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Abstract 

One assumption in regression-based models is that no theoretically important variables have 

been omitted from the model. Provided an omitted variable has a strong effect in the model, its 

omission can introduce bias in one or more parameter estimates. The exact discrete model, a 

continuous time panel model, has been extended to include heterogeneity in the intercept by 

estimation of manifest or trait variance. The inclusion of what is equivalent to a random effect 

should reduce bias due to omitted variables. Two simulations examined exact discrete model 

estimates’ to see if they were robust to omission of time-invariant predictors and both time-

invariant and time-varying predictors. Auto-effects, cross-effects, and time-invariant effects were 

compared by computing bias and efficiency for a two predictor model, a one predictor model 

where some important variables were missing and some were present, and a model that only 

estimated the dynamic process. Relative bias and relative efficiency were computed to compare 

the two predictor model to the omitted variable models. Results were influenced the most by 

cross-effect conditions, strength of the omitted variable, and whether the omitted variable was 

related to other parameters in the model. In the first simulation, results also varied by size of the 

random intercept but did not always change the overall result. In the second simulation, most 

estimates showed less bias or more efficiency in the omitted variable models in conditions in 

which the time-varying effect was correlated with trait variance. 

 

  



iv 
 

Acknowledgments 

This project would have been impossible without the support of my community, both 

near and far. Many thanks to Pascal Deboeck who continued to advise and mentor me even 

though it was from two states away for the majority of this project. Time and again, you helped 

refocus me on my “big” question. Paul Johnson provided guidance and assistance, invaluable to 

me throughout my time at KU, whether it was providing insight into methods practices in other 

fields or more practical support, which leads me to the next item on my list. I thank the Center 

for Research Methods and Data Analysis and the College of Liberal Sciences at the University of 

Kansas for access to their high performance computing cluster on which all of my models were 

estimated. Wei Wu stepped in to be my official KU advisor, and her insightful questions helped 

me to design a better project. Thanks to the other members of my committee, Holger Brandt and 

David Johnson, the other students in the KU quantitative psychology program, my KU Beach 

Center colleagues, and members of the accountability writing groups. With your encouragement, 

I continued to push forward and was able to complete this paper – I thought it would never end! 

Last, but not least, the support from family and friends was integral to my success. Specifically, 

heartfelt gratitude goes out to Mary Alice Wiles, Mitchie, Gurmit, Betty, and my many, 

wonderful Shaw, Hanna, and Jones relatives along with other North Carolina and Kansas friends 

too numerous to name. 

  



v 
 

Table of Contents 

Chapter 1: Introduction ................................................................................................................... 1 

Longitudinal models ................................................................................................................... 2 

Discrete versus continuous time ............................................................................................... 13 

Exact discrete model ................................................................................................................. 15 

Omitted variables ...................................................................................................................... 21 

Measurement error and the exact discrete model ..................................................................... 24 

Omitted variables and the EDM ............................................................................................... 26 

Chapter 2: Methods ....................................................................................................................... 29 

Experimental design ................................................................................................................. 29 

Fixed conditions ........................................................................................................................ 29 

Varying conditions .................................................................................................................... 31 

Omitted predictors .................................................................................................................... 34 

Chapter 3: Simulation 1 Results ................................................................................................... 40 

Data generation and model convergence .................................................................................. 40 

Bias ........................................................................................................................................... 41 

Effects of omitted variables ...................................................................................................... 44 

Relative bias .............................................................................................................................. 45 

Relative efficiency .................................................................................................................... 57 

Discussion ................................................................................................................................. 67 

Chapter 4: Simulation 2 Results ................................................................................................... 71 

Data generation and model convergence .................................................................................. 71 

Bias ........................................................................................................................................... 72 



vi 
 

Effects of omitted variables ...................................................................................................... 74 

Auto-effect estimates ................................................................................................................ 75 

Cross-effect estimates ............................................................................................................... 86 

Time-invariant estimates ........................................................................................................... 95 

Discussion ............................................................................................................................... 102 

Chapter 5: Conclusion................................................................................................................. 106 

Limitations and future directions ............................................................................................ 109 

References ................................................................................................................................... 112 

Appendix A: Supplementary Simulation 1 Tables ......................................................................... 1 

Appendix B: Supplementary Simulation 2 Tables.......................................................................... 1 

 

  



vii 
 

List of Figures 

Figure 1. Random intercept-cross-lag panel model. ..................................................................... 13 

Figure 2. Exact discrete model with time-invariant predictor and trait variance. ........................ 19 

Figure 3. Data generation model. ................................................................................................. 31 

Figure 4. The four types of A-matrices grouped by cross-lag simulation conditions. ................. 33 

Figure 5. Data generation model with time-varying predictor. .................................................... 38 

Figure 6. Bias of time-invariant effects on trait variance. ............................................................ 44 

Figure 7. Relative bias of X and Y auto-effect estimates in one-way A-matrices, and A-matrices 

(.5, −.45, −.3, .3), (.5, −.25, −.3, .3) and (.5, −.25, −.3, .6) for each level of the time-invariant 

effect (β). ....................................................................................................................................... 46 

Figure 8. Average relative bias of X and Y auto-effect estimates in A-matrix (.5, .45, -.3, .3) for 

three levels of the random intercept (ξ). ....................................................................................... 47 

Figure 9. Average relative bias of Y auto-effect estimates in positive A-matrices for three levels 

of the random intercept (ξ). ........................................................................................................... 48 

Figure 10. Relative bias of X auto-effect estimates in A-matrix (.5, -.45, -.3, .6) by random 

intercept (ξ) and level of the time-invariant effect (β). ................................................................. 50 

Figure 11. Relative bias of YX cross-effect estimates in one-way A-matrices with positive cross-

lags conditions without outliers. ................................................................................................... 51 

Figure 12. Relative bias of YX and XY cross-effect estimates in A-matrices with positive cross-

lags for each level of the time-invariant effect (β). ....................................................................... 52 

Figure 13. Relative efficiency of X auto-effect estimates for -0.30 time-invariant effects by time-

invariant correlations (r) in A-matrix (.5, -.45, .3, .3) after outliers were removed. ..................... 59 



viii 
 

Figure 14. Relative efficiency of Y auto-effect estimates for -0.05 and 0.30 time-invariant effects 

by random intercept (ξ) after outliers were removed from A-matrices (.5,0, -.3, .3) and (.5, 0, -.3, 

.6). ................................................................................................................................................. 60 

Figure 15. Relative efficiency of Y auto-effect estimates in A-matrices with positive cross-lags 

without outliers. ............................................................................................................................ 61 

Figure 16. Relative efficiency of XY cross-effect estimates in A-matrices (.5, -.45, .3, .3) and (.5, 

-.45, .3, .6) without outliers by level of random intercept. ........................................................... 63 

Figure 17. Relative bias of auto-effect estimates in one-way A-matrices. ................................... 92 

Figure 18. Relative bias of auto-effect estimates in one-way A-matrices. ................................... 93 

 

 

  



ix 
 

List of Tables 

Table 1. Common time series models and their properties ............................................................ 5 

Table 2. Example of discrete time A matrix relationship to continuous time drift matrix A# ...... 15 

Table 3. Fixed simulation conditions ............................................................................................ 30 

Table 4. Combinations of remaining simulation conditions ......................................................... 34 

Table 5. Auto-effect bias in the one predictor model averaged by A-matrix and level of random 

intercept ........................................................................................................................................ 42 

Table 6. Relative bias for time-invariant effects on X and Y trait variance by balanced A-matrix 

and combination of time-invariant correlation (r) and effect (β) simulation conditions ............. 54 

Table 7. Relative bias for time-invariant effects on X and Y trait variance by one-way A-matrix 

and combination of time-invariant correlation (r) and effect (β) simulation conditions ............. 55 

Table 8. Relative bias for time-invariant effects on X and Y trait variance by negative A-matrix 

and combination of time-invariant correlation (r) and effect (β) simulation conditions ............. 57 

Table 9. Relative efficiency of time-invariant effects on Y trait variance by time-invariant 

correlation (r) and effect (β) across levels of the random intercept for one-way A-matrix (.5, 0. -

.3, .3) ............................................................................................................................................. 66 

Table 10. Relative efficiency of time-invariant effects on X and Y trait variance by time-invariant 

correlation (r) and effect (β) for negative A-matrices .................................................................. 67 

Table 11. Auto-effect relative bias for A-matrix (.5, -.25, .3, .6) in the 0 random intercept 

correlation conditions across levels of the time-invariant correlation (r) and time-varying effect 

(β) .................................................................................................................................................. 77 



x 
 

Table 12. Relative bias of auto-effects estimates for two one-way A-matrices in simulation 

condition of no random intercept correlation and time-varying effect of −0.30 for the full to one 

predictor comparison .................................................................................................................... 79 

Table 13. Relative efficiency for positive A-matrices by level of time-varying effect and random 

intercept correlation ..................................................................................................................... 84 

Table 14. Relative bias of full to one predictor models comparisons in original and replaced 

results in A-matrix (.5, .45, -.3, .6)................................................................................................ 88 

Table 15. Relative efficiency of XY cross-effects in A-matrix (.5, .45, -.3, .3) for 0 random 

intercept correlation ..................................................................................................................... 90 

Table 16. Relative bias and efficiency for estimates of time-invariant effects on trait variance in 

balanced A-matrices, –YX, and 0 random intercept correlation averaged across conditions ..... 97 

Table 17. Relative bias and efficiency for A-matrix (.5, .45, .3, .3) with 0 random intercept 

correlation................................................................................................................................... 100 

Table 18. Relative bias and efficiency for estimates of time-invariant effects on trait variance in 

negative A-matrices with 0 random intercept correlation averaged across conditions ............. 101 

 

 



1 
 

Chapter 1: Introduction 

George Box is often quoted by quantitative psychologists with a paraphrase of the 

following: “Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive 

elaboration. On the contrary following William of Occam he should seek an economical 

description of natural phenomenon” (Box, 1976, p. 792). Box takes this one step further and 

encourages the scientist to pay attention to what is “importantly wrong”. What is important could 

be based solely on the research hypothesis being tested. In longitudinal models whether or not to 

focus on the dynamics of a longitudinal process is tied to the research hypothesis, determining to 

some extent what is important. But dynamics can also be important if ignoring the dynamics 

results in violating model estimation assumptions, such as an independent, identically distributed 

error term. Patterns in the residuals associated with variables in the model can be addressed by 

adding variations of included variables, such as polynomial, interaction, or serial correlation 

parameters to the model. Proper specification of measured variables is only one part of correctly 

specifying a model. 

Another area in which models can be misspecified are omitted exogenous variables. The 

researcher could have considered a predictor theoretically unimportant so the variable was not 

collected, but its absence resulted in estimates that differed greatly from similar studies. Another 

scenario applies to questions that cannot be asked, a problem encountered in research on 

sensitive topics such as child abuse or substance use. Sometimes it is possible to identify a less 

sensitive question that should be highly correlated with the question that cannot be asked. If that 

substitute variable is highly correlated with the sensitive question, part of the variance for that 

unasked question will be still estimated in the residual as unexplained variance. The unexplained 
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variance in our models can lead to the wrong conclusions because of how their omission impacts 

other estimates in the model.    

Little is known about the impact of omitted variables on the exact discrete model, a 

continuous time cross-lag panel model. When properly specified, the model can produce 

unbiased continuous time estimates of a dynamic process, hence the adjective exact in the name 

of the model. But, if the model is not robust to omitted exogenous variables, estimates from the 

exact discrete model may be of little use to the substantive researcher when testing a theory. On 

the other hand, if the model is robust to omitted variables, even if the model is robust under some 

but not all conditions, then the model is practically very useful for developing theories about 

dynamic processes. 

As discussed in the following sections, other parameters can become biased or standard 

error can be wrong when variables are omitted from regression-based models, problems that can 

lead to invalid inferences about strength of parameters in the population. This dissertation 

provides an overview of longitudinal models, both discrete and continuous time models, and a 

synthesis of the research on the consequences of omitted variables in regression-based methods. 

Based on what is known about these longitudinal models and omitted variables, a simulation 

design is presented to understand how exogenous omitted predictors impact continuous time 

parameter estimates in the continuous time cross-lag panel model as estimated by the exact 

discrete model.  

Longitudinal models 

 There are many ways to model data that have been collected more than once on the same 

person, couple, family, or other unit of measurement. In this section, time series and cross-lag 

panel models (CLPM) are described as an introduction to models that produce discrete time 
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estimates. Extensions and variations were also discussed as these models were an attempt to 

correct a misspecification that first showed as a pattern in the residual or non-independence 

between predictors in the model and the error term. Next, continuous time is introduced to show 

how it relates to discrete time, and then describe the exact discrete model, a continuous time 

CLPM. The section finishes by discussing both the advantages and limitations of the exact 

discrete model as understood to date. 

Time Series. When one person or group has been measured on a single outcome at 

equally spaced intervals across time, for example every minute for an hour, daily for three 

months, or annually from college graduation to retirement, a time series model may be the 

simplest model to implement. Theoretically, these time series observations xt are drawn from a 

joint distribution of a random variable sequence, Xt (Brockwell & Davis, 2002). The mean of Xt 

is μX(t) = E[Xt], and the autocovariance, covariance of a process with itself over time, is 

𝛾𝛾𝑋𝑋(𝑟𝑟, 𝑠𝑠) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑟𝑟 ,𝑋𝑋𝑠𝑠) = 𝐸𝐸��𝑋𝑋𝑟𝑟 − 𝜇𝜇𝑋𝑋(𝑟𝑟)��𝑋𝑋𝑠𝑠 − 𝜇𝜇𝑋𝑋(𝑠𝑠)�� (1) 

where r and s are integers corresponding to any two time points in the series. There are no 

constraints on the values r and s can take with respect to observations in the time series. 

 A common practice in modeling time series data is to first remove trends, seasonal 

components, outliers, and compute differences between the time points to remove any 

dependence on time. Once these elements have been subtracted from the model, what remains 

are the residuals. At this point in the modeling process, the focus shifts to patterns in the 

unexplained variance. Ideally, those residuals will be independent of time, a condition that is 

referred to as stationarity (Brockwell & Davis, 2002). An important statistical property to 

understand about time series models is the condition of stationarity because stationarity is an 

assumption of many longitudinal models. A series is said to be stationary if for any series 
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{𝑋𝑋𝑡𝑡, 𝑡𝑡 = 0, ±1, … }, {𝑋𝑋𝑡𝑡+ℎ, 𝑡𝑡 = 0, ±1, … } has similar properties for any integer h. Brockwell and 

Davis (2002) formalize the definition with respect to the first two moments, mean and 

covariance. Strict stationarity requires that (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) and (𝑋𝑋1+ℎ, … ,𝑋𝑋𝑛𝑛+ℎ) share a joint 

distribution for all h and n > 0, where n refers to the number of the observation; no claims about 

stationarity can be made about the time series prior to the first observation, hence the 

requirement for n > 0. A less rigorous property is weak stationarity, a property that only requires 

independence of time. A time series is weakly stationary if the mean of series X over time, 𝜇𝜇𝑋𝑋(𝑡𝑡), 

is independent of time t and autocovariance 𝛾𝛾𝑥𝑥(𝑡𝑡 + ℎ, 𝑡𝑡) is independent of t for each h. If a time 

series is stationary, computing the difference between time points does not change the 

stationarity status. If the residuals are not independent across time, computing a difference can 

sometimes convert a non-stationary time series to a stationary time series. Lastly, if a time series 

is strictly stationary, it is also weakly stationary, but the reverse is not necessarily true 

(Brockwell & Davis, 2002). For most of the models discussed in this paper, the level of 

stationarity that is assumed is weak rather than strict. 

Multiple estimates are used to describe dynamic models because there is more than one 

process occurring over time. For example, a discrete time cross-lag panel model contains both an 

autoregressive process and an independent, identically distributed (i.i.d.) error term, two different 

types of time series. The five most common types of time series are listed in Table 1 with 

information about stationarity, its form, any assumptions, and a description of the distribution 

(Brockwell & Davis, 2002).  
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Table 1. Common time series models and their properties 

Type Stationary Form Assumptions Distribution  

i.i.d. Yes X1, X2, …, t  = 1, 2, … σ2 < ∞ {𝑋𝑋𝑡𝑡}~𝐼𝐼𝐼𝐼𝐼𝐼(0,𝜎𝜎2) 

White noise Yes X1, X2, …, t  = 1, 2, …  {𝑋𝑋𝑡𝑡}~𝑊𝑊𝑊𝑊(0,𝜎𝜎2) 

Random 
walk 

No St = X1 + X2 + … + Xt, 
t = 1, 2, … 

X0 = 0 {𝑋𝑋𝑡𝑡}~(0, 𝑡𝑡𝜎𝜎2) 

  {𝑋𝑋𝑡𝑡}~𝐼𝐼𝐼𝐼𝐼𝐼(0,𝜎𝜎2)  

Moving 
average 

Yes Xt = Zt + θZt-1,              
t = 0, ±1, … 

{𝑍𝑍𝑡𝑡}~𝑊𝑊𝑊𝑊(0,𝜎𝜎2) {𝑋𝑋𝑡𝑡}~�0,𝜎𝜎2(1 + 𝜃𝜃2)� 

  θ is a real 
number 

 

Auto-
regressive 

Yes Xt = φXt-1 + Zt,             
t = 0, ±1, … 

{𝑍𝑍𝑡𝑡}~𝑊𝑊𝑊𝑊(0,𝜎𝜎2)  

  |φ| < 1 for AR(1)  

  Zt is uncorrelated 
with Xs 

 

 

The simplest of time series model is referred to as i.i.d., meaning independent, identically 

distributed. These random variables are independent and uncorrelated with respect to time and 

have a mean of 0 and finite variance. The simplest example would be the outcome of flipping a 

fair coin where the outcome of a coin flip has no influence on any other coin flip and the 

expected mean of a series (.5) was subtracted from the series. One flip of the coin is not expected 

to be related to any other flip of a coin in the sequence. A time series very similar to i.i.d. time 

series is the white noise time series, differing from i.i.d because the white noise time series does 
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not require independence from one observation to the next. All i.i.d. series are white noise time 

series, but not all white noise time series are i.i.d. Mathematically for the white noise time series 

𝑋𝑋𝑡𝑡, if the autocorrelation (standardized autocovariance) for 𝑋𝑋𝑡𝑡2 is 0, then the white noise is also 

i.i.d. If the autocorrelation is not equal to 0, then it is only white noise. Random walk is the first 

series described here that is additive in that the series St is composed of t individual time series 

that added together determine the total effect, as seen in Table 1. Each Xt in St is i.i.d. random 

variables. Random walks are not stationary because although the mean is independent of time 

with an expected value of 0 if the first time point is 0, the variance of the time series is dependent 

on time (Brockwell & Davis, 2002).  

The last two models listed in Table 1 are the moving average (MA) and the auto-

regressive (AR). MA models focus on the error term with the current value being related to the 

error term from the previous time point. AR models depend on previous values of the variable 

itself. The example of each model listed in the table are for MA(1) and AR(1) respectively 

though other numbers could be listed in the parentheses to indicate the number of coefficients 

that will be estimated and how long across time observations relate to each other. In this case, the 

use of the number 1 indicates that only the previous time point is predicting the current time 

point. As seen in Table 1, MA(1) is defined by white noise at the current time point and some 

coefficient θ that is multiplied by a white noise term from the previous time point. These terms 

are additive. Similarly, for AR(1), the process Xt is defined by a white noise term added to a 

coefficient φ multiplied by Xt-1. If |φ| < 1, then the process is stationary. Also, previous values of 

X are independent from the white noise in the model (Brockwell & Davis, 2002). 

 With AR and MA models, we see that white noise processes are additive pieces in each 

model. Likewise, AR and MA models can be combined to build an auto-regressive moving 
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average (ARMA) model that are denoted by ARMA(p, q) where p refers to the auto-regressive 

process and q refers to the moving average process. ARMA(1, 1) is represented by 

𝑋𝑋𝑡𝑡 = 𝜑𝜑𝑋𝑋𝑡𝑡−1 + 𝑍𝑍𝑡𝑡 + 𝜃𝜃𝑍𝑍𝑡𝑡−1 (2) 

where φ is the auto-regressive coefficient between Xt and Xt-1 and θ is the moving average (white 

noise) coefficient for the previous time point. Zt, white noise, is modeled as a constant 

(Brockwell & Davis, 2002). 

Estimation. Time series models where the errors are normally distributed are obtained 

from univariate stochastic model preliminary estimation (USPE) (Box & Jenkins, 1976), 

estimation that returns moments. USPE is a conditional likelihood, conditional both on white 

noise from the current time point and on values that were not observed but are assumed to have 

occurred before data was collected. USPE can be estimated with least squares, moment estimates 

from or maximum likelihood (ML). In small samples, least squares estimates are negatively 

biased but bias decreases as sample size increases. Least squares estimates are consistent and 

estimates are normally distributed and close to maximum likelihood values, unless the series 

contains a seasonal component; unconditional sum of square should be computed in models with 

seasonal data because it will be more accurate, particularly in the case of short time series where 

the conditional estimation drops one time point from the estimation process but the unconditional 

estimation does not.  

Although most time series in economics and political science articles reviewed for this 

paper focus on time series models with manifest (observed) variables, it is possible to estimate a 

structural equation modeling (SEM) ARMA time series by specifying a covariance matrix as 

demonstrated by van Buuren (1997), work that was evaluated and extended in two studies by 

Hamaker, Dolan, and Molenaar (2002; 2003). van Buuren’s simulation showed problems with 
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MA models that Hamaker and colleagues attributed to non-invertible series or series with values 

near the boundary of invertible values (2002). A non-invertible series is one in which 

observations not close to the current time point have a strong influence on the current time point; 

the MA coefficient |θ| > 1. An invertible series has a |θ| < 1 indicating that as time passes, distant 

observations cease to influence current observations. Hamaker et al. (2002) also showed that 

model estimates were not maximum likelihood estimates as van Buuren claimed but USPE 

estimates, although the results would be identical for ARMA(p, 0) models.  

Sample size. Sample size in the context of a single time series refers to the number of 

time points. Brockwell and Davis (2002) recommended as few as 30 time points though the 

number of time points is dependent on the properties of the series being modeled. Erratic 

estimates may be produced by time series with only 20 or 30 observations (Beck & Katz, 1996). 

Hamaker, Dolan, and Molenaar (2003) simulated series of length t = 100 for n = 1 and t = 35 for 

n = 5. They recommended that for n = 1 more than 50 time points are needed.  

 Extensions. Two extensions of the time series models that are relevant in this paper are 

multivariate time series and cross-sectional time series. Multivariate time series measure the 

person (or any single unit) on more than one variable over time, and relationships can be 

specified between the variables over time. If the series are weakly stationary, the series are 

referred to as Xt = (Xt1, Xt2)′ with a vector of means 

𝝁𝝁 = 𝐸𝐸[𝑋𝑋𝑡𝑡] = �𝐸𝐸𝑋𝑋𝑡𝑡1𝐸𝐸𝑋𝑋𝑡𝑡2
� (3) 

with a covariance matrix 

𝛤𝛤(ℎ) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑿𝑿𝑡𝑡+ℎ,𝑋𝑋𝑡𝑡) = �𝛾𝛾11
(ℎ) 𝛾𝛾12(ℎ)

𝛾𝛾21(ℎ) 𝛾𝛾22(ℎ)� 
(4) 

where the estimation of the correlation between two different time points (i ≠ j) is  
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𝜌𝜌�𝑖𝑖𝑖𝑖(ℎ) = 𝛾𝛾�𝑖𝑖𝑖𝑖(ℎ) �𝛾𝛾�𝑖𝑖𝑖𝑖(0)𝛾𝛾�𝑖𝑖𝑖𝑖(0)�
−1 2⁄

. (5) 

If estimating the correlation for the same time point (i = j), Equation 1 for the series 

autocovariance is used (Brockwell & Davis, 2002). The second extension of a basic time series is 

the cross-sectional time series where time series data has been collected on a sample or 

population (Stimson, 1985). The number of observations are usually large enough to analyze 

each series in isolation, but analyzed together, questions about inter-individual variation can be 

addressed (Kennedy, 2008). If the sample exceeds the number of time points and more than one 

outcome variable is included in the model, this is typically referred to as a panel model or cross-

lag panel model (CLPM). In a model with two outcome variables, they regress on each other 

over time, either unidirectional or bidirectional (Kline, 2011). CLPMs can be extended to include 

other predictors and to test mediating relationships. 

Cross-lag panel model. Stimson (1985) referred cross-sectional time series as pooled 

space and time analyses, and he called the model generalized least squares (GLS) ARMA. 

Specifically, the error term consists of block Toeplitz matrices like van Buuren (1997) and 

Hamaker et al. (2002) used to create a covariance structure for SEM estimation of time series. 

The basic form of the GLS ARMA contains a predictor xit and an error term, εit: 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑡𝑡 (6) 

where i stands for the number of observations ranging from 1 to n; t is the number of time points. 

In Equation 6, the 𝑦𝑦𝑡𝑡−1is a not a predictor for 𝑦𝑦𝑡𝑡. Instead, the autoregressive component is 

modeled in the error term. For εit, the matrix version is referred to as Ε. The error matrix is 

𝜠𝜠 =

⎣
⎢
⎢
⎡𝜎𝜎1

2𝐴𝐴 0 ⋯ 0
0 𝜎𝜎22𝐴𝐴 ⋯ 0
⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝜎𝜎𝑛𝑛2𝐴𝐴⎦

⎥
⎥
⎤
 

(7) 
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where σ2 is estimated n times for heterogeneity across units, and auto-regressive matrix A is a 

matrix with band diagonal elements specified with one unique parameter, ρ: 

 𝑨𝑨 =

⎣
⎢
⎢
⎡ 1 𝜌𝜌 𝜌𝜌2 ⋯ 𝜌𝜌𝑡𝑡−1

𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌𝑡𝑡−2
⋯ ⋯ ⋯ ⋯ ⋯
𝜌𝜌𝑡𝑡−1 𝜌𝜌𝑡𝑡−2 𝜌𝜌𝑡𝑡−3 ⋯ 1 ⎦

⎥
⎥
⎤
. 

(8) 

Many variations of the Toeplitz block error structure have developed and tested, one of 

which that uses OLS with a panel corrected error structure (Beck & Katz, 1996). Beck and Katz 

also proposed a model that included both a lagged dependent variable (LDV) and a term to 

handle serially correlated errors. The errors were correlated due to inclusion of a dynamic 

process as a predictor in the model and they wanted to specify a model whose predictors were 

independent of the error term. Because the error is now independent, GLS estimation is not 

needed in order to obtain unbiased estimates. The LDV is 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝜌𝜌𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑡𝑡 − 𝛽𝛽2𝑥𝑥𝑖𝑖(𝑡𝑡−1) + 𝜀𝜀𝑖𝑖𝑡𝑡. (9) 

This equation models AR(1) explicitly with 𝜌𝜌𝑦𝑦𝑖𝑖(𝑡𝑡−1) term as a predictor for 𝑦𝑦𝑖𝑖𝑡𝑡; β1 is the 

coefficient for 𝑥𝑥𝑖𝑖𝑡𝑡, a variable that measures an AR(1) process as well so its t-1 term was also 

included as a predictor; and any MA process captured by εit contains i.i.d. errors. Instead of Z for 

the white noise error process, the error term is represented by εit because its notation is more 

familiar outside of time series models and because the error term is assumed to be i.i.d. but not 

necessarily white noise. Beck and Katz called it the static model. Keele and Kelly (2006) 

modified this formula so that x is clearly another time series that is serving as a predictor: 

 𝑦𝑦𝑖𝑖𝑡𝑡 = 𝜌𝜌𝑦𝑦𝑖𝑖(𝑡𝑡−1) + 𝛽𝛽𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡, (10) 

 𝑥𝑥𝑡𝑡 = 𝛼𝛼𝑥𝑥𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡, and   

 𝑢𝑢𝑡𝑡 = 𝜑𝜑𝑢𝑢𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡.  
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The outcome is predicted by its previous time point and the auto-regressive coefficient, a single 

𝑋𝑋𝑡𝑡 term with coefficient β and error term ut. Moving to the second formula, α is the 

autoregressive term for xt and it has 𝜀𝜀1𝑡𝑡~𝐼𝐼𝐼𝐼𝐼𝐼(0,𝜎𝜎2). In comparison to Equation 9, the concurrent 

predictor 𝑥𝑥𝑖𝑖𝑡𝑡 is missing; only the previous time point with its auto-regressive coefficient is 

modeled. The error term ut consists of an autoregressive parameter in the error process plus 

𝜀𝜀2𝑡𝑡~𝐼𝐼𝐼𝐼𝐼𝐼(0,𝜎𝜎2). Note that Equation 10 has three autoregressive parameters and is preferred over 

the LDV is the error term is not i.i.d. (Keele & Kelly, 2006). 

 Estimation. For the model that Stimson (1985) described, GLS is used to obtain 

estimates. The model is generalized because weighting is used to model heteroscedasticity across 

the cross sections in the σ2 terms of the matrix Ε. Hamaker and colleagues (2003) used 

maximum likelihood estimation with the raw data to produce estimates for n ≥ 1 and t > n. The 

process they demonstrated took advantage of full information maximum likelihood estimation 

(FIML), a process that easily handles missing or differing numbers of observations.  

Extensions. If the research question being asked with panel data concerns dynamics, then 

Kennedy (2008) recommends that a lagged version of the outcome should be included as a 

predictor, like Equations 9 and 10, and be long enough to show the pattern repeat. Other 

additions include time invariant and time-varying predictors. Time-invariant predictors, such as 

gender, race, or treatment group, are measured once and apply equally to all time points. Time-

varying predictors, such as size of classroom, differ across time but are not expected to have their 

own autoregressive effects. These predictors differ from the predictor xit in Equation 10 because 

xit regresses on the previous time point.  

Panel models were initially specified as single level models but recent research has 

shown that those models are likely to be misspecified. Instead, we should be considering random 
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intercepts (Hamaker, Kuiper, & Grasman, 2015), referred to as the random intercept-CLPMs 

(RI-CLPM). These random intercepts in the discrete time CLPMs enable the modeling of 

heterogeneity around the average intercept, reducing the amount of unexplained variance in the 

residual for the model. The introduction of the random intercept matches what is observed in 

data: not all people are expected to respond at the same level. We can remove those differences 

by computing the person’s mean and subtracting that from each observation, or we can directly 

model the difference and obtain an estimate of the intercept variability. As seen in Figure 1, even 

though the latent variables for the dynamic processes are single indicators, this model is easily 

extended from single to multiple indicators for the latent dynamic processes. 
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Figure 1. Random intercept-cross-lag panel model.  The paths of ξx and ξy on each time point of 
the respective dynamic process is fixed to 1 to enable the estimation of the random intercept. The 
paths from the latent dynamic variables X and Y to the observed indicators xt and yt are fixed to 
1 for identification purposes with all other parameters freely estimated. Depending on the 
number of time points, the correlations between the disturbances may need to be equated to 
estimate a model with sufficient degrees of freedom. 

Discrete versus continuous time 

 Discrete time series and CLPMs are popular, but they do have one assumption 

that is challenging to meet: all time points are equally spaced. In psychological research, it is 

challenging to collect data more than once from an individual much less repeatedly at regular 
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intervals. Sometimes this condition is met but what is meant by one unit of time can differ across 

research studies. One researcher could take weekly observations and a second researcher could 

take semi-monthly or monthly observations. With two different time frequencies, it can be 

challenging to compare results between two studies. By shifting to continuous time, results from 

those two studies can be compared because estimates describe the underlying process rather than 

results tied to a specific unit of time. Discrete time estimates for any unit of time are related to 

continuous time estimates through e, the base of the natural logarithm: 

𝐀𝐀(∆𝑡𝑡𝑖𝑖) = 𝑒𝑒𝑨𝑨#∙∆𝑡𝑡𝑖𝑖. (11) 

A refers to the autoregressive and cross-lag matrix for some lag of time Δt for individual i; the 

autoregressive values are listed on the diagonal and cross-lag values are listed on the off-

diagonal. A# is the drift matrix, the continuous time A matrix of auto-effects and cross-effects, 

where the autoregressive terms become auto-effects and cross-lags become cross-effects. A and 

A# are both square matrices. Eigenvalues are computed when taking the logarithm of a matrix, 

and the process to identify the eigenvalue uses all elements of a matrix.  

An A matrix that is 1 x 1 contains the autoregressive term for a single dynamic process. 

Computing the natural logarithm of A to obtain A# will always result in the same eigenvalue and 

corresponding auto-effect in A# because there are no other elements in the matrix to influence the 

calculation of the eigenvalue. For example, if A = 0.8, then A# = -0.22. With the introduction of 

another dynamic process, A and A# become 2 x 2 matrices. All four elements are used in the 

computation of the eigenvalues that are used to obtain the logarithm of a matrix so if any one of 

the four elements changes in A, then every element in A# could be different. For example, as 

shown in Table 2, an autoregressive value of 0.80 equals auto-effects that range from -0.14 to -

0.33, depending on the values of the other three elements in the matrix. 
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Table 2. Example of discrete time A matrix relationship to continuous time drift matrix A# 

A A# 

�𝑋𝑋1 𝐶𝐶𝑜𝑜 𝑋𝑋2 𝑋𝑋1 𝐶𝐶𝑜𝑜 𝑌𝑌2
𝑌𝑌1 𝐶𝐶𝑜𝑜 𝑋𝑋2 𝑌𝑌1 𝐶𝐶𝑜𝑜 𝑌𝑌2

� �𝑋𝑋1 𝐶𝐶𝑜𝑜 𝑋𝑋2 𝑋𝑋1 𝐶𝐶𝑜𝑜 𝑌𝑌2
𝑌𝑌1 𝐶𝐶𝑜𝑜 𝑋𝑋2 𝑌𝑌1 𝐶𝐶𝑜𝑜 𝑌𝑌2

� 

�0.80 0.40
0.30 0.77� �−0.33    0.55

   0.41 −0.37� 

�    0.80 0.40
−0.30 0.77� �−0.14    0.48

−0.36 −0.17� 

�   0.80 −0.40
−0.30    0.77� �−0.33 −0.55

−0.41 −0.37� 

�0.80 0.00
0.10 0.77� �−0.22    0.00

   0.13 −0.26� 

 

Exact discrete model 

 The exact discrete model (EDM) takes a very direct approach to the estimation of 

the continuous time cross-lag panel model with the estimation of a differential equation that is 

related to a discrete time cross-lag panel model. Oud and Jansen (2000) introduced the EDM 

estimated as a structural equation model, referring to the model as a continuous time state space 

model. Described more broadly as a multivariate stochastic differential equation by Driver, Oud, 

and Voelkle (n.d.), the model is the same as the one described by Voekle and colleagues in 

previous papers (Voelkle & Oud, 2013; Voelkle, Oud, Davidov, & Schmidt, 2012). The model 

still results in discrete time parameters being constrained to the corresponding continuous time 

values, and discrete time estimates will be equivalent to the EDM estimates provided time 

intervals are equal (Voelkle & Oud, 2015). The model is flexible enough to model observed 

variables through single indicator constructs or multiple indicator latent variables however single 

indicator constructs limit the ability to separate measurement error. The description of the EDM 
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that follows first reviews the discrete time cross-lag panel model with exogenous predictors 

before describing the EDM.  

In matrix form, the discrete time cross-lag panel model of order one (AR1) with 

exogenous predictors is 

𝜂𝜂𝑖𝑖 = 𝐀𝐀𝜂𝜂𝑡𝑡−1 + 𝐁𝐁𝑧𝑧𝑖𝑖 + 𝐌𝐌𝜒𝜒𝑡𝑡−𝑖𝑖 + 𝐖𝐖𝑖𝑖 . (12) 

The measurement of a variable 𝜂𝜂𝑖𝑖 at any time is equivalent to that weighted variable at the 

previous time point plus time invariant predictor z, time-varying predictor χ, and an error term W. 

The coefficient matrix A provides the degree to which each outcome is related to previous 

observations of η and other outcome variables; the matrix contains autoregressive coefficients on 

the diagonal and cross-lag coefficients on the off-diagonal. The  error term is represented by W, 

a change in notation from ε to reflect the stochastic error term modeled using the Weiner process 

in continuous time (Driver et al., n.d.). 

In continuous time, the EDM stochastic differential equation is very similar to the 

formula above. The derivative with respect to time, (dt) is 

𝑑𝑑𝜂𝜂𝑖𝑖𝑡𝑡 = (𝑨𝑨𝜂𝜂𝑖𝑖𝑡𝑡 + 𝜉𝜉𝑖𝑖 + 𝑩𝑩𝑧𝑧𝑖𝑖 + 𝑀𝑀𝝌𝝌𝑖𝑖𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝑮𝑮𝑑𝑑𝑾𝑾𝑖𝑖𝑡𝑡 . (13) 

The vector of outcomes is η for subject i at time t. The A matrix contains auto-effects and cross-

effects, estimates of the relationship of the outcome variables over time. The term representing 

the random intercept is ξ with mean of κ and variance φξ. The mean κ is the long-term intercept 

of the process, like to the fixed intercept, and the variance φξ is the estimate of how individuals 

differ from the average, similar to a random effect. B is the matrix of time invariant predictors, 

and M is the matrix of effects of time-varying predictors on ηit. These time-varying predictors are 

assumed to have no auto-effects from one time point to the next time point; otherwise they 

should be modeled as another endogenous process instead of as a time-varying predictor. As 
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described by Driver and colleagues (n.d.), time-varying predictors that estimate short term 

effects is an impulse. The Dirac delta, a function that is infinity at 0 and 0 elsewhere with an area 

of 1, is used to estimate the effect of this impulse as follows: 

𝜒𝜒𝑖𝑖𝑡𝑡 = � 𝑥𝑥𝑖𝑖𝑖𝑖𝛿𝛿𝑡𝑡−𝑖𝑖
𝑖𝑖∈𝑈𝑈𝑖𝑖

. (14) 

The interval of time is represented from t-1 to t though time intervals can vary across individuals. 

Computationally, for a specific interval of time that maps the discrete time observations to the 

continuous time estimates, the solution to the stochastic differential equation is 

𝛈𝛈𝑖𝑖𝑡𝑡 = 𝑒𝑒𝐀𝐀∙𝛥𝛥𝑡𝑡𝛈𝛈𝑖𝑖𝑡𝑡0 + 𝐀𝐀−1[𝑒𝑒𝐀𝐀∙𝛥𝛥𝑡𝑡 − 𝐼𝐼]𝛏𝛏𝑖𝑖 + 𝐀𝐀−1[𝑒𝑒𝐀𝐀∙𝛥𝛥𝑡𝑡 − 𝐼𝐼]𝐁𝐁𝐳𝐳𝑖𝑖

+ � 𝑒𝑒𝐀𝐀∙(𝑡𝑡−𝑠𝑠)𝐌𝐌𝛘𝛘𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠 + � 𝑒𝑒𝐀𝐀(𝑡𝑡−𝑠𝑠)𝐆𝐆𝑑𝑑𝐖𝐖𝑖𝑖(𝑠𝑠)
𝑡𝑡

𝑡𝑡0

𝑡𝑡

𝑡𝑡0
. 

(15) 

 

Each term in this equation has a one-to-one mapping to Equation 12. The dynamic processes in η 

for individual i over time t are the sum of the drift matrix plus the random intercept ξi, the time-

invariant predictors zi, the time-varying predictors 𝛘𝛘𝑖𝑖, and the stochastic error term G. For 

estimation, the time-varying term is replaced as with a summed term based on the Dirac delta 

defined in Equation 14 (Driver et al., n.d.). 

 The error process for EDM is a stochastic error process that is a continuous time random 

walk, referred to as the Weiner process, hence the use of W for the error term in Equations 12 

and 13. Recall from Table 1 that a random walk is a non-stationary process because its variance 

is proportional to time so the error term in the EDM is non-stationary. The integral with respect 

to s represents the stochastic process for the continuous time process. G is the Cholesky 

decomposition, a lower triangular matrix that is positive definite satisfying the equation Q = 
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GG*. G* is the conjugate transpose and Q will contain the covariance matrix of error terms 

(Driver et al., n.d.).  

𝑐𝑐𝐶𝐶𝐶𝐶 �� 𝑒𝑒𝐀𝐀(𝑡𝑡−𝑠𝑠)𝐆𝐆𝑑𝑑𝐖𝐖(𝑠𝑠)
𝑡𝑡

𝑡𝑡0
� = � 𝑒𝑒𝐀𝐀(𝑡𝑡−𝑠𝑠)𝐐𝐐𝑒𝑒𝐀𝐀𝑇𝑇(𝑡𝑡−𝑠𝑠)𝑑𝑑𝑠𝑠

𝑡𝑡

𝑡𝑡0
 

(16) 

 

Equation 17 is the result of integrating Equation 16 where a Kronecker product ⊗ , with 

A# = A ⊗   I + I ⊗  A, is used transform Equation 16 into a matrix format for computation. The 

equation is 

� 𝑒𝑒𝐴𝐴(𝑡𝑡−𝑠𝑠)𝑄𝑄𝑒𝑒𝐴𝐴∗(𝑡𝑡−𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡0
= 𝑖𝑖𝑟𝑟𝐶𝐶𝑖𝑖 �𝐴𝐴#

−1[𝑒𝑒𝐴𝐴#∙∆𝑡𝑡 − 𝐼𝐼]𝑟𝑟𝐶𝐶𝑖𝑖(𝑄𝑄)� 
(17) 

where irow is the inverse of the row operation and the row operation takes row entries and places 

them in a column vector (Driver et al., n.d.). 

Predictors. Time-invariant and time-varying predictors can be included in the EDM. 

Time-invariant predictors are not expected to change over time, or at least over the range of time 

that is modeled for the dynamic processes. With the inclusion of time-invariant predictors, 

estimates can be obtained for the effect of that predictor in continuous time, the asymptotic effect 

of the total increase in the process that is expected from a one-unit increase in the predictor, and 

the amount of variance and covariance in the outcomes that is associated with all time-invariant 

predictors. In the EDM, the variance associated with time-invariant predictors are expected to 

directly predict the dynamic process. 
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Figure 2. Exact discrete model with time-invariant predictor and trait variance. The trait variance 
predicts the latent dynamic process. For multiple indicator models it is possible to estimate trait 
variance for the manifest variables instead of the latent variables. 

Time-varying predictors can be modeled in one of two ways, as a short-term effect or as a 

long-term effect (Driver et al., n.d.). A short-term effect is an impulse that is not expected to 

change the long-term level of a process. A long-term effect is expected to change the overall 

level of the process by raising or lowering it. How this predictor should be modeled depends on 

the research question. If the researcher is interested in both short term and long term effects, then 

two separate models would need to be estimated because it is not possible to simultaneously 
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obtain estimates about short- and long-term effects from the EDM. In a model for short-term 

effects, estimates of the time-varying predictor’s effect on the process, and its covariance with 

the initial time point, trait variance, and time-invariant predictors can be obtained. To estimate 

long-term effects, this time-varying effect becomes another process in the drift matrix though 

only latent with an auto-effect near zero, and no covariance estimates with the initial time point, 

trait variance, or other predictors.  

Unlike time-invariant predictors, time-varying predictors are expected to have different 

values at each time point. The EDM returns a single parameter estimate reflecting its continuous 

time effect on the dynamic process. The other assumption about time-varying predictors is that 

they do not have a detectable auto-effect. In other words, each observation should be unrelated to 

the next at the time of measurement. An example of an appropriate time-varying predictor is a 

repeated measures study design where the participant randomly receives the treatment or control 

condition at each time point. If the time-varying variable does have a measurable auto-effect, 

then it should be modeled as part of the drift matrix to correctly specify its dynamic process 

(Driver et al., n.d.).  

Trait variance. Trait variance is estimated in EDM to account for heterogeneity in the 

intercept, like the random intercept term in RI-CLPM. When single indicators are used to model 

the dynamic process, heterogeneity is estimated for the latent dynamic process, as reflected in 

Figure 2. In a model with multiple indicators, Driver et al. (n.d.) recommend estimating 

heterogeneity for the manifest variables as that may improve model fit and more accurately 

reflect where in the model heterogeneity would be observed in the data. 

Model limitations. The EDM assumes stationarity though there are options for modeling 

non-stationarity in the mean. Change in variance over time can only be modeled via an 
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exogenous time-varying predictor as described above. The model assumes that the data follows a 

multivariate normal distribution, as expected given models are fit with full information 

maximum likelihood. Only heterogeneity in the intercept can be modeled though heterogeneity 

in slopes due to known group membership can be estimated with multiple group models (Driver, 

Oud, & Voelkle, n.d.). In simulations conducted by Oud and Singer (2008), EDM was shown to 

produce unbiased, efficient estimates as compared to a Kalman filter estimation of the equivalent 

system in a two variable cross-lag model but to date nothing has been published regarding the 

extended model. 

Omitted variables 

Specification errors may occur because a key explanatory variable was not included in a 

model or time was specified as a linear term when a higher order polynomial would more 

accurately represent the how the outcome changes longitudinally. But little is known about 

omitted variables in a continuous time context. The review that follows focuses on what we do 

know about omitted variables in regression-based methods to gain insight as to how omitted 

variables might impact continuous time estimates and standard errors.  

Single level regression. Omitted variables, also known as left out variable error (Mauro, 

1990), may result in biased parameter estimates and incorrect standard errors in OLS and other 

regression-based methods. How other estimates are impacted depend on whether the omitted 

variable is orthogonal to other predictors in the model or not. These omissions can in turn lead to 

either Type I or Type II errors. In the case of an omitted variable that is orthogonal to the other 

predictors but related to the outcome, the coefficients for the other predictors will be unbiased 

but have standard errors that are too large when compared to a model with all relevant variables 

included in the model (Cohen, Cohen, West, & Aiken, 2003). The variance associated with the 
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omitted variable will be unexplained variance and part of the error term. Omitted predictors that 

are related to the outcome and another predictor in the model will result in an error term that is 

not independent of that predictor (Kennedy, 2008). The included predictor’s coefficient will be 

biased provided the effect is sufficiently large on the predictor and the outcome (Mauro, 1990).  

James (1980) highlighted the problem with omitted variables in path analysis when the 

assumption of independence between the error term and endogenous outcomes in the model is 

violated, a violation that occurs due to omitted variables. In a simple model with a standardized 

single predictor (x) and outcome (y) that should include an omitted mediator (u for unmodeled), 

the standardized coefficient of the outcome will be biased by the product of the correlation 

between the predictor and the omitted variable and the standardized coefficient for the path from 

the omitted variable to the final outcome, rxuβu. If the x and u are uncorrelated or the omitted 

variable is not related to the outcome y, this bias reduces to 0. The only caveat James mentioned 

to this equation was in the case of a suppressor variable. Suppression occurs when a new 

predictor is added to the model that is related to other predictors in the model but not the 

outcome. Omission of the new predictor will result in an estimate of x on y that is too small 

(Cohen et al., 2003). Aside from considering how the omitted variable will impact estimates, 

James draws attention to the strength of the effect that the omitted variable has on the outcome 

and the degree to which x and u are correlated. If either coefficient or correlation are weak or 

near 0, the bias in the model with be small or none. The other case where omission will not 

negatively impact the model is when x and u are highly correlated. In that case, the standard 

errors would be inflated for two highly correlated predictors (|r| > 0.90) in the model. The best 

modeling choice in that circumstance would be the omission of one of the predictors. 
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Mauro (1990) who investigated left out variable error declined to quantify the bias, 

saying instead that there are too many factors to know exactly how an omitted variable would 

impact the estimates in the model. Similar to James (1980), Mauro discussed how the omitted 

predictor is related to other variables in the model determines whether the omitted variable will 

impact results or not. The three criteria are a substantial effect on the outcome, a substantial 

correlation with another predictor, and orthogonal to all other predictors. The piece discussed by 

Mauro was how the omitted variable is related to all of the predictors, not just a single predictor. 

If the omitted variable is correlated with several predictors in the model, then its variance will be 

represented in each predictor and so the impact of its omission should be minimized. So, it is 

only when the omitted variable represents variance that none of the other predictors are 

measuring that results will be biased. 

Multilevel models. With the transition to multilevel models, the number of parameters 

that can be impacted by omitted variables is greatly increased. With respect to mediation 

modeling, the indirect effect, the level-2 variance-covariance matrix, and the total effect are 

impacted if the omitted variable is a level 2 variable (Tofighi, West, & MacKinnon, 2013). In 

addition to the fixed estimates in a multilevel model, random effects can be included in the 

model specification. Beck and Katz (1996) view statistically significant random effects in cross-

sectional time series, time series based on a cross-section of people with more time points than 

people, as a sign of an omitted variable. In other words, an omitted variable is causing the 

additional variance around the estimate; if that omitted variable can be identified, then the 

random effect would no longer be needed. Raudenbush and Bryk (2002) discuss how omitted 

variables can result in bias but also where the model is robust to omissions. If a level 1 predictor 

is omitted, and it relates to both the outcome and another predictor in the model, then one or 
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more coefficients in the model will be biased. If the predictor is continuous, then all coefficients 

will be incorrect. When all of these conditions hold but the other predictor in the model is also 

part of a cross-level interaction, these results will be confounded. Kennedy (2008) stated that if 

fixed and random effects are statistically equal in their effect, then omitted variables will not 

impact random effect estimates.  

The most recent work in panel models was conducted by Hamaker and colleagues (2015) 

in which they showed the necessity of a random intercept term in a CLPM. This term is needed 

to separate within from between effects of the dynamic process. The heterogeneity in the 

intercept is due to unmeasured variables affecting the level of the process. Without this term, the 

cross-lags can have coefficients that are the negative when they should be positive, or vice-versa. 

The process that appears to drive another dynamic process may be actually be driven instead. 

Lastly, without the random intercept, conclusions about the dynamics could result in Type I or 

Type II errors.   

Measurement error and the exact discrete model 

All of the research discussed in this paper applies to cross-sectional models and discrete 

time-series models. Variance from omitted variables typically become unexplained variance in 

the model (Cohen et al., 2003), and aside from interactions, non-differentiable from 

measurement error. Previous research shows that this increased measurement error, if not 

modeled, can result in biased drift parameter estimates in the EDM if the cross-lags are both 

positive (Shaw, 2015); the cross-effects will also be overestimated, becoming more biased as 

measurement error increases. If either cross-effect is negative, the estimates are not impacted by 

the measurement error. Auto-effects will be underestimated regardless of whether the cross-

effects are positive or negative. Turning to systems literature where the first derivative is 
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interpreted as representing positive feedback or negative feedback can provide insight into these 

findings. The first derivative is the rate of change, also known as the slope in regression models. 

When the first derivative is positive, then the function is increasing; when the first derivative is 

negative, the function is decreasing (Granville, Smith, & Langley, 1957). In a panel model, if 

both variables have positive cross-effects and those effects are additive across time, the processes 

being measured can become increasingly unstable. If either variable is decreasing instead of 

increasing, the processes stabilize. So, in the case of measurement error, robust estimates can be 

obtained from a stable process but not from an unstable process. However, outside influences 

should also be considered when evaluating what in isolation what would appear to be an unstable 

process. Adding an input from the outside to an unstable system can add stability (Åström & 

Murray, 2008), such as the rudder added to the first airplane. In reality for non-mechanical 

systems, such as those studied by psychologists, there are always outside influences. Whether 

those outside influences are included in the model or not often depends on the research question. 

When the impact of measurement error study on EDM was evaluated (Shaw, 2015), trait 

variance was not estimated in the model so it is unclear whether the all parameter estimates 

would have been robust to measurement error rather than just drift matrices with one or more 

negative cross-effects. If the trait variance parameter in the EDM is modeling heterogeneity like 

a random intercept, the effects of an uncorrelated omitted variable should be reflected in that 

estimate. But, the differential equation solution for the EDM shown in Equation 11,  

𝐀𝐀(∆𝑡𝑡𝑖𝑖) = 𝑒𝑒𝑨𝑨#∙∆𝑡𝑡𝑖𝑖,  

 

highlights how all parameters in the model are impacted by the drift matrix, so the degree to 

which other parameters are impacted is unclear. There is also the question of whether 
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coefficients for another predictor in the model will be biased. If they are uncorrelated, the other 

predictor should be estimated without bias; we would expect bias when the predictor is 

correlated with the omitted variable. If the variance is absorbed by the trait variance, only model 

fit should change with zero bias for the estimates. Another open question is how the relationship 

between the predictors influence the drift parameter estimates. Are the drift parameter estimates 

robust to omitted variables as long as one cross-effect is negative, regardless of how the omitted 

predictor is related to the other predictor or the outcomes?  

Omitted variables and the EDM 

Turning to research on omitted variables in regression provides insight on the limits a 

random intercept term may have. In single level regression, the effects of omitted variables on 

model estimates can impact standard errors resulting in Type I or Type II errors (Cohen et al., 

2003). Omitted variables can also result in predictors that are related to the error term, one type 

of model misspecification that can also result biased coefficients (Kennedy, 2008). The degree to 

which these problems occur depend upon the strength of relationship between the omitted 

variable and other variables in the model (Mauro, 1990). In addition to strength impacting 

estimates, suppression can also change how an omitted variable impacts a model. Characteristics 

of the specific data set can change how an omitted variable effects model estimates.  

Similarly, EDM continuous time estimates are sometimes biased when the data contains 

measurement error. Whether the parameter estimates will be biased depends on characteristics of 

the data set, in particular whether the cross-effects are positive or negative. If variance from an 

omitted variable is treated in the estimation process like measurement error, then we can predict 

how the model estimates will be impacted (Shaw, 2015). What is unknown about the EDM 

estimated with the ctsem package (Driver et al., n.d.) is how the trait variance parameter will 
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account for heterogeneity in the intercept. Returning to the stochastic differential equation for the 

EDM in Equation 15, every set of estimated parameters is impacted by the drift matrix. With the 

influence of the drift matrix and omitted variables that may be related to included predictors, can 

the trait variance account for omitted variable variance or at least reduce the bias so conclusions 

would not be different from a correctly specified model?  

To explore how omitted variable relationships with another predictor and the outcome 

variables impact the drift parameters in the EDM, two simulations have been designed to test the 

effects of an omitted variable on the drift matrix, both when the exogenous omitted predictor is 

orthogonal to another predictor in the model and when they are related. A model that includes 

trait variance and a time-invariant predictor was used for all simulation conditions.  

The first simulation added a second time-invariant predictor to the data generation model 

and this variable was then omitted. The impact on the drift matrix was evaluated as well as the 

estimate for other time-invariant predictor. Regardless of the drift matrix values, some of the 

estimates drift estimates are expected to be robust. When the omitted variable is related to the 

other time-invariant predictor, drift parameters may still be robust but the size of the coefficient 

for the time-invariant predictor was expected be biased. The trait variance is expected to increase 

in the omitted variable condition, regardless of how the two predictors are correlated. Because 

the time-invariant predictor is not correlated with the trait variance, it is not expected to absorb 

all of the omitted variable variance.  

The second simulation extended the first simulation by testing a time-varying predictor 

that was omitted. The focus was on a time-varying predictor that has a short-term effect on the 

system rather than one that represents a long-term effect. The time-varying predictor in the EDM 

relates to the system dynamics and to the trait-variance, so the model may be robust to the 
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omission of a time-varying predictor when that predictor is also orthogonal to the time-invariant 

predictor. That condition was tested along with models where the time-invariant and time-

varying predictor are correlated. Whether the drift parameter estimates are robust when one 

predictor is omitted may depend on whether they have positive or negative effects on the drift 

matrix and whether the two predictors were positively or negatively correlated in the data 

generation model. Because trait variance models heterogeneity that may be due to other omitted 

variables, then a time-varying predictor could be correlated with the other omitted predictor 

variance represented in the trait variance. Therefore, the trait variance parameter is may absorb 

more variance from the omitted time-varying predictor if the time-varying predictor was 

correlated with the trait variance in the data simulation model. 

 

  



29 
 

Chapter 2: Methods 

Experimental design 

 Two simulations were conducted to explore how omitted variables impact results from 

the EDM, first with a time-varying omitted variable and second with a time-invariant omitted 

variable. In order to mimic substantive research in which data is collected at discrete time points, 

data was simulated against the discrete time random intercept – CLPM (Hamaker et al., 2015) 

and then analyzed via the EDM in order to obtain continuous time estimates. Currently we do not 

have enough information about omitted variables in the EDM to justify differing the conditions 

between the time-varying simulation and the time-invariant simulation. So, unless explicitly 

stated otherwise, all simulation conditions applied to both simulations. 

Fixed conditions 

Fixed simulation conditions are listed in Table 3, and they include number of time points, 

latent dynamic variables indicators, predictors, and sample size. Number of time points and 

indicators were not expected to impact simulation results that examined bias of latent parameter 

estimates. A single time-invariant predictor was included to represent an exogenous predictor 

that would be included by applied researcher, such as age or socio-economic status. Sample size 

of 200 was selected to replicate the number tested by Hamaker and colleagues (2015) when 

comparing the discrete time CLP to the RI-CLP. A single sample size is also being tested 

because results in Shaw (2015) did not change significantly with respect to sample size. 
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Table 3. Fixed simulation conditions 

Condition Count Comments 

Time points 5 Time points were be equally spaced 

Indicators per time point 1 A single-indicator model, reflecting a scenario 

with a composite score rather than a multiple 

indicator measurement model 

Time invariant predictor 1 The predictor was regressed on by the random 

intercept which in turn predicted the dynamic 

outcomes. 

Sample size 200 The number of observations was selected to 

replicate the sample size simulation condition 

used by Hamaker et al. (2015) when evaluating 

the RI-CLPM. 

 

The remaining fixed conditions applied to parameters that were be included in the data 

simulation with a single value rather than a set of values. In order to constrain the number of 

conditions tested, the latent autoregressive and random intercept parameters for X were 

estimated for single values rather than a set of values for each parameter. The X autoregressive 

parameter were set to 0.5, and the random intercept for X was set to 0.17. The time-invariant 

predictor had a positive effect on both X and Y (β = 0.30 on X; β = 0.35 on Y), the two dynamic 

variables in the model. The first time point had a variance of 1 and the disturbances around the 

other time points were 0.1, as shown in Figure 3, a diagram of the RI-CLPM that the model that 

was used as the data generation model.  
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Figure 3. Data generation model. This model served as the set of fixed simulation conditions. An 
exogenous variable was then be omitted during the analysis. Drift matrix, additional exogenous 
predictors and random intercept variance varied. 
 
Varying conditions 

Dynamics in the A-matrix, random intercepts, strength of omitted predictors, and 

correlation between the omitted variable and the model time-invariant varied because little is 

known about how the model misspecification would impact the estimates.  

A-matrix values. The primary consideration on testable estimates for the auto-effects 

and cross-effects is stationarity. Both X and Y need to be stationary processes but they also need 
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to be vector stationary (Hamilton, 1994) meaning that the pair of processes are stationary, or 

costationary. If the absolute values of both A-matrix eigenvalues are both less than 1 (|𝜆𝜆𝑖𝑖| < 1), 

then the condition of costationarity is met. Because omitted variable variance is expected to 

manifest as measurement error, results from Shaw (2015) were used to inform simulation 

conditions. The A-matrix in discrete time with two constructs is composed of four values for a 

lag of 1: X1 to X2 (auto-regressive), X1 to Y2 (cross-lag), Y2 to X1 (cross-lag), and Y1 to Y2 

(auto-regressive). Because auto-effects estimates were shown to be stable regardless of true 

cross-effect parameters, two auto-effects were tested for Y. The auto-regressive parameters were 

tested with value of 0.50 for X and 0.30 and 0.60 for Y. Cross-lag parameters Yt+1 on Xt and Xt+1 

on Yt took on the following pairs of values: (−0.30, -0.45), (−0.30, -0.25), (−0.30, 0.00), (−0.30, 

0.25), (−0.30, 0.45), (0.30, 0.00), (0.30, 0.25), and (0.30, 0.45). So, all matrix combinations were 

evaluated to ensure that only combinations with |𝜆𝜆𝑖𝑖| < 1 were included. With 2 varying 

autoregressive parameters and 8 cross-lag combinations, 16 A-matrix conditions were evaluated. 

As shown in Figure 4, these 16 matrices were further described as negative, positive, balanced, 

and one-way to simplify the presentation of results in the next chapters. When referenced in the 

results chapters, the 4 values of the matrix are listed in parentheses to clarify which of the 16 

matrices is being discussed. 
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Figure 4. The four types of A-matrices grouped by cross-lag simulation conditions. 

 
Random intercepts. Because intraclass correlations (ICCs) can vary widely, random 

intercepts that correspond to 3 ICCs of size 0.20, 0.30, and 0.55 was tested. The formula for 

calculating the ICC was rearranged to compute the random intercept term,  

𝜏𝜏00 =
𝜎𝜎 ∙ 𝐼𝐼𝐶𝐶𝐶𝐶

1 − 𝐼𝐼𝐶𝐶𝐶𝐶
 (18) 

 
where 𝜏𝜏𝑜𝑜𝑜𝑜 is the random intercept and 𝜎𝜎 is the variance of the outcome multiplied by the sum of 

the disturbances. Taking into account the variance of the initial time point simulated to equal 1 

and disturbances for each remaining time points estimated at 0.1, substituting ICCs into the 

formula results in the following random intercepts: 0.10, 0.17, and 0.49. The random intercept on 

X was fixed to 0.17. The random intercept on Y varied across the three levels. 
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Omitted predictors 

 All of the fixed and varying conditions described above were tested in two simulations. 

The first simulation evaluated models with an omitted time-invariant predictor. The second 

simulation evaluated models with an omitted time-varying predictor. How these omitted 

variables related to the time-invariant predictor differ in the data generation process, and this 

difference was why the omission of each variable type is expected to impact the model in 

different ways.  

Omitted time-invariant predictor. Data was simulated with a time-invariant predictor 

that was omitted in the estimation step of the simulation. The simulation model was almost 

identical to that shown in Figure 1. Instead of a single, time-invariant predictor that was 

exogenous to the model, there were two. Three correlations were tested between these two 

predictors: r = 0, r = 0.3, and r = -0.3. The time invariant predictor was generated to have the 

same effect on the two dynamic processes. The parameter conditions were near zero (−0.05), 

negative (-0.3), and positive (0.3). Together the 3 correlation conditions paired with 3 

coefficients resulted in 9 conditions listed in Table 4. 

Table 4. Combinations of remaining simulation conditions 

Simulation 
Condition 

Time-invariant 
Correlation 

Time-invariant 
Beta Coefficient 

1 .00 −0.05 
2 .00 −0.30 
3 .00 0.30 
4 −.30 −0.05 
5 −.30 −0.30 
6 −.30 0.30 
7 .30 −0.05 
8 .30 −0.30 
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Simulation 
Condition 

Time-invariant 
Correlation 

Time-invariant 
Beta Coefficient 

9 .30 0.30 
 

Data generation. With 16 different conditions for the A-matrix, 3 for the random 

intercept, and 9 for the relationship of the omitted time-invariant predictor to other variables in 

the model, this simulation consists of 432 between conditions. A mean value of 0 has been 

selected for X, Y, and the predictors in the model. A uniform distribution was used to generate 

seeds for data generation. For each condition, 1000 data sets were be generated in Mplus 7.3 

(Muthén & Muthén, 1998-2015) and imported into R 3.3.1 (R Core Team, 2017). Once imported 

to R, time intervals of 1 for equal spacing of time points were added, lag values required by the 

EDM estimation function (Driver et al., n.d.). 

Estimation. The ctsem package (Driver et al., n.d.) in R 3.2.0 (R Core Team, 2017) was 

used to estimate three models with each data set. The first model generated continuous time 

estimates for all variables that were included in the data simulation; this model is be referred to 

as the full model. The second model, referred to as the one predictor model, omitted one time-

invariant predictor while retaining the time-invariant predictor with fixed simulation conditions. 

The third model estimated just the dynamic process with the trait variance and was referred to as 

the dynamic model. The drift matrix parameter estimates and confidence interval, trait variance, 

predictor-related estimates, convergence status, and -2 Loglikelihood and degrees of freedom 

will be saved from each model. Estimates for the predictors included the time-invariant effect on 

the drift matrix, on the first time point for X and Y, and in the case of the two models the 

variance-covariance matrix of the time independent predictors.  

Analysis. After estimating the simulated data with the EDM, the logm function in the R 

package expm (Goulet et al., 2015) was used to compute the log of the A(Δti) matrix for those 
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simulation conditions in order to determine the bias for the drift matrix and the other model 

parameters. Continuous time values was used to calculate bias, 

𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠� =  �𝑅𝑅−1�𝜃𝜃𝚤𝚤�
𝑅𝑅

𝑖𝑖=1

� − 𝜃𝜃 (19) 

where R is the number of converged replications, 𝜃𝜃𝚤𝚤�  is the parameter estimate, and 𝜃𝜃 is the true 

value. Multiple regression estimates were obtained to examine how the simulation conditions 

impacted bias. Because eighteen parameters were evaluated, an a priori α of .05 was adjusted to 

control the experiment-wise error rate. A simple Bonferroni correction was applied to obtain an 

adjusted α of .003. Bias corrected and adjusted residual bootstrapping (Efron & Tibshirani, 1993) 

was used to generate confidence intervals of the coefficients in the analysis of bias. Relative bias 

was used to compare the estimates from the model that matches data generation to the other 

models where predictors were omitted. Due to the large number of replications, mean squared 

error (MSE) was used to compare the efficiency of the nested models to the model that matched 

the data simulation. MSE is 

𝑀𝑀𝑀𝑀𝐸𝐸 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠�2 + 𝐶𝐶𝑏𝑏𝑟𝑟�𝜃𝜃��. (20) 

 

The ratio of MSE for one model over the MSE for a second model provides the relative 

efficiency of one model to another (Carsey & Harden, 2014). Relative bias and relative 

efficiency were each computed twice in order to compare the full model to the one predictor and 

the dynamic model.  

Omitted time-varying predictor. Time-varying predictors serve as exogenous 

predictors on the dynamic variables in the model. Figure 5 is a variation on Figure 3, in which a 

time-varying predictor has been added. Correlated disturbances are still part of the model but 
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were dropped from the figure in order to highlight how the time-varying predictor relates to the 

other variables in the model. Parameter estimates for the predictor’s effect on the dynamic latent 

variables were equated across time and the size of the effect on X should have been equal to the 

size of the effect on Y in the simulation. The same three coefficients tested in the first simulation 

were tested here. And like the first simulation, the time-varying predictor included a correlation 

with the time-invariant predictor in the model. The 3 levels that were tested are r = 0, r = 0.3, and 

r = -0.3. An additional simulation condition that was tested will be a correlation between the trait 

variance and time-varying predictor. This condition was restricted to a correlation near 0 with 

one trait variance parameter and 3 levels with the other trait variance parameter: r = 0, r = 0.3, 

and r = -0.3.  

Data generation. This simulation consists of 1296 conditions because of the addition of 

the correlation between the time-varying predictor and the trait variance. Correlations between 

time points for the time-varying predictor was fixed to 0 in the model, ensuring that any 

estimated relationship would only be due to sampling variability in the data generating process. 

The time-varying predictor was simulated to generate short-term effects, impulses, rather than 

long-term effects, a change in level. Again, X, Y, and the predictors were simulated with a mean 

of 0. Similarly, 1000 data sets were generated for each simulation condition in Mplus 7.3 

(Muthén & Muthén, 1998-2015) with seeds drawn from a uniform distribution. After data 
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generation, the data sets were imported into R 3.2.0 (R Core Team, 2017) and lag information set 

to 1 was appended to each data set.  

 

Figure 5. Data generation model with time-varying predictor.  The correlated residuals between 
X and Y are still contained in the simulation model but omitted from the figure in order to 
highlight relationship of the time-varying predictor with X and Y. 
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Estimation. Like the omitted time-invariant predictor simulation, three models were 

estimated with each data set using the ctsem package version 1.1.6 (Driver et al., n.d.) in R 3.2.0 

(R Core Team, 2017). The model to match the simulated data was estimated first, followed by 

the model that drops the time-varying predictor. The final model estimated only the drift matrix 

and trait variance. The drift matrix parameter estimates and confidence interval, trait variance, 

predictor-related estimates, convergence status, and -2 Loglikelihood and degrees of freedom 

was saved from each model. Predictor related estimates include all of the time-invariant effects 

as well as the effect of the time-varying predictor on the drift matrix, the initial time point for X 

and Y, the variance, trait variance, and the time-invariant predictor. 

Analysis. The drift parameter estimates generated from the discrete time A matrix in the 

first simulation was used to compute bias (Equation 19) and MSE (Equation 20) for the drift 

matrix. Relative bias and MSE was also used to evaluate the predictor estimates. Again, the full 

model was compared to the one predictor model and then the full model was compared to the 

dynamic model. The time-invariant predictor estimates were only present in the full and one 

predictor model, which is why there was only one comparison rather than two comparison for the 

auto- and cross-effects. 
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Chapter 3: Simulation 1 Results 

Simulation 1 tested the EDM under two missing variable scenarios. The first scenario evaluated 

estimates from a model that dropped a time-invariant predictor while keeping another time-

invariant predictor in the model. The second scenario dropped both predictors from the model. 

Data generation and model convergence are described briefly followed by a summary of bias that 

focuses on patterns observed across the drift and time-invariant predictor estimates. Then, the 

primary focus of the results, relative bias and efficiency, are presented to describe the impact of 

omitted variables on parameter estimation in the EDM. The parameters of interest are drift 

parameters and the time-invariant parameters that predict trait variance rather than directly on the 

dynamic process. Last, the trait variance parameters were compared across models to determine 

how those estimates changed as variables were omitted from the models.  

Data generation and model convergence 

For 432 conditions and 1000 replications for each condition, a total of 432,000 data sets 

were generated for Simulation 1. All warnings reported that the latent covariance psi matrix was 

non-positive definite due to one of the random intercept terms with the smallest random intercept 

condition of 0.10 being the most problematic as seen in the last column of Table A1, which 

reports the percentage of warnings by combination of simulation conditions. After data 

generation, the EDM was estimated three times for a total of 1,296,000 models. The first model 

matched the discrete time data generation model, the second model dropped one time-invariant 

predictor, and third model dropped both predictors leaving only the estimation of the dynamic 

process in the drift matrix; these models are referred to as the full model, the one predictor 

model, and the drift model respectively. Most of the estimated models (99.60%) estimated with 

no warning messages. Eight models did not converge due to invalid boundary conditions and the 
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remaining models that did not converge returned warnings about not finding a minimum. Counts 

of non-converging models by A-matrix are listed in Table A2. These models were dropped from 

the analysis. 

Bias 

Bias was computed for all models that converged without error. Descriptive statistics 

generated across all 432 conditions showed non-normal distributions for all 18 parameter 

estimates, as seen in appendix Table A3. Some models that generated errors during data 

generation but were able converge in ctsem produced auto-effects less than -4.0, values that are 

approximately 0 for the autoregressive in discrete time. Any model estimation that returned auto-

effects less than -4.0 were excluded from the examination of bias. Counts of retained data sets by 

A-matrix are provided in appendix Table A4. Bias descriptive statistics were recomputed, and 

average bias was now approximately normal across all three models, with the exception of the X 

and Y auto-effects, which were positively skewed, as shown in appendix Table A5.  

 Auto-effects were expected to be under-estimated across the A-matrices. As seen in 

appendix Tables A6 and A7, auto-effects were over-estimated in most cases rather than over-

estimated, making the auto-effects appear stronger than they should have been. Simulation 

conditions with a large auto-regressive term (.6) produced estimates that changed the least when 

the full and one predictor model estimates were compared. Positive A-matrix (.5, .45, .3, .6) X 

auto-effects were under-estimated across all conditions and in both omitted variable models, 

attenuating the effect, and Y auto-effects were over-estimated, strengthening the effect. Negative 

A-matrix (.5, -.45, -.3, .6) X auto-effects estimates were under-estimated and Y auto-effects were 

over-estimated in the full model. If the time-varying effect was −0.05, one predictor X auto-

effects were also under-estimated. For those 9 conditions, bias ranged from -0.036 to -0.007 and 
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averaged -0.020 (σ = 0.010). For the remaining one predictor results and all dynamic model 

estimates in A-matrix (.5, -.45, -.3, .6), auto-effect estimates were over-estimated.  

Average bias by A-matrix was small in balanced and one-way A-matrices. A-matrices with small 

auto-regressive conditions (0.3) produced the estimates with larger average bias when compared 

to A-matrices with large auto-regressive conditions. Lastly, as the level of the random intercept 

increased, X auto-effect bias were unchanging or decreased and Y auto-effect bias increased, as 

shown in Table 5. Results were similar in the dynamic model.   

Table 5. Auto-effect bias in the one predictor model averaged by A-matrix and level of random 
intercept 

  Random intercept   Random intercept 

 

X 
true 

value 0.10 0.17 0.49  

Y 
true 

value 0.10 0.17 0.49 
Balanced          
  .5, -.45, .3, .3 -0.42 0.05 0.04 0.03  -0.83 0.04 0.05 0.07 
  .5, -.45, .3, .6 -0.50 0.04 0.04 0.03  -0.34 0.03 0.04 0.05 
  .5, -.25, .3, .3 -0.52 0.05 0.05 0.03  -0.97 0.08 0.09 0.13 
  .5, -.25, .3, .6 -0.57 0.06 0.06 0.05  -0.41 0.04 0.05 0.07 
  .5, .45, -.3, .3 -0.42 0.07 0.06 0.06  -0.83 0.01 0.02 0.03 
  .5, .45, -.3, .6 -0.50 0.06 0.06 0.06  -0.34 0.02 0.02 0.02 
One-way          
  .5, .0, -.3, .3 -0.69 0.05 0.05 0.06  -1.20 0.11 0.13 0.18 
  .5, .0, .3, .3 -0.69 0.05 0.04 0.04  -1.20 0.11 0.12 0.16 
  .5, .0, -.3, .6 -0.69 0.06 0.06 0.06  -0.51 0.03 0.04 0.07 
  .5, .0, .3, .6 -0.69 0.06 0.06 0.06  -0.51 0.03 0.04 0.06 
Positive          
  .5, .45, .3, .3 1.46 0.17 0.21 0.30  -2.59 0.30 0.41 0.67 
  .5, .45, .3, .6 -1.01 -0.02 -0.02 -0.03  -0.79 0.03 0.04 0.08 
Negative          
  .5, -.45, -.3, .3 -1.61 0.48 0.47 0.46  -2.59 0.81 0.85 1.03 
  .5, -.45, -.3, .6 -1.01 0.02 0.01 -0.01  -0.79 0.08 0.09 0.16 
  .5, -.25, -.3, .3 -0.98 0.11 0.11 0.12  -1.61 0.19 0.23 0.36 
  .5, -.25, -.3, .6 -0.85 0.08 0.08 0.07  -0.65 0.02 0.04 0.08 
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 Expectations about cross-effect estimates were based on simulation conditions for 

the cross-lag. If the cross-lag condition was negative, the estimates would be biased but no 

direction was specified. If the cross-lag condition was positive, it was hypothesized that the 

estimates would be over-estimated. Balanced A-matrix cross-effects were minimally biased as 

indicated in the average bias of cross-effects in appendix Tables A8 and A9. One-way A-

matrices produced unbiased or positively biased estimates if the non-zero cross-lag condition 

was negative, but only one of the two cross-effects was negatively biased if the non-zero cross-

lag condition was positive. Cross-effects in positive A-matrices were negatively biased, and 

positively biased in negative A-matrix conditions, results that indicated attenuated estimates. In 

the comparison of bias between the full and omitted variable models by taking the difference, the 

influence of the omitted variables on estimation appeared to be largest in the dynamic model 

with very few A-matrix averages not changing. If the data was generated with a large auto-

regressive conditions or with a balanced or one-way A-matrix, the change in bias from full to the 

one predictor model was minimal, and in a few instances, less in the one predictor model. 

Bias in the time-invariant effects for the predictor retained in the one predictor model was 

expected to depend on the time-invariant correlation in negative cross-lag conditions. Negative 

cross-lag conditions were equally biased across the levels of the time-invariant correlations with 

no consistent differences identified across type of A-matrix. Figure 6 shows results by time-

invariant correlation for the balanced A-matrices, bias patterns that were not unique to that type 

of A-matrix. Bias was predicted in the positive cross-lag condition but not dependent on any 

other condition, and results were all biased in those conditions with estimates that were 

attenuated. Balanced A-matrices appeared to change the least, specifically those with a large 

auto-regressive term. 
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Figure 6. Bias of time-invariant effects on trait variance.  Results are for balanced A-matrices at 
each level of the time-invariant correlation between the two time-invariant predictors in the data 
generation model. 
 

Overall, bias of estimates followed patterns different than what was hypothesized. The 

estimates in negative A-matrices were the most biased. Cross-lag conditions and other simulation 

conditions influenced results, but in some instances, bias did not change as variables were 

omitted, particularly conditions with a large auto-regressive simulation condition. Results that 

explore bias across models for the same condition follow in the sections below where relative 

bias and relative efficiency are presented. 

Effects of omitted variables 

 In order to determine whether estimates from the exact discrete model were robust to 

omitted variable variance, both relative bias and efficiency were calculated. Relative bias and 

efficiency of the dynamic process were computed twice, for the full model versus the one 

predictor model, and for the full model versus the dynamic model. Time-invariant estimates were 

estimated in two of the three models so relative ratios were computed once for that part of the 
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analysis. The full model was estimated according to the data generation model, the one predictor 

model dropped one time-invariant predictor, and the dynamic model dropped all predictors. 

Relative bias and relative efficiency were computed for model results with and without 

outliers. Even after excluding problematic estimations based on the X auto-effect < ‑4.0, the 

results still contained some relative bias or efficiency values that acted as outliers in the analysis, 

particularly in the results for the estimates of time-invariant effects on trait variance. Any time 

extremely large relative bias and relative efficiency results were obtained, the original bias 

estimates were examined to see if a small amount of bias in one model, such as 0.005 or smaller, 

was responsible for the result. 

Both ratios used the full model in the numerator and the omitted variable models in the 

denominator for two bias ratios and two efficiency ratios. Ratios close to 1.00, plus or minus .10, 

indicate that bias or efficiency was equal in the two models. Ratios above 1.10 indicate the 

omitted variable model was less biased or more efficient with ratios below .90 indicate that the 

full model was less biased or more efficient. The bias results are presented first by type of 

parameter estimates, auto-effect, cross-effect, and time-invariant estimate. Within each 

parameter type, type of A-matrix was used to organize the sections in the following order: 

balanced, one-way, positive, and negative. Organized in the same way, relative efficiency results 

follow. 

Relative bias 

Auto-effects. Figure 7 shows a common pattern in auto-effect relative bias across A-

matrices. If the time-invariant effect was −0.05, bias was equal in the full and one predictor 

models. If the time-varying effects were ±0.30, three of the four negative A-matrices and all one-

way A-matrices produced auto-effects that were less biased in the full model. Dynamic auto-
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effect estimates were more biased than full model estimates across all levels of the time-varying 

effect. Results specific to type of A-matrix are described below. 

  

Figure 7. Relative bias of X and Y auto-effect estimates in one-way A-matrices, and A-matrices 
(.5, −.45, −.3, .3), (.5, −.25, −.3, .3) and (.5, −.25, −.3, .6) for each level of the time-invariant 
effect (β).  The full model matched the data generation model, one predictor omitted one 
predictor, and dynamic omitted all predictors. Relative bias greater than 1 indicates that the 
omitted model was less biased than the full model. Relative bias less than 1 indicates that the full 
model was less biased than the omitted variable model. 

Balanced. Outliers changed average relative bias very little for X and Y auto-effects in 

balanced matrices, as shown in appendix Tables A12 and A13. In results with the outliers 

removed, the full and omitted variable models were equally biased or less biased in the full 

models. In the case of the balanced A-matrices, the simulation conditions with negative XY 

produced an equally biased X auto-effect estimate and a Y auto-effect that was less biased in the 

full model. The same pattern was observed in the balanced A-matrices if YX was negative in that 

the Y auto-effect was equally biased and the other estimate was less biased in the full model. A-

matrix (.5, .45, -.3, .3) bias results differed in the small random intercept condition. 
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In A-matrix (.5, .45, -.3, .3), X auto-effects were equally biased in the full and omitted variable 

models if the random intercept was 0.17 or 0.49, as shown in Figure 8. The estimates were less 

biased in the omitted variable models if the random intercept was 0.10. Y auto-effects were less 

biased in the full model if the random intercept was medium or large. 

  

Figure 8. Average relative bias of X and Y auto-effect estimates in A-matrix (.5, .45, -.3, .3) for 
three levels of the random intercept (ξ).  These averages were based on results without outliers. 
The full model matched the data generation model, one predictor omitted one predictor, and 
dynamic omitted all predictors. 
 
The small random intercept condition for −0.05 time-invariant effect returned relative bias equal 

to -0.94, 0.69, and 0.81 for time-invariant correlations 0, −.30, and .30 respectively. The other 

small random intercept conditions had relative bias that ranged from -0.18 to 0.02, a result that 

indicated the full model was less biased than the one predictor model, though difference in 

absolute bias between models was less than .001 in some of these comparisons. All small 

random intercept conditions in the comparison of full to dynamic model were less biased in the 

full model. 
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One-way. Outliers had little effect on average relative bias in the three of the four one-

way A-matrices, as indicated in appendix Tables A12 and A13. A-matrix (.5, 0, .3, .3) contained 

a single condition that averaged -52.89 for relative bias of the Y auto-effect across replications. 

After removal of outliers, whether the full and one predictor models were equally biased or the 

full model was less biased depended on the size of the time-invariant effect, as described at the 

beginning of the section.  

Positive. Relative bias results differed for the two positive A-matrices. The positive A-

matrix with small auto-regressive term was equally biased in the comparison of full model to one 

predictor except in conditions with time-invariant effect of ±0.30 with small random intercept, in 

which case one auto-effect was equally biased and the other was less biased in the full model. In 

the dynamic model, aside from the −0.05 time-invariant effect condition, the only conditions that 

were equally biased were those with a large random intercept, as shown in Figure 9. 

  

Figure 9. Average relative bias of Y auto-effect estimates in positive A-matrices for three levels 
of the random intercept (ξ).  These averages were based on results without outliers. The full 
model matched the data generation model, one predictor omitted one predictor, and dynamic 
omitted all predictors. 
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 A-matrix (.5, .45, .3, .6) relative bias results for X auto-effects, were equally biased or 

less biased in the full to one predictor model comparison. With the omission of all predictors, 

relative bias decreased in all but condition. That condition was 0.10 random intercept, .30 time-

invariant correlation, and −0.30 time-invariant effect, and relative bias ranged from 0.96 to 1.02, 

which still indicated equal bias. In that same condition, relative bias for the Y auto-effect 

decreased as more predictors were omitted, going from 1.19 to 1.04. For 22 of the other 

conditions in which relative bias for X auto-effect decreased as more variables were omitted, 

results for Y auto-effects were the exact opposite. The remaining four conditions produced both 

X and Y auto-effect estimates that were less in the full to dynamic model comparison than in the 

full to one predictor model comparison.  

Negative. Negative A-matrix estimates were impacted the most by outliers. Averages by 

A-matrix, both with and without outliers, are listed in appendix Tables A12 and A13. Even after 

the removal of outlier auto-effect estimates, relative bias equaled -4.65 in A-matrix (.5, -.45, -.3, 

.6) for X auto-effects in the comparison of the full to the one predictor model. One predictor 

model results were less biased in conditions with 0.49 random intercept and time-varying effects 

−0.30 and 0.30. Results for individual simulation conditions without outliers were similar to the 

other negative A-matrices, relative bias that differed by level of time-invariant effect as in one-

way and balanced A-matrices.  

For X auto-effects in A-matrix (.5, -.45, -.3, .6), relative bias was negative if the time-

invariant effect was −0.30 or 0.30 in the comparison between the full and one predictor model 

and for every condition in the full versus dynamic model comparisons. Relative bias also 

differed by level of the random intercept, as shown in Figure 10. Examination of bias values for 

the condition with time-varying effect 0.3 and random intercept 0.49 showed bias of -0.0389 and 
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0.0004 in the full and one predictor models respectively. That translated to -90.98 for the relative 

bias for that one condition. Relative bias results appeared extremely large, but the small amount 

of bias made it look exceptionally large.  

  

Figure 10. Relative bias of X auto-effect estimates in A-matrix (.5, -.45, -.3, .6) by random 
intercept (ξ) and level of the time-invariant effect (β).  These averages were based on results 
without outliers. The full model matched the data generation model, one predictor omitted one 
predictor, and dynamic omitted all predictors. 

Cross-effects. Only in conditions with −0.05 time-varying effect were the full and one 

predictor model equally biased. Removal of outliers based on unrealistic auto-effects removed 

cases in which there appeared to be a difference between models. Results averaged across A-

matrix are listed for the four cross-lag types in appendix Tables A14 and A15. 

Balanced. Cross-effect bias in balanced A-matrices differed little between the full and 

omitted variable models with average bias by A-matrix being equal and near 0, as shown in 

appendix Tables A7 and A8. For example, in A-matrix (.5, -.45, .3, .3) the largest absolute 

difference in YX bias between the full and one predictor estimates was 0.0027. With such small 

differences in bias, the relative bias results depended upon differences in the one-hundredth 
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decimal place or smaller. Relative bias results for cross-effects were equally or less biased in the 

full model for one cross-effect and equally or less biased in the omitted variable models for the 

other cross-effect. About half of the −0.05 time-invariant effect conditions were equally biased in 

both cross-effects. A-matrix (.5, .45, -.3, .3) was the exception in that both cross-effects were less 

biased in the full model as compared to the omitted variable models.  

  

Figure 11. Relative bias of YX cross-effect estimates in one-way A-matrices with positive cross-
lags conditions without outliers.  The full model matched the data generation model, one 
predictor omitted one predictor, and dynamic omitted all predictors. 

One-way. Relative bias results were dependent on the size of the auto-regressive 

condition. If the non-zero cross-lag condition (YX) was negative, then estimates were less biased 

in the full model. If the cross-lag condition was positive, one cross-effect was less biased in the 

omitted variable model and other estimate was less biased in the full model. Which estimate was 

less biased was related to the size of the auto-regressive simulation condition. In Figure 11 

below, the YX cross-effect was plotted for A-matrices with a positive YX by level of the time-

varying effect. Note in A-matrix (.5, 0, .3, .3) that the cross-effect was less biased in the omitted 

variable model. Cross-effect estimates were less biased in the full model in A-matrix (.5, 0., .3, 
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.6) for time-varying effects −0.30 and 0.30. In those A-matrices, XY cross-effect bias was the 

mirror image of the YX results. 

YX Cross-effect XY Cross-effect 

  

  

Figure 12. Relative bias of YX and XY cross-effect estimates in A-matrices with positive cross-
lags for each level of the time-invariant effect (β).  These averages were based on results without 
outliers. The full model matched the data generation model, one predictor omitted one predictor, 
and dynamic omitted all predictors. 
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Positive. Relative bias for positive A-matrix (.5, .45, .3, .6) conditions was near 1, which 

indicated equal bias in the full and omitted variable models. Results varied in A-matrix (.5, .45, 

.3, .3) across conditions. The results from the full to one predictor model comparison indicated 

equal bias if the random intercept was 0.49, though YX was less biased in the omitted variable 

models if the time-varying effect was not −0.05. If the random intercept was 0.10 or 0.17, then 

both cross-effects were equally biased in the full to one predictor comparison. In the full to 

dynamic model comparison, YX was less biased in the dynamic model and XY was less biased 

in the full model. Relative bias averaged over random intercepts and time-varying effects in A-

matrix (.5, .45, .3, .3) were plotted in Figure 12. 

Negative. Aside from A-matrix conditions, simulation conditions had little impact on 

negative A-matrices. The only conditions that produced estimates that were equally biased was if 

the time-invariant effect was −0.05 in the comparison of the full to the one predictor model. 

Otherwise, both estimates were less biased in the full model. All estimates were less biased in the 

full model when compared to the dynamic model. 

Time-invariant predictor. Outliers in time-invariant effects on trait variance affected 

results for negative A-matrix (.5, -.45, -.3, .3) the most. There were many conditions in which the 

time-invariant effect was −0.30 or 0.30 that relative bias indicated less bias in the one predictor 

model, but removal of outliers resulted in relative bias less than 1, results that indicated the full 

model was less biased. As shown in appendix Tables A16 and A17, other A-matrix conditions 

contained results with outliers that influenced relative bias, but removal of outliers reduced the 

degree of bias but did not change the conclusion. 

In all A-matrices, simulation conditions with −0.05 time-invariant effects and 0 time-

invariant correlation was 0 were equally biased in the models. Some other conditions were 
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equally biased, but the exact set of conditions varied by A-matrix type. In many conditions, pairs 

of time-invariant effect and time-invariant correlation determined whether estimates were 

equally biased or not. More specifically, whether conditions were both positive, both negative, or 

opposite in sign determined results in conjunction with A-matrix type.   

Balanced. Regardless of level of simulated time-invariant effect condition, if the time-

invariant correlation was 0, both effects on trait variance estimates were equally biased. In the 

other conditions, one time-invariant effect on trait variance was equally biased and the other was 

less biased in one model. The effect on X trait variance was equal if XY was positive, except in 

A-matrix (.5, .45, -.3, .3), in which the estimate was less biased in the one predictor model. 

Likewise, the effect on Y trait variance was equal if YX was positive. The other estimate was 

less biased in the one predictor model if time-invariant effects and correlation were both negative 

or both positive. If one was positive and the other was negative, the other estimate was less 

biased in the full model. Averages by combination of simulation conditions are listed in Table 6. 

Table 6. Relative bias for time-invariant effects on X and Y trait variance by balanced A-matrix 
and combination of time-invariant correlation (r) and effect (β) simulation conditions 

 (.5, .45, -.3, .6)  (.5, .45, -.3, .3)  All other A 
Simulation 
conditions for 
r / β 

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance 

r = 0         
0 / −0.05 1.00 1.00  1.00 1.00  1.00 1.00 
0 / −0.30 0.99 0.95  1.00 0.98  0.95 1.00 
0 / 0.30 0.99 0.96  1.00 0.98  0.95 1.00 
Opposite sign         

.30 / −0.05 1.02 0.87  1.01 0.95  0.89 1.00 
-.3 / 0.3 1.15 0.53  1.08 0.75  0.57 0.99 
.30 / −0.30 1.16 0.52  1.08 0.75  0.57 0.99 
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 (.5, .45, -.3, .6)  (.5, .45, -.3, .3)  All other A 
Simulation 
conditions for 
r / β 

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance 

Same sign         

-0.3 / −0.05 0.98 1.17  0.99 1.05  1.14 1.00 
-0.3 / -0.3 0.87 5.43  0.93 1.42  7.68 1.01 
.30 / 0.30 0.88 5.78  0.93 1.41  11.54 1.01 

 

One-way. Organized by A-matrix and four combinations of time-invariant simulation 

conditions, averages for relative bias of time-invariant effects on trait variance are listed in Table 

7. If conditions for the time-invariant correlation was 0 or the time-invariant effect was −0.05, 

both effects on trait variance were equally biased except in one-way A-matrix (.5, 0, -.3, .3). In 

that A-matrix, the effect on X trait variance was equally biased and the effect on Y trait variance 

was less biased in the full model. Effect on Y trait variance was also equally biased in the other 

conditions in one-way A-matrix (.5, 0, .3, .6). The remaining results varied by simulation 

conditions related to the combination of time-invariant correlation and effect. If the simulation 

conditions for time-invariant correlation and effect were opposite signs, estimates were less 

biased in the full model. The results were less biased in the one predictor model if the conditions 

were the same sign.  

Table 7. Relative bias for time-invariant effects on X and Y trait variance by one-way A-matrix 
and combination of time-invariant correlation (r) and effect (β) simulation conditions 

 (.5, 0, -.3, .3)  (.5, 0, -.3, .6)  (.5, 0, .3, .3)  (.5, 0, .3, .6) 
Simulation 
conditions 
for r / β 

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance 

r = 0           
0 / −0.05 1.00 0.99  1.00 1.00  1.00 1.00  1.00 1.00 
0 / −0.30 0.96 0.89  0.96 0.98  0.96 0.95  0.97 1.00 
0 / 0.30 0.96 0.89  0.96 0.98  0.96 0.94  0.97 1.00 
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 (.5, 0, -.3, .3)  (.5, 0, -.3, .6)  (.5, 0, .3, .3)  (.5, 0, .3, .6) 
Simulation 
conditions 
for r / β 

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance 

           
Opposite sign           
.30 / −0.05 0.96 0.85  0.96 0.98  0.96 0.93  0.95 1.00 
−.30 / 0.30 0.78 0.48  0.77 0.89  0.79 0.69  0.75 1.02 
.30 / −0.30 0.78 0.48  0.77 0.89  0.79 0.69  0.76 1.02 
Same sign            
−.30 / −0.05 1.04 1.20  1.05 1.02  1.04 1.07  1.05 1.00 
−.30 / −0.30 1.26 9.97  1.28 1.10  1.24 1.51  1.37 0.98 
.30 / 0.30 1.25 8.95  1.29 1.10  1.24 1.52  1.37 0.98 

 

Positive. Positive A-matrix (.5, .45, .3, .6) estimates of effects on trait variance were 

equally biased in all conditions. Results for A-matrix (.5, .45, .3, .3) were similar to one-way A-

matrices. If the time-invariant effect was −0.05 or the time-invariant correlation was 0, both 

estimates were equally biased in the full and one predictor model. For same sign pairs, the effect 

on X trait variance was less biased in the full model with an average of 0.90, and the effect on Y 

trait variance was less biased in the one predictor model with an average of 1.38. For opposite 

sign pairs, the relative bias pattern was reversed. The effect on X trait variance was less biased in 

the one predictor model with an average of 1.19, and the effect on Y trait variance was less 

biased in the full model with an average of 0.73. 

Negative. Average relative bias by the combination of time-invariant simulation 

conditions are listed in Table 8. Only conditions with 0, −0.05 conditions for time-invariant 

correlation (r) and effect (β) respectively were equally biased across the negative A-matrices. 

Estimates were less biased in the full model for the other 0 time-invariant correlation conditions 

and conditions in which pairs of time-invariant correlations and effects were opposite in sign. If 

the pairs were the same sign, the one predictor model was less biased. Note, in the table below in 
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A-matrix (.5, -.45, -.3, .6) that the average bias was -0.96 if the simulation conditions were -.3 

time-invariant correlation and −0.30 time-invariant effect. In this A-matrix, random intercept 

values of 0.10, 0.17, and 0.49 had relative bias of -23.68, 15.72, and 5.08 respectively. Bias 

results showed average bias in the full model was -0.122, -0.136, and -0.158 for the three random 

intercept levels. In the one predictor model, average bias was -0.005, - 0.009, and -0.031 so the 

one predictor model was able to produce less biased estimates of time-invariant effects on trait 

variance in this set of simulation conditions.  

Table 8. Relative bias for time-invariant effects on X and Y trait variance by negative A-matrix 
and combination of time-invariant correlation (r) and effect (β) simulation conditions 

 (.5,-.45, -.3, .3)  (.5, -.45, -.3, .6)  (.5, -.25, -.3, .3)  (.5, -.25, -.3, .6) 
Simulation 
conditions 
for r / β 

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance  

X trait 
variance 

Y trait 
variance 

r = 0           
0 / −0.05 1.00 1.00  0.99 1.00  0.99 0.99  1.00 1.00 
0 / −0.30 0.89 0.90  0.84 0.90  0.83 0.81  0.93 0.94 
0 / 0.30 0.89 0.90  0.83 0.90  0.82 0.81  0.93 0.94 
Opposite sign           
.30 / −0.05 0.91 0.92  0.84 0.92  0.87 0.85  0.91 0.93 
−.30 / 0.30 0.60 0.63  0.43 0.62  0.50 0.46  0.62 0.67 
.30 / −0.30 0.61 0.64  0.44 0.62  0.50 0.47  0.62 0.67 
Same sign          
−.30 / −0.05 1.10 1.09  1.23 1.09  1.15 1.19  1.10 1.08 
−.30 / −0.30 1.77 1.63  -0.96 1.68  2.59 4.29  1.90 1.60 
.30 / 0.30 1.72 1.60  12.31 1.66  2.54 4.17  1.90 1.61 

 

Relative efficiency 

 After relative bias was computed, relative efficiency, a formula that takes into account 

bias and variability, was calculated. Tables with relative efficiency averaged by A-matrix can be 

found in Appendix A, Tables A17 – A21. Efficiency 1.00 ± 0.10 indicates that the full model and 

the omitted variable model were equally efficient. The full model is more efficient if relative 
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efficiency was less than 0.90. Relative efficiency greater than 1.10 signifies that the one 

predictor or dynamic model was more efficient than the full model. 

Auto-effects. With respect to outliers, X auto-effect relative efficiency averaged by A-

matrix went from averages greater than 1 to averages less than 1 or that did not change. In the Y 

auto-effect results, results were much the same as shown in appendix Tables A17 and A18. 

Balanced. In the comparison of the full model to the one predictor model, X auto-effects 

were more efficient in the full model, and Y auto-effects were equally efficient or more efficient 

in the one predictor model for time-invariant effects −0.30 and 0.30. Both estimates were more 

efficient in the one predictor model if the time-invariant effect was −0.05. Relative efficiency 

also changed by level of the random intercept. X auto-effect averages decreased and Y auto-

effect averages increased. In the full to dynamic model comparison with −0.05 time-invariant 

effects, relative efficiency of X auto-effects decreased and Y auto-effects increased as random 

intercept increased. In the remaining simulation conditions, results varied by both A-matrix and 

level of the time-invariant correlation. 

Figure 13 contains relative efficiency plots for X and Y auto-effects in A-matrix (.5, -.45, 

.3, .3), plotted to demonstrate a pattern that was evident in the other balanced A-matrices with a 

negative XY cross-lag condition. In the full to one predictor comparison, the average across 

levels of the time-invariant correlation were close. In the full to dynamic model comparison, the 

0 time-invariant correlation condition relative efficiency results did not change. Increased 

relative efficiency was observed in the X auto-effect if the correlation was −.30 and decreased in 

the Y auto-effect if the correlation was .30. 
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Figure 13. Relative efficiency of X auto-effect estimates for -0.30 time-invariant effects by time-
invariant correlations (r) in A-matrix (.5, -.45, .3, .3) after outliers were removed.  The full model 
matched the data generation model, one predictor omitted one predictor, and dynamic omitted all 
predictors. 

Auto-effect estimates in A-matrices (.5, .45, -.3, .3) and (.5, .45, -.3, .6) produced X auto-

effects that were more efficient in the full model, and Y auto-effects that were equally efficient 

or more efficient in the one predictor model. In the comparison of the full to the dynamic model, 

X auto-effects estimates were still more efficient in the full model and Y auto-effect estimates 

were equally efficient or more efficient in the full model. 

One-way. If the time-invariant effect was −0.30 or 0.30, all X auto-effects in one-way A-

matrices were more efficient in the full model compared to the omitted variable models. In -0.05 

time-varying effect conditions, X auto-effect full model estimates were less efficient than in the 

one predictor model and more efficient in than the dynamic model. This change in direction of 

results was due to absolute bias differences less than .01. Results for Y auto-effects increased as 

the level of random intercept increased but exact efficiency results depended on the YX. If the 

YX condition was positive, Y auto-effects were more efficient in the omitted variable models. 
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Figure 14 shows that in A-matrix (.5, 0, -.3, .3), the omitted variable estimates of the Y auto-

effect were more efficient if the random intercept was greater than 0.10. In A-matrix (.5, 0, -.3, 

.6), Y auto-effect estimates were more efficient in the full model if the random intercept was less 

than 0.49.  

  

Figure 14. Relative efficiency of Y auto-effect estimates for -0.05 and 0.30 time-invariant effects 
by random intercept (ξ) after outliers were removed from A-matrices (.5,0, -.3, .3) and (.5, 0, -.3, 
.6).  Results for −0.30 time-invariant effects were identical to those shown for 0.30. The full 
model matched the data generation model, one predictor omitted one predictor, and dynamic 
omitted all predictors. 

Positive. The common pattern to auto-effect estimates in positive A-matrices was the role 

of random intercepts. As shown in Figure 15, A-matrix (.5, .45, .3, .3) Y auto-effect estimates 

were more efficient in the omitted variable models. The X auto-effect conditions were more 

efficient in the one predictor model if the time-varying effect was −0.05. All other X auto-effect 

estimates were equally efficient or more efficient in the full model. Y auto-effects were more 

efficient in the full model in A-matrix (.5, .45, .3, .6) if the random intercept was 0.10 or 0.17. If 

the random intercept was 0.49, estimates were more efficient in the omitted variable models. 

Similar to the other A-matrix, small time-invariant effect conditions (−0.05) were more efficient 
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in the one predictor model. The remaining one predictor comparison and all dynamic model 

comparison produced X auto-effects that were more efficient in the full model.  

  

Figure 15. Relative efficiency of Y auto-effect estimates in A-matrices with positive cross-lags 
without outliers.  The full model matched the data generation model, one predictor omitted one 
predictor, and dynamic omitted all predictors. 

Negative. All four A-matrices produced outliers in the relative efficiency results. A-

matrix (.5, -.25, -.3, .6) auto-effects exceeded 900 in the comparison of the full model to the one 

predictor model. Relative efficiency exceeded 13,000 in the full model to dynamic model 

comparison. The only consistent set of results were found in A-matrix (.5, -.25, -.3, .6) in which 

all estimates were less biased in the full model, except for the −0.05 time-varying effect 

condition in which the X auto-effect was less biased in the one predictor model.  

A-matrix (.5, -.45, -.3, .3) conditions produced estimates in the full to one predictor 

comparison in which one or both estimates were more efficient in the one predictor model. 

Dynamic model estimates were both more efficient than the full model estimates if the time-

invariant effect was −0.05 or the time-invariant correlation and effect were both 0.30 or both 

−0.30. In the remaining full to dynamic model comparison, one estimate was more efficient in 
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the dynamic model and the other estimate was equally efficient or more efficient in the full 

model.  

In the other two negative A-matrices, (.5, -.45, -.3, .6) and (.5, -.25, -.3, .3), 0.10 and 0.17 

random intercept conditions with time-invariant effects of −0.30 and 0.30 were equally efficient 

or more efficient in the full model. The 0.49 random intercept conditions with −0.30 and 0.30 

time-invariant effects produced Y auto-effects that more efficient in the omitted variable models. 

X auto-effects were equally efficient or more efficient in the full model. In the −0.05 time-

invariant effect conditions, which are the focus of the rest of this paragraph, all X auto-effects 

were more efficient in the one predictor model. Y auto-effects were equally or more efficient in 

the full model if the random intercept was 0.10 and more efficient in the one predictor model if 

the random intercept was 0.17 or 0.49. All results in the full to dynamic model comparisons were 

more efficient in the full model except for the Y auto-effect in the 0.49 random intercept 

conditions. 

Cross-effects. Relative efficiency results for cross-effects were organized by type of A-

matrix in this section. 

Balanced. In the comparison of the full model to the omitted variable models time-

invariant effects −0.30 and 0.30, all X auto-effect estimates were more efficient in the full model. 

Y auto-effects were also more efficient full model except for the 0.49 random intercept condition 

for A-matrices (.5, -.45, .3, .3) and (.5, -.25, .3, .3). In those conditions, the Y auto-effect was 

more equally efficient or more efficient in the omitted variable models. Figure 16 shows, by 

example, the difference by level of random intercept that was observed in A-matrix (.5, -.45, .3, 

.3) but not in A-matrix (.5, -.45, .3, .6). 
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Figure 16. Relative efficiency of XY cross-effect estimates in A-matrices (.5, -.45, .3, .3) and (.5, 
-.45, .3, .6) without outliers by level of random intercept.  The full model matched the data 
generation model, one predictor omitted one predictor, and dynamic omitted all predictors. 

All that was described in the paragraph above applied to conditions with −0.05 time-

invariant effect conditions in A-matrices where the XY condition was positive. In the two A-

matrices where XY was negative, A-matrices (.5, .45, -.3, .3) and (.5, .45, -.3, .3), the X auto-

effect was equally or less biased in the one predictor model and the Y auto-effect was less biased 

in the full model. Both estimates were less biased in the full to dynamic model comparison. 

One-way. A-matrix (.5, 0, .3, .3) contained an YX outlier that exceeded 1000 for relative 

efficiency. After removal, estimation of all A-matrices produced estimates that on average were 

equally efficient or more efficient in the full model when compared to the dynamic model, as 

shown in appendix Tables A19 and A20. If the time-invariant effect was −0.30 or 0.30, the full 

model was equally or more efficient than the one predictor model. In most conditions, if the 

time-invariant effect was −0.05, one cross-effect was more efficient in the full model and other 

was more efficient in the one predictor model.  
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Positive. In A-matrix (.5, .45, .3, .3), the omitted variable models were more efficient 

across conditions. Even though all conditions were more efficient in the omitted variable models, 

if the time-invariant effect and correlation pairs were (−0.30, .30) or (0.30, −.30), respectively, 

relative efficiency of YX estimates ranged from 1.03 to 1.18 in the full to dynamic model 

comparison. The range for the other conditions was 1.63 to 3.35. In A-matrix (.5, .45, .3, .6), YX 

estimates were more efficient in the full model and XY were more efficient in the omitted 

variable models. Only in −0.05 time-invariant effect conditions were one predictor estimates for 

both cross-effects more efficient than estimates in the full model.  

Negative. Outliers in the thousands distorted the results for negative A-matrices. After the 

removal of outliers, results within A-matrices were consistent for time-varying effects −0.30 and 

0.30. In A-matrix (.5, -.45, -.3, .3), all cross-effects in the full to one predictor models were more 

efficient in the one predictor model. In the other A-matrices, one cross-effect was more efficient 

in the full model and the other cross-effect was more efficient in the one predictor model. In the 

full to dynamic model comparisons, most conditions produced the same pairs where each model 

is more efficient for one of the cross-effects.  

Cross-effect estimates for the −0.05 time-invariant effects conditions were more efficient 

in the one predictor model across all 4 A-matrices. Full to dynamic model comparisons produced 

pairs of more and less efficient cross-effects. Only in A-matrix (.45, -.45, -.3, .3) conditions with 

0.10 and 0.17 random intercepts were both estimates more efficient in the dynamic model.  

Time-invariant effects on trait variance. Relative bias results varied by the 

combination of time-invariant correlations and effects, but aside from a single one-way A-

matrix, which is discussed in more detail below, relative efficiency results were more uniform 

across simulation conditions. Because results were more uniform than those observed for relative 
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bias, the averages presented in appendix Table A21 provide sufficient information in the 

balanced, one-way, and positive A-matrices. Results separated by level of time-invariant 

correlation and effect are provided for negative A-matrices. 

Balanced. In all conditions for the balanced A-matrices, estimates of the effect on trait 

variance were more efficient in the one predictor model. As shown in appendix Table A21, 

outliers produced the same results but with larger relative efficiency. Inspection of results 

indicated that the difference was due to differences between the full and one predictor estimates 

in the thousandth decimal place or less.  

One-way. The average relative efficiency for one-way A-matrices in appendix Table A21 

is representative of the results in all one-way A-matrices except in A-matrix (.5, 0, -.3, .3). A-

matrix (.5, 0, -.3, .3) estimates for the effect on X trait variance were more efficient in the one 

predictor model and results did not vary by simulation condition. Relative efficiency for the 

effects on Y trait variance varied by level of the time-invariant effect or both the time-invariant 

effect and correlation. Differences were also observed by level of the random intercept. As 

shown in Table 9, relative efficiency decreased as random intercept increased. Conditions with 

−0.05 relative efficiency produced the largest relative efficiency, followed by the group of 

conditions in which the time-invariant correlation was −.30, the time-invariant effect was −0.30, 

or both were −0.30. If both time-invariant correlations and effects were positive, relative 

efficiency was even smaller with averages near 1 but decreasing still across levels of the random 

intercept. 
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Table 9. Relative efficiency of time-invariant effects on Y trait variance by time-invariant 
correlation (r) and effect (β) across levels of the random intercept for one-way A-matrix (.5, 0. -
.3, .3) 

  Random intercept 
r β 0.1 0.17 0.49 
β = −0.05     

0 −0.05 1.58 1.47 1.08 
−0.30 −0.05 1.61 1.40 1.09 

0.30 −0.05 1.60 1.42 1.13 
r = -.3 and/or β = −0.30     

0 −0.30 1.12 1.01 0.86 
−0.30 −0.30 1.09 1.00 0.92 

0.30 −0.30 1.10 1.07 0.92 
−0.30 0.30 1.12 1.07 0.90 

Positive conditions     

0 0.30 1.03 1.00 0.90 
0.30 0.30 1.04 1.05 0.95 

 

For those other three A-matrices, outliers only affected A-matrix (.5, 0, .3, .3). More 

specifically, there was one condition with very large efficiency values in the full model, 0.49 

random intercept, 0 time-invariant correlation, and -0.3 time-invariant effect. Removal of outliers 

reduced that condition’s efficiency to 0.10 and the overall average relative efficiency to 4.19. 

Positive. Time-invariant effects on trait variance for A-matrix (.5, .45, .3, .3) results were 

more efficient in the full model. Average relative efficiency for the effect on X trait variance was 

0.11 with outliers and 0.46 without outliers. The relative efficiency for the effect on Y trait 

variance was 0.08 and 0.27 for with and without outliers, respectively. Outliers did not change 

the results, just the degree. In A-matrix (.5, .45, .3, .6), outliers did not change average relative 

efficiency at all. Effects on trait variance were more efficient in the one predictor model with 

averages of 1.99 and 7.24 for X and Y trait variance respectively. Results did not vary by 

individual conditions in the positive A-matrices. 
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 Negative. Results by simulation conditions and A-matrices are listed in Table 10. 

Relative efficiency results were largest in A-matrix if the time-varying effect condition was 

−0.05. The direction of relative efficiency results did not change for the other levels of the time-

invariant effect, but results were smaller.  

Table 10. Relative efficiency of time-invariant effects on X and Y trait variance by time-invariant 
correlation (r) and effect (β) for negative A-matrices 

 (.5, -.45, -.3, .3)  (.5, -.45, -.3, .6)  (.5, -.25, -.3, .3)  (.5, -.25, -.3, .6) 
r / β TI on X TI on Y  TI on X TI on Y  TI on X TI on Y  TI on X TI on Y 
Time-invariant β = −0.05          
0 / −0.05 0.28 0.33  0.37 3.17  1.33 0.71  1.95 9.80 
.30 / −0.05 0.28 0.34  0.38 3.20  1.34 0.70  2.00 9.70 
-0.3 / −0.05 0.28 0.33  0.38 3.19  1.33 0.70  1.99 9.64 
Time-invariant β is −0.30 or 0.30          
0 / −0.30 0.23 0.28  0.29 2.12  0.94 0.48  1.67 7.81 
0 / 0.30 0.24 0.28  0.29 2.20  0.92 0.48  1.67 7.99 
-.3 / 0.3 0.24 0.29  0.29 2.15  0.97 0.50  1.70 7.66 
.30 / −0.30 0.24 0.29  0.30 2.20  0.95 0.49  1.66 7.57 
-0.3 / -0.3 0.24 0.29  0.29 2.19  0.98 0.50  1.66 7.72 
.30 / 0.30 0.23 0.28  0.31 2.15  0.95 0.49  1.66 7.88 

 

Discussion 

Bias was inspected first and described for each type of A-matrix. Hypotheses were based 

on the expectation that in many cases omitted variable variance would act like measurement 

error in the model. In most cases, the bias that was present in the model was not in the direction 

that was expected. Size of the auto-regressive condition in data generation influenced results for 

auto-effects, cross-effects, and time-invariant effects on trait variance. Bias results in turn 

influenced relative bias and efficiency estimates. To obtain a clearer picture as to which 

conditions produced estimates robust to the omitted time-invariant variable, results were 

summarized by type of A-matrix.  
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As bias results that were averaged across A-matrices show, estimates changed very little 

as predictors were omitted from models in the balanced A-matrices. If results did change, it 

occurred primarily in the small auto-regressive (0.3) conditions. Differences in auto-effect and 

cross-effect estimates  occurred in the one-hundredth decimal place or smaller, an amount that 

would make little difference to the substantive researcher. The time-invariant effects were the 

most biased in the full and one predictor models, but approximately equal when compared for 

relative bias and efficiency. One or both of the estimates appeared to be less biased and more 

efficient in the one predictor model, but often the differences were in the thousandth decimal 

place or smaller. Overall, estimates from balanced A-matrices are not robust from the 

perspective of equal bias and equal efficiency but equally biased if size of bias is taken into 

account. 

One-way A-matrix estimates were more biased than those obtained from balanced A-

matrix conditions and bias changed to a greater degree across models. Differences in estimates 

were smaller if the auto-regressive condition was larger (0.6). Only in conditions with small 

time-invariant effects (−0.05) were auto- and cross-effects in the one predictor model robust to 

the omitted variable. Time-invariant effects, in conditions where either the time-varying effect 

was small or the predictors were not correlated, were the only other conditions in which 

estimates were robust to the omission. For conditions where the time-invariant effect was large 

enough to be of interest to substantive researchers, auto- and cross-effects are not robust to 

omitting a variable. The estimate of the other time-invariant predictor is not affected if the two 

predictors are uncorrelated. One-way A-matrices are not robust to omitted variable variance. 

Looking at the average bias for the positive A-matrices, auto-effect, cross-effect, and 

time-invariant estimates were in many cases equally biased across models or less biased in the 



69 
 

omitted variable models. Relative efficiency results were mixed. A-matrix (.5, .45, .3, .3) 

produced auto- and cross-effect estimates that were more likely to be equally efficient or more 

efficient in the omitted variable models. A-matrix (.5, .45, .3, .6) produced more efficient time-

invariant estimates in the one predictor model. If equal bias paired with equal efficiency or more 

efficiency in the omitted variable model are considered robust, then some positive A-matrix 

estimates could be considered robust to omitted variables. 

Estimates for negative A-matrices varied the most across conditions with bias increasing 

across all estimates. Auto-effects and cross-effects were not robust to omitted variable variance 

except in the one predictor model with near zero time-invariant estimates. Effects on trait 

variance were less biased and more efficient in only one negative A-matrix in a small subset of 

conditions of equal strength in effect and correlation with the omitted predictor. Overall, 

negative A-matrix estimates were not robust to the omitted variable variance. 

Only balanced A-matrices estimates were robust to omitted variable variance. The other 

A-matrix types produced one or two estimates that could be considered robust to the omitted 

variable with the positive A-matrices performing the next best. While the balanced A-matrices 

have cross-effects that stabilize each other, the extra variance from the omitted variable provided 

stability that was missing in the positive A-matrices. This extra variance could have suppressed 

the process that would potentially explode with two positive cross-effects, making its estimates 

more like a balanced A-matrix. If the variance was acting like negative variance, then that would 

explain why negative A-matrices were not robust to the omitted variable variance. That extra 

variance only served to suppress the negative system dynamics further. Dynamics in one-way A-

matrices did not benefit from the omitted variable variance, possibly due to cross-effect variance 

only traveling one direction but not back.  
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Even though the dynamic process was not robust to omitted variable variance in one-way 

and negative A-matrices, some conditions produced better time-invariant estimates after the 

variable was dropped from the model.  

 

  



71 
 

Chapter 4: Simulation 2 Results 

Simulation 2 also tested the EDM under two missing variable scenarios but with the 

added condition of correlation between the time-varying predictor and trait variance. The three 

levels of correlation were no correlation (r = 0), a negative correlation (r = −.10), or a positive 

correlation (r = .10). The time-varying predictor was omitted from the first model while retaining 

a time-invariant predictor. The second model omitted both time-varying and time-invariant 

predictors from the estimation model. Before evaluating relative bias and relative efficiency, 

information is provided about data generation and model convergence. Because results were 

similar in many conditions, relative bias and efficiency results are presented together within each 

section. 

Data generation and model convergence 

A total of 1,296,000 data sets were generated for Simulation 2 with 1000 replications for 

each of the 1,296 conditions. As shown in appendix Table B1, simulated data based on the model 

with no correlation between the time-varying predictor and the random intercept produced fewer 

warnings in the data generation process as compared to the models with a positive or negative 

correlation between those parameters. The types of warnings Mplus reported in the data 

generation process indicated a non-positive definite psi matrix due to one of the random 

intercepts. If that correlation was negative or positive, model warnings were also generated for 

linear dependency between one of the time-varying predictors and another parameter in the 

model. More warnings were also generated if the correlation was not zero with the positive A-

matrices producing the most warnings. No replications were removed due to the warnings in the 

data generation process.  
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After data generation, the EDM was estimated first with the time-varying and time-

invariant predictor. This model is referred to as the full model. The second estimated model 

omitted the time-varying predictor but retained the time-invariant predictor; it is referred to as 

the one predictor model. The third model omitted both predictors and is referred to as the 

dynamic model. A total of 3,888,000 models were estimated. Eighteen models did not converge 

due to estimates that were outside of boundary conditions, and 10,424 (0.27%) converged with a 

warning about not finding a minimum. The remaining models (99.72%) converged without 

warning with status 0, which means the optimization process was successful (Neale et al., 2016). 

Counts of non-converging models by A-matrix are listed in Table A3. Only models that 

converged without warning were retained in the analysis. 

Bias 

Bias of auto-effects, cross-effects, and the time-invariant predictor was inspected by level 

of the random intercept across the full, one predictor, and dynamic models. Auto-effects were 

expected to be under-estimated, and cross-effects were hypothesized to be minimally biased if 

the simulation cross-lag was negative and over-estimated otherwise. Time-invariant effects were 

expected to be biased unless the time-invariant predictor was orthogonal to the time-varying 

predictor. Lastly, if the time-varying predictor was correlated with trait variance and the 

simulation cross-lag was negative, less bias was expected in the auto- and cross-effects. 

Appendix Tables B6 – B12 contain average bias by level of the random intercept correlation and 

A-matrix across the models. 

As shown in appendix Tables B6 and B7, on average, all auto-effects were over-

estimated each of the three models, making the estimates appear stronger than their true value. 

The only A-matrix that was under-estimated as negative A-matrix (.5, -.45, -.3, .6) in both 0 and 
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−.10 random intercept correlation conditions and over-estimated by the same amount in the .10 

condition. In balanced A-matrices, the X auto-effect was equally biased across the levels of 

random intercept correlation, but that was only true for Y auto-effects in two A-matrices, the two 

with the large, positive XY simulation condition (.45). In one-way and negative A-matrices, bias 

of dynamic model estimates were unchanged or decreased as compared to the full model if the 

auto-regressive simulation condition was large (.6). Auto-effect estimates in positive A-matrix 

(.5, .45, .3, .3) were equally or less biased the least in the positive random intercept correlation 

conditions (.1) in both omitted variable models. The other positive A-matrix (.5, .45, .3, .6) auto-

effect estimates were under-estimated in the one predictor model as compared to the full model, 

but only in the 0 random intercept correlation condition. For the remaining A-matrices 

conditions, bias increased in one of both of the auto-effect estimates as predictors were omitted. 

The direction and amount of bias was most influenced by type of A-matrix, the pair of 

cross-lag conditions rather than by a single cross-lag alone. Average bias for cross-effects is 

listed in appendix Tables B8 and B9.  Size of the auto-regressive condition also influenced the 

results. In most cases, large auto-regressive conditions (.6) produced less bias than the small 

auto-regressive conditions (.3) in balanced, one-way, and positive A-matrices. In the 0 and −.10 

random intercept correlation conditions, bias appeared to be equal or decrease in the same A-

matrices. More balanced and one-way A-matrix conditions had bias that did not change or 

decreased in .10 random intercept correlation conditions. Bias in positive A-matrix (.5, .45, .3, 

.6) was less in the one predictor and dynamic models than in the full model if the random 

intercept correlation was not zero. Conditions with a correlation between the time-varying effect 

and the random intercept, particularly a positive correlation, did reduce bias in cross-effect 

estimates. 
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Time-invariant effects were negatively biased, attenuated, in the one predictor model 

except in some balanced A-matrices if the random intercept correlation was −.10. Average bias 

in those conditions was near zero with small auto-regressive conditions positively biased and 

large auto-regressive conditions unbiased or negatively biased. Across all levels of random 

intercept correlations, time-invariant effects changed little or not at all when the full and one 

predictor estimates were compared. The most change was observed in the 0 random intercept 

correlation condition. Level of the random intercept correlation did affect results, as 

hypothesized. Appendix Tables B10 and B11 contain average bias by A-matrix for the time-

invariant effects.   

Effects of omitted variables 

 Relative bias and relative efficiency results were organized auto-effects, cross-effects, 

and time-invariant effects by A-matrix type in the sections below. In many cases, within those 

categories, differences were observed across the different levels of random intercept correlation 

with the time-varying effect. If results were equally biased or equally efficient those were 

highlighted first followed by differences based on simulation conditions. Each type of estimate 

was examined in pairs, and a recurring pattern was one estimate that favored the full model and 

the other estimate favored the omitted variable model. In some cases, one of the two estimates 

was equally biased or equally efficient.  

The same criteria of auto-effect values < -4.0 was used to flag a set of estimates for 

removal. If the auto-effect in the full model estimation was flagged as an outlier, all full model 

estimates were removed. Estimates for the one predictor model were examined separately as 

were the estimates for the dynamic model. The same criteria of < -4.0 was used for each model. 

Fewer model estimates were considered outliers in this simulation compared to simulation 1 
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estimates, as evident if the model percentages of appendix Tables A4 and B4 are compared. 

Because there were fewer outliers in the results for simulation 2, outliers are addressed for each 

estimate type but not revisited as each A-matrix type results were presented. 

Auto-effect estimates 

The relative bias of auto-effects depended on the type of A-matrix, whether the 

combination of auto- and cross-effects were relatively equal in size or stronger auto-effects are 

paired with equally strong or weaker auto-effects, and some combination of the other categories 

of simulation conditions. If the omitted variable model was less biased than the full model for 

one auto-effect, in many cases the other auto-effect was less biased in the full model or both 

models were equally biased. Lastly, combinations of simulation conditions influenced results 

with more interactions noted in the comparison of the full model to the dynamic model.  

In many cases, relative efficiency results differed little from the relative bias results. Due 

to more similarities than not, results for relative bias and relative efficiency are presented 

together in the sections below. If there were differences, those results are discussed. Similar to 

simulation 1, auto-effect results were presented first, cross-effects second, and time-varying 

effects on trait variance last. Appendix Tables B12 and B13 lists auto-effect relative bias 

averaged by A-matrix. Relative efficiency results for auto-effects, also averaged by A-matrix, are 

provided in appendix Tables B17 and B18. 

Outliers. Outliers influenced relative bias and relative efficiency the most in the random 

intercept correlation .10 condition. At minimum, every A-matrix had at least a few relative bias 

and/or efficiency estimates that were extremely large in comparison to the other results. In all but 

types but balanced A-matrices, some combinations of time-invariant correlation and time-
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varying effect conditions produced outlier estimates, but none of the patterns were the same 

across the different types of A-matrices.  

 The negative random intercept correlation (−.10) simulation condition appeared to 

stabilize models as fewer results were impacted by outliers. If there were more than just a few 

results that were affected by outliers, a pattern was discernable. A-matrix (.5, -.25, -.3, .3) was 

affected by 0.10 random intercept conditions, and A-matrix (.5, -.25, .3, .3) was affected by 0.49 

random intercept conditions. In three other A-matrices, time-invariant correlation and time-

varying effect combinations affected bias results but the exact combination was unique to the A-

matrix. 

 If the random intercept correlation was 0, most of the outliers identified in the auto-effect 

were predicted by a negative cross-effect, so both negative and balanced A-matrices were 

affected. Very few conditions in the positive or one-way A-matrices were impacted by outliers. 

 Balanced 

Relative bias. The only conditions that were equally biased in the balanced A-matrix 

conditions were those with −0.05 time-varying effects, and not all results in that condition were 

equally biased. Across many balanced A-matrices conditions in full versus one predictor 

comparison, relative bias results were pairs of more and less biased auto-effect estimates. If the 

cross-lag simulation condition was negative, then the corresponding auto-effect was less biased 

in the one predictor model. If the cross-lag was positive, then the corresponding auto-effect was 

less biased in the full model. The last observed pattern was related to the combination of time-

invariant correlations and time-varying effects. In full to dynamic model comparisons and −.10, 

.10 random intercept correlation conditions, there were cases in which both estimates were less 
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biased in the full model or both were less biased in the omitted variable model. The following 

paragraphs present results related to each major pattern. 

Within the 0 random intercept correlation conditions, relative bias results were the most 

consistent. In the −0.05 time-varying effect conditions, auto-effects with a positive cross-lag 

condition were less biased in the full model with estimates close to 1. Negative cross-lag 

conditions produced auto-effects that were less biased in the one predictor model and, in some 

conditions, in the dynamic model as well. The dynamic model estimates that did not follow the 

pattern were those with time-invariant correlation and time-varying effect pairs that were both 

−0.30 or 0.30. In this set of conditions, both estimates were less biased in the full model. 

Averages for A-matrix (.5, -.25, .3, .6) are presented in Table 11 as an example of the relative 

bias patterns. 

Table 11. Auto-effect relative bias for A-matrix (.5, -.25, .3, .6) in the 0 random intercept 
correlation conditions across levels of the time-invariant correlation (r) and time-varying effect 
(β) 

  X  Y 

r β 
Full / 

One Predictor 
Full / 

Dynamic  
Full / 

One Predictor 
Full / 

Dynamic 
.00 −0.05 1.00 0.85  0.98 0.94 

−.30 −0.05 1.00 0.80  0.98 0.95 
.30 −0.05 1.02 0.91  0.97 0.91 
.00 −0.30 1.24 1.05  0.82 0.70 
.00 0.30 1.25 1.04  0.81 0.69 
.30 −0.30 2.18 2.98  0.73 0.71 

−.30 0.30 2.41 3.39  0.71 0.70 
−.30 −0.30 2.45 0.79  0.71 0.67 

.30 0.30 2.17 0.79  0.71 0.67 
 

A-matrix (.5, .45, -.3, .3) was the exception in the 0 random intercept correlation 

conditions. If the random intercept was 0.17 or 0.49 and the time-varying effect was −0.30 or 
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0.30, both estimates were less biased in the one predictor model. Inspection of bias showed that 

bias differed by less than 0.01 in those conditions. So, in those cases the one predictor model was 

less biased, but not at a level that would be noticeable to the substantive researcher.  

In the −.10 random intercept correlation conditions, estimates for −0.30 time-varying 

effect conditions were pairs in which one auto-effect was less biased in the full model and the 

other auto-effect was less biased in the omitted variable models. If the time-varying effect was 

0.30, the same pairs of more and less biased estimates were observed, but in conditions with −.30 

time-invariant correlation, one of the two auto-effects was equally biased. For −0.05 time-

varying effects with 0 or .30 time-invariant correlation, one or both auto-effect estimates were 

equally biased, but results were mixed in the −.30 time-invariant correlation conditions. 

Results for the −.10 random intercept correlation conditions did not follow any 

discernible pattern, and no conditions produced equally biased auto-effect estimates. The 

direction of bias was consistent across the two model comparisons.   

Relative efficiency. Results were most consistent in the 0 random intercept correlation by 

A-matrix and level of the time-varying effect. A-matrices (.5, -.25, .3, .6) and (.5, .45, -.3, .3) 

estimates were pairs of more and less efficient estimates if the time-varying effects were −0.30 or 

0.30. Estimates for the other A-matrices were equally efficient or more efficient in the full 

model. In the −0.05 time-varying effect conditions, most estimates were equally efficient in the 

full to one predictor comparison. In the full to dynamic model comparison, one auto-effect 

estimate was equally efficient and the other auto-effect was equally efficient or more efficient in 

the full model. 

If the random intercept correlation was −.10 or .10, relative efficiency results were 

similar across the two model comparisons, full to one predictor and full to dynamic. In −0.30 
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time-varying effect conditions, one estimate was more efficient in the full model and the other 

was more efficient in the omitted variable model except in A-matrix (.5, -.25, .3, .6) with small 

random intercepts (0.10), where both estimates were more efficient in the omitted variable 

model. In 0.30 time-varying effect conditions with negative cross-lags, the auto-effect was more 

efficient in the omitted variable models. The other auto-effect estimates were also more efficient 

in the omitted variable models if the random intercept was 0.10. The remaining auto-effect 

results were did not follow any observable pattern.  

 One-way 

Relative bias. Like the relative bias results for balanced matrices, three one-way A-

matrices produced auto-effect pairs in which one estimate was less biased in the full model and 

the other less biased in the omitted variable model in the full to one predictor comparison. What 

differed was whether the X auto-effect was less or more biased in the full model. In the balanced 

A-matrices, the sign of the cross-lag simulation condition determined the direction of relative 

bias for the auto-effect.  In one-way A-matrices, the XY cross-lag condition was 0 but it acted 

like a positive cross-lag if the other cross-lag condition was negative. Conversely, if the other 

cross-lag condition was positive, 0 cross-lag produced estimates as if the cross-lag were 

negative. For example, relative bias for two A-matrices across 9 conditions is shown in Table 12. 

The results for these two A-matrices with 0.30 time-varying effects were very similar.  

Table 12. Relative bias of auto-effects estimates for two one-way A-matrices in simulation 
condition of no random intercept correlation and time-varying effect of −0.30 for the full to one 
predictor comparison 

Conditions  (.5, 0, -.3, .6)  (.5, 0, .3, .6) 
ξ r  X Y  X Y 
0.10 .00  0.59 -2.48  1.09 0.70 
0.10 −.30  0.47 -1.57  1.33 0.66 
0.10 .30  0.47 -1.17  1.32 0.64 
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Conditions  (.5, 0, -.3, .6)  (.5, 0, .3, .6) 
ξ r  X Y  X Y 
0.17 .00  0.57 1.63  1.19 0.72 
0.17 −.30  0.46 5.43  1.31 0.65 
0.17 .30  0.47 4.56  1.40 0.64 
0.49 .00  0.57 1.01  1.09 0.74 
0.49 −.30  0.47 1.17  1.30 0.72 
0.49 .30  0.46 1.10  1.31 0.70 

 

If the random intercept condition was 0.10 or 0.17, A-matrix (.5, 0, -.3, .3) results were 

similar to those seen above in Table 11. If the random intercept was 0.49, the full model was less 

biased than the one predictor model. In the final one-way A-matrix (.5, 0, .3, .3), estimates were 

less biased in the full model than in the one predictor for ±0.30 time-varying effects. If the time-

varying effect was −0.05, the models were equally biased in that same model comparison. 

Comparison of the full to dynamic model produced estimates that were less biased in the full 

model across all one-way A-matrices and levels of the time-varying effect. 

 Of note in Table 12 were differences in the Y auto-effect results in A-matrix (.5, 0, -.3, 

.6) with respect to random intercept conditions. Aside from time-varying effect of  ±0.30, 

random intercept conditions had minimal effects if the random intercept correlation was 0 but 

more of an effect if that random intercept correlation was −.10 or .10. Like the effects of random 

intercepts on relative bias for balanced A-matrices, the effects were primarily evident in 

combination with other simulation conditions. Relative bias estimates that were less biased in the 

one predictor model for the smaller random intercept conditions and closer to 1, which indicated 

equal bias or less bias in the full model, in the large random intercept condition. A similar pattern 

was seen full to dynamic model comparison. 
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 Combinations of negative cross-lags, negative random intercept correlation, and negative 

time-invariant correlation produced one auto-effect that was less biased in the omitted variable 

model with the other auto-effect equally or less biased in the full model. The results were less 

biased in the full model if the time-invariant correlation was 0 or .30. For those same negative 

cross-lag A-matrices, a combination of positive random intercept correlation and 0 or -.3 time-

invariant correlation produced estimates less biased in the full model; a negative correlation 

produced pairs of bias estimates.  

 Time-varying effects of −0.05 were equally biased or less biased in the full model as 

compared to either omitted variable model as long as the random intercept correlation was 0 or 

˗.1. The one exception was in A-matrix (.5, 0, .3, .3) under the following conditions in which one 

auto-effect was less biased in the one predictor model: random intercept correlation ˗.1 and time-

invariant correlation 0. For random intercept correlation of .1, both auto-effects were less biased 

in the omitted variable model, or one was less biased and the other was equally biased. In A-

matrix (.5, 0, .3, .6) with time-invariant correlation of .3, the auto-effects estimates were equally 

biased for both model comparisons. 

Relative efficiency. If the random intercept correlation was 0 and time-varying effects 

were ±0.30, either both estimates were more efficient in the full model or one auto-effect 

estimate was more efficient in the full model and the other auto-effect was equally efficient. For 

the conditions with time-varying effect −0.05, the conditions were equally efficient in the full to 

one predictor comparison but more efficient in the full model when compared to the dynamic 

model.  

The patterns observed for relative efficiency if the random intercept correlation was −.1 

was similar to that seen in relative bias, but there were some differences. The patterns described 
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above were the same for A-matrix (.5, 0, .3, .6). However, A-matrix (.5, 0, .3, .3) estimates that 

were less biased in the omitted variable models were now equally efficient in one estimate and 

the other estimate was more efficient in the omitted variable models. In the remaining conditions 

where the random intercept correlation was −.1 or .1, simulation conditions that produced pairs 

of bias with one estimate less biased in the full model and the other less biased in the omitted 

variable model had a slightly different effect on efficiency. The efficiency estimates were pairs 

of equally efficient estimate paired with an estimate more efficient in the one predictor model. 

The full to dynamic model comparisons for the remaining condition were primarily more 

efficient in the full model.  

Relative efficiency for −0.05 time-varying effect depended on the sign of the random 

intercept correlation. If the correlation was -.10 and cross-lag condition was positive, one auto-

effect was more efficient in the full model while the other was more efficient in the omitted 

variable model. Negative cross-lag conditions for one-way A-matrix estimates were more 

efficient in the full model. For those same negative cross-lag conditions with .10 random 

intercept correlation, one auto-effect estimate was equally efficient and the other was more 

efficient in the omitted variable model. For the two A-matrices with positive cross-lags, both 

auto-effect estimates were more efficient in the omitted variable model.  

Positive 

Relative bias. The negative time-varying effect (β = −0.30) produced estimates for A-

matrix (.5, .45, .3, .3) that were less biased in the full model. For that same matrix with a -0.05 

time-varying effect, the estimates were equally biased or X auto-effect was less biased in the full 

model and Y was equally biased. Results differed across levels of random intercept correlation in 

the condition for a positive time-varying effect (β = 0.30). For zero correlation, estimates were 
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less biased in the full model. If the correlation was −.10 or .10 and the time-invariant correlation 

was 0.30, estimates were less biased in the omitted variable models. Otherwise, the estimates 

were equally biased or less biased in the full model. 

In the positive A-matrix with a large auto-effect (.5, .45, .3, .6), in conditions with ±0.30 

time-varying effect, most of the estimates were less biased in the omitted variable models. Where 

the time-varying effect and time-invariant correlation were equal in size but opposite in sign, one 

estimate was less biased in the full model and equally or less biased in the omitted variable 

model. The pattern of pairs where each estimate is less biased in one type of model (full or 

omitted variable) but not the other was observed for all conditions with time-varying effect 

−0.05. 

Relative efficiency. Results averaged across time-invariant correlations and random 

intercepts for each A-matrix are listed in Table 13. Most notable, relative efficiency differed by 

level of random intercept correlation conditions. If the random intercept correlation was 0, 

estimates were more efficient in the full model if the time-varying effect was ± 0.30 and equally 

efficient if the time-varying effect was −0.05. For −.10 random intercept correlation conditions 

in A-matrix (.45, .45, .3, .3), estimates were equally efficient or more efficient in the full mode 

for −0.30 time-varying effects. For the 0.30 time-varying effect, estimates were equally efficient 

or more efficient in the omitted variable model. Only −0.05 time-varying effect conditions were 

both estimates equally efficient. For that same A-matrix in .10 random intercept correlation 

condition, one or both estimates were more efficient in the omitted variable models unless the 

time-varying effect was −0.05, in which case one estimate was equally efficient and the other 

estimate was more efficient in the full model. 
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Table 13. Relative efficiency for positive A-matrices by level of time-varying effect and random 
intercept correlation 

  (.5, .45, .3, .3)  (.5, .45, .3, .6) 
Time-
varying β 

Random 
intercept r 

Full /One 
predictor 

Full / 
Dynamic  

Full /One 
predictor 

Full / 
Dynamic 

X       

−0.05 r = 0 0.99 1.04  0.94 0.92 
−0.05 r = −.10 0.97 0.97  1.19 1.17 
−0.05 r = .10 0.83 0.83  0.82 0.83 
−0.30 r = 0 0.75 0.75  0.61 0.55 
−0.30 r = −.10 0.76 0.72  2.91 2.25 
−0.30 r = .10 0.95 0.93  3.42 3.18 

0.30 r = 0 0.75 0.75  0.61 0.55 
0.30 r = −.10 1.08 1.05  2.59 2.50 
0.30 r = .10 1.05 1.00  2.36 1.90 

Y       

−0.05 r = 0 0.99 0.95  1.01 1.07 
−0.05 r = −.10 0.98 0.96  0.70 0.70 
−0.05 r = .10 1.04 1.03  1.29 1.32 
−0.30 r = 0 0.76 0.72  0.80 0.75 
−0.30 r = −.10 0.96 0.95  2.94 2.32 
−0.30 r = .10 1.03 1.02  3.31 3.06 

0.30 r = 0 0.76 0.72  0.81 0.76 
0.30 r = −.10 1.13 1.12  2.38 2.30 
0.30 r = .10 1.32 1.30  2.45 2.01 

 

A-matrix (.5, .45, .3, .6) results were consistent across −.10 and .10 random intercept 

correlation conditions. If the time-varying effect was −0.05, one estimate was more efficient in 

the full model and the other estimate was more efficient in the omitted variable model. For the 

other levels of the time-varying effect, estimates were more efficient in the omitted variable 

models.  
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Negative  

Relative bias. Negative A-matrix (.5, -.45, -.3, .3) auto-effects were equally biased if the 

time-varying effect was -0.05 with -.10 random intercept correlations. Conditions were also 

equally biased if random intercept correlation was .10 and the time-varying effects were -.005 or 

0.30. In all other conditions, auto-effects were less biased in the full model.  

Auto-effect estimates for the other three negative A-matrices were less biased in the full 

model if the time-varying effect was −0.30 or 0.30, with the exception of time-varying effects of 

0.30 and random intercept correlation .10. In those cases, the omitted variable models were less 

biased in A-matrix (.5, -.25, -.3, .6), and A-matrix (.5, -.45, -.3, .6) produced auto-effect pairs 

with each model type less biased in one auto-effect. If the time-varying effect was −0.05 and the 

random intercept correlation was .00 or −.10, all four A-matrices produced results were equally 

biased or less biased in the full model. Relative bias when the random intercept correlation was 

.10 and the time-varying effect was -0.05 were less biased in the omitted model.  

Relative efficiency. The A-matrices with small auto-regressive conditions (.3) produced 

results different from those with large auto-regressive (.6) conditions. The full model was more 

efficient for one or both auto-effects in small auto-regressive conditions with −0.30 or 0.30 time-

varying effects. Results varied by level of random intercept correlation in conditions with time-

varying effect −0.05. For random intercept correlations of 0 or −.10, the models were equally 

efficient or more efficient in the full model. If the random intercept correlation was .10, one 

estimate was more efficient in the full model and the other was more efficient in the omitted 

variable model, or both estimates were more efficient in the omitted variable model.  

In the A-matrices with the large auto-regressive condition, relative efficiency results were 

similar to A-matrices with a small auto-regressive condition only in the case of time-varying 
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effect of −0.05. For A-matrix (.5, -.45, -.3, .6) and time-varying effects of −0.30, results were 

pairs in which one estimate was more efficient in the full model and the other was more efficient 

in the omitted variable model, or only one of the estimates would be equally efficient. For that 

same A-matrix with time-varying effect 0.30, a non-zero random intercept correlation condition 

resulted in both estimates more efficient in the omitted variable model. Lastly, relative efficiency 

in A-matrix (.5, -.25, -.3, .6) differed by level of random intercept correlation and time-varying 

effect. If the time-varying effect was −0.30, most of the auto-effect estimates were more efficient 

in the full model except where the random intercept correlation was −.10, in which case one was 

more efficient in the full model and the other was more efficient in the omitted variable model. If 

the time-varying effect was 0.30, estimates were more efficient in the full model if the random 

intercept correlation was .00, more efficient in the omitted variable model if that same 

correlation was .10, and results were mixed if the correlation was −.10. 

Cross-effect estimates 

 Cross-effect estimates in balanced and one-way A-matrices were the most frequently 

equally biased, equally efficient, or both. The frequency dropped in the one-way A-matrices with 

.10 random intercept correlation conditions. In positive and negative A-matrices, one estimate 

was often less biased or more efficient in the full model. The same could be said for the other 

estimate and the omitted variable models, or one of the two estimates would be equally biased or 

efficient. The few exceptions to this pattern was for conditions with −0.05 time-varying effects. 

Lastly, relative efficiency results differed little from the relative bias results for the cross-effects. 

Cross-effect averages by A-matrix are listed in appendix Tables B14 and B15 for relative bias. 

Appendix Tables B19 and B20 contain relative efficiency results. 
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Outliers. Examination of relative bias and efficiency results that retained outliers seemed 

to indicate that negative A-matrices produced the most problematic cross-effect estimates. Both 

bias and efficiency results were impacted in these matrices but not in any discernable pattern 

except in A-matrix (.5, -.25, -.3, .6) in the −.10 random intercept correlation conditions. When 

crossed with time-varying effect of −0.30, average relative bias was less than -4.0. Some of these 

problematic estimates were removed when outliers were removed based on auto-effect estimates 

that were too small. The exclusion of some estimates did not change the patterns observed, just 

reduced the range in some cases.  

Positive A-matrices results contained some outliers in the zero random intercept 

correlation conditions, but few were observed in the other random intercept correlation 

conditions. As indicated in appendix Table B4, there were some outliers in the individual model 

estimates in every A-matrix type, though few problematic estimates in balanced and one-way A-

matrices. The outliers in those two types of A-matrices did not change the results described 

below. 

Balanced 

Relative bias. No clear patterns were observed in relative bias results across conditions in 

balanced A-matrices. In order to determine whether the results were due to bias that differed by 

absolute amounts smaller than 0.01, relative bias less than that amount was replaced with 1. 

Relative bias above that amount used the original relative bias. These modified results were more 

interpretable, as shown in Table 14, which contains a subset of results from A-matrix (.5, .45, -.3, 

.6) to serve as an example. In that A-matrix, if the random intercept was 0.1 or 0.17, one or both 

estimates were greater than 1 in the original results, which indicated less bias in the one predictor 
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model. Results in the original 0.49 random intercept conditions were mixed with some less 

biased in the full model and others less biased in the one predictor model, or mixed.  

Table 14. Relative bias of full to one predictor models comparisons in original and replaced 
results in A-matrix (.5, .45, -.3, .6) 

  Random intercept r = 0  Random intercept r = -.1 
  Original  Replaced  Original  Replaced 
r β YX XY  YX XY  YX XY  YX XY 
Random intercept 0.1            

.0 -0.3 1.44 1.21  1.00 1.00  3.36 -6.73  3.36 -6.73 

.0 0.3 1.45 1.36  1.00 1.00  1.55 -7.39  1.00 1.00 
-.3 -0.3 2.52 0.78  1.00 1.00  3.80 -0.41  3.80 1.00 
-.3 0.3 5.36 1.37  1.00 1.00  -0.65 1.72  1.00 1.00 
.3 -0.3 2.14 0.51  1.00 1.00  4.03 5.90  4.03 5.90 
.3 0.3 2.37 0.64  1.00 1.00  0.87 -5.15  1.00 -5.15 

Random intercept 0.17            

.0 -0.3 0.66 -1.61  1.00 1.00  3.23 -15.35  3.23 -15.35 

.0 0.3 0.82 -0.88  1.00 1.00  4.20 -0.06  1.00 1.00 
-.3 -0.3 1.36 0.66  1.00 1.00  3.51 -1.82  3.51 1.00 
-.3 0.3 1.20 0.60  1.00 1.00  -1.08 1.19  1.00 1.00 
.3 -0.3 1.10 0.22  1.00 1.00  4.71 10.61  4.71 10.61 
.3 0.3 1.30 0.35  1.00 1.00  0.32 -2.62  1.00 1.00 

Random intercept 0.49            

.0 -0.3 0.55 2.44  1.00 1.00  3.97 -1.59  3.97 1.00 

.0 0.3 0.36 2.91  1.00 1.00  -0.33 0.84  1.00 1.00 
-.3 -0.3 0.80 0.64  1.00 1.00  3.60 -2.16  3.60 1.00 
-.3 0.3 0.47 0.86  1.00 1.00  -1.87 1.04  1.00 1.00 
.3 -0.3 0.07 0.48  1.00 1.00  4.34 -3.76  4.34 -3.76 
.3 0.3 -0.11 0.48  1.00 1.00  -0.07 0.14  1.00 1.00 

 

While the original results were hard to interpret, three patterns were clear in the results 

with replaced results. One, level of the random intercept influenced results in the 0 and -.10 

random intercept correlation conditions. As the random intercept increased, relative bias did not 

change for one cross-effect and decreased in the other cross-effect but only in combination with 
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other simulation conditions if the random intercept correlation was .10. Two, relative bias in the 

.10 correlation conditions produced very cases in which both cross-effects were equally biased 

but one cross-effect was equally biased 79% of the time in the full to one predictor comparison 

and 81% of the time in the full to dynamic model comparison. Three, cross-effects were most 

often equally biased  in conditions with ±0.30 time-varying effect, 0 random intercept 

correlation, and large auto-regressive terms, or 0.30 time-varying effect, -.10 random intercept 

correlation, and large auto-regressive terms.  

Relative efficiency. Aside from conditions with -0.05 time-varying effects, relative 

efficiency results were easier to interpret than relative bias results. In the 0 random intercept 

correlation conditions with ±0.30 time-varying effects, both models were more efficient in the 

full model. A-matrix (.5, .45, -.3, .3) was the exception. All YX cross-effects were all less 

efficiency in the full model, but XY cross-effect results varied as shown in Table 15. Relative 

bias in the full to one predictor comparison depended on the level of the time-varying effect and 

the time-invariant correlation, but differences were minor in most cases. Size of the random 

intercept (ξ) affected results in the full to dynamic model comparison. If the random intercept 

was small, relative efficiency ranged from 2.03 to 3.02 across those six conditions.  

In both 0 and −.10 random intercept correlation conditions, if the time-varying effect was 

−0.05, then the full and one predictor estimates were equally efficient in most cases. Only one of 

the two estimates were equally efficient in the full to dynamic model comparison. For the other 

time-varying effects in the −.10 random intercept correlation conditions, both estimates were 

more efficient in the omitted variable models or one was more efficient in the omitted variable 

models and the other was equally efficient or more efficient in the full model. Lastly, at least one 

estimate was more efficient in the omitted variable models in conditions where the random 
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intercept correlation was .10. If the time-varying effect was 0.30, in many cases the other cross-

effect was also more efficient in the omitted variable models. 

Table 15. Relative efficiency of XY cross-effects in A-matrix (.5, .45, -.3, .3) for 0 random 
intercept correlation 

  Time-varying β = -0.3  Time-varying β = 0.3 

ξ 

 Time-
invariant 

r 
Full / 

One predictor 
Full / 

Dynamic  

Full / 
One predictor 

Full / 
Dynamic 

0.10 .0 0.85 2.22  1.05 2.21 
0.17 .0 0.91 0.85  0.97 0.96 
0.49 .0 0.89 0.86   0.94 1.02 
0.10 -.3 1.10 2.15  1.19 2.93 
0.17 -.3 1.05 1.01  1.11 0.98 
0.49 -.3 1.04 1.08  1.02 1.13 
0.10 .3 1.00 2.03  1.26 3.02 
0.17 .3 1.10 1.00  1.15 1.10 
0.49 .3 1.03 1.06  1.11 1.19 

 

One-way 

Relative bias. One-way A-matrices with negative cross-lag conditions were less biased in 

full model than in the omitted variable models for the 0 random intercept correlation conditions. 

The exception was −0.05 time-varying effects in the comparison of the full to the one predictor 

model, in which case the estimates were equally biased. In the −.10 random intercept correlation 

conditions, A-matrix (.5, 0, -.3, .3) was also less biased if the time-varying effect was −0.30 or 

−0.05. The only remaining conditions in which estimates for this A-matrix were less biased in 

the full model was in .10 random intercept correlation and −0.30 for the time-varying effect and 

the time-invariant correlation. All other conditions were pairs of more and less biased estimates 

or both estimates less biased in the omitted variable models. A-matrix (.5, 0, -.3, .6) estimates 

were pairs of more and less biased estimates in the −.10 random intercept correlation conditions. 
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In .10 random intercept correlation conditions, conditions with −0.30 time-varying effects and 0 

or −0.30 time-invariant correlations were less biased in the full model. The remaining estimates 

were both less biased in the omitted variable models or one cross-effect was less biased in the 

full model and the other was less biased in the omitted variable model. 

Level of random intercept affected estimates in A-matrix (.45, 0, .3, .3) in the 0 random 

intercept correlation conditions. YX estimates for −0.05 and 0.30 time-varying effects were 

plotted in Figure 17. In the estimates for −0.05 time-varying effect conditions, level of the 

random intercept had no influence in the one predictor model but the dynamic model estimates 

decreased as the random intercept increased. For the 0.30, and −0.30, time-varying effect 

conditions, YX estimates decreased as random intercept increased. With respect to the pairs of 

cross-effect estimates, small 0.10 random intercept conditions produced estimates that were less 

biased in the one predictor model, pairs of more and less biased cross-effects if the random 

intercept was 0.17, and equally biased cross-effects paired with estimates less biased in the full 

model if the random intercept was 0.49. If the time-varying effect was −0.05 and the random 

intercept correlation −.10, estimates were less biased in the full model. The remaining estimates 

were both less biased in the omitted variable models, or one was less biased and the other was 

more biased, a result more common in the full to dynamic model comparisons. 

In the last A-matrix, (.5, 0, .3, .6), with ±0.30 time-varying effect conditions, one or both 

cross-effects were less biased in the omitted variable models. If the time-varying effect was 

−0.05 and the random intercept correlation was 0 or −.10, one estimate was always less biased in 

the full model. The other estimate was equally biased or less biased in the omitted variable 

models. Only in the .10 random intercept correlation conditions were both cross-effects less 

biased in the omitted variable models. 
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Figure 17. Relative bias of auto-effect estimates in one-way A-matrices.  Results were averaged 
by level of random intercept (ξ) for −0.05 and 0.30 time-varying effects (β) in the 0 random 
intercept correlation conditions. The full model matched the data generation model, one predictor 
omitted one predictor, and dynamic omitted all predictors. 

Relative efficiency. Relative efficiency differed very little from the relative bias results. If 

the time-varying effects was −0.05, one or both cross-effect estimates were equally efficient and 

other conditions with 0 random intercept correlation were more efficient in the full model.  

Results in the .10 random intercept correlation varied the most from the bias results. Conditions 

in which both estimates were less biased in the full model, one cross-effect was still more 

efficient in the full model and the other was more efficient in the omitted variable models.  

Positive 

Relative bias. Results for positive A-matrix conditions varied by A-matrix, level of the 

random intercept correlation, and time-varying effect. In the 0 random intercept correlation 

conditions, −0.05 time-varying effect conditions produced equally biased estimates or one 

estimate that was equally biased and another that was less biased in the full model. For the other 
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levels of time-varying effects, both cross-effects were less biased in the full model. If the random 

intercept correlation was −.10, −0.05 time-varying effect conditions were still equally biased 

only in the 0.49 random intercept conditions in A-matrix (.5, .45, .3, .3); the other conditions 

were less biased in the omitted variable models. Averages over time-varying effects for 0 and 

−.10 random intercept correlations were plotted in Figure 18. 

  

Figure 18. Relative bias of auto-effect estimates in one-way A-matrices.  Results were averaged 
by level of random intercept (ξ) for −0.05 and 0.30 time-varying effects (β) in the 0 random 
intercept correlation conditions. The full model matched the data generation model, one predictor 
omitted one predictor, and dynamic omitted all predictors. 

In A-matrix (.5, .45, .3, .3), .10 random intercept correlation conditions produced pairs of 

equally biased estimate with an estimate that was less biased in one of the models, or pairs of 

more and less biased estimates. A-matrix (.5, .45, .3, .6) estimates were both less biased in the 

omitted variable models for ±0.30 time-varying effects; both A-matrices were less biased in the 

full model if the time-varying effect was −0.05. The one exception to these patterns in the .10 

random intercept correlation conditions was for conditions with .30 time-invariant correlation 
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and −0.30 time-varying effect. Estimates were equally biased or both were less biased in the full 

model. 

Relative efficiency. Relative efficiency followed the same patterns as those for relative 

bias in the positive A-matrices.   

Negative 

Relative bias. Negative A-matrix (.5, -.45, -.3, .6) produced estimates in the 0 random 

intercept correlation conditions that followed a different pattern in the one predictor model than 

observed in the other negative A-matrices. If the random intercept was 0.10 or 0.17 and the time-

invariant correlation was −.30, one cross-effect was less biased in the one predictor model and 

the other cross-effect was less biased in the full model. If the time-invariant correlation was 0 or 

.30, one estimate was equally biased and the other estimate was less biased in the full model. In 

the other negative A-matrices, both estimates were less biased in the full model unless the time-

varying effect was −0.05, in which case the one predictor estimates were equally biased.   

Results were very similar in the −.10 random intercept correlation conditions. Aside from 

A-matrix (.5, -.45, -.3, .6), estimates were less biased in the full model if the time-varying effect 

was ±0.30. A-matrix (.5, -.45, -.3, .6) was also equally biased in the −0.30 time-varying effect 

conditions if the time-invariant correlation was 0 or .30; if the time-varying effect was 0.30, 

results were similar to those described for the 0 random intercept correlation conditions for this 

A-matrix. All estimates in the full to one predictor comparison were equally biased if the time-

varying effect was −0.05, as were the full to dynamic model comparisons as long was the time-

invariant correlation was 0 or .30. The remaining full to dynamic model comparisons were less 

biased in the full model.  
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In the .10 random intercept correlation conditions, results were similar in the −0.30 time-

varying effect conditions as those for the other levels of the random intercept correlation. Results 

varied by A-matrix for the −0.05 and 0.30 time-varying effects. A-matrix (.5, -.45, -.3, .3) was 

equally biased. A-matrix (.5, -.45, -.3, .6) had one cross-effect that was less biased in the full 

model and another cross-effect that was less biased in the omitted variable model. A-matrix (.5, 

−.25, -.3, .6) produced estimates that were less biased in the omitted variable models. If the time-

varying effect was −0.05 in A-matrix (.5, -.25, -.3, .3), both estimates were less biased in the 

omitted variable model, but results with 0.30 time-varying effects depended on level of the time-

invariant correlation. If the correlation was 0, one cross-effect was equally biased and the other 

was less biased in the full model. If the correlation was ±.30, estimates were pairs of more and 

less biased estimates or one estimate was equally biased. 

Relative efficiency. Relative efficiency in negative A-matrices were the same as 

described in the relative bias results except for A-matrix (.5, -.45, -.3, .3) when the random 

intercept correlation was 0. In those conditions, this A-matrix produced estimates that were more 

efficient in the full model, like the other negative A-matrices with ±0.30 time-varying effects.  

In conditions with −0.05 time-varying effect, many of the estimates were equally efficient 

in the full to one predictor comparison if the random intercept correlation was 0 or −.10. Most of 

the results from the full to dynamic model comparison for the −.10 random intercept correlation 

were also equally efficient. The remaining conditions produced results like relative bias results 

for the near zero time-varying effect. 

Time-invariant estimates 

 Comparisons were made between the time-invariant estimates in the full model versus the 

one predictor model. Overall, simulation conditions with −.10 produced the most stable estimates 
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across all A-matrix types. The time-invariant correlation with the time-varying effect influenced 

the time-invariant estimate on the random intercept. Type of A-matrix also mattered in these 

results with more complex patterns observed in balanced and one-way A-matrices. Appendix 

Tables B16 and B21 contain A-matrix averages of relative bias and relative efficiency 

respectively. 

Outliers. As shown in appendix Table B16, on average relative bias was the same with 

and without outliers except for estimates in negative A-matrices. Relative efficiency did change 

in both negative and balanced A-matrices. In balanced A-matrices, one time-invariant effect was 

larger on average in the results with outliers but the other time-invariant effect was unaffected. 

Relative efficiency changed in both time-invariant effects in negative A-matrices, as shown in 

appendix Table B21. Inspection of individual conditions revealed that there were very large or 

very small relative bias and efficiency results in the 0 random intercept correlation conditions. 

Balanced 

Relative bias. Level of random intercept correlation determined the biggest difference in 

relative bias results. All conditions for random intercept correlation of −.10 were equally biased 

except for A-matrix (.5, .45, -.3, .3) if the time-varying effect was −0.30 and the time-invariant 

correlation was −.30 or .30. For random intercept correlation of 0.10, conditions with a time-

invariant correlation of 0.30 produced relative bias results that were equally biased in one 

estimate and less biased in the omitted variable model for the other. The remaining estimates for 

.10 random intercept correlation conditions were equally biased. For random intercept 

correlations of 0, relative bias differed by level of the random intercept, level of time-varying 

effect, or some combination of those conditions.  
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In the case of zero random intercept correlation, if the time-invariant correlation was also 

zero, estimates were equally biased across all levels of the time-varying effect. If the time-

invariant correlation and the effect were opposite in sign, (−.30, 0.30) or (−0.30, 0.30), the 

effects on trait variance were less biased in the full model. In the conditions where the time-

varying effect was −0.05 and time-invariant correlation was −.30, one estimate was equally 

biased and the other was less biased in the full model. For that same −0.05 time-varying effect, if 

the time-invariant correlation was .30, then one effect was equally biased and the other was less 

biased in the full model. Lastly, if the time-invariant correlation and effect were both −0.30 or 

0.30, then the one predictor model was less biased. Results for both relative bias and efficiency 

are shown in Table 16. 

Table 16. Relative bias and efficiency for estimates of time-invariant effects on trait variance in 
balanced A-matrices, –YX, and 0 random intercept correlation averaged across conditions 

  Relative bias  Relative efficiency 
r β TI on X TI on Y  TI on X TI on Y 
r = 0       
0.00 −0.05 1.00 1.00  1.01 1.00 
0.00 −0.30 0.99 0.98  0.95 0.95 
0.00 0.30 0.99 0.98  0.95 0.95 

Opposite sign      
−0.30 0.30 0.54 0.82  0.31 0.68 
0.30 −0.05 0.87 0.97  0.77 0.93 
0.30 −0.30 0.54 0.82  0.31 0.68 

Same sign      
−0.30 −0.05 1.19 1.04  1.32 1.07 
−0.30 −0.30 5.82 1.74   2.12 2.08 
0.30 0.30 6.57 1.21   5.54 1.46 
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Relative efficiency. Relative efficiency results differed very little from the relative bias 

results described above. Most importantly, in almost all cases results that were equally biased 

were also equally efficient.  

One-way 

Relative bias. Results for zero random intercept correlation simulation conditions varied 

by levels of time-varying effect, time-invariant correlation, or both. If the time-invariant 

correlation was 0, the models were equally biased. A −.30 time-invariant correlation with −0.30 

time-varying effect produced estimates that were less biased in the one predictor model; if the 

time-varying effect was −0.05 one of the two estimates was still less biased in the one predictor 

model but one was equally biased, and both were less biased in the full model if the time-varying 

effect was 0.30. Like the negative pair of conditions, 0.30 for both time-invariant correlation and 

time-varying effect resulted in estimates that were less biased in the full model. If those 

conditions were opposite in sign, one negative and one positive, both estimates were less biased 

in the full model. The remaining −0.05 time-varying effect conditions were equally biased. 

Estimates were equally biased in the −.10 random intercept correlation conditions except 

in A-matrix (.5, 0, .3, .3). In those conditions, estimates were less biased in one predictor model 

if the time-invariant and time-varying effect were 0.30; the other conditions were less biased in 

the full model. If the random intercept correlation was .10, models with time-varying effects 

−0.30 and −0.05 were equally biased. Estimates were also equally biased if the time-invariant 

correlation and time-varying effect were −.30 and 0.30 respectively. In the other 0.30 time-

varying effect conditions, one or both estimates were less biased in the one predictor model. 

Relative efficiency. Relative efficiency results for time-invariant estimates in the one-

way A-matrices followed the same patterns described above for relative bias. If the results 
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differed, the relative efficiency values became smaller if less than 1 or larger if relative bias was 

greater than 1. In a few cases where one time-invariant estimate was equally biased but slightly 

above 1, relative efficiency could be greater than 1.10 so both estimates were now more efficient 

in the omitted variable model.   

Positive 

Relative bias. Time-invariant correlation, time-varying effect, and random intercept 

correlation all played a role in relative bias in positive A-matrices. Most −0.05 time-varying 

effect conditions were equally biased. Within 0 random intercept correlation conditions, if both 

time-invariant correlation and time-varying effects were −0.30 or 0.30, one estimate was equally 

biased and the other was less biased in one predictor model. If the effect and correlation were 

opposite in sign (.30 and −0.30 or −.30 and 0.30), one estimate was equally biased and the other 

was less biased in the full model. The other conditions were equally biased. If the random 

intercept correlation was −.10, A-matrix (.5, .45, .3, .6) results were equally biased except if the 

time-varying effect was −0.30 and the time-invariant correlation was 0 or −.30, in which case 

results were less biased in the one predictor model. A-matrix (.5, .45, .3, .3) full model estimates 

were equally biased or less biased in one effect on trait variance and less biased in the other 

effect. In the .10 random intercept correlation conditions with -.3 or .3 for both time-invariant 

correlation and time-vary effects, estimates were equally biased in one estimate and less biased 

in the one predictor model or both estimates were less biased in the one predictor model. The 

effect on X trait variance was less biased in the full model in the remaining 0.30 time-varying 

effect conditions. The effect on Y trait variance was also less biased in the full model in A-

matrix (.5, .45, .3, .3) and less biased in the one predictor model in A-matrix (.5, .45, .3, .6). Bias 
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averages by combination of time-invariant correlation and time-varying effect are listed in Table 

17. 

Table 17. Relative bias and efficiency for A-matrix (.5, .45, .3, .3) with 0 random intercept 
correlation 

  (.5, .45, .3, .3)  (.5, .45, .3, .6) 
r β TI on X TI on Y  TI on X TI on Y 
0.00 −0.05 0.98 1.02  1.01 1.01 
0.00 −0.30 1.02 1.01  1.07 1.06 
0.00 0.30 0.94 1.11  0.84 0.89 

−0.30 −0.05 1.06 0.99  1.00 0.99 
−0.30 −0.30 1.24 1.01  1.19 1.14 
−0.30 0.30 0.84 1.06  0.82 0.89 
0.30 −0.05 0.96 1.05  1.03 1.05 
0.30 −0.30 1.00 0.99  0.99 0.99 
0.30 0.30 0.94 1.22   1.21 1.15 

 

Relative efficiency. Relative efficiency results were similar to relative bias results. The 

main difference was in relative bias less than 0.95 or greater than 1.05. If relative bias was 

outside of that range, relative efficiency was even further away from one in the same direction. 

For example, if relative bias was 0.94, then relative efficiency might be 0.89 more efficient in the 

full model. Estimates between 0.95 and 1.05 remained equally efficient.  

Negative 

Relative bias. The level of the random intercept condition affected whether the estimates 

were equally biased or not. All conditions with −.10 random intercept correlation were equally 

biased as were most conditions with 0.10 random intercept correlation. In the positive correlation 

conditions, the conditions that were not equally biased were less biased in the one predictor 

model. Along with a small or medium random intercept, all conditions had a time-invariant 

correlation of .3 with time-varying effect −0.05, 0 time-invariant correlation with 0.30 time-
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varying effect, or correlation and effect that were both 0.30. Relative bias ranged from 1.09 to 

1.28 for the effect on X trait variance, and from 1.08 to 1.26 for the effect on Y trait variance. In 

conditions with 0 random intercept correlations, results depended on the combination of time-

invariant correlation and the time-varying effect, if they were both .3 or −.30, then the results 

were more efficient in the one predictor model. They were also more efficient in the one 

predictor model if the time-invariant correlation was −.30 and the time-varying effect was −0.05. 

Equally biased conditions were few with most in the 0 time-invariant correlation paired with 

−0.05 time-varying effect. The remaining conditions were less biased in the full model. Averages 

by combination of time-invariant correlation and time-varying effect are listed in Table 18. 

Table 18. Relative bias and efficiency for estimates of time-invariant effects on trait variance in 
negative A-matrices with 0 random intercept correlation averaged across conditions 

  Relative bias  Relative efficiency 
TI r β TI on X TI on Y  TI on X TI on Y 
0.00 −0.05 0.96 0.96   0.94 0.94 
0.00 −0.30 0.83 0.84   0.68 0.72 
0.00 0.30 0.83 0.84   0.67 0.72 

−0.30 −0.05 1.12 1.08   1.20 1.14 
−0.30 −0.30 3.31 1.74   2.12 2.08 
−0.30 0.30 0.46 0.52   0.24 0.31 
0.30 −0.05 0.84 0.86   0.75 0.79 
0.30 −0.30 0.46 0.52   0.25 0.31 
0.30 0.30 -8.33 1.74   2.09 2.06 

 

Relative efficiency. Relative efficiency results were identical to the relative bias results. 

Averages for the .10 random intercept correlations that were more efficient in the one predictor 

model ranged from 1.10 to 1.67 for the effect on X trait variance. For Y trait variance on those 

same conditions, relative efficiency ranged from 1.08 to 1.65. Average relative efficiency for the 

0 random intercept correlation conditions are shown in Table 18. 
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Discussion 

Type of A-matrix followed by level of random intercept correlation influenced relative 

bias and relative efficiency the most in simulation 2, the evaluation of how to omitting time-

varying predictor changes, or not, model estimates. Of particular interest was that no A-matrix 

was robust to the omitted time-varying predictor for all three types of estimates examined, auto-

effects, cross-effects, and time-invariant effects, in all simulations conditions. At best, a model 

might be robust in all of the three estimate types if the random intercept correlation was not zero. 

With the focus was on larger patterns given the 1296 simulation conditions that were part of this 

study, outliers did not drastically affect results because dropping outliers just reduced the range 

for results on a simulation condition. Therefore, the discussion will focus on the results with 

outliers removed. 

Some estimates were biased in the full model with results in the omitted variable models 

biased as well. Bias was relatively equal in some cases with differences identified in efficiency. 

In other cases, the omitted variable model produced estimates that were less biased and more 

efficient than the full model. If only cases in which estimates were equally biased and efficient 

were considered robust, only one negative A-matrix produced robust auto- and cross-effects in a 

subset of conditions. Aside from small time-varying effect conditions, there were a few other 

conditions spread across the other A-matrix types that drift parameters that were robust to the 

omitted variable variance. Time-invariant effects were the most robust across the simulations 

conditions but only half of those estimates were equally biased and efficient. All of the results 

discussed below included conditions in which estimates were equally biased and equally 

efficient, conditions in which both were less biased and more efficient in the omitted variable 

models, or conditions in which it was a combination of those. Under the conditions of this 
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simulation, including all of those results as robust provided better guidance than just including 

only equally biased and efficient results. 

Aside from the small time-varying effect conditions and positive A-matrix conditions, 

there were few cases in which auto-effect estimates were equally biased, equally efficient, or 

both. Balanced A-matrices estimates were only robust if the time-varying effect was near zero, 

and then not in every condition. In negative A-matrices, the only exception was for −0.05 time-

varying effect conditions, conditions in which one would expect to find estimates robust to 

omission due to the size of the effect, and in a group of conditions in which the time-varying 

effect and correlation with the random intercept were both positive. One-way A-matrices were 

robust to the omitted variable in the full to one predictor condition for the smallest time-varying 

effect if the time-varying effect and random intercept were not related. If they were related, some 

of the other auto-effects were less biased in both omitted variable models. Positive A-matrices 

produced robust auto-effects in approximately half of its conditions. The size of the auto-

regressive, level of correlation between the time-varying effect and the random intercept, and 

time-varying effects all influenced the most. 

These auto-effect results were worse than expected, in particular for the small time-

varying effect condition, a condition in which the omission was not expected to impact any 

results. The other interesting part of these results were the fact that negative and positive A-

matrices were robust in this condition, two A-matrix types that would be considered unstable. It 

is possible that the variance from the omitted variable helped to stabilize the estimates to a small 

degree.  

More promising were the cross-effect estimates. In the positive A-matrices and in many 

conditions in the one-way A-matrices, the models were robust to the omitted variable. The 
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results for the one-way A-matrices did vary by level of the random intercept correlation and 

whether the nonzero cross-lag condition was positive or negative. Only positive cross-lag 

conditions were robust to the omitted variable variance. And for the A-matrices with a small 

auto-regressive condition, only −.10 and .10 random intercept correlations were robust to the 

omission. Those same correlation conditions affected cross-effect estimates for positive A-

matrices, producing robust estimates. Most cross-effects in negative A-matrices were impacted 

by the omitted variable variance. There was only one negative A-matrix that returned different 

results in 9 conditions, all with positive time-varying effects and positive random intercept 

correlation. 

Balanced A-matrix results were unclear due to the small size of bias in the model 

estimates with even smaller differences in many cases. Treating estimates that were minimally 

different as equally biased clarified the results. Most conditions returned at least one cross-effect 

that was equally biased. If the random intercept was small, it was likely that the other estimate 

was equally biased or less biased in the omitted variable models. The decision to evaluate 

balanced A-matrices in this manner was an attempt to understand the relative bias results. 

Relative efficiency results for the balanced cross-effects, results that were not processed again, 

indicated that small and medium intercepts conditions were the most robust if the random 

intercept correlation was not zero. If the random intercept correlation was zero, only one 

predictor model estimates were equally biased and efficient in small time-varying effect 

conditions. Based on all of the results, cross-effects were relatively equal across models. 

With respect to time-invariant predictors, if there was no correlation between the random 

intercept and the time-varying effect, combinations of time-varying effect and the correlation 

between the time-varying effect and the time-invariant effect determined whether estimates were 
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equally biased and efficient. If they were both strong but different signs (e.g. -0.30 and .30), 

those conditions were less biased in the full model as were those conditions with 0 time-invariant 

correlation. Otherwise, time-invariant estimates were robust in the remaining 0 random intercept 

correlation conditions. For all A-matrices, most conditions with −.10 and .10 random intercept 

correlations were robust to the omitted variable variance.  

Looking at the bigger picture, variance from the omitted variable influenced estimates the 

time-varying estimates in the positive A-matrix conditions, conditions that were most robust in 

the estimation of the dynamic process. For the other combinations of cross-effects, whether a 

correlation existed between the time-varying predictor and other parameters influenced results 

the most. If there was a covariance of −.10 or .10 between time-varying effect and random 

intercept, more estimates overall were robust to the omitted variable. 

Aside from type of A-matrix, the simulation condition for correlation between the time-

varying effect and the random intercept influenced results the most. If no correlation existed, 

very few auto- and cross-effects were robust to the omitted variable. The existence of that 

parameter may have provided an alternate path for the variance in the model so that the variance 

did not affect the dynamics to the degree it did when the correlation was zero. All models 

enabled the estimation same parameters but zero correlation conditions were not able to recover 

the estimate as well.  
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Chapter 5: Conclusion 

In order to reflect the complexity of real data drift parameters, time-invariant correlations, 

trait variance, predictor effects, and trait variance/predictor correlations were all varied in this 

study. No estimates were robust to omission of a variable across all conditions, in either 

simulation. There were cases in which estimates were equally biased and efficient, and cases that 

depended on two or more simulation conditions. Within some conditions, the omitted variable 

model estimates were less biased and more efficient. The largest pattern observed in both 

simulations was pairs of results in which one estimate (e.g., X auto-effect) was less biased or 

more efficient in the full model and another estimate (e.g., Y auto-effect) was less biased or more 

efficient in the omitted variable model.  

In simulation 1, some drift parameters (auto-effects and cross-effects) were expected to 

be robust to the omitted variable variance regardless of the A-matrix simulation conditions. 

When the effect of the time-invariant variable was near zero, drift estimates were robust  to 

omission of the time-invariant variable in 30% of the conditions. For the other conditions, 65% 

estimates were either equally biased or equally efficient but not both. If bias differences less than 

0.01 are considered equally biased, then the more than 90% of the estimates were equally biased. 

If the time-invariant effects were ±0.30 and both cross-effects were positive, the size of trait 

variance influenced estimates such that 2/3 but not all conditions were robust. Once both time-

invariant predictors were omitted from the model, the only simulation conditions that produced 

equally biased and efficient estimates, or estimates in which estimates were less biased and more 

efficient in the omitted variable model, were conditions with two positive cross-effects. Drift 

estimates were not affected by the presence or absence of a correlation between the time-

invariant predictors in the model, but the time-invariant effects were.  
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For the time invariant predictor in simulation 1, the effect of the predictor was biased in 

the model that included both time-invariant predictors and the model with a single time-invariant 

predictor. Whether the estimate was robust to the omitted variable depended on how the two 

time-invariant predictors were related to each other. Estimates were most robust if the two 

predictors were orthogonal, if the correlation between the time-invariant predictor and omitted 

variable effect were both positive, or if the correlation between the time-invariant predictor and 

omitted variable effect were both negative. For the time-variant predictor correlation and time-

invariant effect simulation conditions, if one condition was negative and the other condition was 

positive, the estimates were not robust to being omitted from the model. Equal strength but 

opposite signed appeared to produced estimates that were less biased and more efficient only 

when both time-invariant predictors are included in the model.   

In simulation 2, the relationship between the time-invariant and time-varying predictors 

was expected to bias estimates when these predictors were not modeled. The correlation between 

the time-varying and time-invariant predictors affected time-invariant estimates, but not drift 

estimates. Aside from conditions where the time-varying predictor effect was near zero, in which 

cases conditions were generally robust, drift parameters were most often robust if the omitted 

variable was correlated with trait variance and the auto-effect was strong. Whether the omitted 

variable effect was positive or negative mattered only in the case of two negative cross-effects, 

where a positive effect produced estimates less biased and more efficient in the omitted variable 

models. If the time-varying predictor was orthogonal to trait variance, drift results were similar 

to those in simulation 1, as were results for time-invariant effects. If the trait variance was 

correlated with the omitted variable, most time-invariant estimates were robust to the omitted 

variable variance.  
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In both simulations, estimates were not always equally biased and efficient if the omitted 

variable effect was near zero, but in many cases the estimate was equally biased or equally 

efficient. If the omitted variable effect was strong, then omitting the variable did matter to one or 

more estimates in the model, supporting work by Mauro (1990). If the two predictors were 

correlated, time-invariant effects were expected to be biased, however results also depended on 

the level of the omitted variable’s effect. As anticipated, how omitted variables influence other 

predictors is more complex than identified with single level regression (Cohen et al., 2003; 

Singer & Willett, 2003). 

Some estimates were robust in both simulations, but they were expected to be biased. 

When cross-effects are both positive or both negative, the dynamic process can be expected to be 

less stable, as cross-effects in the same direction can lead to a feedback loop. Given this 

instability, results were expected to be similar when the cross-effects were both positive or 

negative. Data generated with two negative cross-effects did not return estimates that were robust 

to omitted variables except in a few specific conditions. On the other hand, estimates from 

simulation conditions with two positive cross-effects improved the most once the predictor was 

omitted from the model. Conditions with two positive cross-effects, on the other hand, were 

robust to the omission. As for why the A-matrices with positive cross-effects benefitted from the 

omitted variable, the variance from the omitted variable could have acted as additional input that 

added stability to the system (Åström & Murray, 2008). If all the unstable systems needed was 

extra variance to obtain robust estimates, however, then both the dual-negative and dual-positive 

sets of simulation conditions should have returned robust estimates. However, only conditions 

with two positive cross-effects consistently returned robust estimates. 
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Underlying all of these relative bias and efficiency results were estimates that were 

biased, but no more than expected in many cases. Based on previous simulations (Oud, 2007), 

bias was expected to be approximately 10% of the size of the estimate. Estimate bias was larger 

than anticipated in two A-matrices with small auto-regressive and large cross-lag conditions. In 

these two A-matrices, the amount of bias in auto- and cross-effects ranged from 14 to 36% of the 

true value. The cause of the extra bias was unclear, nor was it clear if the extra bias influenced 

relative bias and relative efficiency results. 

Limitations and future directions 

Results from this study were more complex than anticipated, starting with some warning 

messages in the data generation process and some unrealistic auto-effect estimates. Even after 

the removal of outliers to better observe patterns in the results, estimates were robust only in 

combinations of conditions, but never across all conditions within a simulation. Lack of simpler 

results may be due to the selection of simulation conditions. The broad range of conditions meant 

that the simulations provided some information about robust estimates. Whether those results can 

be reproduced over a range of values within will require additional study. The drift matrix 

conditions should be extended to include stronger auto-effects and weaker cross-effects. 

Although each A-matrix identified for the simulation conditions met the mathematical condition 

for stability (Hamilton, 1994), some combinations selected for this study were more stable than 

other combinations. After clarifying how these cross-effects relate to auto-effects in substantive 

research and obtaining a better understanding of the mathematics related to dynamics, a more 

appropriate set of cross-effect conditions should be selected for future studies. 

 The near zero condition of the omitted variable variance produced estimates that were not 

always robust. Because of the other conditions in which presence or lack of a relationship 
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appeared to influence estimates, a true zero condition may produce results different from a near 

zero condition. Testing the difference and the point at which the distance from 0 matters could 

clarify the results for one-way A-matrices and for the time-invariant effects. 

 The single sample size of 200 was selected for the study based on the expectation that 

omitted variable variance would influence the models like measurement error affected estimates 

(Shaw, 2015), and if so then sample size would not matter. Because hypotheses based on the 

measurement error assumption did not hold, the sample size should be revisited in future studies. 

Oud and colleagues (Oud, 2007; Oud & Singer, 2008) indicated that sample size needed to be 

700 or greater if trait variance was going to be included in the model. Although many 

psychology studies use samples much smaller than 700, the role of sample size should be 

explored with respect to omitted variables. 

 Determining whether an estimate was robust or not depended on bias, relative bias, and 

relative efficiency results. Within this study, these statistics able to describe whether the 

statistical differences were truly different such that the difference matters to the substantive 

researcher. For example, if bias in one model was 0.005 and bias in the compared model was 

0.0008, relative bias was large but the practical effect of that difference was minimal. If absolute 

differences in bias are less than 0.01 in estimates, the conclusions drawn in substantive research 

are not likely to change due to omitted variable variance.  

If some assumptions are made about the variable left out of the model, the results from 

this study can inform substantive research practices. In all cases, time-invariant predictors, time-

varying predictors, and dynamic processes will be omitted from the model. If the omitted time-

varying predictor is related to trait variance captured in the model, then estimates for the time-

invariant predictors in the model should be robust to omission. As for the drift estimates, the 
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results are less clear for two reasons. One, estimates were more biased and unequally biased 

across models so more research is needed before definitively making a judgment about the 

robustness of the estimates. Two, some simulation conditions returned estimates that changed so 

little from one model to the next that the substantive researcher would not notice but resulted in 

extremely large or very small relative bias and efficiency values. Once these two issues are 

resolved, further guidance can be provided. 

Regardless of where future research begins, amount of bias and efficiency needs to be 

taken into account as does determining why some conditions were more biased than anticipated. 

Building up a simulation from a simple omitted variable scenario to one more complex, and 

reflective of real data, should more clearly determine conditions under which the EDM estimates 

will be robust. Maybe EDM estimates will always depend upon a combination of conditions as 

seen in this study. Or, results may become clearer with estimates that will always be robust along 

with estimates that will always be biased. If the story can be simplified, that will benefit both 

methods and substantive researchers, because variables will always be omitted from models in 

substantive research. The models that psychologists develop are not getting simpler so 

methodologists need to increase the complexity of simulations, enabling researchers to make 

more informed decisions. 
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Appendix A: Supplementary Simulation 1 Tables 
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Table A1 

Warning counts by A-matrix and simulation conditions grouped by the Y-variable random 
intercept values 

 Negative Balanced* One-way* Positive   
A 

.5, -.45,  
-.3, .3 

.5, -.45, 
-.3, .6 

.5, -.25, 
-.3, .3 

.5, -.25, 
-.3, .6 

.5, .3, 
-.25, .6 

.5, 0, 

.3, .3 
.5, 0, 
-.3, .6 

.5, 0, 

.3, .6 
.5, .45, 
.3, .3 

.5, .45, 
.3, .6 Σ % 

Random intercept 0.10          
1 27 304 0 139 1 0 0 117 183 241 1012 6.33 
2 23 336 0 139 3 0 1 112 173 247 1034 6.46 
3 21 311 0 138 0 0 0 104 144 250 968 6.05 
4 12 330 0 137 0 2 0 101 174 213 969 6.06 
5 25 307 0 144 2 1 0 99 172 243 993 6.21 
6 19 320 1 129 5 3 0 94 180 244 995 6.22 
7 20 320 0 146 3 1 3 105 180 239 1017 6.36 
8 22 336 0 145 2 0 0 101 175 210 991 6.19 
9 21 315 0 132 4 0 0 113 176 226 987 6.17 
Random intercept 0.17          
1 12 233 0 63 0 0 0 43 158 166 675 4.22 
2 9 218 0 68 0 0 0 33 139 156 623 3.89 
3 7 227 0 54 0 0 0 47 153 157 645 4.03 
4 8 253 0 70 0 1 0 31 131 152 646 4.04 
5 9 234 0 58 0 1 0 32 139 173 646 4.04 
6 8 229 0 74 0 0 0 36 157 186 690 4.31 
7 9 249 0 62 0 0 0 35 143 181 679 4.24 
8 9 212 0 49 0 0 0 41 115 160 586 3.66 
9 10 264 0 54 0 0 0 30 133 159 650 4.06 
Random intercept 0.49          
1 4 122 0 6 0 0 0 1 95 85 313 1.96 
2 3 101 0 11 0 0 0 1 83 88 287 1.79 
3 3 102 0 5 0 0 0 2 97 72 281 1.76 
4 4 123 0 8 0 0 0 2 88 81 306 1.91 
5 3 107 0 11 0 0 0 0 95 70 286 1.79 
6 1 125 0 13 0 0 0 2 90 74 305 1.91 
7 2 130 0 4 0 0 0 4 105 81 326 2.04 
8 3 112 0 11 0 0 0 1 88 92 307 1.92 
9 5 104 0 15 0 0 0 4 94 76 298 1.86 
Σ 299 6024 1 1885 20 9 4 1291 3660 4322   
% 1.11 0.00 0.00 6.98 0.07 0.03 0.01 4.78 13.56 16.01   
Note: The numbers in column 1 refer to the 9 simulation conditions listed in Table 3. 
* Aside from A-matrix (.5, .3, -.25, .6) listed in the table, all simulation conditions for matrices 
with a positive and a negative cross-lag (both) resulted in generated data without any warnings or 
errors. One one-way A-matrix (.5, -.3, 0, .3) also converged with any errors. 
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Table A2 

Counts of models without a valid minimum criterion across 27 possible simulation conditions 
per matrix 

A-Matrix Conditions Full 
One 

Predictor Dynamic Total 
Negative      
.5, -.45, -.3, .3 27 1256 596 86 1938 
.5, -.45, -.3, .6 27 643 615 707 1965 
.5, -.25, -.3, .3 20 15 17 10 42 
.5, -.25, -.3, .6 27 117 105 79 301 
Positive      
.5, .45, .3, .3 23 22 21 12 55 
.5, .45, .3, .6 27 176 143 93 412 
Balanced      
5, -.45, .3, .3 17 13 10 7 30 
5, -.45, .3, .6 17 17 11 6 34 
5, -.25, .3, .3 24 17 20 10 47 
5, -.25, .3, .6 21 16 15 6 37 
5, .45, -.3, .3 21 16 10 12 38 
5, .45, -.3, .6 18 16 7 5 28 
One-way      
.5, .0, -.3, .3 14 6 14 8 28 
.5, .0, .3, .3 27 24 17 23 64 
.5, .0, -.3, .6 19 13 16 7 36 
.5, .0, .3, .6 25 39 28 11 78 
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Table A3 

Descriptive statistics of bias across all 432 simulation conditions with all converged models 

 
Mean SD Median Min. Max. Range Skew Kurtosis 

Full 
        

  X -3.39 15.31 0.04 -102.85 0.27 103.12 -4.77 22.08 
  YX -3.70 16.58 0.00 -112.01 3.93 115.94 -4.78 22.23 
  XY -5.17 23.58 0.00 -160.82 0.26 161.08 -4.86 23.10 
  Y -5.54 25.60 0.04 -175.35 0.60 175.94 -4.87 23.21 
  Trait X on TI1 2.63 12.85 -0.20 -0.43 86.15 86.57 4.81 22.55 
  Trait Y on TI1 2.82 13.93 -0.23 -0.37 93.85 94.21 4.83 22.68 
  Trait X on TI2 -0.21 9.83 0.03 -79.02 65.06 144.08 -1.37 38.95 
  Trait Y on TI2 -0.23 10.66 0.03 -86.13 70.65 156.78 -1.38 39.15 
One predictor 

        
  X -1.58 9.01 0.05 -87.22 0.28 87.49 -7.12 54.12 
  YX -1.75 9.74 0.00 -94.92 0.22 95.14 -7.14 54.51 
  XY -2.44 13.81 0.00 -136.51 0.27 136.78 -7.24 56.12 
  Y -2.57 14.99 0.05 -148.70 0.63 149.33 -7.25 56.31 
  Trait X on TI1 1.13 7.57 -0.22 -0.43 77.25 77.69 7.30 57.41 
  Trait Y on TI1 1.19 8.20 -0.28 -0.45 84.08 84.53 7.32 57.74 
Dynamic  

       
  X -0.19 1.59 0.06 -15.98 0.60 16.57 -7.23 56.28 
  YX -0.25 1.70 0.01 -16.98 0.68 17.66 -7.20 55.74 
  XY -0.35 2.38 0.02 -23.67 1.12 24.79 -7.23 56.25 
  Y -0.30 2.59 0.07 -25.49 1.19 26.68 -7.18 55.28 
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Table A4 

Model count by level of random effect and A-matrix type after removal of model estimates with 
unrealistic auto-effect < -4.0 
 
 Model  Percent 

A-matrix Full 
One 

predictor Dynamic Total By A-matrix 
Random Intercept 0.10 

       Negative      
  .5, -.45, -.3, .3 4385 6460 8467 19312 71.53 
  .5, -.45, -.3, .6 8575 8537 8634 25746 95.36 
  .5, -.25, -.3, .3 8791 8885 8929 26605 98.54 
  .5, -.25, -.3, .6 8955 8972 8977 26904 99.64 
  Positive 

     
  .5, .45, .3, .3 8789 8764 8811 26364 97.64 
  .5, .45, .3, .6 8908 8931 8948 26787 99.21 
  Both 

     
  .5, -.45, .3, .3 8997 8997 8998 26992 99.97 
  .5, -.45, .3, .6 8996 8995 8997 26988 99.96 
  .5, -.25, .3, .3 8994 8994 8996 26984 99.94 
  .5, -.25, .3, .6 8998 8995 8997 26990 99.96 
  .5, .45, -.3, .3 8993 8993 8995 26981 99.93 
  .5, .45, -.3, .6 8994 8997 8997 26988 99.96 
  One-way 

     
  .5, .0, -.3, .3 8999 8998 8998 26995 99.98 
  .5, .0, .3, .3 8995 8993 8992 26980 99.93 
  .5, .0, -.3, .6 8999 9000 8998 26997 99.99 
  .5, .0, -3, .6 8981 8990 8996 26967 99.88 
Total 138,349 140,501 142,730 421,580  
Percent of Total 96.08% 97.57% 99.12% 97.59%  
Random Intercept 0.17      
  Negative      
  .5, -.45, -.3, .3 5550 7157 8624 21331 79.00 
  .5, -.45, -.3, .6 8611 8591 8695 25897 95.91 
  .5, -.25, -.3, .3 8894 8926 8965 26785 99.20 
  .5, -.25, -.3, .6 8958 8964 8973 26895 99.61 
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 Model  Percent 

A-matrix Full 
One 

predictor Dynamic Total By A-matrix 
  Positive      
  .5, .45, .3, .3 8838 8834 8782 26454 97.98 
  .5, .45, .3, .6 8943 8957 8971 26871 99.52 
  Both      
  .5, -.45, .3, .3 8994 8996 9000 26990 99.96 
  .5, -.45, .3, .6 8993 8996 8998 26987 99.95 
  .5, -.25, .3, .3 8993 8991 8996 26980 99.93 
  .5, -.25, .3, .6 8994 8996 8999 26989 99.96 
  .5, .45, -.3, .3 8993 8999 8999 26991 99.97 
  .5, .45, -.3, .6 8992 8996 8999 26987 99.95 
  One-way      
  .5, .0, -.3, .3 9000 8997 8994 26991 99.97 
  .5, .0, .3, .3 8991 8996 8995 26982 99.93 
  .5, .0, -.3, .6 8992 8993 8995 26980 99.93 
  .5, .0, -3, .6 8989 8991 8995 26975 99.91 
Total 139,725 141,380 142,980 424,085  
Percent of Total 97.03% 98.18% 99.29% 98.17%  
Random Intercept 0.49      
  Negative      
  .5, -.45, -.3, .3 8207 8671 8955 25833 95.68 
  .5, -.45, -.3, .6 8756 8755 8764 26275 97.31 
  .5, -.25, -.3, .3 8984 8985 8994 26963 99.86 
  .5, -.25, -.3, .6 8965 8958 8970 26893 99.60 
  Positive      
  .5, .45, .3, .3 8894 8897 8897 26688 98.84 
  .5, .45, .3, .6 8972 8968 8988 26928 99.73 
  Balanced      
  .5, -.45, .3, .3 8994 8994 8995 26983 99.94 
  .5, -.45, .3, .6 8994 8998 8999 26991 99.97 
  .5, -.25, .3, .3 8993 8993 8996 26982 99.93 
  .5, -.25, .3, .6 8991 8994 8997 26982 99.93 
  .5, .45, -.3, .3 8997 8998 8994 26989 99.96 
  .5, .45, -.3, .6 8997 8999 8999 26995 99.98 
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 Model  Percent 

A-matrix Full 
One 

predictor Dynamic Total By A-matrix 
  One-way      
  .5, .0, -.3, .3 8995 8990 8999 26984 99.94 
  .5, .0, .3, .3 8989 8994 8990 26973 99.90 
  .5, .0, -.3, .6 8996 8991 8999 26986 99.95 
  .5, .0, -3, .6 8991 8991 8998 26980 99.93 
Total 142,715 143,176 143,534 429,425  
Percent of Total 99.11% 99.43% 99.68% 99.40%  
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Table A5 

Descriptive statistics for all final set of conditions and model estimates without outliers 

 
Mean SD Median Min. Max. Range Skew Kurtosis 

Full 
        

  X 0.08 0.11 0.05 -0.04 0.45 0.50 2.41 5.16 
  YX 0.03 0.16 0.01 -0.43 0.54 0.97 0.94 4.08 
  XY 0.05 0.23 0.01 -0.53 0.92 1.45 1.78 5.38 
  Y 0.14 0.21 0.06 0.00 0.98 0.99 2.55 5.61 
  Trait X on TI1 -0.23 0.09 -0.21 -0.46 -0.11 0.35 -0.79 -0.36 
  Trait Y on TI1 -0.28 0.08 -0.29 -0.53 -0.14 0.39 -0.53 0.13 
  Trait X on TI2 0.01 0.20 0.04 -0.43 0.43 0.86 -0.19 -0.78 
  Trait Y on TI2 0.01 0.21 0.04 -0.45 0.46 0.91 -0.19 -0.89 
One predictor 

        
  X 0.09 0.11 0.06 -0.04 0.51 0.54 2.55 5.97 
  YX 0.04 0.17 0.01 -0.42 0.59 1.02 1.13 3.90 
  XY 0.06 0.24 0.02 -0.53 1.01 1.54 1.80 5.28 
  Y 0.15 0.23 0.07 0.00 1.07 1.07 2.53 5.63 
  X on TI1 -0.23 0.11 -0.23 -0.71 0.01 0.72 -0.81 2.36 
  Y on TI1 -0.29 0.11 -0.30 -0.79 -0.01 0.78 -0.73 3.93 
Dynamic  

       
  X 0.10 0.13 0.06 -0.04 0.62 0.66 2.70 6.89 
  YX 0.06 0.19 0.01 -0.40 0.72 1.12 1.42 3.91 
  XY 0.08 0.27 0.03 -0.54 1.12 1.66 1.81 5.05 
  Y 0.18 0.25 0.08 0.02 1.19 1.17 2.47 5.44 
Note: The descriptive statistics were based on data sets that provided auto-effect estimates larger 
than -4.0. 
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Table A6 

Average bias of X auto-effect estimates for full, one predictor, and dynamic models 

  
Full 

 
One predictor 

 
Dynamic 

 
True value Mean SD 

 
Mean SD 

 
Mean SD 

Random intercept r = 0 
       

Balanced 
         

  .5, -.45, .3, .3 -0.42 0.04 0.01 
 

0.04 0.01 
 

0.05 0.01 
  .5, -.45, .3, .6 -0.50 0.04 0.00 

 
0.04 0.00 

 
0.04 0.01 

  .5, -.25, .3, .3 -0.52 0.03 0.01 
 

0.04 0.01 
 

0.05 0.01 
  .5, -.25, .3, .6 -0.57 0.05 0.00 

 
0.06 0.00 

 
0.07 0.00 

  .5, .45, -.3, .3 -0.42 0.06 0.00 
 

0.06 0.00 
 

0.06 0.00 
  .5, .45, -.3, .6 -0.50 0.06 0.00 

 
0.06 0.00 

 
0.06 0.00 

One-way 
 

          .5, .0, -.3, .3 -0.69 0.04 0.00 
 

0.05 0.01 
 

0.07 0.01 
  .5, .0, .3, .3 -0.69 0.04 0.00 

 
0.05 0.01 

 
0.06 0.01 

  .5, .0, -.3, .6 -0.69 0.05 0.00 
 

0.06 0.01 
 

0.07 0.01 
  .5, .0, .3, .6 -0.69 0.06 0.00 

 
0.06 0.01 

 
0.07 0.01 

Positive 
 

          .5, .45, .3, .3 -1.61 0.23 0.06 
 

0.23 0.06 
 

0.23 0.05 
  .5, .45, .3, .6 -1.01 -0.02 0.00 

 
-0.02 0.00 

 
-0.03 0.00 

Negative 
 

          .5, -.45, -.3, .3 -1.61 0.43 0.02 
 

0.47 0.03 
 

0.55 0.04 
  .5, -.45, -.3, .6 -1.01 -0.02 0.01 

 
0.01 0.02 

 
0.05 0.03 

  .5, -.25, -.3, .3 -0.98 0.08 0.01 
 

0.11 0.02 
 

0.15 0.02 
  .5, -.25, -.3, .6 -0.85 0.06 0.00 

 
0.08 0.01 

 
0.10 0.01 
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Table A7 

Average bias of Y auto-effect estimates for full, one predictor, and dynamic models 

  
Full 

 
One predictor 

 
Dynamic 

 
True value Mean SD 

 
Mean SD 

 
Mean SD 

Random intercept r = 0 
       

Balanced 
         

  .5, -.45, .3, .3 -0.83 0.05 0.01 
 

0.06 0.01 
 

0.06 0.01 
  .5, -.45, .3, .6 -0.34 0.04 0.01 

 
0.04 0.01 

 
0.04 0.01 

  .5, -.25, .3, .3 -0.97 0.10 0.02 
 

0.10 0.02 
 

0.10 0.02 
  .5, -.25, .3, .6 -0.41 0.05 0.01 

 
0.05 0.01 

 
0.05 0.01 

  .5, .45, -.3, .3 -0.83 0.01 0.01 
 

0.02 0.01 
 

0.03 0.00 
  .5, .45, -.3, .6 -0.34 0.02 0.00 

 
0.02 0.00 

 
0.03 0.00 

One-way 
 

          .5, .0, -.3, .3 -1.20 0.12 0.03 
 

0.14 0.03 
 

0.17 0.03 
  .5, .0, .3, .3 -1.20 0.12 0.02 

 
0.13 0.02 

 
0.14 0.02 

  .5, .0, -.3, .6 -0.51 0.03 0.02 
 

0.05 0.02 
 

0.07 0.02 
  .5, .0, .3, .6 -0.51 0.05 0.01 

 
0.05 0.01 

 
0.05 0.01 

Positive 
 

          .5, .45, .3, .3 -2.59 0.44 0.16 
 

0.46 0.16 
 

0.50 0.14 
  .5, .45, .3, .6 -0.79 0.05 0.02 

 
0.05 0.02 

 
0.05 0.02 

Negative 
 

          .5, -.45, -.3, .3 -2.59 0.84 0.09 
 

0.89 0.11 
 

1.01 0.11 
  .5, -.45, -.3, .6 -0.79 0.09 0.04 

 
0.11 0.04 

 
0.15 0.04 

  .5, -.25, -.3, .3 -1.61 0.21 0.08 
 

0.26 0.08 
 

0.34 0.06 
  .5, -.25, -.3, .6 -0.65 0.04 0.03 

 
0.05 0.03 

 
0.07 0.02 
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Table A8 

Average bias of YX cross-effect estimates for full, one predictor, and dynamic models 

  
Full 

 
One predictor 

 
Dynamic 

 
True value Mean SD 

 
Mean SD 

 
Mean SD 

Random intercept r = 0 
       

Balanced 
         

  .5, -.45, .3, .3 0.61 -0.01 0.00 
 

-0.01 0.00 
 

-0.01 0.00 
  .5, -.45, .3, .6 0.48 0.00 0.00 

 
0.00 0.00 

 
0.00 0.00 

  .5, -.25, .3, .3 0.67 -0.01 0.00 
 

-0.01 0.00 
 

0.00 0.00 
  .5, -.25, .3, .6 0.51 0.01 0.00 

 
0.01 0.00 

 
0.01 0.00 

  .5, .45, -.3, .3 -0.61 0.02 0.00 
 

0.02 0.01 
 

0.04 0.01 
  .5, .45, -.3, .6 -0.48 0.00 0.00 

 
0.00 0.00 

 
0.01 0.00 

One-way 
 

          .5, .0, -.3, .3 -0.77 0.06 0.00 
 

0.08 0.01 
 

0.10 0.01 
  .5, .0, .3, .3 0.77 -0.04 0.00 

 
-0.04 0.01 

 
-0.03 0.01 

  .5, .0, -.3, .6 -0.55 0.02 0.00 
 

0.03 0.01 
 

0.04 0.01 
  .5, .0, .3, .6 0.55 0.00 0.00 

 
0.00 0.00 

 
0.01 0.00 

Positive 
 

          .5, .45, .3, .3 1.46 -0.33 0.07 
 

-0.32 0.07 
 

-0.31 0.06 
  .5, .45, .3, .6 0.66 -0.08 0.01 

 
-0.08 0.01 

 
-0.08 0.01 

Negative 
 

          .5, -.45, -.3, .3 -1.46 0.50 0.03 
 

0.55 0.04 
 

0.63 0.05 
  .5, -.45, -.3, .6 -0.66 0.05 0.01 

 
0.08 0.02 

 
0.11 0.02 

  .5, -.25, -.3, .3 -0.95 0.17 0.01 
 

0.20 0.03 
 

0.25 0.02 
  .5, -.25, -.3, .6 -0.60 0.08 0.01 

 
0.09 0.02 

 
0.12 0.01 
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Table A9 

Average bias of XY cross-effect estimates for full, one predictor, and dynamic models 

  
Full 

 
One predictor 

 
Dynamic 

 
True value Mean SD 

 
Mean SD 

 
Mean SD 

Random intercept r = 0 
       

Balanced 
         

  .5, -.45, .3, .3 -0.92 0.01 0.02 
 

0.02 0.02 
 

0.03 0.02 
  .5, -.45, .3, .6 -0.72 0.00 0.01 

 
0.00 0.02 

 
0.01 0.01 

  .5, -.25, .3, .3 -0.56 0.01 0.02 
 

0.02 0.02 
 

0.04 0.02 
  .5, -.25, .3, .6 -0.42 -0.02 0.02 

 
-0.01 0.02 

 
0.00 0.01 

  .5, .45, -.3, .3 0.92 0.01 0.01 
 

0.01 0.01 
 

0.02 0.00 
  .5, .45, -.3, .6 0.72 0.00 0.00 

 
0.00 0.00 

 
0.00 0.00 

One-way 
 

          .5, .0, -.3, .3 0.00 0.01 0.01 
 

0.02 0.01 
 

0.04 0.01 
  .5, .0, .3, .3 0.00 0.00 0.01 

 
0.01 0.01 

 
0.03 0.01 

  .5, .0, -.3, .6 0.00 0.02 0.00 
 

0.03 0.01 
 

0.05 0.01 
  .5, .0, .3, .6 0.00 -0.06 0.01 

 
-0.05 0.01 

 
-0.04 0.01 

Positive 
 

          .5, .45, .3, .3 2.19 -0.34 0.14 
 

-0.35 0.13 
 

-0.38 0.11 
  .5, .45, .3, .6 0.99 -0.16 0.02 

 
-0.16 0.01 

 
-0.16 0.01 

Negative 
 

          .5, -.45, -.3, .3 -2.19 0.79 0.09 
 

0.84 0.10 
 

0.95 0.10 
  .5, -.45, -.3, .6 -0.99 0.24 0.05 

 
0.26 0.05 

 
0.30 0.04 

  .5, -.25, -.3, .3 -0.79 0.10 0.05 
 

0.14 0.05 
 

0.20 0.04 
  .5, -.25, -.3, .6 -0.50 0.11 0.02 

 
0.12 0.02 

 
0.15 0.02 
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Table A10 

Average bias of time-invariant effect on X trait variance for full and one predictor 

  
Full 

 
One predictor 

 
True value Mean SD 

 
Mean SD 

Random intercept r = 0 
    

Balanced 
      

  .5, -.45, .3, .3 0.55 -0.11 0.00 
 

-0.12 0.08 
  .5, -.45, .3, .6 0.52 -0.13 0.00 

 
-0.13 0.07 

  .5, -.25, .3, .3 0.50 -0.16 0.01 
 

-0.17 0.06 
  .5, -.25, .3, .6 0.48 -0.16 0.01 

 
-0.17 0.06 

  .5, .45, -.3, .3 0.16 -0.38 0.00 
 

-0.38 0.04 
  .5, .45, -.3, .6 0.23 -0.35 0.00 

 
-0.35 0.02 

One-way 
 

       .5, .0, -.3, .3 0.42 -0.22 0.00 
 

-0.23 0.04 
  .5, .0, .3, .3 0.42 -0.22 0.00 

 
-0.23 0.04 

  .5, .0, -.3, .6 0.42 -0.23 0.00 
 

-0.24 0.04 
  .5, .0, .3, .6 0.42 -0.20 0.00 

 
-0.21 0.04 

Positive 
 

       .5, .45, .3, .3 0.06 -0.29 0.03 
 

-0.29 0.04 
  .5, .45, .3, .6 0.27 -0.25 0.01 

 
-0.25 0.01 

Negative 
 

       .5, -.45, -.3, .3 1.26 -0.41 0.03 
 

-0.45 0.16 
  .5, -.45, -.3, .6 0.72 -0.14 0.01 

 
-0.16 0.11 

  .5, -.25, -.3, .3 0.68 -0.17 0.02 
 

-0.19 0.09 
  .5, -.25, -.3, .6 0.56 -0.19 0.01 

 
-0.20 0.07 
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Table A11 

Average bias of time-invariant effect on Y trait variance for full and one predictor 

  
Full 

 
One predictor 

 
True value Mean SD 

 
Mean SD 

Random intercept r = 0 
    

Balanced 
      

  .5, -.45, .3, .3 0.39 -0.30 0.00 
 

-0.30 0.01 
  .5, -.45, .3, .6 0.32 -0.36 0.00 

 
-0.36 0.01 

  .5, -.25, .3, .3 0.41 -0.30 0.01 
 

-0.31 0.01 
  .5, -.25, .3, .6 0.33 -0.36 0.00 

 
-0.36 0.01 

  .5, .45, -.3, .3 0.61 -0.15 0.00 
 

-0.15 0.09 
  .5, .45, -.3, .6 0.48 -0.23 0.00 

 
-0.23 0.05 

One-way 
 

       .5, .0, -.3, .3 0.75 -0.16 0.01 
 

-0.17 0.11 
  .5, .0, .3, .3 0.45 -0.29 0.01 

 
-0.29 0.02 

  .5, .0, -.3, .6 0.55 -0.22 0.01 
 

-0.23 0.06 
  .5, .0, .3, .6 0.35 -0.35 0.00 

 
-0.35 0.01 

Positive 
 

       .5, .45, .3, .3 0.69 -0.28 0.04 
 

-0.29 0.07 
  .5, .45, .3, .6 0.40 -0.31 0.01 

 
-0.31 0.01 

Negative 
 

       .5, -.45, -.3, .3 1.38 -0.48 0.03 
 

-0.51 0.16 
  .5, -.45, -.3, .6 0.65 -0.22 0.01 

 
-0.24 0.08 

  .5, -.25, -.3, .3 0.92 -0.20 0.03 
 

-0.23 0.13 
  .5, -.25, -.3, .6 0.60 -0.23 0.01 

 
-0.23 0.07 
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Table A12 

X auto-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 0.81 0.88 
 

0.69 0.74 
  .5, -.45, .3, .6 0.91 0.91 

 
0.82 0.82 

  .5, -.25, .3, .3 0.84 0.82 
 

0.66 0.64 
  .5, -.25, .3, .6 0.91 0.91 

 
0.79 0.80 

  .5, .45, -.3, .3 1.02 1.02 
 

1.07 1.07 
  .5, .45, -.3, .6 0.96 1.01 

 
0.96 1.01 

One-way 
     

  .5, .0, -.3, .3 0.86 0.84 
 

0.66 0.67 
  .5, .0, .3, .3 0.81 0.85 

 
0.66 0.70 

  .5, .0, -.3, .6 0.89 0.89 
 

0.76 0.76 
  .5, .0, .3, .6 0.89 0.89 

 
0.77 0.77 

Positive 
     

  .5, .45, .3, .3 1.34 1.01 
 

0.28 1.01 
  .5, .45, .3, .6 0.96 0.96 

 
0.84 0.84 

Negative 
     

  .5, -.45, -.3, .3 6.21 0.91 
 

-14.70 0.78 
  .5, -.45, -.3, .6 1.19 -4.65 

 
-0.29 -0.94 

  .5, -.25, -.3, .3 0.05 0.76 
 

-3.84 0.55 
  .5, -.25, -.3, .6 1.06 0.81 

 
-0.65 0.62 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table A13 

Y auto-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 1.04 0.99 
 

0.99 0.95 
  .5, -.45, .3, .6 0.99 0.99 

 
0.96 0.96 

  .5, -.25, .3, .3 0.95 0.97 
 

0.91 0.93 
  .5, -.25, .3, .6 0.99 0.99 

 
0.99 0.96 

  .5, .45, -.3, .3 0.60 0.60 
 

0.47 0.47 
  .5, .45, -.3, .6 1.03 0.87 

 
0.85 0.74 

One-way 
     

  .5, .0, -.3, .3 0.84 0.85 
 

0.68 0.68 
  .5, .0, .3, .3 -1.04 0.95 

 
-1.04 0.87 

  .5, .0, -.3, .6 0.67 0.67 
 

0.42 0.42 
  .5, .0, .3, .6 0.98 0.98 

 
0.93 0.93 

Positive 
     

  .5, .45, .3, .3 1.09 0.95 
 

1.12 0.86 
  .5, .45, .3, .6 1.08 1.08 

 
1.12 1.12 

Negative 
     

  .5, -.45, -.3, .3 12.90 0.94 
 

-1101.26 0.84 
  .5, -.45, -.3, .6 1.03 0.77 

 
-0.85 0.54 

  .5, -.25, -.3, .3 7.54 0.81 
 

7.27 0.61 
  .5, -.25, -.3, .6 0.85 0.70 

 
-1.08 0.44 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table A14 

YX cross-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 1.59 1.12 
 

2.09 1.59 
  .5, -.45, .3, .6 4.67 4.67 

 
-0.52 -0.52 

  .5, -.25, .3, .3 1.09 1.43 
 

0.87 1.17 
  .5, -.25, .3, .6 0.94 0.94 

 
0.82 0.84 

  .5, .45, -.3, .3 0.74 0.74 
 

0.50 0.50 
  .5, .45, -.3, .6 3.73 0.04 

 
-2.95 -0.69 

One-way 
     

  .5, .0, -.3, .3 0.83 0.79 
 

0.58 0.58 
  .5, .0, .3, .3 -2.39 1.12 

 
-2.64 1.39 

  .5, .0, -.3, .6 0.75 0.75 
 

0.54 0.53 
  .5, .0, .3, .6 0.74 0.74 

 
0.42 0.42 

Positive 
     

  .5, .45, .3, .3 1.18 1.03 
 

1.28 1.07 
  .5, .45, .3, .6 0.98 0.98 

 
1.01 1.01 

Negative 
     

  .5, -.45, -.3, .3 6.72 0.92 
 

15.93 0.80 
  .5, -.45, -.3, .6 1.17 0.72 

 
-31.96 0.48 

  .5, -.25, -.3, .3 0.06 0.83 
 

-1.33 0.66 
  .5, -.25, -.3, .6 1.32 0.83 

 
-0.27 0.67 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table A15 

XY cross-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 0.58 0.40 
 

0.42 0.15 
  .5, -.45, .3, .6 2.16 2.16 

 
2.33 2.33 

  .5, -.25, .3, .3 0.24 -0.11 
 

-0.17 0.07 
  .5, -.25, .3, .6 1.12 1.12 

 
1.16 1.36 

  .5, .45, -.3, .3 0.69 0.69 
 

0.61 0.61 
  .5, .45, -.3, .6 -1.46 0.19 

 
4.89 -0.68 

One-way 
     

  .5, .0, -.3, .3 0.56 0.57 
 

0.29 0.29 
  .5, .0, .3, .3 0.25 0.11 

 
0.04 -0.06 

  .5, .0, -.3, .6 0.71 0.71 
 

0.46 0.46 
  .5, .0, .3, .6 1.12 1.12 

 
1.43 1.43 

Positive 
     

  .5, .45, .3, .3 1.63 0.96 
 

0.74 0.87 
  .5, .45, .3, .6 0.99 0.99 

 
0.98 0.98 

Negative 
     

  .5, -.45, -.3, .3 11.54 0.94 
 

-39.53 0.83 
  .5, -.45, -.3, .6 0.64 0.90 

 
-1.07 0.77 

  .5, -.25, -.3, .3 -11.00 0.71 
 

2.40 0.47 
  .5, -.25, -.3, .6 1.68 0.90 

 
0.11 0.74 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table A16 

Time-invariant effect relative bias for comparison of full to one predictor model averaged over 
A-matrix simulation conditions 

 
With Outliers 

 
Without Outliers 

A-matrices TI on X TI on Y 
 

TI on X TI on Y 
Balanced 

       .5, -.45, .3, .3 9.46 1.00 
 

7.11 1.00 
  .5, -.45, .3, .6 1.88 1.00 

 
1.88 1.00 

  .5, -.25, .3, .3 1.14 1.00 
 

1.14 1.00 
  .5, -.25, .3, .6 1.12 1.00 

 
1.12 1.00 

  .5, .45, -.3, .3 1.01 1.91 
 

1.01 1.91 
  .5, .45, -.3, .6 1.01 1.03 

 
1.00 1.03 

One-way 
     

  .5, .0, -.3, .3 1.00 2.75 
 

1.00 2.74 
  .5, .0, .3, .3 1.01 0.75 

 
1.00 0.99 

  .5, .0, -.3, .6 1.00 1.03 
 

1.00 1.03 
  .5, .0, .3, .6 1.02 1.00 

 
1.02 1.00 

Positive 
     

  .5, .45, .3, .3 1.02 1.04 
 

1.02 1.01 
  .5, .45, .3, .6 1.01 1.01 

 
1.01 1.01 

Negative 
     

  .5, -.45, -.3, .3 -1.52 1.69 
 

1.06 1.03 
  .5, -.45, -.3, .6 -0.07 0.79 

 
1.88 1.04 

  .5, -.25, -.3, .3 0.00 0.85 
 

1.20 1.56 
  .5, -.25, -.3, .6 0.84 0.85 

 
1.10 1.05 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table A17 

X auto-effect relative efficiency for comparison of full to omitted variable models averaged over 
A-matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 3.24 0.80 
 

12.19 0.43 
  .5, -.45, .3, .6 0.80 0.80 

 
0.40 0.40 

  .5, -.25, .3, .3 4.63 0.95 
 

3.99 0.21 
  .5, -.25, .3, .6 1.12 1.12 

 
0.24 0.24 

  .5, .45, -.3, .3 0.38 0.38 
 

0.04 0.04 
  .5, .45, -.3, .6 4.15 0.46 

 
1.87 0.04 

One-way 
     

  .5, .0, -.3, .3 0.90 0.90 
 

0.10 0.10 
  .5, .0, .3, .3 1.85 0.82 

 
1.57 0.09 

  .5, .0, -.3, .6 1.08 1.08 
 

0.11 0.11 
  .5, .0, .3, .6 1.14 1.14 

 
0.14 0.14 

Positive 
     

  .5, .45, .3, .3 21.17 4.26 
 

4.64 1.10 
  .5, .45, .3, .6 0.89 0.89 

 
0.14 0.14 

Negative 
     

  .5, -.45, -.3, .3 17.21 8.24 
 

27.12 1.25 
  .5, -.45, -.3, .6 33.54 1.75 

 
3.82 0.65 

  .5, -.25, -.3, .3 15.29 2.36 
 

3.70 0.58 
  .5, -.25, -.3, .6 3.64 1.43 

 
148.31 0.28 
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Table A18 

Y auto-effect relative efficiency for comparison of full to omitted variable models averaged over 
A-matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 69.78 3.41 
 

71.14 3.43 
  .5, -.45, .3, .6 3.26 3.26 

 
3.30 3.30 

  .5, -.25, .3, .3 34.84 5.81 
 

38.73 5.94 
  .5, -.25, .3, .6 2.80 2.80 

 
2.70 2.78 

  .5, .45, -.3, .3 1.28 1.28 
 

1.04 1.04 
  .5, .45, -.3, .6 106.30 1.14 

 
96.35 1.10 

One-way 
     

  .5, .0, -.3, .3 1.73 1.81 
 

1.30 1.33 
  .5, .0, .3, .3 425359.20 3.58 

 
451261.13 3.82 

  .5, .0, -.3, .6 0.78 0.78 
 

0.62 0.63 
  .5, .0, .3, .6 1.89 1.89 

 
1.89 1.89 

Positive 
     

  .5, .45, .3, .3 2.21 2.09 
 

2.50 2.25 
  .5, .45, .3, .6 0.83 0.83 

 
0.87 0.87 

Negative 
     

  .5, -.45, -.3, .3 28.11 2.30 
 

5784.01 1.81 
  .5, -.45, -.3, .6 0.91 1.29 

 
5.38 0.98 

  .5, -.25, -.3, .3 5.04 1.39 
 

23.61 1.03 
  .5, -.25, -.3, .6 377.10 0.41 

 
4344.75 0.32 
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Table A19 

YX cross-effect relative efficiency for comparison of full to omitted variable models averaged 
over A-matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 189.99 0.22 
 

7.73 0.02 
  .5, -.45, .3, .6 1.13 1.13 

 
0.04 0.04 

  .5, -.25, .3, .3 19.09 0.26 
 

3.09 0.03 
  .5, -.25, .3, .6 0.15 0.15 

 
0.01 0.01 

  .5, .45, -.3, .3 0.68 0.68 
 

0.24 0.24 
  .5, .45, -.3, .6 8.91 0.47 

 
45.67 0.04 

One-way 
     

  .5, .0, -.3, .3 1.54 1.54 
 

0.51 0.51 
  .5, .0, .3, .3 3.78 0.55 

 
5969.36 0.07 

  .5, .0, -.3, .6 0.81 0.81 
 

0.08 0.08 
  .5, .0, .3, .6 0.21 0.21 

 
0.02 0.02 

Positive 
     

  .5, .45, .3, .3 31.25 8.07 
 

6.48 1.91 
  .5, .45, .3, .6 2.04 2.04 

 
0.18 0.18 

Negative 
     

  .5, -.45, -.3, .3 17.30 10.03 
 

27.36 1.26 
  .5, -.45, -.3, .6 33.30 2.05 

 
3.48 0.26 

  .5, -.25, -.3, .3 15.37 4.29 
 

3.75 1.08 
  .5, -.25, -.3, .6 7.88 2.27 

 
104.72 0.27 
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Table A20 

XY cross-effect relative efficiency for comparison of full to omitted variable models averaged 
over A-matrix simulation conditions 

 Full / One Predictor  Full / Dynamic 
 With 

Outliers 
Without 
Outliers 

 With 
Outliers 

Without 
Outliers 

Balanced 
     

  .5, -.45, .3, .3 256.54 0.91 
 

202.09 0.77 
  .5, -.45, .3, .6 3.32 3.32 

 
3.03 3.03 

  .5, -.25, .3, .3 71.07 1.01 
 

50.54 0.81 
  .5, -.25, .3, .6 0.50 0.50 

 
0.41 0.42 

  .5, .45, -.3, .3 0.52 0.52 
 

0.58 0.58 
  .5, .45, -.3, .6 454.17 0.31 

 
528.37 0.32 

One-way 
     

  .5, .0, -.3, .3 0.54 0.56 
 

0.43 0.45 
  .5, .0, .3, .3 74.14 0.81 

 
62.93 0.66 

  .5, .0, -.3, .6 0.39 0.39 
 

0.32 0.33 
  .5, .0, .3, .6 0.98 0.98 

 
0.80 0.80 

Positive 
     

  .5, .45, .3, .3 2.25 2.44 
 

2.57 2.53 
  .5, .45, .3, .6 3.68 3.68 

 
3.59 3.59 

Negative 
     

  .5, -.45, -.3, .3 26.60 2.79 
 

6200.33 2.13 
  .5, -.45, -.3, .6 0.93 5.34 

 
8.52 4.85 

  .5, -.25, -.3, .3 5.29 1.26 
 

26.65 0.89 
  .5, -.25, -.3, .6 685.74 1.92 

 
7168.66 1.40 
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Table A21 

Time-invariant effect relative efficiency for comparison of full to one predictor model averaged 
over A-matrix simulation conditions 

 With Outliers  Without Outliers 
 TI on X trait 

variance 
TI on Y trait 

variance 
 TI on X trait 

variance 
TI on Y trait 

variance 
Balanced 

     
  .5, -.45, .3, .3 14.53 17.68 

 
3.99 15.08 

  .5, -.45, .3, .6 7.63 47.10 
 

7.63 47.10 
  .5, -.25, .3, .3 9.09 6.75 

 
5.38 6.75 

  .5, -.25, .3, .6 10.23 34.95 
 

10.23 34.95 
  .5, .45, -.3, .3 72.12 5.72 

 
72.12 5.72 

  .5, .45, -.3, .6 195.11 29.23 
 

95.11 19.54 
One-way 

     
  .5, .0, -.3, .3 14.08 1.10 

 
14.60 1.13 

  .5, .0, .3, .3 16.36 4698.45 
 

11.55 4.19 
  .5, .0, -.3, .6 17.35 12.03 

 
17.35 12.03 

  .5, .0, .3, .6 7.57 35.44 
 

7.57 35.44 
Positive 

     
  .5, .45, .3, .3 0.11 0.08 

 
0.46 0.27 

  .5, .45, .3, .6 1.99 7.24 
 

1.99 7.24 
Negative 

     
  .5, -.45, -.3, .3 4.78 4.91 

 
0.25 0.30 

  .5, -.45, -.3, .6 0.60 0.63 
 

0.32 2.51 
  .5, -.25, -.3, .3 1.02 0.83 

 
1.08 0.56 

  .5, -.25, -.3, .6 254.72 667.01   1.77 8.42 
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Table B1 

Count and percentage of data replications by A-matrix and time-varying correlation level 
without any warning messages from possible total of 27,000 

 No Correlation  
Negative 

Correlation  
Positive 

Correlation 
Matrix Count Percent  Count Percent  Count Percent 
Balanced         
5, -.45, .3, .3 27000 100.00  25740 95.33  25797 95.54 
5, -.45, .3, .6 27000 100.00  25085 92.91  25096 92.95 
5, -.25, .3, .3 27000 100.00  25032 92.71  24975 92.50 
5, -.25, .3, .6 26990 99.96  24026 88.99  23999 88.89 
5, .45, -.3, .3 27000 100.00  25856 95.76  25839 95.70 
5, .45, -.3, .6 27000 100.00  25009 92.63  24985 92.54 
One-way         
.5, .0, -.3, .3 27000 100.00  26028 96.40  25969 96.18 
.5, .0, .3, .3 26996 99.99  24553 90.94  23626 87.50 
.5, .0, -.3, .6 26997 99.99  24583 91.05  24569 91.00 
.5, .0, .3, .6 26300 97.41  20791 77.00  20759 76.89 
Positive         
.5, .45, .3, .3 24839 92.00  17014 63.01  17010 63.00 
.5, .45, .3, .6 23410 86.70  10523 38.97  10592 39.23 
Negative         
.5, -.45, -.3, .3 26741 99.04  25524 94.53  25510 94.48 
.5, -.45, -.3, .6 21280 78.81  15626 57.87  21604 80.01 
.5, -.25, -.3, .3 26998 99.99  26080 96.59  26090 96.63 
.5, -.25, -.3, .6 25204 93.35  22206 82.24  22121 81.93 

Note. Reference to correlation in the column heading refers to the discrete time simulation 
condition for the type of correlation between the random intercept and the time-varying 
predictor. The exact levels were 0, -.10, and .10. 
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Table B2 

Counts of models without a valid minimum criterion across 81 possible simulation conditions 
per matrix 

A-Matrix Conditions Full 
One 

Predictor Dynamic Total 
Balanced      
5, -.45, .3, .3 46 7 35 31 73 
5, -.45, .3, .6 49 7 37 33 77 
5, -.25, .3, .3 51 8 36 27 71 
5, -.25, .3, .6 49 6 51 34 91 
5, .45, -.3, .3 51 9 45 37 91 
5, .45, -.3, .6 59 13 50 33 96 
One-way      
.5, .0, -.3, .3 44 5 37 31 73 
.5, .0, .3, .3 61 3 59 45 107 
.5, .0, -.3, .6 42 6 35 27 68 
.5, .0, -3, .6 45 8 37 28 73 
Positive      
.5, .45, .3, .3 63 62 53 40 155 
.5, .45, .3, .6 77 69 1053 1065 2187 
Negative      
.5, -.45, -.3, .3 81 1195 1637 367 3199 
.5, -.45, -.3, .6 81 1510 807 798 3115 
.5, -.25, -.3, .3 65 470 66 44 580 
.5, -.25, -.3, .6 65 123 128 117 368 

Note: These counts were from models that produced a status code of 6 in the estimation of the 
EDM using the ctsem function that itself uses OpenMx. 
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Table B3 

Descriptive statistics of bias across all 1296 simulation conditions with all converged models 

 Mean SD Median Min. Max. Range Skew Kurtosis 
Full         

  X -0.06 1.09 0.05 -25.52 0.58 26.10 -15.17 286.87 
  YX -0.11 1.18 0.00 -27.78 0.70 28.48 -15.32 294.33 
  XY -0.14 1.66 0.01 -39.81 1.16 40.98 -15.50 303.45 
  Y -0.07 1.81 0.05 -43.46 1.25 44.71 -15.65 309.12 
  Trait X on TI1 -0.40 0.67 -0.32 -15.87 3.58 19.46 -12.57 273.08 
  Trait Y on TI1 -0.49 0.72 -0.37 -17.30 3.84 21.14 -12.81 282.07 
One predictor         

  X -1.22 8.07 0.05 -87.01 0.86 87.87 -8.06 68.91 
  YX -0.31 38.96 -0.01 -94.36 1366.22 1460.57 33.19 1164.58 
  XY -1.94 12.60 0.00 -137.09 1.21 138.30 -8.20 71.41 
  Y -4.17 79.65 0.05 -2827.49 1.31 2828.80 -34.40 1215.03 
  X on TI1 0.41 6.74 -0.31 -18.70 75.55 94.24 8.78 81.32 
  Y on TI1 0.42 7.32 -0.37 -20.32 81.24 101.57 8.64 79.02 
Dynamic         

  X -0.26 1.81 0.05 -18.61 1.01 19.62 -6.89 50.97 
  YX 2.35 89.21 0.00 -19.93 3198.93 3218.86 35.52 1268.92 
  XY -0.45 2.76 0.02 -28.06 1.23 29.30 -6.94 51.55 
  Y -5.51 171.56 0.06 -6158.71 1.34 6160.04 -35.61 1273.80 
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Table B4 

Model count by level of random effect and A-matrix type after removal of model estimates with 

unrealistic auto-effect < -4.0 

 Model  Percent 

A-matrix Full 
One 

predictor Dynamic Total By A-matrix 
Random Intercept 0.10      
  Balanced      
  .5, -.45, .3, .3 26,998 26,990 26,987 80,975 99.97 
  .5, -.45, .3, .6 26,998 26,983 26,988 80,969 99.96 
  .5, -.25, .3, .3 26,999 26,982 26,986 80,967 99.96 
  .5, -.25, .3, .6 26,996 26,979 26,991 80,966 99.96 
  .5, .45, -.3, .3 26,996 26,988 26,982 80,966 99.96 
  .5, .45, -.3, .6 26,993 26,988 26,988 80,969 99.96 
  One-way      
  .5, .0, -.3, .3 26,997 26,991 26,992 80,980 99.98 
  .5, .0, .3, .3 26,999 26,979 26,985 80,963 99.95 
  .5, .0, -.3, .6 26,998 26,989 26,993 80,980 99.98 
  .5, .0, -3, .6 26,997 26,986 26,990 80,973 99.97 
  Negative      
  .5, -.45, -.3, .3 25,558 21,874 25,153 72,585 89.61 
  .5, -.45, -.3, .6 26,214 25,654 25,939 77,807 96.06 
  .5, -.25, -.3, .3 26,547 25,395 26,556 78,498 96.91 
  .5, -.25, -.3, .6 26,957 26,950 26,963 80,870 99.84 
  Positive      
  .5, .45, .3, .3 25,955 26,066 26,235 78,256 96.61 
  .5, .45, .3, .6 26,972 26,622 26,653 80,247 99.07 
Total 428,174 422,416 427,381 1,277,971  
Percent of Total 99.11 97.78 98.93 98.61  
Random Intercept 0.17      
  Balanced      
  .5, -.45, .3, .3 26,999 26,990 26,989 80,978 99.97 
  .5, -.45, .3, .6 26,998 26,989 26,988 80,975 99.97 
  .5, -.25, .3, .3 26,997 26,990 26,992 80,979 99.97 
  .5, -.25, .3, .6 26,998 26,983 26,989 80,970 99.96 
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 Model  Percent 

A-matrix Full 
One 

predictor Dynamic Total By A-matrix 
  .5, .45, -.3, .3 26,999 26,983 26,988 80,970 99.96 
  .5, .45, -.3, .6 26,996 26,977 26,985 80,958 99.95 
  One-way      
  .5, .0, -.3, .3 26,999 26,991 26,991 80,981 99.98 
  .5, .0, .3, .3 26,999 26,978 26,981 80,958 99.95 
  .5, .0, -.3, .6 26,998 26,991 26,991 80,980 99.98 
  .5, .0, -3, .6 26,997 26,986 26,992 80,975 99.97 
  Negative      
  .5, -.45, -.3, .3 26,112 23,516 25,882 75,510 93.22 
  .5, -.45, -.3, .6 26,410 25,891 26,158 78,459 96.86 
  .5, -.25, -.3, .3 26,738 25,999 26,732 79,469 98.11 
  .5, -.25, -.3, .6 26,966 26,963 26,960 80,889 99.86 
  Positive      
  .5, .45, .3, .3 26,465 26,612 26,636 79,713 98.41 
  .5, .45, .3, .6 26,973 26,675 26,694 80,342 99.19 
Total 429,644 425,514 428,948 1,284,106  
Percent of Total 99.45 98.50 99.29 99.08  
Random Intercept 0.49      
  Balanced      
  .5, -.45, .3, .3 26,996 26,985 26,989 80,970 99.96 
  .5, -.45, .3, .6 26,996 26,988 26,990 80,974 99.97 
  .5, -.25, .3, .3 26,995 26,989 26,993 80,977 99.97 
  .5, -.25, .3, .6 26,999 26,982 26,984 80,965 99.96 
  .5, .45, -.3, .3 26,996 26,983 26,992 80,971 99.96 
  .5, .45, -.3, .6 26,998 26,985 26,990 80,973 99.97 
  One-way      
  .5, .0, -.3, .3 26,999 26,981 26,986 80,966 99.96 
  .5, .0, .3, .3 26,999 26,980 26,986 80,965 99.96 
  .5, .0, -.3, .6 26,998 26,984 26,988 80,970 99.96 
  .5, .0, -3, .6 26,998 26,990 26,988 80,976 99.97 
  Negative      
  .5, -.45, -.3, .3 26,870 26,452 26,818 80,140 98.94 
  .5, -.45, -.3, .6 26,652 26,336 26,580 79,568 98.23 
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 Model  Percent 

A-matrix Full 
One 

predictor Dynamic Total By A-matrix 
  .5, -.25, -.3, .3 26,965 26,587 26,911 80,463 99.34 
  .5, -.25, -.3, .6 26,954 26,955 26,957 80,866 99.83 
  Positive      
  .5, .45, .3, .3 26,889 26,883 26,892 80,664 99.59 
  .5, .45, .3, .6 26,985 26,648 26,588 80,221 99.04 
Total 431,289 429,708 430,632 1,291,629  
Percent of Total 99.84 99.47 99.68 99.66  
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Table B5 

Descriptive statistics for all final set of conditions and model estimates without outliers 

 Mean SD Median Min. Max. Range Skew Kurtosis 
Full         

  X 0.07 0.12 0.05 -0.30 0.58 0.88 1.90 5.01 
  YX 0.02 0.18 0.00 -0.88 0.70 1.57 0.55 4.82 
  XY 0.05 0.25 0.01 -0.61 1.16 1.78 1.63 5.30 
  Y 0.15 0.24 0.06 -0.34 1.25 1.59 2.39 5.61 
  Trait X on TI1 -0.39 0.29 -0.32 -1.92 0.08 2.00 -1.88 4.91 
  Trait Y on TI1 -0.48 0.30 -0.38 -2.06 -0.12 1.93 -2.00 4.87 
One predictor         

  X 0.09 0.13 0.05 -0.09 0.62 0.71 2.47 5.69 
  YX 0.04 0.19 0.00 -0.53 0.73 1.26 1.21 4.15 
  XY 0.07 0.27 0.01 -0.57 1.21 1.78 1.97 5.88 
  Y 0.17 0.26 0.07 -0.10 1.31 1.41 2.52 5.84 
  Trait X on TI1 -0.39 0.29 -0.32 -1.86 0.07 1.94 -1.75 4.50 
  Trait Y on TI1 -0.48 0.30 -0.38 -2.00 0.02 2.02 -1.91 4.68 
Dynamic         

  X 0.10 0.14 0.06 -0.14 0.61 0.75 2.47 5.75 
  YX 0.05 0.20 0.00 -0.54 0.72 1.26 1.39 4.04 
  XY 0.08 0.28 0.02 -0.57 1.23 1.80 1.96 5.64 
  Y 0.18 0.28 0.08 -0.17 1.34 1.51 2.49 5.70 

Note: The descriptive statistics were based on data sets that provided auto-effect estimates larger 
than -4.0. 
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Table B6 

Average bias of X auto-effect estimates by level of the random intercept correlation for full, one 
predictor, and dynamic models 

  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
Random intercept r = 0        

Balanced          

  .5, -.45, .3, .3 -0.42 0.04 0.01  0.02 0.02  0.03 0.02 
  .5, -.45, .3, .6 -0.50 0.03 0.00  0.02 0.02  0.02 0.02 
  .5, -.25, .3, .3 -0.52 0.04 0.01  0.03 0.01  0.04 0.02 
  .5, -.25, .3, .6 -0.57 0.05 0.00  0.04 0.01  0.05 0.02 
  .5, .45, -.3, .3 -0.42 0.06 0.01  0.05 0.01  0.05 0.01 
  .5, .45, -.3, .6 -0.50 0.05 0.01  0.06 0.00  0.06 0.00 
One-way          

  .5, .0, -.3, .3 -0.69 0.04 0.01  0.05 0.01  0.07 0.01 
  .5, .0, .3, .3 -0.69 0.03 0.00  0.04 0.00  0.05 0.00 
  .5, .0, -.3, .6 -0.69 0.04 0.01  0.06 0.01  0.07 0.02 
  .5, .0, .3, .6 -0.69 0.06 0.00  0.05 0.01  0.06 0.01 
Positive          

  .5, .45, .3, .3 -1.61 0.23 0.07  0.26 0.07  0.26 0.07 
  .5, .45, .3, .6 -1.01 0.03 0.03  0.02 0.03  0.00 0.04 
Negative          

  .5, -.45, -.3, .3 -1.61 0.31 0.04  0.46 0.03  0.56 0.04 
  .5, -.45, -.3, .6 -1.01 -0.04 0.02  -0.04 0.02  0.04 0.04 
  .5, -.25, -.3, .3 -0.98 0.07 0.01  0.09 0.01  0.14 0.02 
  .5, -.25, -.3, .6 -0.85 0.04 0.01  0.07 0.01  0.10 0.01 
Random intercept r = -.1         

Balanced          

  .5, -.45, .3, .3 -0.42 0.04 0.04  0.02 0.03  0.02 0.03 
  .5, -.45, .3, .6 -0.50 0.03 0.04  0.02 0.03  0.02 0.03 
  .5, -.25, .3, .3 -0.52 0.06 0.04  0.03 0.02  0.04 0.03 
  .5, -.25, .3, .6 -0.57 0.06 0.05  0.04 0.03  0.05 0.03 
  .5, .45, -.3, .3 -0.42 0.03 0.02  0.04 0.01  0.05 0.01 
  .5, .45, -.3, .6 -0.50 0.03 0.02  0.05 0.01  0.06 0.00 
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  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
One-way          

  .5, .0, -.3, .3 -0.69 0.03 0.05  0.06 0.02  0.07 0.02 
  .5, .0, .3, .3 -0.69 0.04 0.03  0.03 0.01  0.04 0.01 
  .5, .0, -.3, .6 -0.69 0.03 0.06  0.07 0.02  0.07 0.02 
  .5, .0, .3, .6 -0.69 0.07 0.02  0.06 0.01  0.06 0.02 
Positive          

  .5, .45, .3, .3 -1.61 0.24 0.07  0.26 0.07  0.26 0.07 
  .5, .45, .3, .6 -1.01 -0.10 0.09  -0.01 0.04  -0.02 0.05 
Negative          

  .5, -.45, -.3, .3 -1.61 0.47 0.03  0.54 0.04  0.56 0.04 
  .5, -.45, -.3, .6 -1.01 -0.02 0.08  0.03 0.05  0.04 0.06 
  .5, -.25, -.3, .3 -0.98 0.07 0.06  0.14 0.04  0.15 0.03 
  .5, -.25, -.3, .6 -0.85 0.05 0.04  0.09 0.02  0.10 0.01 
Random intercept r =.1         

Balanced          

  .5, -.45, .3, .3 -0.42 0.04 0.05  0.02 0.03  0.02 0.03 
  .5, -.45, .3, .6 -0.50 0.02 0.04  0.02 0.03  0.02 0.03 
  .5, -.25, .3, .3 -0.52 0.05 0.05  0.03 0.02  0.04 0.02 
  .5, -.25, .3, .6 -0.57 0.05 0.04  0.04 0.03  0.04 0.03 
  .5, .45, -.3, .3 -0.42 0.04 0.02  0.04 0.01  0.05 0.01 
  .5, .45, -.3, .6 -0.50 0.04 0.02  0.05 0.01  0.06 0.00 
One-way          

  .5, .0, -.3, .3 -0.69 0.07 0.05  0.07 0.02  0.07 0.01 
  .5, .0, .3, .3 -0.69 0.06 0.04  0.04 0.01  0.04 0.01 
  .5, .0, -.3, .6 -0.69 0.09 0.06  0.07 0.02  0.08 0.02 
  .5, .0, .3, .6 -0.69 0.07 0.02  0.06 0.01  0.06 0.02 
Positive          

  .5, .45, .3, .3 -1.61 0.23 0.10  0.26 0.07  0.26 0.07 
  .5, .45, .3, .6 -1.01 -0.07 0.08  0.00 0.04  -0.01 0.05 
Negative          

  .5, -.45, -.3, .3 -1.61 0.52 0.04  0.54 0.04  0.56 0.04 
  .5, -.45, -.3, .6 -1.01 -0.06 0.07  0.02 0.05  0.03 0.06 
  .5, -.25, -.3, .3 -0.98 0.13 0.05  0.14 0.04  0.15 0.03 
  .5, -.25, -.3, .6 -0.85 0.10 0.05  0.09 0.02  0.10 0.02 
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Table B7 

Average bias of Y auto-effect estimates by level of the random intercept correlation for full, one 
predictor, and dynamic models 

  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
Random intercept r = 0        

Balanced          

  .5, -.45, .3, .3 -0.83 0.04 0.01  0.07 0.02  0.08 0.02 
  .5, -.45, .3, .6 -0.34 0.03 0.01  0.04 0.01  0.05 0.01 
  .5, -.25, .3, .3 -0.97 0.08 0.02  0.10 0.03  0.11 0.03 
  .5, -.25, .3, .6 -0.41 0.04 0.01  0.05 0.01  0.05 0.01 
  .5, .45, -.3, .3 -0.83 0.01 0.01  0.00 0.02  0.02 0.01 
  .5, .45, -.3, .6 -0.34 0.02 0.00  0.01 0.01  0.02 0.01 
One-way          

  .5, .0, -.3, .3 -1.20 0.10 0.03  0.10 0.05  0.16 0.04 
  .5, .0, .3, .3 -1.20 0.11 0.02  0.14 0.03  0.15 0.03 
  .5, .0, -.3, .6 -0.51 0.03 0.02  0.02 0.02  0.06 0.02 
  .5, .0, .3, .6 -0.51 0.04 0.01  0.05 0.01  0.05 0.01 
Positive          

  .5, .45, .3, .3 -2.59 0.45 0.16  0.51 0.17  0.54 0.16 
  .5, .45, .3, .6 -0.79 0.08 0.02  0.05 0.02  0.03 0.04 
Negative          

  .5, -.45, -.3, .3 -2.59 0.65 0.17  0.93 0.14  1.08 0.15 
  .5, -.45, -.3, .6 -0.79 0.07 0.04  0.09 0.05  0.15 0.05 
  .5, -.25, -.3, .3 -1.61 0.17 0.09  0.23 0.10  0.34 0.09 
  .5, -.25, -.3, .6 -0.65 0.02 0.03  0.04 0.03  0.07 0.03 
Random intercept r = -.1         

Balanced          

  .5, -.45, .3, .3 -0.83 0.05 0.03  0.07 0.03  0.08 0.03 
  .5, -.45, .3, .6 -0.34 0.02 0.02  0.04 0.02  0.04 0.02 
  .5, -.25, .3, .3 -0.97 0.07 0.04  0.11 0.03  0.11 0.03 
  .5, -.25, .3, .6 -0.41 0.02 0.03  0.04 0.02  0.05 0.02 
  .5, .45, -.3, .3 -0.83 0.03 0.05  0.02 0.03  0.02 0.03 
  .5, .45, -.3, .6 -0.34 0.04 0.04  0.02 0.02  0.02 0.02 
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  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
One-way          

  .5, .0, -.3, .3 -1.20 0.13 0.07  0.14 0.06  0.15 0.06 
  .5, .0, .3, .3 -1.20 0.11 0.04  0.12 0.04  0.14 0.03 
  .5, .0, -.3, .6 -0.51 0.04 0.03  0.05 0.02  0.06 0.03 
  .5, .0, .3, .6 -0.51 0.00 0.06  0.04 0.02  0.05 0.02 
Positive          

  .5, .45, .3, .3 -2.59 0.53 0.17  0.55 0.16  0.54 0.16 
  .5, .45, .3, .6 -0.79 -0.07 0.11  0.03 0.04  0.01 0.07 
Negative          

  .5, -.45, -.3, .3 -2.59 0.95 0.14  1.06 0.15  1.09 0.14 
  .5, -.45, -.3, .6 -0.79 0.09 0.10  0.14 0.07  0.15 0.06 
  .5, -.25, -.3, .3 -1.61 0.24 0.10  0.33 0.09  0.34 0.09 
  .5, -.25, -.3, .6 -0.65 0.03 0.05  0.06 0.04  0.07 0.03 
Random intercept r =.1         

Balanced          

  .5, -.45, .3, .3 -0.83 0.05 0.02  0.07 0.03  0.08 0.02 
  .5, -.45, .3, .6 -0.34 0.03 0.02  0.04 0.02  0.04 0.02 
  .5, -.25, .3, .3 -0.97 0.09 0.04  0.11 0.03  0.12 0.03 
  .5, -.25, .3, .6 -0.41 0.03 0.04  0.04 0.02  0.05 0.02 
  .5, .45, -.3, .3 -0.83 0.01 0.04  0.02 0.03  0.01 0.03 
  .5, .45, -.3, .6 -0.34 0.03 0.04  0.02 0.02  0.02 0.02 
One-way          

  .5, .0, -.3, .3 -1.20 0.13 0.09  0.14 0.05  0.15 0.06 
  .5, .0, .3, .3 -1.20 0.17 0.08  0.14 0.03  0.14 0.03 
  .5, .0, -.3, .6 -0.51 0.05 0.04  0.05 0.02  0.05 0.03 
  .5, .0, .3, .6 -0.51 0.04 0.06  0.04 0.02  0.05 0.02 
Positive          

  .5, .45, .3, .3 -2.59 0.56 0.19  0.55 0.15  0.55 0.15 
  .5, .45, .3, .6 -0.79 -0.02 0.12  0.03 0.05  0.02 0.07 
Negative          

  .5, -.45, -.3, .3 -2.59 1.02 0.12  1.06 0.14  1.09 0.14 
  .5, -.45, -.3, .6 -0.79 0.23 0.11  0.14 0.06  0.16 0.06 
  .5, -.25, -.3, .3 -1.61 0.28 0.11  0.33 0.09  0.34 0.09 
  .5, -.25, -.3, .6 -0.65 0.08 0.05   0.06 0.04   0.07 0.03 
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Table B8 

Average bias of YX cross-effect estimates by level of the random intercept correlation for full, 
one predictor, and dynamic models 

  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
Random intercept r = 0        

Balanced          

  .5, -.45, .3, .3 0.61 -0.02 0.00  -0.02 0.01  -0.02 0.01 
  .5, -.45, .3, .6 0.48 -0.01 0.00  -0.01 0.01  -0.01 0.00 
  .5, -.25, .3, .3 0.67 -0.02 0.01  -0.02 0.01  -0.01 0.01 
  .5, -.25, .3, .6 0.51 0.00 0.00  0.00 0.01  0.00 0.00 
  .5, .45, -.3, .3 -0.61 0.01 0.01  0.02 0.00  0.04 0.01 
  .5, .45, -.3, .6 -0.48 0.00 0.00  0.00 0.00  0.00 0.00 
One-way          

  .5, .0, -.3, .3 -0.77 0.04 0.01  0.07 0.01  0.11 0.02 
  .5, .0, .3, .3 0.77 -0.05 0.01  -0.05 0.01  -0.04 0.01 
  .5, .0, -.3, .6 -0.55 0.02 0.01  0.03 0.01  0.05 0.02 
  .5, .0, .3, .6 0.55 0.00 0.00  0.00 0.00  0.00 0.00 
Positive          

  .5, .45, .3, .3 1.46 -0.32 0.09  -0.34 0.08  -0.31 0.09 
  .5, .45, .3, .6 0.66 -0.05 0.01  -0.08 0.01  -0.11 0.04 
Negative          

  .5, -.45, -.3, .3 -1.46 0.36 0.05  0.56 0.04  0.66 0.05 
  .5, -.45, -.3, .6 -0.66 0.04 0.01  0.05 0.01  0.11 0.03 
  .5, -.25, -.3, .3 -0.95 0.13 0.02  0.17 0.01  0.23 0.02 
  .5, -.25, -.3, .6 -0.60 0.07 0.01  0.09 0.01  0.12 0.01 
Random intercept r = -.1         

Balanced          

  .5, -.45, .3, .3 0.61 -0.01 0.02  -0.02 0.01  -0.02 0.01 
  .5, -.45, .3, .6 0.48 0.00 0.01  -0.01 0.01  -0.01 0.01 
  .5, -.25, .3, .3 0.67 0.00 0.02  -0.01 0.01  -0.01 0.01 
  .5, -.25, .3, .6 0.51 0.01 0.01  0.00 0.01  0.00 0.01 
  .5, .45, -.3, .3 -0.61 0.00 0.04  0.02 0.01  0.04 0.01 
  .5, .45, -.3, .6 -0.48 -0.03 0.03  -0.01 0.01  0.00 0.00 
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  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
One-way          

  .5, .0, -.3, .3 -0.77 0.04 0.07  0.09 0.04  0.11 0.03 
  .5, .0, .3, .3 0.77 -0.05 0.02  -0.05 0.01  -0.04 0.01 
  .5, .0, -.3, .6 -0.55 0.01 0.07  0.04 0.04  0.05 0.03 
  .5, .0, .3, .6 0.55 0.00 0.01  0.00 0.01  0.00 0.01 
Positive          

  .5, .45, .3, .3 1.46 -0.46 0.16  -0.36 0.08  -0.32 0.10 
  .5, .45, .3, .6 0.66 -0.23 0.11  -0.11 0.04  -0.13 0.06 
Negative          

  .5, -.45, -.3, .3 -1.46 0.57 0.03  0.64 0.05  0.66 0.05 
  .5, -.45, -.3, .6 -0.66 0.05 0.05  0.10 0.03  0.11 0.04 
  .5, -.25, -.3, .3 -0.95 0.14 0.08  0.22 0.05  0.24 0.04 
  .5, -.25, -.3, .6 -0.60 0.07 0.04  0.11 0.02  0.12 0.02 
Random intercept r =.1         

Balanced          

  .5, -.45, .3, .3 0.61 -0.01 0.02  -0.02 0.01  -0.02 0.01 
  .5, -.45, .3, .6 0.48 0.00 0.01  -0.01 0.01  -0.01 0.01 
  .5, -.25, .3, .3 0.67 0.00 0.02  -0.01 0.01  -0.01 0.01 
  .5, -.25, .3, .6 0.51 0.01 0.01  0.00 0.01  0.00 0.01 
  .5, .45, -.3, .3 -0.61 0.04 0.05  0.03 0.01  0.04 0.01 
  .5, .45, -.3, .6 -0.48 0.00 0.03  0.00 0.01  0.00 0.00 
One-way          

  .5, .0, -.3, .3 -0.77 0.11 0.07  0.10 0.03  0.11 0.03 
  .5, .0, .3, .3 0.77 -0.03 0.04  -0.04 0.01  -0.04 0.01 
  .5, .0, -.3, .6 -0.55 0.08 0.06  0.04 0.03  0.05 0.03 
  .5, .0, .3, .6 0.55 0.00 0.01  0.00 0.01  0.00 0.01 
Positive          

  .5, .45, .3, .3 1.46 -0.26 0.17  -0.36 0.09  -0.32 0.10 
  .5, .45, .3, .6 0.66 -0.17 0.13  -0.11 0.05  -0.12 0.07 
Negative          

  .5, -.45, -.3, .3 -1.46 0.62 0.04  0.64 0.05  0.66 0.05 
  .5, -.45, -.3, .6 -0.66 0.03 0.05  0.09 0.03  0.10 0.04 
  .5, -.25, -.3, .3 -0.95 0.21 0.06  0.23 0.05  0.24 0.04 
  .5, -.25, -.3, .6 -0.60 0.12 0.05   0.11 0.02   0.12 0.02 
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Table B9 

Average bias of XY cross-effect estimates by level of the random intercept correlation for full, 
one predictor, and dynamic models 

  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
Random intercept r = 0        

Balanced          

  .5, -.45, .3, .3 -0.92 0.01 0.02  0.03 0.03  0.05 0.03 
  .5, -.45, .3, .6 -0.72 0.00 0.01  0.01 0.03  0.03 0.02 
  .5, -.25, .3, .3 -0.56 0.00 0.02  0.02 0.03  0.04 0.03 
  .5, -.25, .3, .6 -0.42 -0.02 0.01  -0.01 0.02  0.00 0.02 
  .5, .45, -.3, .3 0.92 0.01 0.01  0.00 0.01  0.01 0.01 
  .5, .45, -.3, .6 0.72 -0.01 0.01  -0.01 0.01  0.00 0.00 
One-way          

  .5, .0, -.3, .3 0.00 0.00 0.01  0.00 0.01  0.03 0.01 
  .5, .0, .3, .3 0.00 0.00 0.01  0.02 0.02  0.03 0.02 
  .5, .0, -.3, .6 0.00 0.01 0.01  0.01 0.01  0.04 0.01 
  .5, .0, .3, .6 0.00 -0.05 0.01  -0.05 0.01  -0.04 0.01 
Positive          

  .5, .45, .3, .3 2.19 -0.34 0.13  -0.36 0.13  -0.38 0.12 
  .5, .45, .3, .6 0.99 -0.11 0.03  -0.12 0.03  -0.14 0.04 
Negative          

  .5, -.45, -.3, .3 -2.19 0.61 0.16  0.86 0.13  1.01 0.13 
  .5, -.45, -.3, .6 -0.99 0.21 0.04  0.23 0.06  0.30 0.06 
  .5, -.25, -.3, .3 -0.79 0.08 0.06  0.11 0.07  0.20 0.06 
  .5, -.25, -.3, .6 -0.50 0.09 0.02  0.11 0.03  0.15 0.02 
Random intercept r = -.1         

Balanced          

  .5, -.45, .3, .3 -0.92 0.02 0.03  0.05 0.04  0.05 0.03 
  .5, -.45, .3, .6 -0.72 0.00 0.03  0.01 0.03  0.02 0.03 
  .5, -.25, .3, .3 -0.56 0.00 0.05  0.04 0.04  0.04 0.04 
  .5, -.25, .3, .6 -0.42 -0.03 0.05  -0.01 0.03  0.00 0.03 
  .5, .45, -.3, .3 0.92 0.01 0.01  0.01 0.01  0.01 0.01 
  .5, .45, -.3, .6 0.72 0.00 0.01  0.00 0.01  0.00 0.01 
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  Full  One predictor  Dynamic 

 True value Mean SD  Mean SD  Mean SD 
One-way          

  .5, .0, -.3, .3 0.00 0.01 0.03  0.02 0.02  0.03 0.02 
  .5, .0, .3, .3 0.00 -0.01 0.07  -0.01 0.04  0.02 0.03 
  .5, .0, -.3, .6 0.00 0.02 0.02  0.03 0.01  0.04 0.02 
  .5, .0, .3, .6 0.00 -0.09 0.09  -0.06 0.02  -0.04 0.02 
Positive          

  .5, .45, .3, .3 2.19 -0.42 0.12  -0.40 0.11  -0.39 0.12 
  .5, .45, .3, .6 0.99 -0.23 0.09  -0.14 0.04  -0.16 0.06 
Negative          

  .5, -.45, -.3, .3 -2.19 0.87 0.13  0.99 0.13  1.01 0.13 
  .5, -.45, -.3, .6 -0.99 0.22 0.12  0.29 0.08  0.30 0.07 
  .5, -.25, -.3, .3 -0.79 0.12 0.07  0.19 0.06  0.20 0.06 
  .5, -.25, -.3, .6 -0.50 0.11 0.05  0.14 0.03  0.15 0.03 
Random intercept r =.1         

Balanced          

  .5, -.45, .3, .3 0.61 -0.01 0.02  -0.02 0.01  -0.02 0.01 
  .5, -.45, .3, .6 0.48 0.00 0.01  -0.01 0.01  -0.01 0.01 
  .5, -.25, .3, .3 0.67 0.00 0.02  -0.01 0.01  -0.01 0.01 
  .5, -.25, .3, .6 0.51 0.01 0.01  0.00 0.01  0.00 0.01 
  .5, .45, -.3, .3 -0.61 0.04 0.05  0.03 0.01  0.04 0.01 
  .5, .45, -.3, .6 -0.48 0.00 0.03  0.00 0.01  0.00 0.00 
One-way          

  .5, .0, -.3, .3 -0.77 0.11 0.07  0.10 0.03  0.11 0.03 
  .5, .0, .3, .3 0.77 -0.03 0.04  -0.04 0.01  -0.04 0.01 
  .5, .0, -.3, .6 -0.55 0.08 0.06  0.04 0.03  0.05 0.03 
  .5, .0, .3, .6 0.55 0.00 0.01  0.00 0.01  0.00 0.01 
Positive          

  .5, .45, .3, .3 1.46 -0.26 0.17  -0.36 0.09  -0.32 0.10 
  .5, .45, .3, .6 0.66 -0.17 0.13  -0.11 0.05  -0.12 0.07 
Negative          

  .5, -.45, -.3, .3 -1.46 0.62 0.04  0.64 0.05  0.66 0.05 
  .5, -.45, -.3, .6 -0.66 0.03 0.05  0.09 0.03  0.10 0.04 
  .5, -.25, -.3, .3 -0.95 0.21 0.06  0.23 0.05  0.24 0.04 
  .5, -.25, -.3, .6 -0.60 0.12 0.05   0.11 0.02   0.12 0.02 
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Table B10 

Average bias of time-invariant effect on X trait variance by level of the random intercept 
correlation for full and one predictor 

  Full  One predictor 

 True value Mean SD  Mean SD 
Random intercept r = 0     

Balanced       

  .5, -.45, .3, .3 0.55 -0.11 0.00  -0.11 0.09 
  .5, -.45, .3, .6 0.52 -0.12 0.00  -0.12 0.08 
  .5, -.25, .3, .3 0.50 -0.16 0.01  -0.16 0.08 
  .5, -.25, .3, .6 0.48 -0.16 0.00  -0.16 0.07 
  .5, .45, -.3, .3 0.16 -0.37 0.01  -0.37 0.02 
  .5, .45, -.3, .6 0.23 -0.34 0.00  -0.35 0.03 
One-way       

  .5, .0, -.3, .3 0.42 -0.22 0.00  -0.23 0.06 
  .5, .0, .3, .3 0.42 -0.22 0.00  -0.22 0.06 
  .5, .0, -.3, .6 0.42 -0.23 0.01  -0.23 0.06 
  .5, .0, .3, .6 0.42 -0.21 0.00  -0.20 0.06 
Positive       

  .5, .45, .3, .3 0.06 -0.29 0.03  -0.29 0.03 
  .5, .45, .3, .6 0.27 -0.28 0.02  -0.28 0.02 
Negative       

  .5, -.45, -.3, .3 1.26 -0.32 0.06  -0.45 0.14 
  .5, -.45, -.3, .6 0.72 -0.12 0.02  -0.13 0.10 
  .5, -.25, -.3, .3 0.68 -0.16 0.02  -0.18 0.10 
  .5, -.25, -.3, .6 0.56 -0.18 0.01  -0.19 0.08 
Random intercept r = -.1      

Balanced       

  .5, -.45, .3, .3 -0.92 0.02 0.03  0.05 0.04 
  .5, -.45, .3, .6 -0.72 0.00 0.03  0.01 0.03 
  .5, -.25, .3, .3 -0.56 0.00 0.05  0.04 0.04 
  .5, -.25, .3, .6 -0.42 -0.03 0.05  -0.01 0.03 
  .5, .45, -.3, .3 0.92 0.01 0.01  0.01 0.01 
  .5, .45, -.3, .6 0.72 0.00 0.01  0.00 0.01 
       



B18 
 

  Full  One predictor 

 True value Mean SD  Mean SD 
One-way       

  .5, .0, -.3, .3 0.42 -0.49 0.08  -0.48 0.08 
  .5, .0, .3, .3 0.42 -0.22 0.04  -0.21 0.07 
  .5, .0, -.3, .6 0.42 -0.49 0.08  -0.48 0.07 
  .5, .0, .3, .6 0.42 -0.50 0.09  -0.49 0.08 
Positive       

  .5, .45, .3, .3 0.06 -0.02 0.06  -0.02 0.06 
  .5, .45, .3, .6 0.27 -0.31 0.06  -0.29 0.04 
Negative       

  .5, -.45, -.3, .3 1.26 -1.51 0.23  -1.49 0.22 
  .5, -.45, -.3, .6 0.72 -0.91 0.17  -0.89 0.16 
  .5, -.25, -.3, .3 0.68 -0.85 0.16  -0.83 0.15 
  .5, -.25, -.3, .6 0.56 -0.69 0.12  -0.68 0.12 
Random intercept r =.1      

Balanced       

  .5, -.45, .3, .3 0.55 -0.43 0.13  -0.43 0.13 
  .5, -.45, .3, .6 0.52 -0.41 0.12  -0.40 0.13 
  .5, -.25, .3, .3 0.50 -0.41 0.10  -0.40 0.11 
  .5, -.25, .3, .6 0.48 -0.40 0.09  -0.38 0.10 
  .5, .45, -.3, .3 0.16 -0.22 0.06  -0.21 0.06 
  .5, .45, -.3, .6 0.23 -0.26 0.04  -0.26 0.04 
One-way       

  .5, .0, -.3, .3 0.42 -0.37 0.07  -0.36 0.08 
  .5, .0, .3, .3 0.42 -0.38 0.05  -0.36 0.08 
  .5, .0, -.3, .6 0.42 -0.37 0.06  -0.36 0.07 
  .5, .0, .3, .6 0.42 -0.38 0.05  -0.35 0.08 
Positive       

  .5, .45, .3, .3 0.06 -0.10 0.05  -0.11 0.06 
  .5, .45, .3, .6 0.27 -0.26 0.05  -0.25 0.04 
Negative       

  .5, -.45, -.3, .3 1.26 -1.04 0.21  -1.04 0.22 
  .5, -.45, -.3, .6 0.72 -0.57 0.14  -0.55 0.16 
  .5, -.25, -.3, .3 0.68 -0.55 0.14  -0.54 0.15 
  .5, -.25, -.3, .6 0.56 -0.47 0.10   -0.46 0.11 
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Table B11 

Average bias of time-invariant effect on Y trait variance by level of the random intercept 
correlation for full and one predictor 

  Full  One predictor 

 True value Mean SD  Mean SD 
Random intercept r = 0     

Balanced       

  .5, -.45, .3, .3 0.39 -0.29 0.01  -0.30 0.05 
  .5, -.45, .3, .6 0.32 -0.36 0.00  -0.36 0.04 
  .5, -.25, .3, .3 0.41 -0.30 0.01  -0.30 0.04 
  .5, -.25, .3, .6 0.33 -0.36 0.01  -0.36 0.03 
  .5, .45, -.3, .3 0.61 -0.14 0.00  -0.14 0.09 
  .5, .45, -.3, .6 0.48 -0.23 0.00  -0.22 0.07 
One-way       

  .5, .0, -.3, .3 0.75 -0.15 0.01  -0.16 0.10 
  .5, .0, .3, .3 0.45 -0.29 0.01  -0.29 0.04 
  .5, .0, -.3, .6 0.55 -0.22 0.01  -0.22 0.08 
  .5, .0, .3, .6 0.35 -0.35 0.01  -0.35 0.03 
Positive       

  .5, .45, .3, .3 0.69 -0.29 0.03  -0.30 0.06 
  .5, .45, .3, .6 0.40 -0.33 0.01  -0.31 0.01 
Negative       

  .5, -.45, -.3, .3 1.38 -0.37 0.07  -0.53 0.14 
  .5, -.45, -.3, .6 0.65 -0.21 0.01  -0.22 0.08 
  .5, -.25, -.3, .3 0.92 -0.17 0.03  -0.20 0.12 
  .5, -.25, -.3, .6 0.60 -0.22 0.01  -0.23 0.08 
Random intercept r = -.1      

Balanced       

  .5, -.45, .3, .3 0.39 -0.41 0.06  -0.41 0.05 
  .5, -.45, .3, .6 0.32 -0.31 0.04  -0.31 0.04 
  .5, -.25, .3, .3 0.41 -0.44 0.06  -0.43 0.05 
  .5, -.25, .3, .6 0.33 -0.32 0.04  -0.32 0.03 
  .5, .45, -.3, .3 0.61 -0.76 0.15  -0.76 0.15 
  .5, .45, -.3, .6 0.48 -0.57 0.10  -0.57 0.10 
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  Full  One predictor 

 True value Mean SD  Mean SD 
One-way       

  .5, .0, -.3, .3 0.75 -0.94 0.18  -0.93 0.17 
  .5, .0, .3, .3 0.45 -0.28 0.02  -0.29 0.05 
  .5, .0, -.3, .6 0.55 -0.65 0.11  -0.65 0.11 
  .5, .0, .3, .6 0.35 -0.35 0.04  -0.34 0.03 
Positive       

  .5, .45, .3, .3 0.69 -0.82 0.14  -0.78 0.10 
  .5, .45, .3, .6 0.40 -0.44 0.07  -0.42 0.04 
Negative       

  .5, -.45, -.3, .3 1.38 -1.64 0.24  -1.62 0.23 
  .5, -.45, -.3, .6 0.65 -0.79 0.13  -0.78 0.12 
  .5, -.25, -.3, .3 0.92 -1.15 0.21  -1.13 0.20 
  .5, -.25, -.3, .6 0.60 -0.72 0.12  -0.71 0.12 
Random intercept r =.1      

Balanced       

  .5, -.45, .3, .3 0.39 -0.38 0.05  -0.38 0.05 
  .5, -.45, .3, .6 0.32 -0.34 0.04  -0.34 0.04 
  .5, -.25, .3, .3 0.41 -0.40 0.05  -0.39 0.05 
  .5, -.25, .3, .6 0.33 -0.35 0.03  -0.35 0.04 
  .5, .45, -.3, .3 0.61 -0.49 0.14  -0.48 0.15 
  .5, .45, -.3, .6 0.48 -0.42 0.09  -0.41 0.10 
One-way       

  .5, .0, -.3, .3 0.75 -0.60 0.16  -0.59 0.17 
  .5, .0, .3, .3 0.45 -0.44 0.04  -0.42 0.06 
  .5, .0, -.3, .6 0.55 -0.47 0.09  -0.45 0.11 
  .5, .0, .3, .6 0.35 -0.37 0.02  -0.36 0.03 
Positive       

  .5, .45, .3, .3 0.69 -0.64 0.08  -0.61 0.10 
  .5, .45, .3, .6 0.40 -0.38 0.05  -0.37 0.04 
Negative       

  .5, -.45, -.3, .3 1.38 -1.16 0.22  -1.15 0.22 
  .5, -.45, -.3, .6 0.65 -0.55 0.10  -0.54 0.12 
  .5, -.25, -.3, .3 0.92 -0.73 0.19  -0.73 0.20 
  .5, -.25, -.3, .6 0.60 -0.51 0.10   -0.49 0.11 
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Table B12 

X auto-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 2.22 2.22  2.55 2.48 
  .5, -.45, .3, .6 2.06 2.05  -0.47 -0.46 
  .5, -.25, .3, .3 1.84 1.79  1.80 1.42 
  .5, -.25, .3, .6 1.41 1.43  1.25 1.25 
  .5, .45, -.3, .3 0.91 0.91  0.89 0.89 
  .5, .45, -.3, .6 0.71 0.71  0.70 0.70 
One-way   

 
  

  .5, .0, -.3, .3 0.79 0.79  0.66 0.66 
  .5, .0, .3, .3 1.18 1.20  0.92 0.96 
  .5, .0, -.3, .6 0.85 0.85  0.75 0.75 
  .5, .0, .3, .6 1.23 1.23  1.11 1.13 
Positive   

 
  

  .5, .45, .3, .3 0.86 0.88  0.86 0.88 
  .5, .45, .3, .6 1.21 1.84  -0.32 -0.33 
Negative   

 
  

  .5, -.45, -.3, .3 0.38 0.84  0.32 0.79 
  .5, -.45, -.3, .6 1.49 1.31  1.18 0.27 
  .5, -.25, -.3, .3 0.57 0.75  0.51 0.62 
  .5, -.25, -.3, .6 0.77 0.81  0.68 0.69 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table B13 

Y auto-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 0.71 0.71  0.67 0.67 
  .5, -.45, .3, .6 0.22 0.25  0.61 0.46 
  .5, -.25, .3, .3 0.73 0.76  0.72 0.72 
  .5, -.25, .3, .6 0.77 0.79  0.85 0.81 
  .5, .45, -.3, .3 0.61 0.61  0.65 0.65 
  .5, .45, -.3, .6 0.59 0.59  0.44 0.66 
One-way   

 
  

  .5, .0, -.3, .3 1.07 1.07  0.83 0.83 
  .5, .0, .3, .3 1.02 1.03  0.91 0.93 
  .5, .0, -.3, .6 1.20 1.20  0.84 0.84 
  .5, .0, .3, .6 0.67 0.67  0.56 0.57 
Positive   

 
  

  .5, .45, .3, .3 0.97 0.96  0.91 0.94 
  .5, .45, .3, .6 -0.11 -0.10  0.25 0.26 
Negative   

 
  

  .5, -.45, -.3, .3 0.39 0.85  0.46 0.81 
  .5, -.45, -.3, .6 0.47 1.13  -0.68 0.88 
  .5, -.25, -.3, .3 0.75 0.78  0.42 0.66 
  .5, -.25, -.3, .6 0.97 1.01  0.77 0.77 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table B14 

YX cross-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 0.41 0.41  0.52 0.53 
  .5, -.45, .3, .6 0.98 0.40  4.54 4.59 
  .5, -.25, .3, .3 0.04 0.06  -3.44 -3.33 
  .5, -.25, .3, .6 14.42 14.60  0.73 -0.34 
  .5, .45, -.3, .3 0.74 0.74  0.49 0.49 
  .5, .45, -.3, .6 2.32 2.32  17.35 17.29 
One-way   

 
  

  .5, .0, -.3, .3 0.83 0.83  0.66 0.66 
  .5, .0, .3, .3 0.85 0.88  1.00 1.04 
  .5, .0, -.3, .6 0.68 0.68  4.44 4.45 
  .5, .0, .3, .6 -2.23 -2.21  -33.80 -33.76 
Positive   

 
  

  .5, .45, .3, .3 0.96 0.97  1.20 1.15 
  .5, .45, .3, .6 1.43 1.43  1.30 1.30 
Negative   

 
  

  .5, -.45, -.3, .3 0.30 0.84  19.99 0.79 
  .5, -.45, -.3, .6 0.07 0.44  0.17 0.24 
  .5, -.25, -.3, .3 2.13 0.80  0.97 0.70 
  .5, -.25, -.3, .6 0.82 0.87  0.75 0.76 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table B15 

XY cross-effect relative bias for comparison of full to omitted variable models averaged over A-
matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 1.05 1.05  0.48 0.47 
  .5, -.45, .3, .6 2.30 2.47  1.61 1.64 
  .5, -.25, .3, .3 0.97 1.05  0.95 0.85 
  .5, -.25, .3, .6 0.64 0.70  0.00 0.03 
  .5, .45, -.3, .3 1.07 1.07  3.90 3.90 
  .5, .45, -.3, .6 -10.01 -10.01  -8.50 -8.90 
One-way   

 
  

  .5, .0, -.3, .3 -0.66 -0.66  -0.19 -0.19 
  .5, .0, .3, .3 -0.78 -0.78  0.13 0.12 
  .5, .0, -.3, .6 1.07 1.07  0.75 0.73 
  .5, .0, .3, .6 0.61 0.61  0.38 0.32 
Positive   

 
  

  .5, .45, .3, .3 1.05 1.00  0.98 1.00 
  .5, .45, .3, .6 1.35 1.35  1.25 1.25 
Negative   

 
  

  .5, -.45, -.3, .3 0.40 0.85  0.49 0.80 
  .5, -.45, -.3, .6 -4.64 1.02  -0.15 0.91 
  .5, -.25, -.3, .3 -0.58 0.71  0.78 0.57 
  .5, -.25, -.3, .6 0.82 0.91  0.88 0.82 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table B16 

Time-invariant effect relative bias for comparison of full to one predictor model averaged over 
A-matrix simulation conditions 

 With Outliers  Without Outliers 
A-matrices TI on X TI on Y  TI on X TI on Y 
Balanced      
  .5, -.45, .3, .3 0.97 1.00  0.97 1.00 
  .5, -.45, .3, .6 0.46 1.01  0.43 1.01 
  .5, -.25, .3, .3 1.18 1.01  1.18 1.01 
  .5, -.25, .3, .6 1.15 1.01  1.15 1.01 
  .5, .45, -.3, .3 1.02 3.99  1.02 3.99 
  .5, .45, -.3, .6 1.00 1.06  1.00 1.06 
One-way   

 
  

  .5, .0, -.3, .3 1.04 0.03  1.04 0.03 
  .5, .0, .3, .3 1.10 1.01  1.10 1.02 
  .5, .0, -.3, .6 1.03 1.07  1.03 1.07 
  .5, .0, .3, .6 1.07 1.02  1.07 1.02 
Positive   

 
  

  .5, .45, .3, .3 0.98 1.04  0.98 1.02 
  .5, .45, .3, .6 1.03 1.04  1.03 1.04 
Negative   

 
  

  .5, -.45, -.3, .3 0.64 0.61  0.93 0.92 
  .5, -.45, -.3, .6 -0.52 0.77  0.72 1.07 
  .5, -.25, -.3, .3 0.80 0.63  0.06 1.02 
  .5, -.25, -.3, .6 1.00 1.31  1.07 1.05 

Note. Relative bias greater than 1 indicates that the omitted model was less biased than the full 
model. Relative bias less than 1 indicates that the full model was less biased than the omitted 
variable model. 
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Table B17 

X auto-effect relative efficiency for comparison of full to omitted variable models averaged over 
A-matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 1.29 1.29  1.18 1.22 
  .5, -.45, .3, .6 1.33 1.27  1.25 1.20 
  .5, -.25, .3, .3 4.11 1.47  3.38 1.28 
  .5, -.25, .3, .6 2.14 1.38  1.64 1.22 
  .5, .45, -.3, .3 1.07 1.07  1.03 1.03 
  .5, .45, -.3, .6 0.86 0.86  0.79 0.81 
One-way   

 
  

  .5, .0, -.3, .3 1.32 1.32  1.07 1.07 
  .5, .0, .3, .3 1.18 1.21  0.98 1.01 
  .5, .0, -.3, .6 1.51 1.51  1.25 1.26 
  .5, .0, .3, .6 1.31 1.32  1.13 1.16 
Positive   

 
  

  .5, .45, .3, .3 1.52 0.90  1.54 0.89 
  .5, .45, .3, .6 1.82 1.72  1.73 1.54 
Negative   

 
  

  .5, -.45, -.3, .3 2.99 0.79  0.60 0.71 
  .5, -.45, -.3, .6 0.38 1.55  0.54 1.51 
  .5, -.25, -.3, .3 0.46 0.98  1.25 0.82 
  .5, -.25, -.3, .6 1.14 1.17  0.95 0.97 

Note. Relative efficiency greater than 1 indicates that the omitted model was more efficient than 
the full model. Relative efficiency less than 1 indicates that the full model was more efficient 
than the omitted variable model. 
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Table B18 

Y auto-effect relative efficiency for comparison of full to omitted variable models averaged over 
A-matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 0.78 0.78  0.73 0.74 
  .5, -.45, .3, .6 1.05 0.96  0.89 0.84 
  .5, -.25, .3, .3 1.37 0.85  1.29 0.79 
  .5, -.25, .3, .6 1.65 1.16  1.44 0.98 
  .5, .45, -.3, .3 1.16 1.17  1.19 1.19 
  .5, .45, -.3, .6 1.66 1.66  1.47 1.51 
One-way   

 
  

  .5, .0, -.3, .3 0.99 0.99  0.86 0.86 
  .5, .0, .3, .3 1.14 1.17  0.99 1.01 
  .5, .0, -.3, .6 1.13 1.13  0.88 0.89 
  .5, .0, .3, .6 1.53 1.54  1.15 1.17 
Positive   

 
  

  .5, .45, .3, .3 1.31 1.00  1.32 0.98 
  .5, .45, .3, .6 1.92 1.74  1.83 1.59 
Negative   

 
  

  .5, -.45, -.3, .3 1.29 0.78  0.60 0.72 
  .5, -.45, -.3, .6 0.33 1.76  0.48 1.45 
  .5, -.25, -.3, .3 0.39 0.82  0.77 0.69 
  .5, -.25, -.3, .6 1.40 1.43  1.20 1.22 
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Table B19 

YX cross-effect relative efficiency for comparison of full to omitted variable models averaged 
over A-matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 0.98 0.98  0.98 1.01 
  .5, -.45, .3, .6 5.58 1.05  6.33 1.08 
  .5, -.25, .3, .3 26.55 1.09  28.14 1.07 
  .5, -.25, .3, .6 31.32 1.06  32.42 1.03 
  .5, .45, -.3, .3 1.57 1.57  1.24 1.24 
  .5, .45, -.3, .6 1.49 1.49  1.41 1.46 
One-way   

 
  

  .5, .0, -.3, .3 1.39 1.39  1.11 1.11 
  .5, .0, .3, .3 0.96 0.99  1.01 1.04 
  .5, .0, -.3, .6 2.03 2.03  1.73 1.73 
  .5, .0, .3, .6 1.09 1.10  1.05 1.07 
Positive   

 
  

  .5, .45, .3, .3 1.52 1.07  1.67 1.21 
  .5, .45, .3, .6 2.03 1.99  1.86 1.77 
Negative   

 
  

  .5, -.45, -.3, .3 2.65 0.79  0.59 0.72 
  .5, -.45, -.3, .6 0.30 1.02  0.43 0.92 
  .5, -.25, -.3, .3 0.39 0.91  0.80 0.78 
  .5, -.25, -.3, .6 1.05 1.08  0.91 0.93 
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Table B20 

XY cross-effect relative efficiency for comparison of full to omitted variable models averaged 
over A-matrix simulation conditions 

 
Full / One Predictor 

 
Full / Dynamic  

With 
Outliers 

Without 
Outliers 

 
With 

Outliers 
Without 
Outliers 

Balanced      

  .5, -.45, .3, .3 1.09 1.09  0.97 0.99 
  .5, -.45, .3, .6 5.34 1.21  3.85 1.09 
  .5, -.25, .3, .3 9.56 1.44  7.98 1.32 
  .5, -.25, .3, .6 16.44 1.60  13.41 1.57 
  .5, .45, -.3, .3 1.30 1.30  1.43 1.43 
  .5, .45, -.3, .6 1.36 1.36  1.41 1.46 
One-way   

 
  

  .5, .0, -.3, .3 1.14 1.14  1.07 1.07 
  .5, .0, .3, .3 1.76 1.82  1.60 1.64 
  .5, .0, -.3, .6 1.10 1.10  0.94 0.95 
  .5, .0, .3, .6 1.63 1.64  1.62 1.67 
Positive   

 
  

  .5, .45, .3, .3 1.45 1.03  1.50 1.03 
  .5, .45, .3, .6 1.87 1.82  1.72 1.62 
Negative   

 
  

  .5, -.45, -.3, .3 1.24 0.78  0.60 0.71 
  .5, -.45, -.3, .6 0.31 1.33  0.45 1.13 
  .5, -.25, -.3, .3 0.45 0.85  1.34 0.71 
  .5, -.25, -.3, .6 1.01 1.04  0.90 0.91 
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Table B21 

Time-invariant effect relative efficiency for comparison of full to one predictor model averaged 
over A-matrix simulation conditions 

 
With Outliers 

 
Without Outliers  

TI on X trait 
variance 

TI on Y trait 
variance 

 
TI on X trait 

variance 
TI on Y trait 

variance 
Balanced      

  .5, -.45, .3, .3 1.21 1.02  1.21 1.02 
  .5, -.45, .3, .6 1.90 1.01  1.39 1.02 
  .5, -.25, .3, .3 1.41 1.02  1.36 1.02 
  .5, -.25, .3, .6 2.21 1.04  1.37 1.02 
  .5, .45, -.3, .3 1.03 1.42  1.03 1.42 
  .5, .45, -.3, .6 1.01 1.17  1.01 1.17 
One-way   

 
  

  .5, .0, -.3, .3 1.10 1.12  1.10 1.12 
  .5, .0, .3, .3 1.26 1.03  1.27 1.05 
  .5, .0, -.3, .6 1.09 1.18  1.09 1.18 
  .5, .0, .3, .6 1.16 1.04  1.16 1.04 
Positive   

 
  

  .5, .45, .3, .3 1.05 1.04  1.01 1.05 
  .5, .45, .3, .6 1.06 1.08  1.06 1.08 
Negative   

 
  

  .5, -.45, -.3, .3 1.12 1.07  0.91 0.89 
  .5, -.45, -.3, .6 0.59 0.64  1.01 1.10 
  .5, -.25, -.3, .3 0.71 0.68  1.05 0.99 
  .5, -.25, -.3, .6 1.10 1.10   1.13 1.13 
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