degree words had a mean phonological neighborhood frequency of 1.88 (SD = 

0.24), t (78) = 1.01, p = .32. High phonographic C words had a mean phonological neighborhood 

frequency of 1.83 (SD = 0.29) and low phonographic C words had a mean phonological 

neighborhood frequency of 1.85 (SD = 0.29), t (78) < 1, p = .73.      

Phonotactic probability. Two measures of phonotactic probability—positional segment 

probability (the probability that a segment occurs in a certain position of a word) and biphone 

probability (the probability that two adjacent segments co-occur in a word)—were obtained from 

the Phonotactic Probability Calculator (Vitevitch & Luce, 2004). High phonographic degree 

words had a mean positional segment probability of 0.175 (SD = 0.0474) and low phonographic 

degree words had a mean positional segment probability of 0.176 (SD = 0.0475), t (78) < 1, p = 

.93. High phonographic degree words had a mean biphone probability of 0.0120 (SD = 0.00687) 

and low phonographic degree words had a mean biphone probability of 0.0116 (SD = 0.00693), t 

(78) < 1, p = .77. High phonographic C words had a mean positional segment probability of 

0.171 (SD = 0.0451) and low phonographic C words had a mean positional segment probability 

of 0.170 (SD = 0.0414), t (78) < 1, p = .87. High phonographic C words had a mean biphone 

probability of 0.00940 (SD = 0.00606) and low phonographic C words had a mean biphone 

probability of 0.00942 (SD = 0.00576), t (78) < 1, p = .98.    

Number of letters. High phonographic degree words had a mean word length of 4.53 

letters (SD = 0.55) and low phonographic degree words had a mean word length of 4.50 letters 

(SD = 0.56), t (78) < 1, p = .84. High phonographic C words had a mean word length of 4.33 
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letters (SD = 0.53) and low phonographic C words had a mean word length of 4.30 letters (SD = 

0.56), t (78) < 1, p = .84. 

Orthographic degree. Orthographic degree refers to the number of words that are 

orthographically similar to a given word (also known as orthographic neighborhood density in 

the psycholinguistic literature). Orthographic similarity was defined as the substitution, addition, 

or deletion of one letter in a given word to form an orthographic neighbor. Note that this 

operationalization is slightly different from that of Coltheart’s N (Coltheart et al., 1977); the 

latter refers to the number of orthographic neighbors that could be obtained via the substitution 

of one letter in a given word. To be consistent with the way in which the phonographic language 

network was constructed, orthographic neighbors were defined based on the substitution, 

addition, or deletion of one letter in a given word. High phonographic degree words had a mean 

orthographic degree of 6.68 (SD = 1.90) and low phonographic degree words had a mean 

orthographic degree of 6.65 (SD = 1.93), t (78) < 1, p = .95. High phonographic C words had a 

mean orthographic degree of 8.63 (SD = 4.00) and low phonographic C words had a mean 

orthographic degree of 9.15 (SD = 4.34), t (78) < 1, p = .84.   

Orthographic clustering coefficient. The orthographic clustering coefficient refers to the 

extent to which the orthographic neighbors of a word are also neighbors of each other. The 

orthographic clustering coefficient was calculated in the same manner as phonographic 

clustering coefficient (as described above), except that the density of connections was calculated 

among orthographic, rather than phonographic, neighbors. High phonographic degree words had 

a mean orthographic C of 0.277 (SD = 0.135) and low phonographic degree words had a mean 

orthographic C of 0.274 (SD = 0.141), t (78) < 1, p = .94.  High phonographic C words had a 
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mean orthographic C of 0.252 (SD = 0.056) and low phonographic C words had a mean 

orthographic C of 0.247 (SD = 0.060), t (78) < 1, p = .72.   

Orthographic neighborhood frequency. Orthographic neighborhood frequency refers to 

the average frequency of the orthographic neighbors of a target word. Values were obtained from 

the English Lexicon Project, which used log-transformed frequency counts based on the 

Hyperspace Analogue to Language (HAL) corpus, which consists of approximately 131 million 

words (Lund & Burgess, 1996), to calculate orthographic neighborhood frequency. High 

phonographic degree words had a mean orthographic neighborhood frequency of 7.13 (SD = 

1.05) and low phonographic degree words had a mean orthographic neighborhood frequency of 

7.45 (SD = 1.13), t (78) = 1.29, p = .20. High phonographic C words had a mean orthographic 

neighborhood frequency of 7.50 (SD = 0.95) and low phonographic C words had a mean 

orthographic neighborhood frequency of 7.40 (SD = 1.13), t (78) < 1, p = .67. To be consistent 

with phonological neighborhood frequency, orthographic neighborhood frequencies for the word 

stimuli were also calculated using the Kučera and Francis frequency norms. Based on these 

norms, high phonographic degree words had a mean orthographic neighborhood frequency of 

1.83 (SD = 0.40) and low phonographic degree words had a mean orthographic neighborhood 

frequency of 1.86 (SD = 0.31), t (78) < 1, p = .72. High phonographic C words had a mean 

orthographic neighborhood frequency of 1.84 (SD = 0.38) and low phonographic C words had a 

mean orthographic neighborhood frequency of 1.83 (SD = 0.32), t (78) < 1, p = .92. 

Bigram frequency. Two measures of bigram frequency—average bigram counts and sum 

of bigram counts (by position)—were obtained from the ELP (Balota et al., 2007). High 

phonographic degree words had a mean average bigram count of 2,728.82 (SD = 1,218.51) and 

low phonographic degree words had a mean average bigram count of 2,876.26 (SD = 1,204.88), t 
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(78) < 1, p = .59. High phonographic degree words had a mean sum of bigram count (by 

position) of 1,871.23 (SD = 662.43) and low phonographic degree words had a mean sum of 

bigram count (by position) of 2,061.28 (SD = 698.99), t (78) = 1.25, p = .22. High phonographic 

C words had a mean average bigram count of 2,763.84 (SD = 1,251.79) and low phonographic C 

words had a mean average bigram count of 2,735.60 (SD = 1,041.33), t (78) < 1, p = .91. High 

phonographic C words had a mean sum of bigram count (by position) of 1,910.80 (SD = 897.78) 

and low phonographic C words had a mean sum of bigram count (by position) of 1,818.35 (SD = 

722.58), t (78) < 1, p = .61.    

Procedure. Participants were tested individually. Each participant was seated in front of 

an iMac computer that was connected to a New Micros response box. PsyScope 1.2.2 was used 

to randomize and present the stimuli via headphones at a comfortable listening level. A response 

box containing a dedicated timing board provided millisecond accuracy for the recording of 

response times.  

In each trial, the word “READY” appeared on the screen for 500ms. Participants heard 

one of the randomly selected stimuli and were instructed to repeat the word as quickly and 

accurately as possible. Reaction times were measured from the stimulus onset to the onset of the 

participant’s verbal response. Verbal responses were recorded for offline scoring of accuracy. 

The next trial began 1s after the participant’s response was made. Prior the experimental trials, 

each participant received five practice trials to become familiar with the task; these trials were 

not included in the subsequent analyses. 

4.2 Results 

Accuracy was scored offline by an undergraduate research assistant. Trials containing 

mispronunciations of the word or responses that triggered the voice-key prematurely (e.g., 
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coughing, “uh”) were coded as errors. The author also independently scored ~10% of the data. 

There was a high level of agreement between the two independent scorers (~99%). 

For the RT data, errors were first excluded, after which responses below 200ms and 

above 2000ms were eliminated before the overall mean and SD of each participant’s RT was 

calculated. Trials with latencies that were 2 SDs above or below each participant’s mean RT 

were considered outliers and excluded from analysis. This resulted in ~5% of the data being 

removed. 

Trials from two items were excluded from the analysis due to very low overall item 

accuracies in the naming task (i.e., less than 80%): “lung” (60%) and “mount” (72%). In 

addition, items with a phonographic degree of 2 were excluded from the analysis, because the 

phonographic C value of these words was either 0 or 1 (i.e., a binary value), and is not an 

accurate representation of the level of interconnectivity among a word’s phonographic neighbors. 

On the other hand, for words with more than 2 neighbors, clustering coefficient is a continuous 

variable that ranges from 0 to 1 that represents the extent to which a word’s neighbors are also 

neighbors of each other. Indeed, one known limitation of the C measure is that its value can be 

biased by the node’s degree, whereby nodes with few neighbors tend to have a larger clustering 

coefficient as compared to nodes with several neighbors (see Opsahl & Panzarasa, 2009; Soffer 

& Vazquez, 2005); although it is important to note that C and degree are not correlated in the 

phonological network of language (Vitevitch et al., 2012).  

 To ensure that the analysis is not biased by words with phonographic Cs that distort the 

level of interconnectivity among neighbors, the following items were excluded from the analysis: 

“balm”, “cue”, “crime” (phonographic C = 1), and “bleed”, “slur”, “tomb” (phonographic C = 0).  
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Using the lme4 package in R, linear mixed effects (LME) and generalized linear mixed 

effects (GLM) models were used to predict RTs and accuracy respectively from the naming data 

(Bates et al., 2015). The RT model included the following predictors: (a) random effects of 

participants and items, (b) fixed effects of phonographic degree and phonographic C. The 

Accuracy model included the same predictors: (a) random effects of participants and items, (b) 

fixed effects of phonographic degree and phonographic C. For the RT model, additional lexical 

variables (i.e., subjective familiarity, word frequency, number of phonemes, phonological 

degree, phonological C, phonological neighborhood frequency, phonotactic probability, number 

of letters, orthographic degree, orthographic C, orthographic neighborhood frequency, bigram 

frequency) were included as covariates to control for any influences these variables may have on 

word recognition times. For both models all predictor and covariate variables were 

standardized—a common practice in regression analysis when variables have very different 

scales, in order to facilitate comparisons of the relative importance of various predictor variables. 

Note that the inclusion of lexical variables (e.g., word frequency, familiarity) as 

covariates led to convergence issues in the Accuracy model. Such models can fail to converge 

when the number of predictors in the model is high relative to the number of trials or data points 

(i.e., a complex or imbalanced data structure); and this is particularly true for logistic models 

with binary responses (see Eager & Roy, 2017). Therefore, these lexical variables were not 

included as covariates in the Accuracy model, and a simpler model that included the main 

variables of interest (i.e., phonographic degree and phonographic C) was fitted to the accuracy 

data instead.  

Reaction time. Table 2 presents the results of the linear mixed effects model for naming 

RTs. The following fixed effects were significant: phonographic C, familiarity, number of 
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phonemes, number of letters, orthographic degree, orthographic C, orthographic neighborhood 

frequency, average bigram counts, and sum of bigram counts by position. Phonographic degree 

did not significantly predict naming RTs, standardized β = -14.67, t = -1.72, p = .09. The mean 

RT for high phonographic degree words was 921 ms (SD = 153) and the mean RT for low 

phonographic degree words was 923 ms (SD = 152). Phonographic C significantly predicted 

naming RTs, standardized β = -12.39, t  = -2.40, p = .016, such that words with high 

phonographic C were more quickly named as compared to words with low phonographic C. For 

each standardized unit increase in phonographic C (approximately 0.153), the average decrease 

in naming RTs was 12 ms. The mean RT for high phonographic C words was 909 ms (SD = 149) 

and the mean RT for low phonographic C words was 913 ms (SD = 150).  
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Accuracy. Table 3 presents the results of the generalized linear mixed effects model for 

naming accuracies. No fixed effects were significant. Phonographic degree did not significantly 

predict naming accuracies, standardized β = -0.012, z < 1, p = .93. The mean accuracy for high 

phonographic degree words was 98.4% (SD = 2.02) and the mean accuracy for low phonographic 

degree words was 97.9% (SD = 2.50). Phonographic C did not significantly predict naming 

accuracies, standardized β = -0.205, z  = -1.53, p = .13. The mean accuracy for high 

phonographic C words was 97.5% (SD = 2.92) and the mean accuracy for low phonographic C 

words was 98.6% (SD = 2.38). 
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4.3 Discussion 

The results of Experiment 1 showed that phonographic C, but not phonographic degree, 

predicted naming RTs. High phonographic C words were named more quickly than low 

phonographic C words, after taking into account the variance contributed by several lexical 

variables known to influence language processing.  

Recall that phonographic C refers to the extent to which the phonographic neighbors of a 

word are also phonographic neighbors of each other, and that phonographic neighbors are words 

that both phonologically and orthographically similar to a target word. In the present study, a 

facilitatory effect was observed for words with a high level of interconnectivity among its 

phonographic neighbors. At first glance, this result appears to contradict previous work 

investigating the influence of the phonological clustering coefficient on spoken word 

recognition, which found that words with high phonological clustering coefficients were more 

slowly and less accurately processed (Chan & Vitevitch, 2009; 2010; see also Siew, 2016 for a 

similar finding with the network density measure). A simple diffusion framework was used to 

account for this finding. In this framework, activation spreads back and forth between the target 

word, its neighbors, and other words in the network (see also the computer simulation reported in 

Vitevitch, Ercal, & Adagarla, 2011). For words with highly interconnected neighborhoods, over 

time a greater amount of activation will remain within the neighborhood, instead of diffusing to 

the rest of the network. On the other hand, for words with less interconnected neighborhoods, 

over time most of the activation will be spread to the rest of the network. Based on this account, 

it is more difficult for words with highly interconnected neighborhoods (i.e., words with high 

phonological clustering coefficients) to “stand out” from its competitors as compared to words 
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with less interconnected neighborhoods (i.e., words with low phonological clustering 

coefficients).  

However, it is important to note that although both phonological C and phonographic C 

represent the amount of interconnectivity among a word’s neighbors, these two measures are 

different in that phonological C represents the structure of a word’s phonological neighborhood 

(i.e., the phonological layer in the phonographic multiplex), whereas phonographic C represents 

the structure of a word’s phonological and orthographic neighborhoods (i.e., the phonological 

and orthographic layers of the phonographic multiplex). More specifically, phonographic C can 

be viewed as a metric that represents the internal structure of the area where the phonological 

and orthographic neighborhoods of words overlap. Therefore, a facilitatory effect might be 

expected in this case because higher phonographic C values indicate greater overlap in the 

similarity structures in the phonological and orthographic neighborhoods of words. Based on the 

activation diffusion framework described earlier, one might expect that for high phonographic C 

words, similar, overlapping patterns of activation occur in the phonological and orthographic 

layers of the phonographic multiplex, which reinforce each other during processing and facilitate 

the recognition of the target word.  

The present results are significant because it is the first to demonstrate that a network 

science metric—the phonographic clustering coefficient—which simultaneously represents the 

phonological and orthographic structure of language, influences spoken word recognition. It is 

important to ensure that these findings are not task-specific and that they can indeed be 

replicated using a different psycholinguistic task. The next experiment sought to replicate the 

present findings using another traditional task from psycholinguistics—auditory lexical decision 

task.  
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Chapter 5 

Experiment 2: Auditory Lexical Decision 

The aim of Experiment 2 was to replicate the findings of Experiment 1 with another 

commonly used psycholinguistic task—auditory lexical decision. In this task, participants are 

auditorily presented with words and nonwords and have to decide if the given stimulus was a real 

word or not.  

5.1 Method 

Participants. Sixty-five native English speakers were recruited from the same population 

described in Experiment 1. All participants were right-handed and had no previous history of 

speech or hearing disorders; none took part in Experiment 1.  

Materials. The word stimuli for the present experiment consisted of the same 160 words used in 

Experiment 1. In addition, a list of 160 phonotactically legal nonwords was constructed by 

replacing a phoneme (at any position except the first and last positions) of the word stimuli with 

another phoneme. For instance, the nonword brame (/bɹem/) was created by replacing /l/ in the 

word blame (/blem/) with /ɹ/. The phonological transcriptions of the nonwords are listed in 

Appendix B. The nonwords were recorded by the same male speaker in a similar manner as in 

Experiment 1. The same method for editing and digitizing the word stimuli was used to create 

individual sound files for each nonword. The Normalization function in SoundEdit16 was used 

to ensure that all word and nonword sound files were comparable in amplitude. Stimuli durations 

were equivalent across both words and nonwords, t(318) < 1, p = .92.  
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Procedure. Participants were tested in groups no larger than three. The same equipment 

used in Experiment 1 was used in the present experiment, except that a response box containing 

a dedicated timing board was used to record response times.  

In each trial, the word “READY” appeared on the screen for 500ms. Participants heard 

one of the randomly selected stimuli and were instructed to decide, as quickly and accurately as 

possible, whether the item heard was a real English word or a nonword. If the item was a word, 

participants pressed the button labeled “WORD” with their right (dominant) index finger. If the 

item was a nonword, participants pressed the button labeled “NONWORD” with their left index 

finger. Reaction times were measured from stimulus onset to the onset of the participant’s button 

press. The next trial began 1s after the participant’s response was made. Prior to the experimental 

trials, each participant received eight practice trials to become familiar with the task; these trials 

were not included in the subsequent analyses.  

5.2 Results 

The trimming procedure is identical to that used in Experiment 1. For the RT data, errors 

were first excluded, after which responses below 200ms and above 2000ms were eliminated 

before the overall mean and SD of each participant’s RT was calculated. Trials with latencies 

that were 2 SDs above or below each participant’s mean RT were removed. This resulted in ~7% 

of the data being removed. 

Trials from four items were excluded from the analysis due to very low overall item 

accuracies in the lexical decision task (i.e., less than 50%): “clod” (23%), “balk” (32%), “plume” 

(38%), and “posh” (46%). In addition, items with a phonographic degree of 2 (the same ones 

listed in Experiment 1) were excluded from the analysis to ensure that the analysis is not biased 

by words with phonographic Cs that distort the level of interconnectivity among neighbors.  
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As in Experiment 1, linear mixed effects (LME) and generalized linear mixed effects 

(GLM) models were used to predict RTs and accuracy respectively from the lexical decision 

data. The RT model included the following predictors: (a) random effects of participants and 

items, (b) fixed effects of phonographic degree and phonographic C. The Accuracy model 

included the same predictors: (a) random effects of participants and items, (b) fixed effects of 

phonographic degree and phonographic C. For the RT model, additional lexical variables (i.e., 

subjective familiarity, word frequency, number of phonemes, phonological degree, phonological 

C, phonological neighborhood frequency, phonotactic probability, number of letters, 

orthographic degree, orthographic C, orthographic neighborhood frequency, bigram frequency) 

were included as covariates to control for any influences these variables may have on word 

recognition times. For both models all predictor and covariate variables were standardized—a 

common practice in regression analysis when variables have very different scales, in order to 

facilitate comparisons of the relative importance of various predictor variables. 

As described in the previous chapter, the inclusion of lexical variables (e.g., word 

frequency, familiarity) as covariates led to convergence issues in the Accuracy model. Therefore, 

these lexical variables were not included as covariates in the Accuracy model, and a simpler 

model that included the main variables of interest (i.e., phonographic degree and phonographic 

C) was fitted to the accuracy data instead.  

Reaction time. Table 4 presents the results of the linear mixed effects model for lexical 

decision RTs. The following fixed effects were significant: phonographic C, frequency, 

familiarity, orthographic C, and average bigram counts. Phonographic degree did not 

significantly predict lexical decision RTs, standardized β = -17.73, t = -1.59, p = .11. The mean 

RT for high phonographic degree words was 890 ms (SD = 84) and the mean RT for low 
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phonographic degree words was 901 ms (SD = 86). Phonographic C significantly predicted 

lexical decision RTs, standardized β = -18.41, t  = -2.60, p = .009, such that words with high 

phonographic C were more quickly responded to as compared to words with low phonographic 

C. For each standardized unit increase in phonographic C (approximately 0.153), the average 

decrease in naming RTs was 18 ms. The mean RT for high phonographic C words was 906 ms 

(SD = 87) and the mean RT for low phonographic C words was 901 ms (SD = 101). 

  



	 56  

 
 
  

Ta
bl

e 
4.

 L
M

E 
m

od
el

 e
st

im
at

es
 fo

r f
ix

ed
 a

nd
 ra

nd
om

 e
ff

ec
ts

 fo
r t

he
 a

ud
ito

ry
 

le
xi

ca
l d

ec
is

io
n 

ex
pe

rim
en

t (
re

ac
tio

n 
tim

e;
 E

xp
er

im
en

t 2
). 

	



	 57  

Accuracy. Table 5 presents the results of the generalized linear mixed effects model for 

lexical decision accuracies. No fixed effects were significant. Phonographic degree did not 

significantly predict lexical decision accuracies, standardized β = 0.117, z = 1.08, p = .28. The 

mean accuracy for high phonographic degree words was 90.7% (SD = 6.72) and the mean 

accuracy for low phonographic degree words was 92.1% (SD = 6.52). Phonographic C did not 

significantly predict lexical decision accuracies, standardized β = 0.068, z  < 1, p = .53. The 

mean accuracy for high phonographic C words was 88.8% (SD = 6.40) and the mean accuracy 

for low phonographic C words was 91.2% (SD = 6.20). 
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5.3 Discussion 

The results of Experiment 2 showed that phonographic C, but not phonographic degree, 

predicted lexical decision RTs, replicating the results of Experiment 1. High phonographic C 

words were recognized more quickly than low phonographic C words, after taking into account 

the variance contributed by several lexical variables known to influence language processing.  

As discussed earlier, phonographic C represents the internal structure of the area where 

the phonological and orthographic neighborhoods of words overlap, such that higher 

phonographic C values indicate greater overlap in the similarity structures of the phonological 

and orthographic neighborhoods of words. Based on the activation diffusion framework 

described above, similar, overlapping patterns of activation are more likely to occur in the 

phonological and orthographic neighborhood structures of high phonographic C words, as 

compared to low phonographic C words. These similar, overlapping patterns of activation 

reinforce each other during processing, and hence serve to facilitate the recognition of the target 

word. 

In addition, it is worth noting that phonographic C, but not phonographic degree, was a 

significant predictor in both experiments. Both measures capture somewhat different aspects of 

the phonological and orthographic similarity structure of language. Phonographic degree can be 

viewed as a more “coarse-grained” measure of phonological and orthographic similarity, as it 

simply represents the number of words that are both phonologically and orthographically similar 

to a given word, whereas phonographic C captures more subtle aspects of the similarity 

structure—namely, the internal connectivity among these phonographic neighbors. Overall, the 

results suggest that phonographic C is a better predictor of spoken word recognition performance 

than phonographic degree.   Together the results of Experiments 1 and 2 demonstrate that the 
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phonographic clustering coefficient, a network science metric that simultaneously represents the 

phonological and orthographic structure of language, influences spoken word recognition. In the 

next chapter, I analyze speeded naming and lexical decision behavioral data from the English 

Lexicon Project to determine if the results can be replicated in visual word recognition.  

 

Chapter 6 

English Lexicon Project Analyses  

The availability of databases containing item-level behavioral data and lexical variables 

for a large set of words has afforded large-scale, megastudies of visual word recognition (New, 

Ferrand, Pallier, & Brysbaert, 2006; Yap & Balota, 2009). The megastudy approach can 

complement the conventional psycholinguistic approach of factorial experiments whereby 

specific variables are targeted in a small-scale study by overcoming some of the limitations 

associated with the traditional approach (Balota, Yap, Hutchison, & Cortese, 2012). In a factorial 

experiment, psycholinguists typically carefully select word stimuli such that groups of words are 

matched on a variety of lexical characteristics while manipulating the lexical variable of interest 

whereas in the megastudy approach, extraneous lexical variables can be statistically controlled 

for. In addition, whereas lab-based experiments with carefully controlled stimuli can answer the 

question of whether phonographic degree and phonographic C influences word recognition, the 

large-database approach can answer the slightly different question of how much influence 

phonographic degree and phonographic C have on word recognition performance, after taking 

into account the influence of other lexical variables on word recognition. The database approach 

also allows for replication using a larger set of stimuli. In the present chapter, I conducted a 

regression analysis of words in the ELP to determine if phonographic degree and phonographic 
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clustering coefficient are significant predictors of performance of speeded naming and visual 

lexical decision for a large set of words, after taking into account the contributions of other 

lexical variables. 

6.1 Method 

Database. The English Lexicon Project is a large database that contains descriptive and 

behavioral data for over 40,000 words (see Balota et al., 2007 for a complete description of the 

database). It is available at http://elexicon.wustl.edu.   

Dataset/Materials. ELP behavioral data exist for 2,914 of the 3,292 (~90%) words in the 

giant component of the phonographic network. It is important to note that some of the words in 

the phonographic network do not have a “meaningful” phonographic clustering coefficient value. 

For instance, it is not possible to calculate the clustering coefficient for words with either 0 or 1 

phonographic neighbor(s) (i.e., phonographic C for these words is undefined). As discussed 

earlier, for words with more than 2 neighbors, clustering coefficient is a continuous variable that 

ranges from 0 to 1 that represents the extent to which a word’s neighbors are also neighbors of 

each other. However, the phonographic clustering coefficient for words with 2 phonographic 

neighbors is binary (i.e., either 0 or 1), and does not accurately represent the level of 

interconnectivity among a word’s phonographic neighbors. Therefore, to ensure that the analysis 

was not biased by the presence of several words with an undefined phonographic C (i.e., words 

with a phonographic degree of 1), or by words with phonographic Cs that distort the level of 

interconnectivity among neighbors (i.e., words with a phonographic degree of 2), words with 2 

or fewer phonographic neighbors were excluded, resulting in a total of 2,120 words for the 

subsequent regression analyses.  

6.2 Results 
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Item-level regression analyses were conducted on the mean RTs and accuracies for 2,120 

words for speeded naming and visual lexical decision tasks that were obtained from the ELP. 

The dependent variables consisted of z-scored reaction times and accuracy rates, averaged across 

participants for each word, for both speeded naming and lexical decision tasks. Z-scored reaction 

times refer to the standardization of each participant’s raw reaction times via a z-score 

transformation. Although both raw and z-scored reaction times are available in the ELP, z-scored 

reaction times, instead of raw reaction times, were analyzed to reduce the likelihood that a single 

participant may disproportionately influence the item means (Balota et al., 2007). 

A two-step hierarchical approach was used. Number of letters, number of phonemes, 

subjective familiarity, word frequency, orthographic degree, orthographic clustering coefficient, 

orthographic neighborhood frequency, mean bigram frequency counts and mean bigram 

frequency counts by position, phonological degree, phonological clustering coefficient, 

phonological neighborhood frequency, mean positional segment probability and mean biphone 

probability were entered in Step 1. Phonographic degree and phonographic clustering coefficient 

were entered in Step 2. Partitioning the regression analysis into two steps was done to determine 

if the network measures from the phonographic network accounted for additional variance over 

conventional lexical variables.  

6.2.1 Speeded naming 

Reaction times. Table 6 shows the results of the regression analysis on z-scored naming 

RTs. In Step 1, the following variables significantly predicted naming RTs: number of 

phonemes, phonological degree, positional segment probability, biphone probability, number of 

letters, orthographic C, average bigram counts, sum of bigram counts by position, familiarity, 

and frequency. Together, the variables entered at Step 1 explained 28.0% of the variance in 
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naming RTs, accounting for a significant proportion of the variance in naming RTs, R2 = .280, F 

(14, 2103) = 58.27, p < .001. 

In Step 2, the following variables significantly predicted RTs: positional segment 

probability, biphone probability, number of letters, orthographic degree, average bigram counts, 

sum of bigram counts by position, familiarity, frequency, and phonographic degree. 

Phonographic degree significantly predicted naming RTs, standardized β = -0.0763, t (2101) = -

7.72, p < .001, such that words with high phonographic degree were more quickly named as 

compared to words with low phonographic degree. For each standardized unit increase in 

phonographic degree (approximately 4.31), the average decrease in z-scored naming RTs was 

0.076 SDs. Phonographic C did not significantly predict naming RTs, standardized β = -0.0102, t 

(2101) = -1.37, p = .17. The influence of phonographic variables accounted for an additional 

1.9% of the variance, ΔR2 = .019, F (2, 2101) = 29.85, p < .001. Together, the variables entered 

at both steps explained 29.9% of the variance in naming RTs, accounting for a significant 

proportion of the variance in naming RTs, R2 = .299, F (16, 2101) = 56.12, p < .001. 
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Accuracy. Table 7 shows the results of the regression analysis on naming accuracies. In 

Step 1, the following variables significantly predicted accuracies: number of phonemes, 

phonological neighborhood frequency, biphone probability, orthographic C, orthographic 

neighborhood frequency, sum of bigram counts by position, familiarity, and frequency. Together, 

the variables entered at Step 1 explained 27.5% of the variance in naming accuracies, accounting 

for a significant proportion of the variance in naming accuracies, R2 = .275, F (14, 2103) = 

56.86, p < .001. 
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In Step 2, the following variables significantly predicted naming accuracies: biphone 

probability, orthographic degree, orthographic neighborhood frequency, sum of bigram counts 

by position, familiarity, frequency, and phonographic degree. Phonographic degree significantly 

predicted naming accuracies, standardized β = 0.0108, t (2101) = 4.07, p < .001, such that words 

with high phonographic degree were more accurately named as compared to words with low 

phonographic degree. For each standardized unit increase in phonographic degree 

(approximately 4.31), the average increase in naming accuracies was 1.09%. Phonographic C did 

not significantly predict naming accuracies, standardized β = -0.00167, t (2101) < 1, p = .40. The 

influence of phonographic variables accounted for an additional 0.6% of the variance, ΔR2 = 

.006, F (2, 2101) = 9.22, p < .001. Together, the variables entered at both steps explained 28.1% 

of the variance in naming accuracies, accounting for a significant proportion of the variance in 

naming accuracies, R2 = .281, F (16, 2101) = 51.29, p < .001.  

6.2.2 Visual lexical decision  

Reaction times. Table 8 shows the results of the regression analysis on z-scored lexical 

decision RTs. In Step 1, the following variables significantly predicted lexical decision RTs: 

number of letters, orthographic degree, orthographic C, familiarity, and frequency. Together, the 

variables entered at Step 1 explained 50.5% of the variance in lexical decision RTs, accounting 

for a significant proportion of the variance in lexical decision RTs, R2 = .505, F (14, 2103) = 

153.5, p < .001. 
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In Step 2, the following variables significantly predicted lexical decision RTs: number of 

letters, average bigram counts, familiarity, frequency, and phonographic degree. Phonographic 

degree significantly predicted lexical decision RTs, standardized β = -0.0348, t (2101) = -3.01, p 

= .003, such that words with high phonographic degree were more quickly responded to as 

compared to words with low phonographic degree. For each standardized unit increase in 

phonographic degree (approximately 4.31), the average decrease in z-scored lexical decision RTs 

was 0.035 SDs. Phonographic C did not significantly predict lexical decision RTs, standardized β 

= 0.000994, t (2101) < 1, p = .91. The influence of phonographic variables accounted for an 

additional 0.3% of the variance, ΔR2 = .003, F (2, 2101) = 4.66, p = .01. Together, the variables 

entered at both steps explained 50.8% of the variance in lexical decision RTs, accounting for a 

significant proportion of the variance in lexical decision RTs, R2 = .508, F (16, 2101) = 135.4, p 

< .001. 

Accuracy. Table 9 shows the results of the regression analysis on lexical decision 

accuracies. In Step 1, the following variables significantly predicted lexical decision accuracies: 

phonological neighborhood frequency, number of letters, orthographic degree, sum of bigram 

counts by position, familiarity, and frequency. Together, the variables entered at Step 1 

explained 65.0% of the variance in lexical decision accuracies, accounting for a significant 

proportion of the variance in lexical decision accuracies, R2 = .650, F (14, 2103) = 279.2, p < 

.001. 
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In Step 2, the following variables significantly predicted lexical decision accuracies: 

phonological degree, phonological neighborhood frequency, number of letters, familiarity, 

frequency, and phonographic degree. Phonographic degree significantly predicted lexical 

decision accuracies, standardized β = 0.0176, t (2101) = 3.05, p = .002, such that words with 

high phonographic degree were more accurately responded to as compared to words with low 

phonographic degree. For each standardized unit increase in phonographic degree 

(approximately 4.31), the average increase in lexical decision accuracies was 1.76%. 

Phonographic C did not significantly predict lexical decision accuracies, standardized β = 

0.00172, t (2101) < 1, p = .69. The influence of phonographic variables accounted for an 

additional 0.2% of the variance, ΔR2 = .002, F (2, 2101) = 4.66, p = .01. Together, the variables 

entered at both steps explained 65.2% of the variance in lexical decision accuracies, accounting 

for a significant proportion of the variance in lexical decision accuracies, R2 = .652, F (16, 2101) 

= 245.7, p < .001. 

6.3 Discussion 

The results of the ELP analyses showed that phonographic degree, but not phonographic 

C, predicted naming and lexical decision RTs in visual word recognition. High phonographic 

degree words were named and recognized more quickly than low phonographic degree words, 

after taking into account the variance contributed by several lexical variables known to influence 

language processing. These analyses replicated previous work showing that the presence of 

phonographic neighbors facilitates naming of visually presented words (Adelman & Brown, 

2007; Peereman & Content, 1997) and extended to include lexical decision. 

Overall, the results from the ELP analyses and psycholinguistic tasks generally show that 

greater phonological and orthographic similarity facilitates word recognition in both visual and 
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auditory modalities. Furthermore, it appears that phonographic degree influences visual word 

recognition but not spoken word recognition, whereas phonographic C influences spoken word 

recognition but not visual word recognition. It may simply be the case where one network 

measure is capturing more of the variance in one modality than another—perhaps reflecting 

differences in the way phonographic similarity is processed in different modalities. In visual 

word recognition, a “coarse-grained” phonographic degree may be the better predictor, whereas a 

subtler metric such as phonographic C may be the better predictor in spoken word recognition. 

Unlike visually presented words, auditory signals unfold over time, which may allow for more 

time for activation to spread, not just from the target word to its neighbors, but also among its 

neighbors such that the internal structure of the phonographic neighborhood plays a role in 

lexical retrieval. Within the visual modality, however, the size of the phonographic 

neighborhood may take precedence over its internal structure because the initial activation of a 

target word’s phonographic neighbors may already be sufficient to “nudge” the visual word 

recognition system over the threshold for recognition. In the next chapter, I will discuss the 

implications these findings have for theories of visual and spoken word recognition.  

 

Chapter 7 

General Discussion 

To recapitulate, the main findings were that phonographic degree significantly influenced 

visual word recognition and not spoken word recognition, whereas phonographic C significantly 

influenced spoken word recognition and not visual word recognition. Specifically, the presence 

of more phonographic neighbors (i.e., degree) facilitated word recognition in the visual modality, 
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and greater interconnectivity within the phonographic neighborhood (i.e., C) facilitated word 

recognition in the auditory modality. 

The finding of a significant effect of phonographic degree on visual word recognition is 

consistent with previous literature (Adelman & Brown, 2007), although it should be noted that in 

their analyses Adelman and Brown used a more limited definition of phonographic neighbors by 

only considering words that differed by the substitution of one phoneme and letter. In the present 

study, the phonographic neighbors included words that differed from the target word by the 

substitution, addition, or deletion of either one phoneme or one letter. On the other hand, a 

significant influence of phonographic C on spoken word recognition represents a novel finding, 

as the influence of phonographic neighbors has never been previously examined in the spoken 

modality.  

The results of this dissertation indicate that the phonographic relationships among words 

play an important role in both spoken and visual word recognition. Recall that the phonographic 

network represented the section of the phonographic multiplex where phonological and 

orthographic links overlapped. Therefore, phonographic degree and phonographic C represent 

the extent to which the similarity structure in both layers of the individual layers “mirror” each 

other, such that they reinforce the similarity structure in both layers of the multiplex.  

The key takeaway from these experiments and analyses is that the presence of 

phonographic links, which represent both phonological and orthographic similarity relationships 

among words, as well as the structure of these links, facilitates spoken and visual word 

recognition, even after taking into account the influence of (i) conventional measures of 

orthographic and phonological similarity (i.e., phonological and orthographic degree or 

neighborhood density), and (ii) “single-layer” network measures of orthographic and 
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phonological similarity (i.e., phonological and orthographic clustering coefficient). The results 

demonstrate how simultaneously representing the phonological and orthographic similarity of 

words within a phonographic multiplex can lead to a more nuanced understanding of how 

similarity influences spoken and visual word recognition.  

7.1 Similarity Effects in Spoken and Visual Word Recognition 

An intriguing aspect of the present findings is that phonographic degree facilitated visual 

word recognition but not spoken word recognition, and phonographic C facilitated spoken word 

recognition but not visual word recognition. This divergence may reflect differences in the way 

that written and spoken words are processed. A long-standing question within psycholinguistics 

is whether similarity among phonological and orthographic word forms facilitates or hinders 

word recognition. Below I briefly review the literature related to this issue and then discuss how 

considering the phonological and orthographic similarity among words as a single multiplex 

network structure could contribute to this debate.  

7.1.1 Degree (neighborhood density) 

In visual word recognition, the most commonly used measure of orthographic similarity 

is Coltheart’s N, or orthographic neighborhood density (Coltheart et al., 1977), which is the 

number of words that can be obtained by substituting one letter from a target word of the same 

length. The presence of more orthographic neighbors facilitates recognition of the target word 

(for a review, see Andrews, 1997)—a finding that was contrary to predictions made by 

interactive-activation models of word recognition (McClelland & Rumelhart, 1981), which 

predicted that more neighbors would lead to greater interference when trying to recognize a 

target word. The nature of the influence of phonological neighborhood density or degree on 

spoken word recognition appears to be more consistent. Words with several phonological 
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neighbors are more slowly and less accurately recognized as compared to words with few 

phonological neighbors (Goh, Suárez, Yap, & Tan, 2009; Luce & Pisoni, 1998). The presence of 

several phonological neighbors inhibits recognition of the target due to greater competition 

among activated neighbors. 

As discussed in Chapters 1 and 2, past work has found that phonological neighborhood 

density influences visual word recognition and orthographic neighborhood density influence 

spoken word recognition. Specifically, in visual word recognition, the processing of words with 

many phonological neighbors is facilitated as compared to words with few phonological 

neighbors (Grainger et al., 2005; Yates et al., 2004). In spoken word recognition, the processing 

of words with many orthographic neighbors is also facilitated as compared to words with few 

orthographic neighbors (Muneaux & Ziegler, 2004; Ziegler et al., 2003).  

7.1.2 Levenshtein distance 

 One limitation of Coltheart’s N is that the measure does not consider words of different 

lengths into its calculation of similarity. According to this measure, ‘cat’ and ‘hat’ are 

orthographic neighbors, but not ‘cat’ and ‘chat’.  To overcome length restrictions of Coltheart’s 

N, a different measure of orthographic similarity, orthographic Levenshtein distance, was 

developed by Yarkoni, Balota, and Yap (2008). Levenshtein distance refers to the number of 

substitutions, additions, or deletions (of letters or phonemes) required to transform one string to 

another (e.g., the Levenshtein distance between ‘condition’ and ‘collision’ is 3). To calculate a 

Levenshtein distance-based measure of orthographic similarity, Yarkoni et al. calculated 

orthographic Levenshtein distance-20 (OLD20), which is the average Levenshtein distance of the 

20 “closest” orthographic neighbors of a target word. The phonological counterpart is the 

phonological Levenshtein distance-20 (PLD20), which is the average Levenshtein distance of the 
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20 “closest” phonological neighbors of a target word (Suárez, Tan, Yap, & Goh, 2011). A 

smaller Levenshtein distance indicates that several words are similar, or ‘close’ to, a given word 

(i.e., fewer substitutions, additions, or deletions (of letters or phonemes) required to transform 

one word to another). In visual word recognition, close OLD20 words were recognized more 

quickly than distant OLD20 words (Yarkoni et al., 2008), whereas in spoken word recognition, 

close PLD20 words were recognized more slowly than distant PLD20 words, indicating lexical 

competition (Suárez et al., 2011). Greater similarity (quantified as increased “closeness” to other 

words) facilitated visual word recognition but not spoken word recognition.  

7.1.3 Clustering coefficient    

The application of network science to model the structure of the mental lexicon (e.g., 

Vitevitch, 2008) has provided researchers with metrics to quantify the internal similarity 

structure of a word’s neighborhood, namely clustering coefficient, C, which represents the level 

of interconnectivity among a word’s neighbors. In spoken word recognition, high phonological C 

words are less quickly recognized as compared to low phonological C words (e.g., Chan & 

Vitevitch, 2010). A diffusion of activation framework was used to account for this finding—

activation tends to be “trapped” within more densely clustered neighborhoods of words, making 

it harder for high Cs word to stand out as compared to low Cs words. On the other hand, in visual 

word recognition, high orthographic C words are more quickly recognized as compared to low 

orthographic C words (Siew, submitted). A similar framework was adopted to account for this 

finding—again, activation tends to be “trapped” within more densely clustered neighborhoods of 

words, however, the high overall sum of activation more readily pushes the system pass the 

recognition threshold, allowing high orthographic C words to be more readily retrieved (Note: 

this is analogous to the way the Multiple Read-Out Model accounts for visual lexical decision 
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RTs; Jonathan Grainger & Jacobs, 1996). To my knowledge no study has examined the influence 

of orthographic clustering coefficient on spoken word recognition, and only one study has 

examined influence of phonological clustering coefficient on visual word recognition—Yates 

(2013) found that high phonological C words were less quickly recognized as compared to low 

phonological C words in visual lexical decision.  

Overall, across three different measures of similarity (degree/neighborhood density, 

Levenshtein distance, clustering coefficient), the results indicate that greater similarity among 

orthographic representations facilitates visual word recognition and greater similarity among 

phonological representations inhibits spoken word recognition. On the other hand, the pattern of 

results is less clear in studies that investigated the influence of phonological similarity on visual 

word recognition and the influence of orthographic similarity on spoken word recognition.  

It is important to note that the dissertation differs from all of these previous studies in a 

fundamental way. The network metrics investigated in this dissertation simultaneously 

represented the phonological and orthographic similarity structure of language. However, in 

previous work, phonology and orthography were treated as separate influences to be manipulated 

or controlled for. This makes it difficult to assess the seemingly contradictory effects of 

phonological similarity on word recognition.  

For instance, consider the finding that phonological degree has an inhibitory effect in 

spoken word recognition (e.g., Goh et al., 2009) but a facilitatory effect in visual word 

recognition (e.g., Grainger et al., 2005), whereas phonological clustering coefficient has an 

inhibitory effect in both spoken (Chan & Vitevitch, 2010) and visual word recognition (Yates, 

2013). After closely controlling for the effect of orthographic degree, Grainger et al. found that 

phonological degree facilitated visual word processing, such that the processing of words with 
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many phonological neighbors is facilitated as compared to words with few phonological 

neighbors across various tasks. Grainger and colleagues argue that greater consistency between 

phonology and orthography contributed to this facilitative effect. However, in the Yates (2013) 

paper, it is not clear if orthographic similarity (i.e., orthographic clustering coefficient) among 

the word stimuli was explicitly controlled for. This raises questions about the inhibitory effect of 

phonological clustering coefficient in visual word recognition reported by Yates (2013). Overall, 

the main takeaway is that conceptualizing phonology and orthography as separate effects does 

not appear to be the most productive way of addressing the question of whether similarity among 

phonological and orthographic word forms facilitates or hinders word recognition.  

In contrast, the network metrics investigated in this paper, degree and clustering 

coefficient represent micro-level network measures of both phonological and orthographic 

similarity, with each metric representing different structural aspects of the phonographic 

neighborhood of a particular target word. Recall that degree simply refers to the number of 

phonographic neighbors, whereas clustering coefficient refers to the extent to which 

phonographic neighbors are also phonographic neighbors of each other. Hence, for a given word, 

degree can be viewed as a coarse, “brute-force” measure of the magnitude of similarity whereas 

clustering coefficient captures more subtle aspects of the internal similarity structure of the 

word’s phonographic neighborhood.  

One possible explanation for the observed finding that phonographic degree facilitated 

visual word recognition (but not spoken word recognition) and phonographic C facilitated 

spoken word recognition (but not visual word recognition) is that similarity effects depend on, 

and reflect, differences in the nature of “bottom-up” auditory and visual information. Visual 

information is instantaneous and immediately available, whereas acoustic information unfolds 
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over time and is more ambiguous. Due to the nature of auditory information, there is more time 

for activation to spread among a target word’s neighbors, allowing for subtle similarity effects 

such as C to “emerge”, and diminishing the influence of “coarse” similarity effects such as 

degree in spoken word recognition.  

Consider the following study by Seidenberg, Waters, Barnes, and Tanenhaus (1984), who 

found that words with irregular pronunciations were named more slowly than words with regular 

pronunciations, but this was only true for low frequency words and not high frequency words 

(Andrews, 1982). High frequency irregular words (e.g., “have”) were named just as quickly as 

frequency-matched regular words. According to Seidenberg (1985), in visual word recognition, 

orthographic and phonological information are activated at different latencies within a single 

interactive process, with phonology lagging behind orthography. As it takes a longer time to 

recognize low frequency words, it allows more time for phonological information (i.e., irregular 

pronunciations) to be activated and hence influence naming latencies.   

The general argument from the above study is that when processing is difficult or 

effortful in some way (such as low frequency words), it permits more time for additional 

influences (such as phonology) to come into play. A variant of this argument could be applied to 

explain the present set of findings: Processing spoken words, which are more ambiguous than 

written words due to the nature of auditory input, may permit more time for more subtle 

similarity effects such as C to develop and subsequently affect recognition. In other words, 

ambiguity in the bottom up signal may lead to greater sensitivity to nuances in the similarity 

space.  

While these explanations are somewhat speculative in nature, they could be tested and 

investigated in future experimental work. For instance, while it would not be possible to present 
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or process auditory stimuli in a “parallel” fashion, one could deliberately slow down visual word 

recognition (via some form of masking or degradation of the visual stimuli, or through the use of 

low frequency stimuli) to induce more effortful processing of the visual stimuli, and see if the 

manipulation reduces the influence of degree but increases the influence of C in visual word 

recognition. Such an approach has precedence in the field where researchers orthogonally 

manipulated variables of interest (e.g., stimulus quality, word frequency, neighborhood density) 

to examine the nature of interaction among lexical variables in order to distinguish between 

competing models of word recognition (Borowsky & Besner, 1993; Siew, Yap, & Goh, 

submitted; Yap & Balota, 2007). 

Another way to further test these explanations is to conduct computer simulations. To 

investigate the clustering coefficient effect in spoken word recognition (Chan & Vitevitch, 

2009), Vitevitch, Ercal, and Adagarla (2011) simulated the diffusion of activation among 

connected nodes in a network structure. In the initial time step, the target node arbitrarily 

received 100 units of activation. A portion of this initial activation was retained by the target 

word, and the remaining amount of activation was evenly spread among neighbors of the target 

word. In the next time step, each neighbor retained a portion of its activation and the remaining 

activation was spread to nodes to which it was connected to (including the target, other 

neighbors, and words not connected to the target word, etc.). This process was repeated for a 

number of time steps. The final activation value of the target was inversely mapped to response 

times and directly mapped to accuracy, such that higher activation values indicated that lexical 

retrieval occurred rapidly and more accurately. Using this simple model, Vitevitch et al. (2011) 

were able to account for the finding that low clustering coefficient words were more quickly and 
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accurately recognized as compared to high clustering coefficient words (Chan & Vitevitch, 

2009).  

This simple diffusion model could be readily implemented in the phonographic multiplex 

to examine if the present findings can be replicated. Instead of simulating the diffusion of 

activation in a single layered network (as implemented in Vitevitch et al., 2011), activation will 

spread to connected nodes in both layers of the multiplex, with phonographic neighbors 

receiving a greater share of the activation as compared to only phonological or orthographic 

neighbors. In addition, the number of time steps which the simulation is allowed to run for can 

be manipulated to mimic differences in processing of visual and auditory information: The 

simulation is allowed to continue for a greater number of time steps for spoken word recognition 

(i.e., to permit more “time” for auditory information to unfold over time) than for visual word 

recognition (i.e., recognition occurs more immediately). High phonographic degree words and 

high phonographic C words are expected to have higher final activation values as compared to 

low phonographic degree words and low phonographic C words, with degree having a greater 

effect for simulations over few time steps (i.e., visual word recognition) and C having a greater 

effect for simulations over several time steps (i.e., spoken word recognition).  

Overall, the take home message from this section is that the network science approach 

provides researchers with common metrics of similarity in phonology and orthography that can 

be used to gain a more holistic understanding of spoken and visual word recognition. Future 

work will continue to examine how metrics at various levels of the phonographic multiplex (e.g., 

macro-, meso-levels) influence spoken and visual word recognition.  

7.2 Theoretical Implications for Models of Word Recognition 
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Several well-established theories have been put forth to account for multiple aspects of 

visual and spoken word recognition. The leading models of visual word recognition can be 

broadly classified into two groups: dual route models, which posit the presence of two distinct, 

independent pathways in visual word recognition (e.g., Coltheart, Rastle, Perry, Langdon, & 

Ziegler (2001)’s Dual Route Cascaded (DRC) model) and parallel, distributed models, which 

consist of orthographic units, phonological units, and a set of hidden units that interface between 

the orthographic and phonological units (e.g., Seidenberg & McClelland (1989)’s Parallel 

Distributed Processing (PDP) model). The cohort model (Marslen-Wilson, 1987), TRACE 

(McClelland & Elman, 1986), Shortlist B (Norris & McQueen, 2008), and Neighborhood 

Activation Model (Luce & Pisoni, 1998) represent the prominent models of spoken word 

recognition. As it is beyond the scope of the dissertation to provide a detailed discussion of each 

of the above models, I will focus on the Seidenberg and McClelland (1989) PDP model of visual 

word recognition and pronunciation as an example, and consider how it may or may not be able 

to account for the phonographic effects observed in the present studies.  

The PDP model consists of orthographic units, phonological units, and a set of hidden 

units that interface between the orthographic and phonological units. One key feature of 

distributed models is the ability of the model to “learn”—and thereby approximate the language 

acquisition process in children—by modifying connection weights between units via a back 

propagation learning algorithm during training (Seidenberg & McClelland, 1989). In a 

connectionist model, the relative influence of orthography and phonology on lexical retrieval 

depends on the extent to which orthographic and phonological codes overlap (Harm & 

Seidenberg, 2004). A greater amount of overlap in orthography and phonology would be 

expected to speed up processing and lead to faster access to a word’s meaning (Harm & 
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Seidenberg, 2004); this is consistent with the present finding that phonographic similarity 

generally facilitates processing in both visual and spoken word recognition. However, it is not 

entirely clear how more subtle aspects of the phonographic similarity structure (i.e., the level of 

interconnectivity among similar words) would be implemented in the model. Perhaps a new 

theoretical framework, one that explicitly considers the linguistic structure of language, is 

necessary to account for the present findings and advance the field.  

It is important to emphasize that although the architecture of the PDP model may seem to 

resemble a “network” of sorts (i.e., units connected to each other; see Figure 3), it differs 

considerably from the language network generated via the network science approach. In the PDP 

model, all units are connected to all other units, with connection weights that update after 

training. The model is distributed, such that phonological or orthographic codes are represented 

by a pattern of activation distributed over primitive orthographic, phonological, and hidden units 

(Seidenberg & McClelland, 1989). In contrast, the network science approach explicitly models 

the overall similarity structure of language. Nodes represent lexical forms and unweighted 

connections are placed between similar word forms as defined by a straightforward 

operationalization of similarity (substitution, addition, deletion of one phoneme or letter; 

Landauer & Streeter, 1973; see Figure 4).  
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Figure 3. The general framework of the Parallel Distributed Processing model (Seidenberg & 

McClelland, 1989). Each ellipse represents a set of primitive units, with empty ellipses 

representing hidden units. 
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Figure 4. A section of the phonological network of language showing the word ‘speech’, its 

phonological neighbors, and the phonological neighbors of its phonological neighbors. Links are 

placed between words that differ by the substitution, addition, or deletion of 1 phoneme. From 

Vitevitch (2008).  

 

The connectionist approach as exemplified by the PDP appears to be computationally 

expensive given the number of primitive units represented in the model—indeed, Coltheart, 

Curtis, Atkins and Haller (1993) point out that Rumelhart and McClelland (1986) had to 

drastically reduce the number of output units from over 1,000 units to about 400 units to make 

the simulations tenable (no clear rationale was provided otherwise). The PDP model is also quite 

complicated and values had to be arbitrarily set for a number of parameters, such as the level of 

excitation for feature-to-letter connections (.005), level of inhibition for letter-to-word 

connections (.04), among others (McClelland & Rumelhart, 1981). The network science 

approach, despite being based on simple assumptions, reveals a complex language network 

structure whereby a simple diffusion of activation mechanism can be implemented in order to 

account for behavioral findings such as the clustering coefficient effect (Vitevitch et al., 2011). 

Simulations conducted by Chan and Vitevitch (2009) using jTRACE, the computational 

implementation of the TRACE model of speech perception (Strauss, Harris, & Magnuson, 2007), 

were unable to account for the clustering coefficient effect. Furthermore, even though sublexical 

units (such as letters or phonemes) are not explicitly represented as individual nodes or entities 

within the language network one could potentially account for both lexical and sublexical effects 

by examining the language network at differing levels of the network (micro-, meso-, macro-). 

For instance, Siew (2013) speculated that (sublexical) phonotactic probability effects could 
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emerge at the meso-level (community) structure of the network and (lexical) neighborhood 

density effects could arise at the micro-level of the network.  

Without explicitly considering how the overall phonological and orthographic similarity 

structure of language affects lexical retrieval, it is unclear how current models of word 

recognition would be able to account for the present findings. In addition, models of spoken 

word recognition do not consider the role of orthographic information on speech processing and 

would not predict orthographic effects in spoken word recognition in the first place. Certainly 

future work will need to address whether these models can indeed replicate the present findings 

of an effect of phonographic degree on visual word recognition and an effect of phonographic 

clustering coefficient on spoken word recognition via computer simulations. Nevertheless the 

present findings suggest that models of word recognition will need to explicitly consider how the 

cognitive processes that underlying lexical retrieval operate within a complex language structure 

as represented by the phonographic multiplex.   

7.3 Limitations and Future Directions  

In this section, I briefly point out some limitations of the present work and suggest some 

future directions. First, the phonographic network consists of approximately 6,000 words, and 

this dissertation specifically focused on analyzing and investigating words from the giant 

component of the phonographic network (~3000 words). This represents a smaller set of words 

as compared to the 19,340 words used to construct the original phonological network in 

Vitevitch (2008). In addition, the 160 word stimuli selected for Experiments 1 and 2 were mostly 

short, monosyllabic words that also tended to be feedforward and feedback consistent. Therefore, 

this might lead one to question if the network science approach and the multiplex metrics 
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described in previous chapters are indeed useful and applicable to a wider range and variety of 

words.   

However, I would argue that the metrics are indeed applicable to a broader variety of 

words than implied in the stimuli lists for Experiments 1 and 2. The giant component of the 

phonographic network consisted of a greater variety of words other than the consistent, 

monosyllabic CVC words that are typically studied in the literature—this included words such as 

‘stub’ and ‘grub’ (CCVC structure), ‘dreary’ and ‘heavy’ (2 syllables), and ‘scrimp’ and 

‘whisky’ (6 phonemes). Various network metrics such as degree and clustering coefficient can be 

calculated for these words. Indeed, the regression analyses of the ELP described in Chapter 6 

consisted of over 2,000 words, several of which were not consistent, monosyllabic CVC words.  

It is also important to re-emphasize that this dissertation represents a first step in a future 

line of research on how the structure of the phonographic multiplex influences spoken and visual 

word recognition. Future work could investigate how the structure of the phonographic multiplex 

at various levels (macro-, meso-, micro-) influence processing and begin to look at other areas of 

the multiplex beyond the phonographic network. For instance, future investigations could 

include longer, less frequent, multisyllabic words that are not found in the giant component of 

the phonographic network. These words tend to be “hermits” as they do not have any 

phonological or orthographic neighbors. However, words that are hermits in one layer of the 

multiplex might be found in connected network components (i.e., lexical islands) in the other 

layer (i.e., phonological hermits with orthographic neighbors, and orthographic hermits with 

phonological neighbors) and one could investigate whether the presence of 

connections/neighbors in one modality might facilitate processing in the other modality. By 

adopting a network science approach to study the interrelationship between phonology and 
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orthographic, language researchers can begin to address important questions regarding the role of 

phonographic similarity on spoken and visual word recognition with respect to words that are not 

typically studied in the previous literature.  

7.4 Practical Implications and Applications 

Characterizing the phonological and orthographic similarity structure of language as a 

multiplex could have important applications for understanding (i) language disorders related to 

reading and writing and (ii) first and second language acquisition. In this final section, I 

speculate the various ways in which the network science approach can contribute towards the 

current research on dyslexia and shed new light on language learning.  

7.4.1 Language Disorders  

Dyslexia is a language-based learning disability characterized by marked difficulties in 

spelling words, writing words, reading aloud, or understanding what was read (Goswami, 2000). 

Given that the main deficit of individuals with dyslexia is a slow and inefficient grapheme-

phoneme recoding process, researchers have focused on studying the factors that contribute 

toward the inefficiency of this process (Ziegler & Goswami, 2005). Recall, however, that a major 

tenet of complex systems and network science is that in order to achieve a fuller understanding 

of any process, it is important to consider the structure of the system that the process occurs in. 

As shown in this dissertation, the structure of language networks has important, measurable 

influences on lexical processes and mechanisms. Researchers should explicitly consider how 

both the structures of the phonological and orthographic language networks (as represented in 

the phonographic multiplex) might influence grapheme-to-phoneme recoding processes.  

Researchers have begun using network science measures to analyze language networks of 

individuals with language disorders or delays and comparing these against the language networks 
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of typically developing individuals (Beckage, Smith, & Hills, 2011). Below I describe one 

example of this approach and discuss how this method could be applied to compare the 

phonographic multiplexes of individuals with and without dyslexia. 

Beckage, Smith, and Hills (2011) analyzed the semantic language networks of typically 

developing children and “late talkers”, that is, children who start talking later and who also have 

a slower rate of vocabulary growth (Moyle, Weismer, Evans, & Lindstrom, 2007). After 

controlling for vocabulary size, Beckage and colleagues found that the network measures of 

semantic networks of typical children indicate a higher level of lexical connectivity, as compared 

to the semantic networks of late talkers. Based on these results, Beckage et al. suggested that late 

talkers might have a maladaptive bias to acquire particularly novel new words that are not 

semantically related to words that they already know, leading to a semantic network that is 

lacking in the “small-world” network structure that is important for facilitating lexical retrieval.  

This study is a noteworthy example of how studying the underlying structure of the 

mental lexicon can lead to important insights into language disorders and/or delays—insights 

that would not have been possible without using the network science approach to represent and 

characterize the structure of the mental lexicon. Furthermore, network science can offer new 

ways of identifying children with language delays through the application of more sensitive, 

nuanced measures that take into account the structural cohesiveness of the child’s mental lexicon 

(e.g., level of connectivity among known word forms), which could represent an improvement 

over the “blunt”, conventional approaches used to identify children with language delays (e.g., 

how many words does the child know). With respect to dyslexia, it is possible that the 

pronounced difficulties that individuals with dyslexia face with spelling and reading are due to a 

reduced overall connectivity of the orthographic layer of the phonographic multiplex, or due to 
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greater mismatch between the structural patterns of the phonological and orthographic layers of 

the multiplex (as compared to the phonographic multiplexes of typically developing individuals). 

Various macro-level network metrics (e.g., average path length, average clustering coefficient) 

could be used to quantify the structural differences between the phonographic multiplexes of 

individuals with and without dyslexia. 

Should structural differences exist between the phonographic multiplexes of individuals 

with and without dyslexia, this suggests that reading difficulties experienced by individuals with 

dyslexia might be due to the fact that phonological recoding processes are occurring within a 

phonographic multiplex that is inefficiently organized in the first place. Furthermore, the 

network science approach could inspire new ways of helping these individuals. One possibility is 

to conduct a community detection analysis to uncover the community structure of words in the 

multiplex. This could lead to the discovery of words that reside in different (i.e., non-

overlapping) communities in the phonological and orthographic layers of the phonographic 

multiplex. The orthographic representations of these words might be more challenging to acquire 

because they have dissimilar orthographic and phonological structures. Dyslexic learners may 

require additional support when learning the orthographic forms of these words because the 

phonological structure of these words may fail to provide the necessary scaffold for the 

development of the corresponding orthographic structure.  

7.4.2 First and Second Language Acquisition 

Learning a second language (L2) is very different from acquiring one’s native language 

(L1) in various ways, particularly with respect to the time course in the development of the 

phonological and orthographic structure of the language. When acquiring one’s native language, 

phonological representations are acquired first, and then orthographic knowledge is acquired 
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when one learns to read. On the other hand, second language learners generally acquire the 

spoken and written representations of new words at the same time, especially with the prevalence 

of web-based language learning applications (Golonka, Bowles, Frank, Richardson, & Freynik, 

2014).  

Several have argued that learning the orthographic representations of words reorganizes 

and restructures the L1 phonological system (Burnham, 2003; Perre, Pattamadilok, Montant, & 

Ziegler, 2009), leading to the co-activation of orthography and phonology in language processing 

(e.g., Ziegler & Ferrand, 1998) and changes in the functional organization of the brain (Castro-

Caldas, Petersson, Reis, Stone-Elander, & Ingvar, 1998). In contrast, such “re-structuring” does 

not occur for second language acquisition as the phonological and orthographic systems develop 

at the same time.  

However, in addition to orthographic knowledge “restructuring” the phonological system 

over the course of language development (Burnham, 2003), it is possible that the pre-existing 

structure of the phonological system scaffolds the development of orthographic knowledge. As 

for second language acquisition, there are certainly bidirectional influences of phonology and 

orthography on the development of each system. Furthermore, perhaps some of the difficulty in 

learning a second language may be due to learners having to assemble the L2 phonological-

orthographic multiplex from scratch, or due to interference from their L1 network (L1 

orthographic transfer; see Sun-Alperin & Wang, 2011; Vokic, 2011). These theoretically 

important questions regarding the nature of language acquisition and learning could be addressed 

via the network science approach. By conceptualizing the phonological and orthographic systems 

of language as the phonological and orthographic layers in a phonographic multiplex, network 

science can provide computational tools and methods to quantify the phonological and 
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orthographic structures, track how these structures interact and develop over time, and how the 

development of the phonographic multiplex differs when acquiring a L1 or L2.  

The network science approach can not only provide us with insights into the ways first 

and second language acquisition differ, but also point to new ways of maximizing the success of 

second language instruction. For instance, the approach can be used to identify areas of the 

phonographic multiplex where L2 learners might particularly struggle with (e.g., words with 

little overlap in phonological and orthographic structures of the L2 multiplex), or identify an 

optimal sequence of words to be taught that is likely to lead to the development of an efficiently, 

well-connected multiplex structure. 

7.5 Conclusion  

This dissertation uses the tools of Network Science to simultaneously characterize the 

phonological as well as orthographic similarity structure of words in English within a 

phonographic multiplex. Specifically, it focuses on the section of the phonographic multiplex 

known as the phonographic network of language, where links are placed between words that are 

both phonologically and orthographically similar to each other. Conventional psycholinguistic 

experiments and an archival analysis of the English Lexicon Project were conducted to 

investigate the influence of phonographic degree and phonographic clustering coefficient— 

network science metrics derived from the phonographic network—on spoken and visual word 

recognition. Overall, results indicated a facilitatory effect of phonographic degree on visual word 

recognition, and a facilitatory effect of phonographic clustering coefficient on spoken word 

recognition. The present findings showed that greater phonographic similarity facilitates word 

recognition in both auditory and visual modalities, and have important implications for 

theoretical models of spoken and visual word recognition, as well as for increasing our 
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understanding of language disorders and language acquisition. Ultimately, this dissertation 

demonstrates how simultaneously representing the phonological and orthographic similarity of 

words within a phonographic multiplex can lead to a deeper understanding of how similarity 

influences spoken and visual word recognition. 
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Appendix A 
List of word stimuli used in Experiments 1 and 2. 
 

Phonographic	degree	words	 		 Phonographic	C	words	

High	degree	 		 Low	degree	 		 High	C	 		 Low	C	

bloat	 	 balm	 	 balk	 	 bleed	

brace	 	 blame	 	 bland	 	 blob	

brew	 	 blow	 	 bleak	 	 bread	

chart	 	 brood	 	 blown	 	 brink	

clip	 	 brook	 	 boss	 	 broom	

deck	 	 charm	 	 bride	 	 cave	

draft	 	 chase	 	 clot	 	 clod	

drag	 	 clean	 	 count	 	 drive	

drew	 	 cleat	 	 crime	 	 drove	

drip	 	 clove	 	 dream	 	 duct	

flake	 	 clump	 	 drown	 	 flat	

flew	 	 cue	 	 duke	 	 hack	

flick	 	 doom	 	 dwell	 	 hawk	

float	 	 dorm	 	 flip	 	 hive	

flush	 	 dread	 	 flop	 	 hoop	

gripe	 	 drum	 	 haze	 	 lab	

gum	 	 fled	 	 hook	 	 lobe	

gust	 	 food	 	 husk	 	 mile	

hulk	 	 grab	 	 loaf	 	 moat	

hurl	 	 halt	 	 lunch	 	 mount	

loud	 	 hurt	 	 lung	 	 nose	

moist	 	 limb	 	 mean	 	 pluck	

mood	 	 plea	 	 paid	 	 plum	

pleat	 	 porch	 	 posh	 	 plume	

scoop	 	 range	 	 pulp	 	 raft	

shame	 	 roof	 	 pump	 	 ramp	
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shock	 	 scab	 	 rack	 	 ripe	

slid	 	 scan	 	 reef	 	 rose	

slum	 	 scorn	 	 rope	 	 run	

slump	 	 sheep	 	 save	 	 side	

spool	 	 short	 	 skin	 	 slap	

spunk	 	 shout	 	 slam	 	 slur	

stall	 	 smack	 	 snip	 	 snap	

steep	 	 spear	 	 spice	 	 space	

stub	 	 stark	 	 stock	 	 swell	

swim	 	 start	 	 tab	 	 tomb	

swing	 	 swap	 	 tile	 	 tool	

swoop	 	 sweep	 	 tote	 	 trail	

trust	 	 wand	 	 trace	 	 tread	

weep	 		 yarn	 		 truce	 		 wheat	
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Appendix B 
List of nonword stimuli used in Experiment 2. 
 

Nonword	foils	for	 		 Nonword	foils	for	

phonographic	degree	words	 		 phonographic	C	words	

bles	 	 bɪm	 	 blɪk	 	 blaɪd	

blet	 	 blɛ	 	 blɝn	 	 bɹɑb	

bɹɛ	 	 blʊk	 	 blund	 	 bɹɔɪm	

tʃeɹt	 	 bɹem	 	 blaɪd	 	 bɹʌd	

dɔk	 	 bɹɪd	 	 bɔɪk	 	 bɹʌŋk	

dɹɛft	 	 tʃis	 	 bos	 	 dɑkt	

dɹɪg	 	 tʃoɹm	 	 dek	 	 dɹɑv	

dɹop	 	 dɔɪm	 	 dɹom	 	 dɹɛv	

dɹaʊ	 	 dɹem	 	 dɹaɪn	 	 flet	

floʃ	 	 dɹʌd	 	 dwɑl	 	 hik	

flʊk	 	 dʊɹm	 	 flup	 	 hok	

flʌt	 	 flud	 	 fɹɑp	 	 hov	

flɪk	 	 fʊd	 	 hɑsk	 	 hʊp	

fɹu	 	 glæb	 	 hɑz	 	 hwɑt	

gæm	 	 hɛt	 	 hek	 	 kɛv	

gɑst	 	 hilt	 	 klʊt	 	 kɹɑd	

gɹʌp	 	 klɔɪmp	 	 kɔɪnt	 	 lɛb	

hɔɪl	 	 klut	 	 kɹaʊm	 	 lʊb	

holk	 	 klʊv	 	 lɑŋ	 	 mont	

klup	 	 kɹin	 	 lef	 	 mɔɪt	

lʌd	 	 kjɑ	 	 lʊntʃ	 	 maʊl	

mɝd	 	 lom	 	 mɔn	 	 nɪz	

mʊst	 	 piɹtʃ	 	 pɑmp	 	 plɛm	

plut	 	 plʊ	 	 peʃ	 	 pɹum	

ʃem	 	 ɹæf	 	 pilp	 	 pɹʌk	

skɔɪp	 	 ɹinʤ	 	 pɔɪd	 	 ɹemp	
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slimp	 	 ʃɑɹt	 	 ɹof	 	 ɹɪn	

slom	 	 skɪb	 	 ɹuk	 	 ɹɪz	

slaʊd	 	 skʊn	 	 ɹaʊp	 	 ɹoft	

ʃok	 	 sloɹn	 	 skɔɪn	 	 ɹʊp	

spæl	 	 smɛk	 	 slɑk	 	 sles	

spɪŋk	 	 ʃɔɪt	 	 slem	 	 slɔɪ	

spʌb	 	 spaʊɹ	 	 snop	 	 snɝp	

stop	 	 steɹt	 	 sov	 	 stɑp	

stʊl	 	 stiɹk	 	 spos	 	 stɛl	

swɔŋ	 	 ʃup	 	 tɛt	 	 saʊd	

swɝp	 	 swɝp	 	 tɪb	 	 tɛb	

swum	 	 swʌp	 	 tɹɑs	 	 tɹɛl	

tɹɔɪst	 	 wɔɪnd	 	 tɹɪs	 	 tɹʌd	

wæp	 		 joɹn	 		 tɝl	 		 tʌl	
 


