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Abstract 

Next generation sequencing (NGS) technologies are revolutionizing how we study genetics and evolution 

in the modern world. Data is generated at such a fast pace that scientists are struggling to keep up with the 

innovations in methodology and analytical tools. Genomes are being sequenced at an unprecedented rate, 

and scientists in fields that until recently found no use in learning molecular techniques are venturing into 

the world of high-throughput sequencing.   

Almost 10 years ago, a research group developed Restriction-site Associated DNA Sequencing (RAD-

seq), a method that targets polymorphisms in close proximity to restriction cut sites in hundreds of 

samples simultaneously. The beauty of RAD-seq lies in that it is highly customizable and it does not 

require a reference genome, or intimate prior knowledge of the genetics of the study organism one would 

like to use. The most exciting part about new RAD-seq methods being developed is that their accessibility 

has opened the door to many non-model organisms to be used in new areas of research. The overarching 

theme of my dissertation is the application of RAD-seq data to answer questions in evolutionary, 

quantitative, or population genetics and genomics using non-model species. A secondary goal is the 

development of genomic resources for non-model organisms.  

In Chapter 1, I studied the genetics of a recent shift from self-incompatibility to self-compatibility in an 

insular lineage of Tolpis, with an aim to identify putative genomic regions responsible for this shift in 

mating system. To do that, I assembled a draft genome, annotated it, and used RAD-seq data from a 

mapping population to discover variants. In my second chapter, I focus on a pyralid moth and the genetic 

basis of male song characters that are attractive to females. For that purpose, I again used RAD-seq data 

from hundreds of individuals, and, additionally, I assembled and annotated a genome for this non-model 

organism. In my last chapter, I focused on the bioinformatic challenges associated with RAD-seq data. I 

explored the question of whether or not using a genome sequence helps in the construction of loci from 

RAD-seq reads. The evaluation of the last question is on a fairly basic level but it opens up future avenues 

that I am excited to explore.  
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Chapter 1  

 

The Breakdown of Self-Incompatibility in an Insular Lineage of Tolpis (Asteraceae) 
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ABSTRACT 

 

Angiosperms are the most diverse and abundant group of plants on planet Earth.  One of the most 

frequently observed shifts in angiosperm diversification has been the one from cross-fertilization to self-

fertilization.  Such transitions are of particular interest in oceanic islands due to the disproportionate 

amount of phenotypic diversity they harbor.  The genus Tolpis has a dozen or so described species, most 

of which are endemic to the Macaronesian islands.  All species are self-incompatible (SI), except for 

Tolpis coronopifolia, which is self-compatible (SC), a direct result of the breakdown in SI.  Like 

Brassicaceae, Asteraceae is thought to have a sporophytic SI (SSI), controlled by a single locus (S-locus) 

with multiple tightly-linked genes.  In this study, I attempt to verify that a single locus is responsible for 

the breakdown of the SI response in T. coronopifolia by investigating the genetic architecture of self-seed, 

the capacity for a plant to set seed when given abundant self-pollen.  I first constructed a genetic map for 

a mapping cross between T. coronopifolia (SC) and T. santosii (SI), and then performed a QTL analysis 

for association between genotype and self-set seed, a measure of self-compatibility. The analysis revealed 

a single large QTL affects percent self-seed set.  Additionally, I assembled and annotated the genome of 

T. coronopifolia, and identified candidate genes in the QTL region.  Using gene ontology terms 

associated with homologous proteins to the candidate genes, I identified two genes related to pollen-pistil 

interactions.  One containing a serine/threonine kinase domain, similar to that identified as the female 

determinant of SI in Brassicaceae.  A second, a peroxidase, has been hypothesized to facilitate pollen-

stigma interactions.  The draft genome and associated annotation will serve as genetic resources for the 

scientific community.  
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INTRODUCTION 

 

Flowering plants are one of the most diverse and species-rich groups on Earth, with great ecological and 

economic impact.  The angiosperm radiation is one of the greatest events of recent geological time.  Their 

rapid rise and early diversification prompted Charles Darwin to call them “an abominable mystery” 

because they were a strong contradiction to his belief that “nature does not make a leap.”  In this study, I 

attempt to shed light on the genetic basis of the transition from self-incompatibility to self-compatibility 

in an endemic species of flowering plants.  A surprisingly large proportion (25%) of vascular plant 

species are endemic to oceanic islands, despite the fact that islands are only 5% of the total land surface 

on the planet.  This extraordinary biodiversity is the result of three processes: dispersal, successful 

colonization, and diversification of the colonizers’ progeny (Carlquist 1974).   

 

The breeding system of the colonizing individual is an important factor in the establishment and 

diversification of a new sexually reproducing population.  Baker (1955) hypothesized that following a 

long-distance dispersal event, self-compatible (hereafter, “SC” will be used for “self-compatible” as well 

as “self-compatibility”) colonizers have a selective advantage in establishing new populations on remote 

oceanic islands compared to self-incompatible (hereafter, “SI” will be used for “self-incompatible” as 

well as “self-incompatibility”) colonizers, even though the levels of genetic variation in SC populations is 

reduced.  Baker’s argument was based on the fact that a single propagule of a SC colonizer is all that is 

needed to establish a new population. With SI colonizers, at least two cross-compatible propagules would 

need to end up within a reasonable distance around the same time, and in circumstances that would favor 

gene exchange between the individuals. Although not impossible, that sequence of events is unlikely, and 

thus the establishment of a SI colonizer is a rare occurrence. Stebbins (1957) named Baker’s hypothesis 

“Baker’s Law,” noting that “it is of great significance for studies of the origin and migration of genera of 

flowering plants … that it deserves [this] recognition.”  Seeing that SC individuals simply have better 
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chances than SI individuals of establishing a new colony after a long-distance dispersal event, Baker 

(1967) suggested “Baker’s law” be best called a “Baker’s rule.”   

 

Breeding system is not a simple binary trait.  Plants considered SI are sometimes able to self-fertilize 

(Levin 1996; Cheptou, Lepart, and Escarre 2002; Barrett 2003; Brennan et al. 2011), henceforth referred 

to as “pseudo-self-compatibility” (PSC; also used to designate pseudo-self-compatibility).  Plants with 

this breeding system maximize the dual advantages of self-fertilization and outcrossing (Levin 1996): 

reproductive assurance (Baker 1955; Stebbins 1957) and transmission advantage (Fisher 1941), both 

associated with selfing, and the maintenance of genetic variation within the population which is a direct 

effect of cross-fertilization. 

 

The SI response is controlled by a single highly polymorphic locus, the S-locus (De Nettancourt 2013; 

Boyes and Nasrallah 1993).  Molecular mechanisms that inhibit self-fertilization have evolved 

independently multiple times during angiosperm diversification (Allen and Hiscock 2008).  The two well-

characterized SI systems are the gametophytic SI (GSI) and the sporophytic SI (SSI).  In short, GSI is a 

non-self recognition system while SSI is a self-recognition system (Iwano and Takayama 2012).  Given 

the scattered distribution of the two systems across angiosperm phylogeny, the high degree of within-

family SI system conservation is surprising (Allen and Hiscock 2008). Gametophytic SI is has been the 

subject of numerous studies in the Solanaceae, Rosaceae, Scrophulariaceae, and sporophytic SI has been 

extensively studied in the Brassicaceae (Takayama and Isogai 2005).  

 

The family Asteraceae has the highest number of endemic species on oceanic islands among flowering 

plant families (Crawford et al. 2011).  The genus Tolpis has approximately 12 described species, ten of 

which are insular to Macaronesia, with the majority of those being endemic to the Canary Islands (Jarvis 

1980; Park et al. 2001; Moore et al. 2002).  A survey of the Canarian lineage of Tolpis showed that all but 

one species are either SI or PSC (Crawford et al. 2008).  The only SC species is Tolpis coronopifolia 
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(Crawford et al. 2008).  The SC trait is likely derived from a predominantly SI or PSC ancestor (Carlquist 

1974; Anderson et al. 2001; Crawford et al. 2008; Igic, Lande, and Kohn 2008).   

 

Asteraceae has a SSI system, which has been well described in Senecio squalidus (Asteraceae; Hiscock 

and Tabah 2003).  In this system, the S-locus involves two linked genes that are inherited as a non-

recombinant unit, an S allele/haplotype.  The two-gene system is comprised of a pistil-expressed gene and 

a pollen-expressed gene.  When the S-locus is functioning properly, if a pollen grain attaches to a stigma 

of the same S haplotype, SI response is triggered and pollen tube growth is arrested. 

 

The SI response in Tolpis appears to be controlled by a single locus (Soto-Trejo et al. 2013), which is on 

par with the genetic basis of SI in S. squalidus (Hiscock 2000a).  Furthermore, the SI allele in Tolpis 

appears to be partially dominant to the SC allele (Soto-Trejo et al. 2013). Self-compatibility appears to be 

caused by non-functional S-locus alleles, likely caused by loss-of-function mutations (Igic, Lande, and 

Kohn 2008).  The primary goal of this study is to identify the genetic basis of the breakdown of SI in T. 

coronopifolia, and to investigate the genetic architecture of self-incompatibility in Tolpis.  To my 

knowledge, this is the first study of this nature for an endemic species of an oceanic island.  A secondary 

goal of the study is to provide genetic resources, a draft genome and draft annotation set, for Tolpis 

enthusiasts to aid in their future research endeavors.  

 

MATERIALS AND METHODS 

 

Overview 

I assembled a draft genome for T. coronopifolia.  The draft assembly was annotated based on transcripts 

and proteins from other angiosperms.  Additionally, I constructed a genetic map based on a F2 mapping 
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population and performed QTL analysis to identify the locus underlying breeding system (SI/SC).  Based 

on the QTL analysis and the annotation, I found candidate genes in the region of the QTL.   

 

Genomic Data 

Genomic DNA was extracted from a single individual of the Tolpis coronopifolia (SC) to generate two 

genomic libraries for sequencing, one Illumina Paired-End (PE) with 300bp insert size (hereafter, 

“Run1”) and one with 1-kb insert size (hereafter “Run2”).  The DNA extraction was done by Patrick 

Monnahan, and the library construction was done by the Genome Sequencing Core (https://gsc.ku.edu/) at 

the University of Kansas, Lawrence. The reads in Run1 and Run2 were 75- and 100-bp long, respectively.  

In total, over 250 million pairs of reads (Table 1.1) were generated from the two runs.  I used Sickle 

(https://github.com/najoshi/sickle) to trim the reads and discard any reads containing uncalled nucleotides 

(N’s).  Next, I used a maximum-likelihood based tool, Quake (Kelley, Schatz, and Salzberg 2010), to 

correct sequencing errors.  I set the k-mer size parameter (k) in Quake to 19, and preserved singletons, 

reads whose pairing read was discarded, in a separate FASTQ file.  Overall, quality control of the 

sequences removed a little over 2% of the raw data (Table 1.1).  

 

Draft Genome Assembly 

Most de Bruijn assemblers (Pevzner, Tang, and Waterman 2001) require that the user specify a k-mer 

size, where the optimal k depends on the repetitiveness of the genome, the heterozygosity, and 

technology-specific error rates (Chikhi and Medvedev 2014).  Since these genome characteristics are 

unknown for Tolpis, I used KmerGenie (Chikhi and Medvedev 2014) to estimate an appropriate k-mer 

(73).  To assemble the reads into scaffolds, I used ABySS (J. T. Simpson et al. 2009) because of its low 

error rate when assembling a human chromosome (Salzberg et al. 2012), its parallel processing ability and 

low memory requirements (J. T. Simpson et al. 2009).  Using default parameters, I ran ABySS with k=73 

on a single cluster node with 16 processors, and a total of 32GB of RAM.  After the ABySS process was 
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complete, I ran the Assemblathon 2 script “assemblathon_stats.pl” (Bradnam et al. 2013) to calculate 

descriptive statistics for the resulting assembly (Table 1.2).  Due to the fragmented nature of the 

assembly, I used only scaffolds of length 1 kb or longer (hereafter “1-kb assembly”; assembly statistics in 

Table 1.2) in downstream analyses.  That cutoff scaffold length had to be long enough to harbor a gene, 

and was calculated based on the average gene length in two species of Solanaceae (3.1kb), a closely 

related family of angiosperms.   

 

Annotation 

To annotate the 1-kb assembly, I used the MAKER2 pipeline (Holt and Yandell 2011).  MAKER uses 

transcript and protein data to predict genic regions in the assembly.  Due to lack of transcriptomic data 

from Tolpis, I did not train the gene finders using the normal pipeline; rather, MAKER2 generated gene 

and protein predictions solely based on alignments of ESTs and protein databases from related taxa.  

Namely, I provided the software with ESTs from Helianthus annuus (Asteraceae) and Lactuca sativa 

(Asteraceae), and protein sequences from 4 species: Solanum lycopersicum (Solanaceae), Solanum 

tuberosum (Solanaceae), Mimulus guttatus (Phrymaceae), and Arabidopsis thaliana (Brassicaceae).  All 

sequence files were downloaded from Phytozome (Goodstein et al. 2012) except for the Heliantus annuus 

ESTs, which were downloaded from UC Davis’ The Compositae Genome Project Database 

(http://cgpdb.ucdavis.edu/asteraceae_assembly/). 

 

Mapping Population and Genotyping 

A mapping population was established and phenotypes were recorded as described in Crawford et al. 

(2008) and Crawford et al. (2013).  In short, Dan Crawford used T. coronopifolia (SC) pollen to fertilize 

T. santosii (SI; Crawford, Mort, and Archibald 2013) individuals.  Then, he used an individual from the 

F1 progeny with high self-set seed to give rise to an F2 population via self-pollination.  He scored the 

members of the F2 for percent self-seed set (number of seeds divided by the total number of florets).  
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Based on the self-set seed, we additionally scored the progeny individuals as SC (the self-set seed ≥70%), 

or SI (the self-set seed < 70%).  The three distributions are in Figure 1.1 (in Results section). 

 

Genomic DNA was extracted from 101 individuals belonging to the F2 population as well as the parental 

T. coronopifolia species. MSG libraries were prepared according to the protocol described in Andolfatto 

et al. (2011). All molecular work was done by Nick McCool. Instead of MseI restriction enzyme, AseI 

was used because it cuts less frequently resulting in higher sequencing read coverage per locus.  A step in 

the MSG library preparation is the ligation of a 6-bp barcode, unique to each individual, that allows for 

multiple individuals to be pooled and run on one sequencing lane.  The resulting FASTQ file contains 

reads from all individuals.  The FASTQ file was split by the unique inline barcode using custom Python 

scripts.  I then aligned the sequenced reads from each individual, including T. coronopifolia, to the 

scaffolds of the 1-kb assembly using BWA (H. Li and Durbin 2009).  I used GATK (McKenna et al. 

2010) to call SNPs in the population.  

 

I parsed the resulting VCF file (Danecek et al. 2011) using custom Python scripts.  In addition to 

generating files for the genetic map construction software, the scripts polarized individual genotypes and 

filtered the SNPs.  Since the draft genome is based on genomic data from the SC species, and data suggest 

that SI is dominant to SC (Crawford et al. 2008), I polarized individual genotypes in the following 

manner: at a given marker, individuals homozygous for the reference allele were classified as (rr), 

whereas individuals homozygous for the alternative allele as well as heterozygotes were classified as RR 

and Rr, respectively.  I used capitalization to indicate dominance relationship at the SNPs.  I only 

included SNP loci that meet all of the following criteria: 1) the locus has only two segregating alleles, 2) 

total read depth among samples is between 200 and 50000, 3) the genotype of the T. coronopifolia 

individual is called as homozygous for the reference allele, 4) at least 60% of the individuals have a 

genotype, and 5) the empirical heterozygosity for the locus is between 0.4 and 0.6.  The SNPs that passed 

this filter (N=2,755) constitute the set of markers used to construct the linkage maps and to perform a 
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QTL analysis.  For easier identification, I gave each marker an informative name containing the scaffold 

ID and nucleotide position of the polymorphism in the scaffold. 

 

Linkage Map Construction 

To build the linkage map, I used Lep-MAP2 (Rastas et al. 2013; Rastas et al. 2016), an open-source 

software package for constructing ultra-high-density linkage maps.  In addition to being able to handle 

thousands of markers per chromosome, Lep-MAP2 is multi-threaded, which cut down on analysis 

runtime (Rastas et al. 2016).  The software requires genotype data from one or more full-sib families (F2 

progeny along with their parents, F1) in LINKAGE pedigree format (Lathrop et al. 1984).  Since I didn’t 

sequence an F1 individual, I inferred the hybrid genotypes based on the progeny individuals.  For each 

SNP that made it into the final set of markers during VCF parsing, I noted the reference (SC) and the 

alternative (SI) alleles, and recorded the resulting genotype.  The “artificial” F1 parental genotypes were 

included in the LINKAGE file, once for each parent.   

 

To split the markers into linkage groups (LGs), I first ran the SeparateChromosomes module, with a LOD 

(logarithm of odds) score limit of 12, and without a lower limit to the number of markers per linkage 

group.  The subroutine performs a segregation distortion test by comparing expected Mendelian 

proportions and the distribution of genotypes in the progeny.  The module identified 630 (out of 2,755) 

marker that deviate significantly (p<0.01) from the expected Mendelian ratios, and removed them.  The 

remaining 2,125 markers were placed on 9 LGs (Table 1.3).  Finally, I ordered the markers on each LG, 

separately, with the OrderMarkers module. Default values were used for all but two parameters, mapping 

function (useKosambi=0, so Haldane was used instead) and duplicate removal (removeDuplicates=1).  

Lep-MAP2 doesn’t have a graphing module, so the output (marker order and recombination distances) 

was re-formatted for R/qtl (Arends et al. 2010).  A graphical representation of the genetic map was 

generated in R/qtl (Figure 1.2). 
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QTL Mapping 

To find evidence for linkage to a QTL, I performed a genome scan for a single QTL in R/qtl (Arends et 

al. 2010).  First, I used standard interval mapping approach on the percent self-seed set, and ran 1000 

permutations to establish a genome-wide likelihood of odds (LOD) threshold of significance (Churchill 

and Doerge 1994).  Given the non-normal phenotype distribution (Figure 1.1a), I performed the same 

analysis on the log-transformed phenotype data, which identified the same QTL.  

 

Since SI response in Tolpis is controlled by a single locus, with the SI allele being dominant to the SC 

allele (Soto-Trejo et al. 2013), I used a goodness-of-fit test at each marker in the final set (N=2,755) in F2 

to identify scaffolds that are strongly associated with the SI/SC phenotype.  For each marker, and using 

the binary phenotype scoring, I composed a 2x2 contingency table with genotype (rr and RR/Rr) and 

phenotype (SI and SC), and assigned each individual to a category based on their genotype/phenotype 

combination.  I used Mendelian ratios for a single-gene inheritance for an intercross between two hybrids 

as the expected frequencies (0.25 rr and 0.75 RR/Rr).  To asses if there is a significant difference between 

the observed and expected numbers for each of the 4 categories, I calculated a G statistic which was 

compared to the χ2 distribution with 1 degree of freedom.  

 

Identification of Putative Genes in the QTL region  

I examined the predicted proteins on every scaffold (as indicated by marker name) located in the QTL 

region (within ~3.5cM of the peak) for homology to proteins in A. thaliana using the blast tool on The 

Arabidopsis Information Resource (TAIR).  I blasted every protein sequence and inspected the best match 

for gene ontology (GO) terms related to pollen recognition or pollen-pistil interactions. 
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RESULTS 

Phenotype Distributions 

In the F2, self-seed set is a continuous trait with a skewed bimodal distribution (Figure 1.1a).  When 

scored as SI or SC, the F2 individuals are 80.34% SI and 19.66% SC; that is approximately a 4:1 ratio 

(Figure 1.1b).   

 

Genome Assembly and Annotation 

The assembly statistics for the draft genome of Tolpis coronopifolia are presented in Table 1.2.  The 1-kb 

assembly is a little under 61% of the total length of the original assembly but it has the benefit of 

consisting of a more manageable number of scaffolds (Table 1.2).  Additionally, a preliminary set of gene 

annotations will be made publicly available as a resource for the Tolpis community.  In total, MAKER2 

found 29,320 genes, which is on par with the number of genes in A. thaliana (Swarbreck et al. 2008). 

 

Linkage Map 

Using 2,125 markers from 92 F2 individuals, I generated a marker-dense genetic map containing 9 LGs 

(Figure 1.2), which corresponds to the number of chromosomes for the genus (Jarvis 1980).  Eight of the 

9 LGs contain at least 200 markers.  A detailed distribution of marker number across LGs, map lengths, 

and spacing are provided in Table 1.3.   

 

QTL Mapping Analysis 

The QTL analysis revealed a single QTL at 3.55cM on LG2, with a peak above the genome-wide 

threshold of ~4.75 (Figure 1.3a).  The marker located at the peak of the QTL is called M8903214_17347 

(hereafter “peak marker”).  Results from standard interval mapping of the percent self-seed and from log-

transformed percent self-seed, and results from the binary model for the SI/SC data are qualitatively the 

same but differ in the strength of evidence (Figure 1.3b).  The locus explains between 52.09-80.20% of 
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the variance in self-seed set, depending on the chosen analysis.  In Figure 1.4, phenotype averages are 

shown for the 3 genotype groups (RR, Rr, rr).  The trait appears to be nearly recessive, meaning that in 

order for a plant to be self-compatible, it needs to have two copies of the SC allele (r). Additionally, the 

SI phenotype is “leaky” meaning that, while SI plants are predominantly outcrossing, they are capable of 

setting self-seed at low frequency.  

 

Candidate genes 

I found a large number of genes in the scaffolds spanning the ~7cM around the peak of the QTL (Table 

1.4).  Of the 32 predicted protein sequences MAKER2 generated, I identified two genes of interest that 

could be a part of the S-locus (Table 1.4).  

 

DISCUSSION 

 

In this study, I investigated the genetic basis of the self-incompatibility breakdown in the insular lineage 

Tolpis coronopifolia (Asteraceae).  One of the main results of my study is that there is a single large-

effect QTL affecting breeding system, and the derived allele (SC) is nearly recessive.  This finding agrees 

with previous research suggesting that there is a single locus of large effect determining SI response in the 

species (Soto-Trejo et al. 2013).  Additionally, I identified 2 genes that are potentially involved with the 

breakdown of the SI response in T. coronopifolia.  Finally, through this study, I generated considerable 

genetic resources, including a draft genome with an accompanying annotation and a gene-based genetic 

map, to advance future studies of Tolpis. 

 

Sporophytic Self Incompatibility (SSI)  

The QTL mapping results (Figure 1.3) indicate that the breakdown of the SI response is likelycontrolled 

by a single locus, a result that is in agreement with the described mechanisms of SSI not only in Senecio 
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squalidus (Asteraceae) (Hiscock 2000b; Hiscock 2000a), but also in species of Brassicaceae (Hiscock and 

McInnis 2003).  Studies have suggested the rejection of self-set seed is likely the derived state in most 

taxa of flowering plants (Hurka and Neuffer 1997; Beck, Al-Shehbaz, and Schaal 2006; Igic, Lande, and 

Kohn 2008). Despite the striking similarities between these SSI systems, molecular studies are providing 

evidence for divergent mechanisms of these systems.  

 

In most well studied SSI systems, the S locus is a tightly linked multi-gene unit (Kusaba et al. 2001).  The 

number of genes in the S-locus varies but there are two necessary components for recognition of self-

pollen - a pollen-specific gene and a stigma-specific gene, the male and female determinant, respectively 

(Takayama and Isogai 2005).  The two determinants have been identified in the Brassicaceae.  The female 

determinant is the S-locus Receptor Kinase (SRK) gene (Stein et al. 1991; J. Nasrallah and Nasrallah 

1993; Hatakeyama et al. 1998; Kusaba et al. 2001), while the male determinant is a S-locus Cysteine Rich 

(SCR) gene.  A SRK protein consists of three domains: (i) an extracellular S-domain, (ii) a 

transmembrane domain, and (iii) an intracellular serine/threonine kinase domain.  The annotation of the 

draft genome along with the QTL analysis identified two genes of interest. One of the genes is 

homologous to the intracellular serine/threonine kinase domain in A. thaliana, which points possibly to 

the identification of the female determinant gene of the S-locus in T. coronopifolia.  I was unable to 

identify a SCR-homologous gene in the vicinity of the first candidate gene due to the disjointed nature of 

the assembly. Additionally, SCR proteins are small in size and highly divergent (Takayama et al. 2000; 

Watanabe et al. 2000) which makes their identification much more challenging.  The second gene that I 

identified is a peroxidase specifically expressed in the stigma that has been associated with certain S-

alleles (Hiscock et al. 2003; McInnis et al. 2005), but has yet to be explicitly linked to SI response.  These 

homologies need to be explored by future functional genetics studies to confirm or refute their role in the 

SI response in Tolpis.  Allen et al (2011) found no evidence of SRK being involved with the SI response 

in S. squalidus. Finally, a potentially causative relationship between the identified genes and SI 
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breakdown is not evidence that either of the candidate genes are a part of the multigene until controlling 

pollen recognition. 

 

The Genetics of the Transition to Selfing 

In the present study, I have found that the breakdown of the SI response maps to a single QTL. In a 

similar interspecific cross between Solanum lyconpersicum (SC) and Solanum habrochaites (SI), 

Bernacchi and Tanksley (1997) found self-incompatibility to be strongly associated with a single QTL 

which they found to be in the S-locus.  This result is also consistent with the findings of a recent study 

(Soto-Trejo et al. 2013), where SI and SC plants segregated in the progeny in a 3:1 ratio, as is expected 

from a single locus with a dominant allele.  In Capsella, self-compatibility maps to a single locus, the 

described Brassicaceae S-locus (J. Nasrallah et al. 2007).  Similar to Tolpis, Capsella’s SC character is 

derived (Hurka and Neuffer 1997). Unlike Tolpis, studies suggest that the SC allele is partially dominant 

to the SI allele.  (Slotte et al. 2012).  

 

In SI taxa, the emergence of self-compatibility is associated with the breakdown of the genetic 

mechanism that prevents self-fertilization (de Nettancourt 1977; Busch and Schoen 2008; Igic, Lande, 

and Kohn 2008; Pettengill and Moeller 2012).  This shift in mating system is associated with specific 

changes in floral and reproductive traits named the selfing syndrome (Ornduff 1969).  In addition to a 

high percent of selfed seed, selfing species have fewer, smaller, and less showy flowers, lower pollen-

ovule ratios, and smaller anther-stigma separation relative to outcrossing relatives. Tolpis coronopifolia 

has several of those characteristics, including high self-seed set, smaller capitula, and fewer florets per 

capitulum (Crawford et al. 2008).  

 

While not much more is known about the genetics of the appearance of non-functional S-alleles, there is 

extensive research on the subsequent changes in floral morphology.  The association between selfing rate 

and floral characters has been observed in multiple genera, including Arabidopsis (Goodwillie et al. 
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2010), Leptosiphon (Goodwillie 1999), Mimulus (C. Ritland and Ritland 1989).  Furthermore, studies 

have found that floral traits associated with the transition to selfing tend to be polygenic. In interspecific 

crosses of Mimulus guttatus and Mimulus platycalyx, Lin and Ritland (1997) examined 5 floral characters 

that are highly divergent between the selfing and outcrossing species; each character was associated with 

1-3 QTL of small effect.  In a similar cross between the M. guttatus and M. nasutus, Fishman et al. (2002) 

found at least 11 QTL associated with each floral trait they examined. Goodwillie et al. (2006) detected 3-

7 QTL of moderate effect per floral character studied.  In Capsella, morphological traits characteristic of 

the selfing syndrome were associated with 2-5 QTL per trait (Slotte et al. 2012).  The traits measured in 

these studies are adaptive floral characters associated with the selfing syndrome, while the trait used in 

this study is the ability to set self-seed.  It is possible that by acting on self-compatibility, selection 

resulted in correlated changes in these floral characters.  

 

Pseudo Self-Compatibility and Baker’s Law 

An interesting result from this study is the variable dominance effects of the SC alleles; more specifically, 

a large portion of the plants that produce some self-set seed are heterozygous at the detected QTL (Figure 

1.4).  The ability of SI/SC heterozygotes to set self seed are likely to have propagated predominantly 

selfing lineages that are homozygous in the ancestral population of T. coronopifolia. Evidence suggest 

that SC has evolved from predominantly SI lineages multiple times in angiosperm diversification (Levin 

1996; Cheptou, Lepart, and Escarre 2002; Barrett 2003; Brennan et al. 2011). While most plant species 

are predominantly self-incompatible (Goodwillie and Ness 2005), they are able to set self-seed at low or 

intermediate frequency, a phenomenon termed pseudo-self-compatibility (PSC; Levin 1996; Stephenson, 

Good, and Vogler 2000; Vogler and Stephenson 2001; Brennan, Harris, and Hiscock 2005; Mable et al. 

2005; Stone, Sasuclark, and Blomberg 2006; Mena-Ali and Stephenson 2007).  A population genetics 

study of S. squalidus has alluded to the fact that the SSI system is somewhat flexible in that such plants 

will set autogamous seed under stress conditions (Hiscock 2000b).  The strength of SI is thought to be 

determined by genetic factors such as the dominance relationships between S-alleles, mutations that can 
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make certain S-alleles nonfunctional, and the presence of modifier loci that influence the strength of S-

alleles present in the population (Levin 1996; Stephenson, Good, and Vogler 2000; Good-Avila and 

Stephenson 2002).  The results of a phylogenetic study further support that Tolpis coronopifolia evolved 

from PSC ancestors that colonized the Canary Islands (Archibald et al. 2006).  This makes Tolpis an 

exception to Baker’s law.  Similar exceptions have been found in the Hawaiian silversword alliance 

(Asteraceae; L. R. Nielsen and Siegismund 2003) and in the Galápagos endemic genus Scalesia (Carr, 

Powell, and Kyhos 1986).  

 

The ability to rely on self-fertilization when outcrossing is not an option (invasion of new geographical 

area, sudden loss of pollinator, etc) provides some of the benefits for colonizers discussed both by Baker 

(1955; 1967) and by Carlquist (1974).  A single PSC colonizer capable of self-fertilization can propagate 

a population, which follows Baker’s law.  In addition to this reproductive assurance aspect, under 

favorable conditions, PSC populations will tend to utilize outcrossing as their main reproductive strategy 

(Levin 1996), which in turn would ensure that the levels of genetic diversity in the population are 

increased in comparison to the expected genetic diversity if the colonizer was strictly SC.  Thus, 

Carlquist’s argument that an SI colonizer will be more successful due to increased genetic diversity is also 

applicable to a PSC colonizer.  

 

Despite the fact that the shift from cross-fertilization to self-fertilization is very frequent in angiosperm 

radiation, a disproportionately small percentage of plants utilize selfing as their main reproductive 

strategy (Goodwillie 2005).  Stebbins (1957) hypothesized that it might be because this breeding system 

is an evolutionary “dead end” – transitions from outcrossing to selfing are not reversible, reduced genetic 

variation due to inbreeding depression diminishes the ability of selfing lineages to adapt to new 

environmental conditions, and, therefore, are at a greater risk of extinction.  However, evidence 

supporting maladaptation of selfing species is somewhat lacking (Igic and Busch 2013). To elucidate the 

genetics of adaptation in selfing species, we need to understand both the genetic basis of floral characters 
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associated with different breeding systems but also the genetic basis of selfing capacity of plants.  In this 

study, I have attempted to make a small contribution towards the latter.  
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FIGURES 

Figure 1.1. Distribution of F2 phenotype: (a) percent self-seed set, (b) log of percent self-seed set, and (c) 
absolute frequency of SC and SI individuals. 
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Figure 1.2.  Tolpis coronopifolia (n=9) linkage map containing 9 linkage groups and a total of 2,125 
markers from 92 individuals. 
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Figure 1.3.  A QTL analysis revealed a single QTL around 3.5cM on LG2.  (a) LOD scores for the 9 LGs 
using standard interval mapping of percent self-seed set.  The dotted line is the genome-wide threshold 
established by a permutation test (N=1000) at α=0.01.  (b) LOD scores from 3 analyses for LG2, which 
contains the QTL peak.  The turquoise line is from standard interval mapping of percent self-seed, the 
violet is from standard interval mapping of log-transformed percent self-seed set, and the pink line is 
based on a QTL analysis using a binary model for the SI/SC scoring of the phenotype.  The dotted line is 
the genome-wide threshold established by a permutation test (N=1000) at α=0.01, and is approximately 
the same for all analyses. 
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Figure 1.4.  The effect plot for the peak marker at the QTL associated with SC in T. coronopifolia; 
phenotype average (+ symbols indicate the span of the standard error).  A single copy of the SI allele (R) 
appears to be enough to inhibit self-fertilization (strong dominance effect), but when the number or SC 
alleles (r) increases from 1 to 2 in an individual, the ability to set seed increases drastically.  
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TABLES 

Table 1.1.  Number of paired and singleton reads after trimming (Sickle) and correcting (Quake) raw 
reads. The percent of the original data preserved after each step is in parentheses. 
 

 Run1 Run2 Singletons Total 

Raw 116,878,047 
(100.0) 

136,733,917 
(100.0)  253,611,965 

(100.0) 

Sickle 113,079,007 
(96.7) 

133,827,705 
(97.9) 5,531,771 252,438,485 

(99.5) 

Quake 105,600,129 
(90.4) 

131,398,481 
(96.1) 10,776,624 247,775,236 

(97.7) 
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Table 1.2. Assembly statistics for the original genome assembly as well as the assembly containing 
scaffolds longer than 1 kb.  N50 is the length of the smallest scaffold in the set of longest scaffolds 
containing at least half of the total genome assembly, while L50 is the number of scaffolds in the set. 
 

 Original Assembly 1-kb Assembly 

Total size of scaffolds (bp) 1,186,490,297 722,218,512 

Number of scaffolds 3,977,270 111,059 

Scaffolds > 1kb 110,995 110,995 

Scaffolds > 10kb 22,042 22,042 

Scaffolds > 100kb 4 4 

Longest scaffold 108,991 108,991 

Mean scaffold size 298 6,503 

Median scaffold size 99 3675 

N50 scaffold length 4,124 11,570 

L50 scaffold count 51,125 18,025 

%N 4.07 5.83 
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Table 1.3. Descriptive statistics for genetic map based on 92 F2 individuals. 
 

 

Linkage 
Group 

Number of 
Markers 

Total Length 
(cM) 

Average Spacing 
(cM) 

Maximum Spacing 
(cM) 

1 298 149.3 0.5 9.2 
2 291 173.9 0.6 7.2 
3 270 255.6 1 17.4 
4 262 124.5 0.5 6.4 
5 258 201 0.8 11.5 
6 246 140.6 0.6 5.9 
7 245 116.5 0.5 6.3 
8 212 175.1 0.8 15.8 
9 43 23.3 0.6 3.4 

overall 2125 1359.9 0.6 17.4 
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Table 1.4.  Two candidate genes that have been associated with SI in other species, also predicted in the 
region immediately around the peak of the QTL in T. coronopifolia.  Along with the scaffold ID, scaffold-
specific gene ID, I have included the AED score (strength of evidence for the predicted gene; the closer 
the value to 0, the higher the confidence in the prediction), the homologous A. thaliana locus (as found on 
TAIR), and the associated description and GO term.  
 

Scaffold ID Gene 
ID 

AED 
score 

A. thaliana 
locus TAIR Description GO term 

8845966 0.2 0.1 AT1G71695 Peroxidase 
superfamily protein 

hydrogen peroxide 
catabolic process, 

oxidation-reduction 
process, response to 

oxidative stress 

8894954 0.6 0.3 AT4G21380 

encodes a putative 
receptor-like 

serine/threonine 
protein kinases that is 

similar to Brassica 
self-incompatibility 

(S) locus 

defense response, protein 
phosphorylation, 

recognition of pollen 
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Chapter 2  

 

De novo Genome Assembly and QTL Mapping of Male Song Characters  

in Achroia grisella 
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ABSTRACT 

 

The lesser waxmoth, Achroia grisella (Lepidoptera: Pyralidae), is a symbiont of the honeybee Apis 

mellifera with an interesting reproductive behavior - while in most moth species females use signals to 

attract males, in the lesser wax moth, the roles are reversed. Three male song characters, namely pulse 

rate (PR), peak amplitude (PA), and asynchrony interval (AI), appear to be important for female choice 

during mate selection. Multiple studies have been published aiming to determine the genetic architecture 

of these traits. And while loci have been detected as affecting the traits, genetic maps have been usually 

AFLP-based, which makes direct comparisons between similar studies difficult. Until now, no efforts 

have been made to construct a gene-based map that can be used for direct comparisons with other studies, 

and could be linked to a physical location in a genome sequence. Here, I have combined RAD-seq 

genotype data, from two large backcross populations, with QTL mapping, to investigate the genetic basis 

of three song characters important for mate pairing in Achroia grisella as well as two life history traits. 

Several QTL were detected at different significance levels. Additionally, I assembled a genome for the 

waxmoth, assembled transcripts from RNA-seq reads, and annotated the draft genome. Through 

homology to Z-linked proteins from two other species of Lepidoptera, I identified the Z chromosome in 

Achroia. Finally, I assigned the majority of the longest scaffolds in the assembly to chromosomes. An 

interesting outcome from this study is that Achroia has a surprisingly low frequency of crossover events, 

making it difficult to generate high-density linkage maps for individuals subject to a single round of 

recombination. 
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INTRODUCTION 

 

Advancements in high-throughput sequencing technologies have opened new avenues of scientific 

inquiry in the field of evolutionary biology(Mardis 2008). Next generation sequencing (NGS) provides a 

vast amount of sequencing data at low and declining cost, and in a much shorter time than pre-existing 

sequencing technologies. As a result, the evolutionary genomics literature, which until recently featured 

studies predominantly on model organisms like flies, mammals, and Arabidopsis, is now becoming more 

inclusive to non-model species. The affordability of NGS has enabled groups that study non-model 

organisms not only to use these genomic approaches in their studies, but also to venture into new fields 

such as genomics and gene-based linkage maps(Ellegren 2014). 

 

New methodologies, developed based on NGS technologies, have provided a framework for detecting and 

genotyping a large number of single nucleotide polymorphisms (SNPs). Restriction site Associated DNA 

sequencing (Baird et al. 2008) uses a restriction enzyme of choice to reduce genome complexity, 

modified Illumina adaptors to identify individuals within a sample, mechanical shearing of DNA 

fragments, and a size selection step during library preparation. Some aspect of RAD-seq have been 

modified by research groups to suit different research needs. For example, in both Genotyping by 

Sequencing (GBS; Elshire et al. 2011) and Multiplexed Shotgun Genotyping (MSG; Andolfatto et al. 

2011), once barcoded adaptors have been ligated to the DNA fragments, no additional shearing takes 

place. While GBS lets PCR do the size selection, during MSG library preparation, size selection occurs 

before the PCR step. As a result, we are now able to construct gene-based linkage maps, which are of 

critical importance in the identification of quantitative trait loci (QTL) associated with traits of 

evolutionary significance. The advantage of gene-based linkage maps over classic AFLP-based maps is 

that markers can be linked to a physical location in a genome, which in turn allows for direct comparisons 

between studies of the same organism. Most importantly, the sequenced reads (RAD tags) do not require 
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the existence of a reference genome to discover markers and call genotypes, which makes the 

methodology especially valuable for non-model organisms.  

 

One such organism is the lesser waxmoth, Achroia grisella (Lepidoptera: Pyralidae), a symbiont of the 

honeybee Apis mellifera (Milum 1935) with an interesting reproductive behavior (Greenfield and Coffelt 

1983). Generally, males of other moth species produce sounds only when in proximity with pheromone-

emitting females (Greenfield 1981), Achroia grisella males attract females from a long-distance by 

producing ultrasonic sounds with the tymbals located on the sclerites that cover the bases of their 

forewings. The acoustic signals are generated during wing fanning as the downward motion of the wings 

pressures the tymbals. This downward stroke of the wings produces one pair of pulses in a period, while 

the upward stroke of the wing produces the second pair of pulses in a period as said motion removes the 

pressure from the tymbals. Features of these male signals have shown to be important for female choice 

during mate pairing(Jang and Greenfield 1996; Jang and Greenfield 1998b).  

 

Studies have shown that three signal characteristics are important for female choice (Collins et al. 1999) – 

pulse rate (PR), peak amplitude (PA), and asynchrony interval (AI). Pulse rate is the rate at which signals 

are emitted. The peak amplitude is the greatest absolute value of sound pressure level recorded during a 

pulse. Finally, there is a small (100-400 µs) delay between pulses generated by strokes of the left and the 

right wings. That delay is termed the asynchrony interval. Females are attracted to signals that have 

greater PR, greater AI, and higher PA (Jang and Greenfield 1996; Jang and Greenfield 1998a; Limousin 

and Greenfield 2009). In other words, females prefer males that sing faster, more erratic, and louder.   

 

While we know that there is substantial additive genetic variance (VA) for these characters (Collins et al. 

1999; Brandt and Greenfield 2004), most QTL studies have been able to explain only a small fraction of 

the phenotypic variance. Song characters are polygenic traits and a number of putative QTL have been 

associated with each trait (Limousin et al. 2012; Alem et al. 2013; Gleason et al. 2016). A locus on the Z 
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chromosome was found to have an effect on PR (Gleason et al. 2016). These studies provide valuable 

insight into the genetics of the traits but some used AFLP-based maps (Limousin et al. 2012; Alem et al. 

2013) or were based on a small number of markers (Gleason et al. 2016). Finally, since no efforts to 

sequence the genome have been made until now, it has been impossible to even speculate about putative 

causative genes.  

 

In this study, I aimed to investigate the genetic architecture of three male song characters important to 

female choice as well as two life history traits (development time and weight). For this purpose, I mapped 

QTL using thousands of SNPs in two large backcross populations. Additionally, I assembled and 

annotated a draft genome, and the loci in the genetic map were linked to positions in the draft genome. 

Finally, during this study, I was able to generate genetic resources that will serve as a tool to help future 

research on this interesting non-model organism.  

 

METHODS 

 

Overview 

 I assembled a draft genome for Achroia grisella using short-read Illumina sequencing data, and used 

RNA-seq data from Achroia pupae and protein databases from related species to annotate it. Using 

protein homology, I identified the Z chromosome. I used a large set of SNPs from two backcross 

populations and a segregant population to form linkage groups, and to associate variants with male song 

characters. Finally, I used BLAST (Altschul et al. 1990) to link marker sequences to the genome scaffolds 

so that I can assign scaffolds to chromosomes.   
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Genomic Data 

For the de novo assembly, two Illumina libraries were made with genomic DNA from an inbred line 

called “Kansas” (Gleason et al. 2016). One library was a short insert size paired end (SIPE, hereafter 

“PE”) and the other was a long insert size mate pair (LIMP, hereafter “MP”) library. For detailed 

descriptions of the two library types, see (Metzker 2009). The insert size ranges for the PE and MP 

libraries were 280-504bp and 3-5kb, respectively. Both libraries were constructed at Cofactor Genomics 

(Cofactor Genomics LLC; http://cofactorgenomics.com) with aliquots from a pooled DNA sample from 

multiple individuals. Multiple individuals were required to provide the necessary amount of DNA for 

library construction due to the limited amount of DNA that can be extracted from a single individual. All 

moths used for the pooled sample were males, the homogametic (ZZ) sex (Traut et al. 2007; Catchen, 

Braasch, and Postlethwait 2011), to ensure that autosomes and sex chromosomes were as uniformly 

covered as possible. Each library was sequenced three times on a lane of an Illumina HiSeq machine, 

once at Cofactor Genomics (Cofactor Genomics LLC; http://cofactorgenomics.com), and twice the 

Genome Sequencing Core (GSC; https://gsc.ku.edu/) at the University of Kansas. All sequenced reads 

were 101-bp long. In total, I obtained approximately 290 million and 405 million pairs of PE and MP 

reads, respectively (Table 2.1). 

 

Since read quality has a major effect on the resulting assembly (Catchen, Braasch, and Postlethwait 2011; 

Salzberg et al. 2012), I preprocessed our FASTQ files using a number bioinformatic tools. Initially, I 

removed adaptor sequences from and trimmed the reads using SCYTHE 

(https://github.com/vsbuffalo/scythe) and SICKLE (https://github.com/najoshi/sickle), respectively. 

While running SICKLE, I removed all reads with length less than 80bp, and any reads with uncalled 

nucleotides (N’s). Subsequently, I aligned the reads to the PhiX reference genome to remove any 

contaminant reads using Bowtie2 (Langmead and Salzberg 2012) with default settings and storing the 

unmapped reads. Finally, I corrected the set of uncontaminated, quality-trimmed sequences using 

QUAKE, a maximum-likelihood based tool for detecting and correcting sequencing errors (Kelley, 
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Schatz, and Salzberg 2010). I used Quake with k=18, and preserved reads whose pairing read was 

discarded in a single (SE) FASTQ file. Preprocessing removed 10% of the original reads (). Even though 

the average per base quality didn’t improve dramatically, the distribution of the metric become tighter 

around the mean (Figure 2.1). 

 

To check if re-sequencing the libraries resulted in high duplication levels, I cleaned the PE reads 

generated at Cofactor Genomics (CG-PE) separately from the PE reads generated at KU (KU-PE), and 

additionally combined the two files into a single FASTQ (hereafter “combined-PE”). A custom python 

script was used to randomly sample 1 million reads from each of the three files (CG-PE, KU-PE, and 

combined-PE). I used a random sample of reads from the FASTQ files to run FastQC because I noticed 

that the reads in the beginning of the files were of lower quality than subsequent reads. I ran FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on each sample and checked duplication 

levels. The expectation was that if the second sequencing run resulted in over-sequencing our library, the 

duplication level in the combined-PE sample would be much greater than the sum of the duplication 

levels in the CG-PE and KU-PE samples. Since FastQC only uses the first 200,000 reads to compute 

descriptive statistics, I wasn’t surprised to see different numbers for the original file and the random 

sample. Duplication level in the combined-PE FastQC was not greater than in the CG-PE and KU-PE 

when summed (Table 2.2), so I used the combined-PE data as an input for the de novo assembly. 

Similarly, I followed these steps for the MP data, and combined CG-MP and KU-MP into a single 

FASTQ. 

 

Genome Assembly and Evaluation 

There are many de novo assemblers for large genomes, but no consensus as to which software is best. The 

results of recent genome assembly competitions (Earl et al. 2011; Salzberg et al. 2012; Bradnam et al. 

2013) have suggested that the performance of an assembler depends not only on the graph algorithm 

employed by the software (see Miller, Koren, and Sutton 2010; Nagarajan and Pop 2013 for overview of 



 
 

33 

graph algorithms for assembly) but also on the available data type and the characteristics of the genome. 

Most de Bruijn assemblers (Pevzner, Tang, and Waterman 2001)require that the user specify a k-mer size, 

where the optimal k depends on the repetitiveness of the genome, the heterozygosity, and technology-

specific error rates (Chikhi and Medvedev 2014). I used KmerGenie (Chikhi and Medvedev 2014) to 

estimate an appropriate k-mer (93). To assemble the reads into scaffolds, I used ABySS (J. T. Simpson et 

al. 2009) because of its low error rate when assembling a human chromosome (Salzberg et al. 2012), and 

its parallel processing ability and low memory requirements (J. T. Simpson et al. 2009). Broadly, ABySS 

uses PE reads to assemble contigs, and then uses the MP reads to form scaffolds. I ran ABySS with 

default parameters and k=93 on a single cluster node with 16 processors, and a total of 32GB of RAM. 

 

Despite the increased number of de novo sequence assemblers in the last decade, the best way to evaluate 

a draft assembly is not a trivial task. N50 is the shortest scaffold in the smallest set of ordered scaffolds 

comprising at least 50% of the assembly. The N50 scaffold length has been heavily used as a proxy to 

assembly quality but as studies have pointed out, it can be inadequate to fully characterize the quality of 

an assembly (Salzberg et al. 2012; Vezzi, Narzisi, and Mishra 2012). Therefore, an obvious shortcoming 

of the metric is its inability to account for misassembled sequences in the draft genome. As a result of the 

increased demand for statistically explicit evaluation of genome assemblies, likelihood-based measures 

like ALE (Clark et al. 2013), CGAL (Rahman and Pachter 2013), and LAP (Ghodsi et al. 2013) have been 

developed. However, there is no consensus yet as to which approach is the best, maybe due to the infancy 

of these tools. I used Cegma (Parra et al. 2009) with default parameters to assess the completeness of the 

draft assembly.  

 

Transcriptomic Data 

Given that the strain used for genome sequencing is no longer maintained, RNA was extracted and 

sequenced from two pupae from a different inbred strain, Louisiana (LA) line 112 (Zhou et al. 2008). The 

extraction was done by Stuart Macdonald. A standard, poly-A selected, unstranded TruSeq Illumina 
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RNAseq library was constructed for each individual. The two libraries were barcoded, pooled, qPCR 

quantified, and sequenced on a single lane of an Illumina High Output Paired End 100 flow cell. The run 

generated approximately 175 million reads, which were trimmed using SICKLE. Approximately 96% of 

the reads passed the filter criteria in SICKLE: (1) window-wise quality threshold parameter q was at least 

40, and (2) minimum length post trimming was greater than 50.  

 

All quality-trimmed reads were merged in a single FASTA file. To assemble transcripts, I used Trinity 

(Grabherr et al. 2011) default parameters except read normalization was turned on and the maximum read 

coverage for normalization was 50. The assembly was performed on a 16-core node with 256 GB of 

RAM, and it took a little less than 6 hours to complete. The assembler generated 96,420 transcripts with 

N50 of 2551 bp and mean scaffold length of 1178.45 bp. 

 

Genome Annotation 

To identify genic regions, I used Maker2 (Holt and Yandell 2011). I provided Maker2 with the transcripts 

assembled with Trinity, and protein databases from Heliconius melpomene, Danaus plexippus, and 

Bombyx mori. Additionally, I used the repeat database generated by RepeatModeler (Smit and Hubley 

2010) containing short and long interspersed nuclear elements, long terminal repeat elements, small 

RNAs, and other unclassified repeats. I used two gene predictors - Augustus (Stanke and Morgenstern 

2005) and SNAP (Korf 2004). For Augustus, I used a publicly available parameter set from the software 

developer for H. melpomene (http://bioinf.uni-greifswald.de/augustus/). Finally, for SNAP, I used an 

HMM file generated by bootstrap training of the gene predictor over three Maker runs. 

 

Mapping Populations and Phenotypes 

The mapping populations were derived from the  Kansas (KS) and Florida (FL) inbred lines, as described 

in Gleason et al. (2016). In short, KS individuals were crossed to FL individuals to generate an F1 
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population. A number of F1 males were backcrossed to KS females, with each pair producing a number of 

offspring (family). Offspring from across all families composed the first mapping population (hereafter 

“Kansas Backcross” or “KS BC”). Similarly, a number of F1 males were backcrossed to FL females 

giving rise to families with offspring, which are collectively referred to as the “Florida Backcross” or “FL 

BC”. Since Achroia females show no germline meiotic crossing over (Suomalainen, Cook, and Turner 

1973), only hybrid (F1) males were used to produce recombinant offspring. In addition, F1 females were 

crossed to KS males to produce segregant individuals (hereafter “Kansas Segregants” or “KS SG”). From 

the above-mentioned populations, I extracted DNA from 17 KS individuals, 14 FL individuals, 5 F1 

offspring, 447 KS recombinants, 465 FL recombinants, and 198 KS segregants.  

 

All progeny individuals were phenotyped for 5 traits: pulse rate (PR), peak amplitude (PA), asynchrony 

interval, development time (DT), and weight (WT). Phenotypes for the KS segregant population were 

recorded in the course of one year, whereas the two backcrosses were phenotyped in two different years. 

The 5 traits were measured as described in Gleason et al. (2016). 

 

Library Construction  

To generate a genetic linkage map, a modified MSG protocol (Andolfatto et al. 2011) was used to 

generate sequence data for the individuals from the mapping populations, and genotype informative 

markers. The molecular work was done by Jenny Hackett. First, instead of MseI, genomic DNA was 

digested with AseI because the latter was expected to cut less frequently. Then, Illumina adaptors 

containing in-line barcodes were ligated to the DNA fragments, and groups of 48 unique barcodes 

(individuals) were pooled. During PCR amplification, a unique Illumina index is ligated to each fragment 

in the pooled sample. In practice, each individual was assigned to one of 24 unique Illumina indices, and 

within the index, to one of 48 unique barcodes. This protocol allows for a large number of DNA samples 

(up to 24x48) to be sequenced on the same lane simultaneously at a relatively low cost. 
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Marker Discovery 

After demultiplexing the data with the process_radtags algorithm in Stacks (Catchen et al. 2011), all 

reads from the 17 KS individuals were pooled into a single sample (KS-pool); similarly for FL 

individuals (FL-pool). The KS-pool and FL-pool samples contained 16.3 million and 13.8 million reads, 

respectively. To de novo assemble loci for each parental pooled sample, I used ustacks (Catchen et al. 

2011), another program of the Stacks pipeline. I parameterized ustacks to construct stacks with a 

minimum coverage (m) of 5, maximum number of differences between reads within a locus (M) of 2, no 

secondary alignments (N=0), maximum number of stacks per de novo locus (max_locus_stacks) equal to 

2, and with Removal and Deleveraging algorithms enabled (-r and –d, respectively). The Removal 

algorithm excludes stacks that are highly repetitive while the deleveraging algorithm attempts to resolved 

over-merged stacks. In total, 148,448 and 143,201 stacks were assembled for KS and FL, respectively. 

 

To establish homology of the KS loci with the FL loci, I used cstacks (Catchen et al. 2011), another 

Stacks component. In short, cstacks merges loci from the two parental pooled samples into a catalog. The 

most important cstacks parameter is the maximum distance allowed between loci (n) as it determines how 

loci are merged. I used n = 2 to allow for the alleles of potential heterozygous loci in parental individuals 

to merge. The resulting catalog contains parental alleles grouped into loci, and is the set of informative 

markers to be genotyped in the recombinants. Using a custom python script, I interrogated the catalog and 

identified 72,076 entries (e.g., loci) in which each parent contributed a single monomorphic allele. I 

excluded all other loci because they would represent heterozygous loci or alleles sampled only in one of 

the two parental lines. Of the 72,076 loci, 26,905 loci (37.3%) were polymorphic and were used to 

genotype the recombinant and KS segregant progenies.  

 

Genotyping Recombinants 

To call genotypes in the recombinant populations, I first de novo assembled loci for each individual in the 

backcrosses using ustacks with similar parameterization to that used for the KS-pool and FL-pool samples 
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(m=2, N=2, -r, -d, -max_locus_stacks=2). Each individual’s loci were then matched against the catalog of 

informative loci generated by the parental lines. Finally, I used Stacks’ genotypes program to make 

genotype calls for the two backcrosses and the KS segregants. On average, the 3 populations had a 

genotyping rate of 44.1% 

 

Genetic Map Construction 

To build the linkage map, I used Lep-MAP2 (Rastas et al. 2013; Rastas et al. 2016) an open-source 

software package for constructing ultra-high-density linkage maps.  In addition to being able to handle 

thousands of markers per chromosome, Lep-MAP2 is multi-threaded, which minimizes analysis runtime 

(Rastas et al. 2016). The software requires genotype data from one or more full-sib families (progeny 

along with their parents) in LINKAGE pedigree format (Lathrop et al. 1984). The Stacks genotypes 

output file was converted to the appropriate format using custom Python scripts. 

 

First, I used the Filtering module to remove loci with segregation distortion (dataTolerance=0.01), and to 

remove loci and individuals with scarce genotype data. For KS BC, I removed individual with more than 

15,000 missing genotypes, and markers with more than 300 missing genotypes. These filters removed 

18,773 makers (69.8%) and 108 individuals (24 %). For the FL BC, I filtered out individuals with more 

than 13000 missing genotypes and markers with more than 370 individuals. As a result, 20,935 markers 

(77.8%) were removed along with 152 FL BC individuals (32.7%). The reason for using different filtering 

criteria is to maintain similar levels of missing data in the genotype sets.  To split the markers into linkage 

groups (LGs), I first ran the SeparateChromosomes module, with a LOD (logarithm of odds) score limit 

of 20, and a lower limit to the number of markers per linkage group of 20 markers. Next, each 

chromosome was ordered individually with OrderMarkers using the Kosambi function (useKosambi=1; 

Kosambi 1943), taking into account the achiasmatic meiosis in females (initRecombination=0.05 0, where 

the first number is the a priori probability of crossing over in males, and the second is the same 

probability in females), and removing identical markers within each chromosome (removeDuplicates=1).  
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 QTL Mapping 

To order and orient the assembled scaffolds based on the two genetic maps, I used ALLMAPS (Haibao 

Tang 2015). In the process, I compared the assignment of markers to LGs in the two maps. Based on 

overlapping markers, LGs in the FL BC were renamed to reflect the respective LGs in the KS BC. Eight 

(0.2%) of the 3,204 overlapping markers between the two backcrosses were removed because they were 

inconsistent in their placement - i.e., a marker was placed on different LGs in the two maps. I noticed that 

the order of the markers on a given LG was largely different between the two backcrosses due to lack of 

crossover events (See ‘Genetic Map Construction’ in Results for more details). Since the markers in these 

maps are in an order that isn’t certain, I will be referring to the two maps as “unresolved” henceforth.  

 

Since it was possible to map QTL to chromosomal level, I assigned each linkage group, in a given 

individual, the most frequent genotype for that linkage group (as long as it cleared a 90% threshold), and 

performed marker regression in R/qtl (Broman and Sen 2009). Effect sizes and percent phenotypic 

variance explained were also estimated.  

 

Mapping Marker Sequences to the Genome Assembly 

The sequences of the markers included in the unresolved genetic map were extracted from the catalog file 

(produced by cstacks), and formatted as a FASTA file using custom Python scripts. Every sequence 

header was formatted to reflect the LG and position of the marker in the KS map. Additionally, I made a 

nucleotide database from the genome assembly using makeblastdb on a local BLAST installation. The 

FASTA file containing marker sequences was then mapped to the assembled genome using BLASTN, 

with max_target_seqs set to 1, and evalue set to 1e-30. Effectively, the alignment places scaffolds onto 

LGs.   
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Identification of the Z chromosome 

To identify the Z chromosome, I used custom Python scripts to extract protein sequences of Z-linked 

genes in two Lepidopteran species, Bombyx mori (N = 654) and Melitaea cinxia (N = 572). Each set of 

protein sequences was aligned to the assembled genome of Achroia using TBLASTN with 

max_target_seqs set to 1, and evalue set to 1e-50. The alignment identified scaffolds containing 

sequences with strong homology to Z-linked proteins. Of the 654 Z proteins in B. mori, 202 (30.9%) 

aligned to 123 Achroia scaffolds. Of the 572 Z proteins in M. cinxia, 136 (23.8%) aligned to 90 scaffolds 

in the Achroia assembly. The number of scaffolds identified by both alignments as homologous to Z was 

80. Since I already had information linking scaffolds to LGs, I was able to identify the LG representing 

the Z chromosome in Achroia. 

 

RESULTS 

 

Phenotypes 

Means and standard deviations for the 5 phenotypes in the backcrosses and the KS segregants are 

presented in Table 2.4 andTable 2.5, respectively. In the Kansas backcross, development time (DT), 

weight (WT), and pulse amplitude (PA) differed significantly between the two years (t-test, p < 0.05). In 

the Florida backcross, DT and PA differed significantly between year 1 and year 2 (t-test, p < 0.05). We 

found that WT and DT are significantly negatively correlated in all three populations (Table 2.7, Table 

2.8, and Table 2.9). Additionally, PA is negatively correlated with DT in both backcrosses (Table 2.7, 

Table 2.8). PA is positively correlated WT in both backcrosses (Table 2.7, Table 2.8). This correlation 

could mean that larger males are able to emit songs with higher amplitude. Pulse rate (PR) correlated 

negatively with WT in the Florida backcross and the KS segregant population but the negative 

relationship in KS BC was not significant, possibly due to dominance. Finally, the only correlation 

between sexually selected traits was that between PR and PA in the FL BC. Although, the same 
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relationship in the KS BC and the KS SG was also negative but not significant. Correlations between 

quantitative traits could be an indication of pleiotropic effect or of tightly linked genes controlling the 

traits.  

 

Genetic Map Construction 

Lepmap placed 8,091 markers on 30 linkage groups for the KS BC population, and 5,721 markers on 30 

linkage groups for FL BC population (). Additionally, 12,801 markers in the KS SG population were also 

placed in 30 linkage groups. The number of linkage groups is consistent with the haploid number of 

chromosomes observed through karyotyping by Limousin et al. (2012). For the two backcross 

populations, the markers in every linkage group were ordered and the summary statistics for the KS BC 

and FL BC maps are in Table 2.10 and Table 2.11, respectively. Using homology and the expected (due 

to SG individuals being test males) “segregation distortion” of the Z in the KS SG population, I was also 

able to identify the Z chromosome. 

 

In examining the marker order within between the two maps, I found that it was highly inconsistent in a 

particular way. Markers on the end of each linkage group were consistent between the two backcrosses, 

but markers in the middle of the linkage group were scrambled. Linkage group 1 is shown as an example 

in Figure 2.4. The same pattern was observed when I mapped the markers to the Achroia scaffolds, 

separately for every linkage group in each backcross, using ALLMAPS (Figure 2.5). When looking at the 

genotype calls for each linkage group, there seemed to be almost no recombination in the middle of the 

chromosome - LG 1 is shown in Figure 2.6 as an example. In Figure 2.6, the x-axis represents the markers 

along the length of the linkage group, while the y-axis represents individuals from KS BC. Red blocks are 

homozygous genotypes and blue blocks are heterozygous genotypes. A crossover event in an individual is 

represented by a set of neighboring blue blocks surrounded by red blocks, or vice versa. Here, it is clear 

that such events are observed predominantly at the ends of the linkage groups. The lack of crossing over 

explains why Lepmap can order markers at the ends of the chromosome better than in the middle. There 
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isn’t enough information for the software to estimate recombination distances with high confidence for 

the markers that are in the middle of the linkage group. Interestingly, Gleason et al. (2016) observed a 

similar phenomenon in a much smaller set of markers. 

 

I also considered genotyping error as the source of the problem. While genotyping error does not 

eliminate crossing over events, it is possible that Lepmap would interpret a small number of erroneous 

genotypes as evidence for crossing over, and force the markers into neighboring positions. So, if the error 

was systemic in the mapping software, I would observe the same pattern in the KS segregant population. 

That is not at all the case. The genotype matrix in KS SG were what is expected - i.e., for a given LG in 

an individual, all genotypes are exactly the same and there is no evidence for crossing over. Figure 2.7 

shows a subset of the KS SG individuals for LG1. While there are single blocks of red surrounded by 

blue, and vice versa, they appear to be scattered along the linkage group which is indicative of random as 

opposed to a bias disguising errors into crossing over events. Additionally, I repeated the genotype calling 

step in all three populations with an increased read depth requirement of 8. The new genotype calls 

yielded a similar result. If the problem were solved with higher coverage, it could indicate systemic bias 

of genotyping error rate in areas of recombination. To my knowledge, no studies have even suggested that 

his might be possible. Thus, I concluded that genotyping error is unlikely to be the underlying cause of 

the marker order inconsistencies. It is worth noting that both Figure 2.6 and Figure 2.7 make it apparent 

that heterozygous genotypes are being under-called, which appears to be a RAD-seq technology problem 

(Gautier et al. 2013). For example, in Figure 2.7, the frequency of heterozygous genotypes in 

homozygous individuals (blue blocks in rows of red) is much smaller than the frequency of homozygous 

genotypes in heterozygotes (red blocks in rows of blue). Intuitively, it is much easier for a heterozygote to 

appear as a homozygote in RAD tags than it is for a homozygote to appear as a heterozygote.   

 

The lack of useful information and the stochastic nature of the ordering process itself would likely result 

in a new marker order with every new iteration of the process. Even in large mapping populations like the 
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ones I have used in this study, calculating recombination distance depends on observing at least some new 

combinations of alleles. Given the lack of confidence in estimated marker order within LGs, and the 

relative lack of clear crossover events within chromosomes, I concluded that it would be futile to attempt 

to map QTL to sub-chromosomal level. Therefore, I ignored all crossing over and assigned each 

chromosome in every individual a single genotype based on 3 filters: for a given chromosome in an 

individual, (1) at least 80% of the markers have genotype calls, (2) the minimum number of called 

markers for that chromosome is 30, and (3) at least 90% of the markers on that chromosome must have 

the same genotype, which also becomes the chromosome-wide genotype. While the total number of 

markers is significantly reduced, the simplified genotype matrix (henceforth “haplotype matrix”) is much 

more representative of the data than the original matrix containing thousands of genotypes per individual. 

Additionally, assuming that all QTL act in the same direction (i.e., KS alleles all have positive effect on 

the phenotype, or all have negative effect on the phenotype), testing for associations between phenotype 

and chromosome increases my power to detect loci since multiple small-effect QTL on a chromosome are 

now considered collectively. The drawback of this manipulation is that I can only map QTL to the 

chromosome level. However, considering the number of chromosomes (N=30) and the number of genes 

(est. N=13,191), mapping a QTL to a chromosome using this method allows me a higher gene mapping 

resolution than in an equivalent backcross or F2 QTL study in Drosophila (Mackay 2001). 

 

QTL mapping  

To detect phenotype-genotype associations, I used marker regression in R/qtl, with 1000 permutations to 

set genome-wide LOD thresholds for significance. Three thresholds we established at three different 

significance levels: (1) α=0.05, (2) α=0.10, and (3) α=0.20. The first is the universally accepted 

significance level for detection of QTL while the other two allowed me to detect QTL that were 

borderline significant and to explore any associations, even weak, with the Z chromosome.  

The QTL mapping identified a number of chromosomes affecting the three main traits of interest: pulse 

rate (PR), peak amplitude (PA), and asynchrony interval (AI) (Table 2.12). For PR, two linkage groups 
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were strongly associated (α=0.05) with the phenotype in the RK backcross. I also found one linkage 

group in the RF backcross that affects PR. For PA, 3 putative QTL were detected (α=0.20)- two loci on 

two separate linkage groups in FL BC, and one in KS SG. For AI, I found two weaker QTL on two 

distinct linkage groups in the KS BC population. For the life history traits, DT and WT, I detected QTLs 

in all three populations. In the KS BC population, I found 3 QTL of varying strength for WT and 1 strong 

QTL for DT. Notably, the same linkage group (LG7) is associated with both WT and DT (Table 2.12), 

which is not surprising considering that I also found a strong correlation between the two traits. In the FL 

BC population, I detected one putative QTL for each phenotype. The two were on separate chromosomes, 

and different from the chromosomes identified in the KS BC. Finally, in the KS SG population, two 

weaker QTL were detected for DT, and one strong QTL was detected for WT. Overall, the fraction of 

genetic variance explained by the QTL is fairly small (0.25-4.92%) except for the DT QTL which 

explains 6.15% of the phenotypic variance in the KS BC.  

 

Aside from co-localization of DT and WT on LG7, not one QTL for any trait is co-localized within 

population, and no QTL overlaps across populations. There are a few explanations for the lack of co-

localization. First of all, the power to detect QTL of small effects is quite low (Table 2.12), and therefore 

the chances of detecting the same QTLs in all three populations are fairly low. Additionally, the real 

number of QTL underlying each trait are likely to be higher than the findings of this study. Beavis (1994) 

showed that any finite sample size will underestimate QTL number and overestimate QTL effect.      

The detection of QTL in one population but not the other could also be due to dominance but given the 

experimental design, there is no way to assess variance attributed to dominance. Finally, an important 

artifact of the way I mapped QTL is that if there is some number of small-effect QTL on a chromosome, 

and the direction of the individual effects sums to a number close to 0, none of these loci would be 

detected as contributing significantly to the phenotypic variance. 
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Genome Assembly and Annotation 

The assembled genome of A. grisella is quantitatively described in Table 2.6. The total length of the 

assembly is within the expected 400-600-Mb genome size (J. Gleason, pers. comm). Half of the 418 Mb 

are in scaffolds of length 87.3 Kb or longer. The GC content (32.4%) is on par with other sequenced 

genomes in the order of Lepidoptera (Zhan et al. 2011). Based on a Cegma run, the assembled scaffolds 

contain 196 (79.03%) of the 248 core eukaryotic genes. The annotation pipeline identified 13,191 genes 

with max AED of 0.5 (Eilbeck et al. 2009). The number of identified genes is close to the number of 

predicted protein coding genes in H. melpomene 12,669 {12,669; HeliconiusGenomeConsortium:2012dt} 

and B. mori 12,901 {12,901; Xia:2004uo}. Using BLAST, I mapped the set of markers used for the 

construction of the unresolved genetic map to the genome assembly. On average, 75% of markers per 

linkage group in both backcrosses mapped to the genome. While the target scaffolds are a very small 

proportion of the assembled scaffolds (~4%), the total length of those scaffolds is 60% of the total 

assembly length. Thus, our genetic markers placed the majority of long scaffolds onto chromosomes.  

 

DISCUSSION  
 

The goal of this study was to determine the genetic basis of 3 male song characters, important to female 

choice during mate pairing. In addition to mapping several QTL, I generated genomic resources for this 

non-model organism including a draft genome and annotation. Furthermore, I assigned assembly 

scaffolds to chromosomes and identified the Z chromosome through protein homology.  

  

Developmental Traits 

In line with another QTL study, DT and WT are negatively correlated (Gleason et al. 2016) meaning that 

the longer it takes a moth to emerge from the pupal stage, the smaller it is. QTL associated with 

developmental time (DT) and weight (WT) were found in all 3 populations in this study. Across all 
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populations, I found a single significant DT QTL in the KS BC explaining ~6.15% of the phenotypic 

variation, while the strongest QTL for WT (in KS SG) explains only ~5% of the variance in weight. I also 

found two significant WT QTL, one in the KS BC population and the other in the KS SG population. 

While neither of these significant QTL for WT was co-localized with a significant DT QTL, a putative 

WT QTL was found on the same linkage group as the significant DT QTL in the KS BC. This is of 

interest because the two traits were strongly negatively correlated and the QTL effect are in the opposite 

direction in all three populations, which could suggest that a pleiotropic gene is present, or that multiple 

genes affecting the traits are in very close proximity. Two other QTL studies had similar findings - DT 

and WT were strongly negatively correlated, and QTLs were co-localized (Alem et al. 2013; Gleason et 

al. 2016). And while we can’t make direct comparisons to Alem et al. because they used AFLP markers, 

we can make direct and meaningful comparisons with the Gleason et al. study because the backcross 

individuals in that experiment are a subset of out KS BC population.  

 

Male Song Characters 

I detected numerous QTL for male song characters. Overall, the traits appear to be polygenic because the 

percentage of phenotypic variance explained by each QTL is fairly low. For PR, we found two significant 

QTL, both in the KS BC, similar to the QTL number found in previous studies (Limousin et al. 2012; 

Alem et al. 2013; Gleason et al. 2016). However, compared to those studies, the QTLs here are of much 

lower effect size. Specifically, Limousin et al. (2012) reported that their QTLs explain over 50% of the 

phenotypic variance observed in their population, and concluded that PR is likely controlled by a number 

of loci of moderate effect and not by a few loci of large effect. My findings suggest that PR is affected by 

multiple loci of small effect, collectively explaining ~ 3.6% of the phenotypic variation, an estimate much 

closer to what Gleason et al. (2016) reported (~4.4%).  

 

Using homology to Bombyx mori, Gleason et al. (2016) suggested that one of the PR QTL they detected 

is on the Z chromosome. I have found no evidence of a PR QTL on the Z. However, that should not be 
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interpreted necessarily as a contradiction. There are a number of reasonable explanations as to why my 

analysis has not found this connection. It could very well be the case there are small-effect PR QTL with 

opposite effects on the Z, and that my chromosomal-level QTL detection approach is unable to detect 

those signals because they cancel each other out. It is also conceivable that my analysis, having increased 

power due to larger sample size, is correctly inferring the absence of significant QTL, while the reported 

link in the Gleason et al. study is simply an overestimation of the effect of a small QTL (Beavis 1998). 

Since this study provides novel genomic resources for Achroia grisella, it would be useful to determine if 

the QTL found on the Z in Gleason et al. (2016) also maps to the scaffolds assigned to the Z in my study. 

 

For peak amplitude, I found 3 putative QTL which is on par with other QTL studies in Achroia (Limousin 

et al. 2012; Alem et al. 2013; Gleason et al. 2016). However, the QTL detected in this study explain only 

~ 3% of the variance in PA, a smaller number than that reported in the AFLP-based QTL studies 

(Limousin et al. 2012; Alem et al. 2013) but similar to that reported by Gleason et al. (2016). 

Interestingly, none of the PA QTL I found were in the KS BC, which is shared between the two studies. 

Here, again, a few explanations are plausible (see earlier discussion on lack of PR QTL on Z) but a good 

starting point would be to map the ESTs from the other study to the Achroia genomic scaffolds that have 

been assigned to chromosomes. For the PR and PA of male song, the only evidence of co-localization 

comes from a PR QTL in the KS BC and a PA QTL in the KS SG population, both of which are found on 

linkage group 11. Limousin et al. (2012) found two strong QTL for these male characters to be present on 

the same linkage group. Unfortunately, since the study utilized AFLPs, direct comparisons regarding 

location of the QTL between my study and theirs are not possible.  

 

Here, I found putative QTL for asynchrony interval in the KS BC only, which accounted for a small 

fraction of the phenotypic variance, qualitatively similar to results reported by Limousin et al.(2012). 

Gleason et al. (2016), on the other hand, were unable to detect any QTL affecting AI, which could be 

explained by the fact that the QTL mapping in that study was based on a much smaller number of markers 
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(N=75). It has been suggested that male size is directly responsible for AI (Brandt and Greenfield 2004) 

but the two traits do not correlate or share QTL, as would be expected. These results are not surprising 

considering the low heritability of the trait (Collins et al. 1999). 

 

The disparity in variance explained as well as the replicability of detected QTL across populations and the 

co-localization of QTL could be attributed to environmental variance, genetic factors only detectable in a 

specific genetic background, or power to detect QTL in our populations. Furthermore, findings of a QTL 

analysis are dependent on the type of experimental cross and the number of individuals in the population 

(Beavis 1998; Xu 2003). Finally, my approach to mapping QTL on the chromosome level may have 

contributed to these disagreements. Ignoring crossover events all together, even if they are rare, can result 

in signals from small-effect QTL with opposite directions canceling out, and can lead to false negatives.  

 

Choices Have Consequences 

The method I used to detect QTL was a way to deal with the fact that without a valid genetic map, one 

with consistent estimates of marker positions, QTL mapping would not even be possible. Since 

genotyping error is not expected to eliminate crossing over events, the most likely explanation for the lack 

of information, in the middle of our linkage groups, leading to semi-stochastic marker ordering is that 

Achroia has a very low crossing over rate. My approach relies on the fact that any given marker on a 

linkage group in a progeny individual, is representative of a large portion of the LG it is placed on, and by 

ignoring the order of the markers and assigning each LG a genotype based on the that LG’s genotype 

distribution, I have lost the ability to map QTL to sub-chromosomal level but greatly increased my power 

because the number of tests performed have greatly decreased.  

 

The low recombination frequency I observed has been reported previously by AFLP- and EST-based 

studies (Limousin et al. 2012; Alem et al. 2013; Gleason et al. 2016), and some of the estimates of LG 

length (12-66cM; Alem et al. 2013), suggest that there are chromosomes that don’t have a crossover event 
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in every meiosis. Since I expected that a large number of recombinant progeny, like the KS BC, would be 

enough to compensate for infrequent crossing over events, I chose to use a restriction enzyme that ended 

up cutting more frequently than would be ideal for the QTL mapping part of this study.  

 

When it comes to applications of RAD-seq, the finite amount of data produced from sequencing 

technologies forces a choice between read depth and number of loci. One of the goals of this study was to 

generate genomic resources that will aid the community in future research endeavors, so a natural instinct 

was to improve the contiguity of the assembled genome using an ultra-dense genetic map – i.e., the more 

markers in the map, the more scaffolds can be ordered and oriented into chromosomes. So, the 

expectation that with more markers, I can significantly improve the assembled genome also made me 

consider the common-cutter restriction enzyme. Of course, this wouldn’t be a consideration if I had used 

PacBio (Rhoads and Au 2015) or Oxford Nanopore (Deamer and Akeson 2000) data to close the gaps.  

 

On the other hand, the frequency with which AseI cuts DNA allowed for tens of thousands of markers for 

more than 1,000 individuals to be genotyped and used in forming linkage groups. Of course, the number 

of markers is inversely proportional to the coverage at each marker, so the data were somewhat scarce. 

The extent of missing data and the bias in genotyping error in heterozygous individuals, could be 

attributed to the nature of the RAD-seq method I used, which resembles more low-depth genome 

resequencing than RAD sequencing. So, both missing data and error rate could have been different had I 

used a different sequencing method.   

 

Conclusion 

I was unable to map QTL to sub-chromosomal level but I did map QTL to chromosomes. I have also 

generated a reference genome sequence, annotated it, assigned the majority of the longest scaffolds to 

chromosomes based on the unresolved linkage map, and have identified the Z chromosome. The above 
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mentioned genomic resources will be made available to the scientific community in hopes that they will 

open new avenues of research for non-model organisms.  
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FIGURES 

Figure 2.1. Average base quality before (top) and after (bottom) read processing of the forward reads 
from the PE library used to generate the de novo genome assembly. The graph was generated by 
FASTQC (S. Andrews, n.d.).  
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Figure 2.2. Linkage map for the KS backcross as constructed by Lepmap. Chromosome numbers here and 
in Figure 2.3 are identical 
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Figure 2.3. Linkage map for the FL backcross as constructed by Lepmap. Chromosome numbers here and 
in Figure 2.2 are identical. 
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Figure 2.4. The correspondence in marker position between the two backcrosses. There are the positions 
of all markers in common between LG1 in KS BC and LG1 in FL BC. 
 

 

 

 

  

Positions of Markers in KS BC (cM) 

Po
si

tio
n 

of
 M

ar
ke

rs
 in

 F
L 

B
C

 (c
M

) 



 
 

54 

Figure 2.5. ALLMAPS output showing the inconsistency in marker order between the two backcrosses. 
The gray-striped tube in the middle represents the chromosome. The two linkage maps on either side of 
the chromosome represent linkage groups 18 from the KS BC and the FL BC unresolved maps. 
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Figure 2.6. Genotype matrix for linkage group 1 in the KS backcross. Red represents a homozygous 
genotype, blue represents a heterozygous genotype, and white represents a missing value. Here, 
individuals are ordered along the y-axis in terms of the proportion of homozygous genotypes they have.   
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Figure 2.7. Genotype matrix for linkage group 1 in the KS segregant population. A subset of the 
individuals was used here for better resolution. Red represents a homozygous genotype, blue represents a 
heterozygous genotype, and white represents a missing value.   
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TABLES 

Table 2.1. Numbers of paired-reads obtained from a paired-end (PE) and a mate-pair (MP) library from 
two sequencing efforts. 

 PE MP 

GSC (KU) 129,297,129 233,774,466 

Cofactor 161,387,784 171,403,749 

Total 290,684,913 405,178,215 
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Table 2.2. Duplication level in in reads obtained from the two sequencing efforts as well as the combined 
dataset. 
 

 
 

PE 
Forward 

PE 
Reverse 

MP 
Reverse 

MP 
Forward 

KU 2.15 1.95 4.90 2.73 

Cofactor 8.94 8.75 7.12 5.14 

combined 2.43 2.27 5.16 2.93 
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Table 2.3. Number of reads removed by each filter during quality control. 
 

 PE MP SE Total Reads 

Raw 
290,684,913 

(100.0) 
405,178,215 

(100) 
- 

695,863,128 
(100) 

Sickle 
251,070,361 

(86.4) 
326,649,635 

(80.6) 
69,701,500 

647,421,496 
(93.0) 

PhiX 
241,504,981 

(83.1) 
318,932,115 

(78.7) 
68,367,821 

628,804,917 
(90.4) 

Quake 
239,540,116 

(82.4) 
299,172,619 

(73.8) 
87,719,032 

626,431,767 
(90.0) 
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Table 2.4. Sample size (N), mean, and standard deviation (SD) for each phenotype for the two years the 
populations were phenotyped. The asterisk (*) denotes statistical difference between years.  
 

  YEAR 1 YEAR 2 
PHENOTYPE Population N Mean (SD) N Mean (SD) 

DT KS BC 238 42.5 (4.12) * 208 43.79 (4.91) * 
WT KS BC 237 14.37 (1.94) * 208 11.82 (1.63) * 
PR KS BC 238 75.15 (6.32) 208 75.04 (5.47) 
PA KS BC 238 76.1 (16.19) * 208 65.33 (12.9) * 
AI KS BC 238 76.1 (16.19) 208 65.33 (12.9) 
DT FL BC 236 41.64 (3.78) * 220 38.47 (2.94) * 
WT FL BC 236 15.14 (2.34) 228 15.54 (2.18) 
PR FL BC 236 73.66 (6.39) 228 74.27 (6.45) 
PA FL BC 236 70.05 (14.48) * 228 68.18 (13.15) * 
AI FL BC 236 658.53 (349.85) 228 725.35 (401.1) 
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Table 2.5. Sample size (N), mean, and standard deviation (SD) for each phenotype measured in the KS 
segregant population. 
 

Phenotype N Mean (SD) 
DT 198 41.82 (2.61) 
WT 198 14.93 (2.34) 
PR 198 75.66 (5.55) 
PA 198 77.26 (16.48) 
AI 198 684.4 (342.35) 
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Table 2.6. Descriptive statistics of genome assembly. Half of the assembly is contained in scaffolds of 
length N50 or larger.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Number of scaffolds 74,159 
Total size of scaffolds 418,422,425 
Longest scaffold 731,388 
Number of scaffolds > 1K nt 12,067 (16.3%) 
Number of scaffolds > 10K nt 6,202 (8.4%) 
Number of scaffolds > 100K nt 1,117 (1.5%) 
Mean scaffold size 5,642 
Median scaffold size 185 
N50 scaffold length 87,338 
GC% content 32.4 
scaffold %N 2.22 
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Table 2.7. Phenotype correlations in the KS backcross population. Asterisks indicate level of significance 
* p<0.05, ** p<0.01, *** p<0.001 
 

 DT WT PR PA 

WT -0.216 ***    

PR -0.014 -0.081   

PA -0.166 *** 0.522 *** -0.051  

AI 0.057 0.048 -0.084 0.06 
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Table 2.8. Phenotype correlations in the FL backcross population. Asterisks indicate level of significance 
* p<0.05, ** p<0.01, *** p<0.001 
 

 DT WT PR PA 

WT -0.240 ***    

PR 0.017 -0.094 *   

PA -0.112 * 0.287 *** -0.113 *  

AI -0.076 0.068 -0.023 0.025 
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Table 2.9. Phenotype correlations in the segregant population. Asterisks indicate level of significance      
* p<0.05, ** p<0.01, *** p<0.001 
 

 DT WT PR PA 

WT -0.386***    

PR 0.06 -0.168*   

PA -0.11 0.118 -0.093  

AI -0.049 0.044 -0.005 -0.039 
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Table 2.10. Number of markers (N), length, average and maximum spacing for the KS backcross genetic 
map. Corresponding chromosome numbers here and in Table 2.11 refer to the same genomic sequence. 
 

Chromosome N 
Length 
(cM) 

Average 
Spacing 

Maximum 
Spacing 

Z 301 108.4 0.4 7.6 
1 437 128.2 0.3 7.1 
2 307 112.2 0.4 8.3 
3 491 106 0.2 6.3 
4 452 118.6 0.3 7.4 
5 343 110 0.3 11.8 
6 307 95.7 0.3 7.8 
7 296 115.7 0.4 8.3 
8 339 112.9 0.3 11.1 
9 377 128.4 0.3 8.4 

10 277 95.5 0.3 7.7 
11 365 108 0.3 6.9 
12 199 81 0.4 10.2 
13 339 102.6 0.3 11.3 
14 293 103.7 0.4 6 
15 272 100 0.4 8.8 
16 298 105.6 0.4 9.6 
17 294 108.3 0.4 10.3 
18 324 64.2 0.2 5.4 
19 319 109.6 0.3 6.9 
20 222 84.1 0.4 5 
21 227 100.3 0.4 6.8 
22 293 83 0.3 10.9 
23 135 69 0.5 7.8 
24 147 79.3 0.5 5.3 
25 145 69 0.5 4.8 
26 130 64.9 0.5 8 
27 67 68.2 1 9.3 
28 50 36.2 0.7 5.1 
29 45 23.2 0.5 5.8 

overall 8091 2791.6 0.3 11.8 
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Table 2.11. Number of markers (N), length, average and maximum spacing for the FL backcross genetic 
map. Corresponding chromosome numbers here and in Table 2.10 refer to the same genomic sequence. 
 

Chromosome N 
Length 
(cM) 

Average 
Spacing 

Maximum 
Spacing 

Z 352 85.2 0.2 7 
1 332 79.4 0.2 7.7 
2 361 91 0.3 6.1 
3 277 92.8 0.3 10.3 
4 206 60.5 0.3 7.8 
5 287 83.5 0.3 9.5 
6 172 50.2 0.3 5.7 
7 313 99.5 0.3 9 
8 325 75.9 0.2 7 
9 186 74.4 0.4 9.3 

10 224 76.1 0.3 5.7 
11 201 59.8 0.3 5.4 
12 206 90.3 0.4 8.9 
13 177 80.3 0.5 7.6 
14 245 59.4 0.2 4.2 
15 211 77.8 0.4 7.7 
16 179 60.8 0.3 4.9 
17 226 66.4 0.3 4.7 
18 138 56 0.4 6.7 
19 130 37.6 0.3 3.5 
20 124 63.7 0.5 9.9 
21 196 80.6 0.4 7.9 
22 202 78.6 0.4 11.5 
23 108 50.1 0.5 5.3 
24 115 83 0.7 7.4 
25 67 49.3 0.7 6.7 
26 60 61.2 1 9.1 
27 53 59.4 1.1 7.2 
28 24 28.9 1.3 6.1 
29 24 26.9 1.2 11 

overall 5721 2038.5 0.4 11.5 
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Table 2.12. QTL affecting the traits of interest in the 3 populations, with LOD score, the significance 
level at which they were detected, the % phenotypic variance they explain, and the effect of substituting a 
FL-derived allele for a KS-derived allele.  

Population Phenotype LG LOD 
Significance 

level (α) 

% 
Variance 
Explained 

Effect Power 

KS BC DT 7 8.71 0.05 6.15 -2.3072 0.93 
KS BC WT 7 1.96 0.2 0.5 0.3696 0.01 
KS BC WT 12 2.33 0.1 0.25 0.2094 0.00 
KS BC WT 27 1.56 0.05 2.61 0.7911 0.43 
KS BC PR 11 2.59 0.05 2.11 -1.9514 0.31 
KS BC PR 13 2.27 0.05 1.5 -1.6839 0.16 
KS BC AI 20 2.09 0.2 1.39 -97.89 0.11 
KS BC AI 22 1.69 0.1 1.69 105.95 0.16 
FL BC DT 14 1.84 0.1 0.81 -0.7813 0.04 
FL BC WT 8 2.14 0.1 1.27 -0.5771 0.10 
FL BC PR 15 1.86 0.1 0.95 1.4367 0.06 
FL BC PA 4 1.74 0.2 1.38 3.656 0.12 
FL BC PA 5 1.67 0.2 1.21 3.3135 0.08 
KS SG DT 12 1.97 0.2 2.89 -0.9879 0.09 
KS SG DT 19 1.68 0.1 3.36 1.0684 0.14 
KS SG WT 28 2.27 0.05 4.92 1.113 0.28 
KS SG PA 11 1.77 0.2 3.07 6.558 0.12 
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Chapter 3  

 

Draft Genome Assemblies in Non-Model Organisms: 

Do they facilitate or hinder the construction of genomic loci from RAD-seq data? 
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ABSTRACT 

 

The low cost and high output of Next Generation Sequencing (NGS) technologies have led to a great 

number of published draft genomes of non-model organisms. Additionally, thanks to refinements in 

laboratory techniques, the field of evolutionary genetics is becoming more accessible to non-model study 

systems. RAD-seq, a genomic library preparation technique that uses a restriction enzyme to reduce 

genome complexity, has become one of the most commonly used sequencing methods to study natural 

populations and non-model organisms. By digesting genomic DNA with a restriction enzyme of choice, 

and ligating a sample-specific identifiable barcode, RAD-seq has enabled scientists to interrogate portions 

of the genomes in hundreds of individuals. The sequenced data (“tags”) can be analyzed by either using a 

reference genome to which reads are aligned, or by relying on software to assemble loci de novo. Studies 

have shown that, when available, a quality reference genome is a source of information for the proper 

assembly of loci. For species that do not have a reference genome, many approaches have been suggested 

for experimental design, as well as for quality control of the de novo-assembled loci. In this chapter, I ask 

whether a fragmented genome sequence aids in the assembly of loci for the study of variation in natural 

populations. I used two mapping populations from two non-model species with scaffolded genomes. The 

RAD tags from each population were analyzed using two pipelines that only differed in whether loci were 

assembled through alignment of tags to a reference or were assembled de novo. I leveraged the fact that 

these were mapping populations, and was able to determine what proportion of the markers were 

consistent with expectations from Mendelian genetics. I found that even a fragmented genome assembly 

can aid in re-construction of loci, and the proportion of markers that were inconsistent with the expected 

genotypic frequencies was disconcertingly high. Finally, I discuss how the two main kinds of assembly 

errors affect population genetic summary statistics generated from RAD tags.  
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INTRODUCTION 

 

High-throughput sequencing has revolutionized the field of evolutionary genetics. In the past, the 

literature in the field was predominantly focused on model organisms like Drosophila (K. A. Hughes 

1995), Escherichia coli (Lenski, Rose, and Simpson 1991), maize (Wang et al. 1999), mouse (Alibert et 

al. 1994), Xenopus (M. K. Hughes and Hughes 1993), and Arabidopsis (Valvekens, Van Montagu, and 

Van Lijsebettens 1988) because of the availability of genetic resources for these organisms. The 

development of next-generation-sequencing (NGS) technologies has made it possible for scientists to 

explore questions in evolutionary genetics of non-model organism and also in related fields like 

population genetics and phylogenetics.  

 

With the speed of sequencing increasing and the cost decreasing, it has also become easier for groups 

working on non-model species to sequence the genome of their study organisms. While the quality of 

published genomes varies from “standard draft” to “finished” genomes (Chain et al. 2009), the number of 

genome assemblies being published is increasing rapidly. Currently, the National Center for 

Biotechnology Information (NCBI - https://www.ncbi.nlm.nih.gov) lists assembly data for over 4,300 

organisms. Knowing the genome sequence of an organism is essential to determining base composition, 

number and type of genes and transposable elements, and other characteristics important to questions in 

evolutionary genetics, population genetics, and phylogenetics.  

 

Population genomics, the comparison of the genetic make-up of individuals in a population using large 

numbers of loci1 scattered across the genome, makes inferences about evolutionary processes that are 

acting on the population. Unlike earlier technologies, NGS allows for the rapid sequencing of thousands, 

                                                        

1 Throughout Chapter 3, I use the term “locus” to mean a 100-bp stretch of DNA in the genome, 
regardless of whether the exact location of the fragment in the genome is known.  
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if not hundreds of thousands, of loci in an individual. Advances in lab techniques have further enabled 

scientists to include hundreds of individuals in their studies. One such technique is Restriction site 

Associated DNA Sequencing (RAD-seq; Baird et al. 2008; Hohenlohe et al. 2010; Emerson et al. 2010).  

RAD-seq is a ‘reduced representation’ procedure  because the library contains only a subset of the 

genome, specifically sequences that flank restriction enzyme cut sites.  

 

The first step in RAD-seq is to digest the genomic DNA using a restriction enzyme. The resulting 

fragments are ligated to Illumina adaptors that are modified to allow binding and amplification only of 

fragments containing the restriction site. These adaptors also contain barcodes, short identifying 

sequences unique to each individual, that are used to bioinformatically separate the sequenced reads. 

After tagged fragments from multiple individuals are pooled, the DNA is randomly sheared and size 

selected. The resulting library is sequenced on the Illumina platform, and the sequenced reads contain the 

sample identifier, the restriction site, and a short region downstream of the restriction site.  

 

This protocol has been modified by research groups to suit their particular needs while reducing cost and 

effort. As a term, RAD-seq was used to describe the method Baird et al. (2008) developed. Currently, the 

term is used to describe a family of methods that digest DNA with restriction enzymes and sequence the 

resulting reads. These methods include modifications to the number and type of enzymes used, the size 

selection step, barcoding, and/or adaptor ligation (K. R. Andrews et al. 2016). For example, genotyping 

by sequencing (GBS; Elshire et al. 2011) uses a common-cutter enzyme, and short fragments are size 

selected during PCR amplification. Multiplexed shotgun genotyping (MSG; Andolfatto et al. 2011) uses a 

common-cutter to digest the DNA, and after barcoded fragments are pooled, they are size selected. As a 

result, the original RAD-seq method produces fragments containing a single restriction enzyme cut site 

whereas GBS and MSG produce fragments flanked by two cut sites. This difference is important only 

when opting to do paired end sequencing. In MSG and GBS, the reverse reads start at the second cut site 

and extend the exact same number of nucleotides into the sequence, covering the same genomic location. 
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In contrast, in RAD-seq, the second reads start at the randomly cut site which is a variable physical 

distance from the restriction enzyme cute site. As such, the reverse reads don’t align at the same genomic 

location.  

 

Regardless of the specific protocol, the bioinformatics pipelines used to analyze the data have the same 

general steps. First, reads are de-multiplexed based on the in-line barcodes, and the barcodes are removed. 

Quality filtering can be done to exclude fragments lacking the restriction enzyme cut site(s), and trim the 

3’ end if the base quality is low. If a reference genome exists, the reads can be aligned to the reference 

genome and loci will be determined based on the alignment. If a reference genome is not available, loci 

can be constructed de novo by assembling reads with a small number of pairwise differences into groups. 

These groups represent genomic loci, and the differences represent segregating alleles. Statistical models 

are used to distinguish between true polymorphism and sequencing error. Once loci are discovered, single 

nucleotide polymorphisms are detected, and genotypes are called using maximum likelihood (Hohenlohe 

et al. 2010) or Bayesian methods (R. Nielsen et al. 2012). Finally, depending on the aims of the study and 

the downstream analytical methods, filtering the genotype data set might be necessary to remove markers 

and/or individuals with a low number of genotypes.  

 

RAD-seq methods have been applied in both experimental crosses and in natural populations. In 

experimental crosses, one can leverage the large number of SNPs to generate ultra-dense genetic maps in 

order to answer quantitative genetics questions surrounding interesting traits, or to help scaffold draft 

genome assemblies. In natural populations, RAD-seq markers have been used to estimate genomic 

diversity, inbreeding, population structure (Barley et al. 2015), effective population size (Pujolar et al. 

2013), and to detect signatures of selection (Hohenlohe et al. 2010), and introgression (Eaton and Ree 

2013).  
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The sources of error and bias for RAD-seq specifically, and NGS generally, were recently reviewed by 

Mastretta-Yanes et al. (see Table 1; 2014). A few are of particular interest here. Allele dropout is the 

failure of a restriction enzyme to cut the DNA due to a mutation in the recognition site. When an allele 

contains a cut site with a polymorphism, and is consequently not sequenced, that allele is called a null 

allele in the context of RAD tags (Gautier et al. 2013; Arnold et al. 2013). Another important source of 

error and bias is the PCR step during library preparation. PCR duplicates, a disproportionate number of 

copies of a DNA fragment in the PCR product of the sample, can bias allele frequencies at a locus, result 

in genotyping error, or introduce erroneous alleles due to PCR errors (Pompanon et al. 2005). 

Furthermore, PCR has the tendency to preferentially amplify fragments based on their GC content 

(Benjamini and Speed 2012). This bias leads to high variance in read depth across loci.  

 

From a bioinformatics standpoint, there are a few additional major sources of error and bias. Regions 

containing sequences of high similarity, like paralogous or repetitive regions, are often grouped into a 

single locus. This phenomenon is called over-merging, and can lead to allele frequency estimates that are 

completely spurious. Many analytical pipelines, including Stacks (Catchen et al. 2011; Catchen et al. 

2013) and PyRAD (Eaton 2014), cannot properly deal with indels, and fail to construct loci containing 

this kind of polymorphism. As a result, allele frequencies of indel-containing loci are not estimated 

properly. Finally, the biggest source of bias is mapping reads to a reference genome. The extent of this 

problem depends on how divergent the study population is from the reference genome. If a subset of 

individuals in a sample is more closely related to the individual(s) sequenced for the genome assembly, 

the alleles from those individuals will align to the reference genome better than the remaining sample. 

This could lead to biased estimates of allele frequency.  

 

There are challenges associated specifically with using RAD-seq in natural populations. When we use 

experimental crosses, we can leverage the a priori knowledge of the genetic composition of a population 

to sanity check our markers. When the genotype frequencies of the founding populations are known, 
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principles of Mendelian genetics help us form expectations about the genotype and allele frequencies in 

offspring generations. Therefore, markers from experimental crosses should be consistent with these 

expectations. In natural populations, on the other hand, no such expectations can be formed because we 

don’t know the genetic make-up of the founding populations. Thus, in natural populations, we largely rely 

on analytical tools to correctly construct genetic markers.  

 

Parameters used in de novo assembly of loci has proven to influence downstream analyses and inferences 

(Ilut, Nydam, and Hare 2014). The optimization of these parameters depends on the amount of 

polymorphism in the genome under investigation, the read depth, and the frequency of sequencing error 

(Catchen et al. 2013). Catchen et al. (2013) optimized the parameters for the threesprine stickleback and 

were able to detect erroneous loci using the high quality reference genome (Jones et al. 2012). Because 

such genomes are not available for many non-model taxa that cannot be brought into the lab for 

controlled crosses, strategies to optimize the de novo assembly of loci have been proposed (Mastretta-

Yanes et al. 2014). However, many such species have draft genome assemblies that contain the majority 

of the genetic information on scaffolds that are not grouped into chromosomes. To my knowledge, there 

are no studies focusing on whether a poorly assembled or highly-fragmented genome is valuable in 

discovery of genomic loci. Given the increased emergence of draft assemblies and the importance of 

correctly identifying segregating alleles at a locus, it is important to determine if a lower-quality genome 

aids or hinders the re-construction of loci from RAD-seq data in natural populations.  

 

In this chapter, I aim to assess the quality of markers constructed using alignment of RAD tags to the draft 

genomes of two non-model organisms, and compare it to the quality of markers constructed in the 

absence of reference sequences. To accomplish the goal, I used data from two mapping populations from 

each species, and discovered markers using both de novo and reference-based assembly of loci. 

Additionally, I explore the consequences of different assembly-related errors on population genomic 

statistics commonly estimated in applications of RAD-seq in studies of natural populations.  
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METHODS 

 

Study Organisms 

The genus Tolpis has a dozen or so described species, most of which are endemic to the Macaronesian 

islands. As an insular species on an oceanic island, Tolpis is the subject of studies aiming to understand 

the patterns and processes of evolution (Crawford et al. 2006; Crawford et al. 2008; Crawford et al. 2010; 

Soto-Trejo et al. 2013; Crawford et al. 2015; Mort et al. 2015). More recently, the breeding system of the 

genus has been of particular interest because of a recent transition from self-incompatibility (most Tolpis 

species) to self-compatibility in Tolpis coronopifolia (Crawford et al. 2008). As part of a study on this 

transition (see Chapter 1- cite), I assembled a draft genome for T. coronopifolia using two Illumina short-

read pair-end libraries, one with a 300-bp and one with 1000-bp insert size. The assembly contains a total 

of 1.2Gb across 3,977,270 scaffolds, with a N50 of 4,124 bp. See Table 1.2 for more details.  

 

The other organism is the lesser wax moth. Achroia grisella (Lepidoptera: Pyralidae) is an obligate 

symbiont of the western honey bee, Apis melifera (Milum 1935). The species exhibits an interesting 

behavior during mate pairing (Greenfield and Coffelt 1983). In most species of moth, females attract 

males but in A. grisella, males attract females by emitting ultrasound signals through asynchronous 

forewing movement (Spangler and Takessian 1986). Studies have shown that certain signal characters 

make these calls attractive to females (Jang and Greenfield 1996; Jang and Greenfield 1998b), which 

leads to interesting questions surrounding sexual selection in the species. Recently, I assembled a draft 

genome for the species as a part of a study on the genetic architecture of male song characters. I used an 

Illumina short-read paired-end library and a mate-pair library with insert sizes of of 280-500 bp and 3-5 

kb, respectively. The assembled genome is 418Mb across 74,159 scaffolds, with a N50 of 87,338 bp. See 

Table 1.2 for more details.  
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Mapping populations and Genomic Library Preparation 

Two Tolpis mapping populations were established as described in Crawford et al. (2008) and Crawford et 

al. (Crawford, Mort, and Archibald 2013).  In short, T. coronopifolia (SC) pollen was used to fertilize T. 

santosii (SI; Crawford, Mort, and Archibald 2013) individuals, and an individual from the resulting F1 

was used to give rise to two F2 populations (namely, F2.25 and F2.27) via self-pollination. Genomic 

DNA was extracted from individuals from both populations, N=101 and N=84 from F2.25 and F2.27, 

respectively. MSG libraries were prepared according to the protocol described in Andolfatto et al. (2011) 

with one modification: instead of MseI restriction enzyme, AseI was used because it cuts less frequently 

resulting in higher coverage per genomic location. From the sequencing effort, I obtained approximately 

220.5 and 140 million reads for the F2.25 and F2.27 populations, respectively. Unlike the original RAD-

seq method (Baird et al. 2008), MSG results in reads of equal length that have the same start and end 

location in the genome.  

 

Two Achroia mapping populations were established through backcrossing to the two inbred lines, Kansas 

and Florida, that are described in Gleason et al. (2016) Due to achiasmatic meiosis in females, F1 males 

were crossed to females from the Kansas and Florida inbred lines to generate the Kansas Backcross 

(hereafter “KS BC”) and the Florida Backcross (hereafter “FL BC”), respectively. Genomic DNA was 

extracted from individuals from both backcrosses, 447 and 465 from KS BC and FL BC, respectively. 

Modified MSG libraries were constructed to allow for sequencing of all individuals simultaneously. The 

library was run on a single lane of Illumina, and resulted in approximately 341 and 255 million reads for 

the KS BC and FL BC populations, respectively.  
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Marker Discovery 

To discover markers, I used Stacks (Catchen et al. 2011; Catchen et al. 2013), an open source software for 

marker discovery from GBS data. Briefly, Stacks is comprised of 4 programs: (1) pstacks/ustacks, which 

puts together stacks of identical reads and then assembles loci from the stacks for every individual in a 

population using either raw GBS reads, or an alignment file (SAM/BAM), (2) cstacks, which makes a 

catalog of loci that are present in the population, (3) sstacks, which searches for matches between the loci 

generated for each individual and the catalog, and (4) populations, which calls genotypes in the 

population and calculates population genetics statistics. While there are other software packages that do 

comparable bioinformatic work like PyRAD (Eaton 2014) and TASSEL (Bradbury et al. 2007), I chose 

Stacks because it is well-maintained, widely used for population genomic studies, and user friendly. 

 

To determine if a draft genome assembly affects the quality of markers generated, I used the MSG reads 

from the 2 Tolpis and the 2 Achroia populations to discover markers through two pipelines that differed 

only in whether or not the genome assembly was used. In the first pipeline, the MSG reads were aligned 

to the assembled genome, and the alignment file was used as the input by pstacks for the construction of 

loci (hereafter, the “alignment pipeline”), and in the second pipeline, the reads were used by ustacks to 

assemble loci de novo (hereafter, the “de novo pipeline”). Once loci were generated by the pstacks and 

ustacks, the remaining Stacks components were used in an identical manner between the two pipelines, 

and the complete pipelines were replicated in both organisms.  

 

For the alignment pipeline in the F2.25 population, I masked repeats in the Tolpis genome assembly using 

RepeatModeler (Smit and Hubley 2010). Then, I aligned the reads from each individual to the masked 

genome assembly using BWA aligner (H. Li and Durbin 2009) with default settings, and generated a 

sorted BAM file using SAMtools (H. Li et al. 2009; H. Li 2011). The BAM file served as the input to 

pstacks, and the only parameter I specified was the minimum depth of coverage for a stack to be 

considered a locus (m = 3). Then, I used all Tolpis individuals to create a catalog of loci in the population 



 
 

79 

in cstacks with defaults parameters. Loci from all individuals were then matched against the catalog with 

sstacks, and, finally, populations was used to call genotypes for all individuals at all possible loci in the 

F2.25 population and export the information to a VCF file (Danecek et al. 2011). This process was 

repeated for the F2.27 population. Similarly, the Achroia populations were used in the same manner but 

with the alignment being to the Achroia draft genome.  

 

For the de novo pipeline in the F2.25, I used individuals’ reads in ustacks to generate loci in absence of 

the Tolpis draft assembly. In ustacks, I set the minimum stack depth (m) to 3 to be comparable to the 

alignment pipeline. Additionally, within ustacks, I used the Removal algorithm (-r) to ensure that highly 

repetitive stacks are excluded from the analysis, the Deleveraging algorithm (-d) to resolve loci that 

contain too many nucleotide differences, and excluded secondary reads from haplotype calling (-H). 

Finally, I also set the maximum number of stacks per locus to 2 (max_locus_stacks=2) because I expected 

that, in the mapping populations, there would be only two alleles segregating per locus. The remaining 

Stacks components (cstacks, sstacks, populations) were used the same way as in the alignment pipeline. I 

repeated the marker discovery process in the F2.27 population and the two Achroia populations.   

 

The two pipelines employed here are representative of the protocol one would follow when studying 

natural populations, when a reference genome is available and in the absence of one. The only parameter 

value that cannot be set when employing this pipeline in natural population is the maximum number of 

segregating alleles per locus, a value that varies from locus to locus, and population to population.  

 

Evaluation 

The VCF files generated by populations included genotype calls for every individual at all loci in the 

catalog. To replicate a pipeline one is likely to use for natural populations, I excluded markers with fewer 

than 16 genotyped individuals. At that stage, I used expectations from Mendelian genetics to determine if 

a marker is “good” or “bad.” For the Tolpis populations, I tested the genotype frequencies at each 
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remaining marker for deviations from the 1:2:1 ratio expected from an intercross of F1 heterozygous 

individuals. I calculated a G statistic and compared it to the χ2 distribution with 2 degrees of freedom. I 

classified a marker as “good” if the genotype frequencies were consistent with the 1:2:1. Conversely, a 

marker, where the observed genotype frequencies deviated significantly from the expected, was 

considered “bad.”  

 

In the Achroia populations, markers with fewer than 16 genotyped individuals were excluded. Since only 

two genotypes are possible in these populations (heterozygous and homozygous for the recurrent parent), 

I also excluded markers containing more than 5% “impossible” homozygous genotypes. In a backcross 

population, Mendelian genetics predicts two genotypes: a heterozygote, and a homozygous for the 

recurrent parent,  and the absence of the homozygous genotype for the second parent. For example, for 

any given marker in the KS BC, a homozygous genotype for the FL allele was considered “impossible.” 

For the remaining markers, I calculated a G statistic to test for deviations from the 1:1 ratio expected in a 

backcross; the statistic was compared to the χ2 distribution with 1 degree of freedom. A marker, where 

observed genotype frequencies were significantly different from the expected were called “bad.” Markers 

with genotype frequencies consistent with the expected were classified as “good.” 

 

Finally, because coverage has been found to have a profound effect on the genotyping error rate 

(Hohenlohe, Catchen, and Cresko 2012; Davey, Cezard, and Utrilla 2013; Catchen et al. 2013), I also 

implemented a simple read depth filter for genotype calling (hereafter, “RDF”). The filter requires at least 

6 reads for a genotype to be called. If a genotype is called based on less than 6 reads, it gets converted to a 

missing genotype (NA). The evaluation of markers as “good” or “bad” was performed twice per 

population. The first time, RDF was off (0) and no genotypes were discarded due to low coverage. The 

second time the filter was on (1), and genotypes were discarded before the marker evaluation process. The 

evaluation script, including the RDF, were coded in Python 2.7. 
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RESULTS 

 

Overall, using the alignment of RAD-seq reads to a reference sequence as the starting point for 

construction of loci increased the proportion of good loci in the final data sets for all populations (Tables 

Table 3.1a,b, Table 3.2a,b). This result holds true regardless of whether or not RDF was utilized. 

However, the proportion of “good” loci is surprisingly low. In the F2.25, the percent of reads that are 

“good” is 5.7% in the de novo pipeline and 17.1% in the alignment pipeline (Tables 

Table 3.1a). These number increase to 9.3% and 24.1%, respectively, when RDF was on Tables 

Table 3.1b. That is, at most, only about a 1/4th of the markers with least 16 genotyped individuals are 

consistent with the expected 1:2:1 ratio. The observed pattern in F2.27 is similar (Table 3.1). In Achroia, 

the proportion of “good” loci in the data is close to 0 when the RDF is off (Table 3.2a). When RDF is 

used, the proportion jumps up to 23.0% and 28.1% for the de novo and alignment pipelines, respectively, 

in the KS BC (Table 3.2b). A similar pattern is seen in the FL BC (Table 3.2) 

 

The two pipelines generated different numbers of loci per population (see Tables 3.1-2). In the KS BC 

population, the alignment pipeline constructed almost twice as many markers as the de novo pipeline, 

regardless of RDF. Similar for the FL BC. The opposite pattern is observed in the Tolpis populations 

where the de novo pipeline discovered 3-5 times the number of loci compared to the alignment pipeline. 

Here too, RDF didn’t seem to change that pattern. It is worth mentioning that with RDF on, the number of 

markers decreased in the 4 populations compared to when RDF was off.  

 

In terms of the proportion of “bad” markers, the alignment pipeline resulted in a smaller fraction of bad 

markers in both F2.25 and F2.27. In both populations of Achroia, the proportion of “bad” markers in the 

alignment pipeline was smaller compared to the de novo pipeline but only when the RDF was off. When 

RDF was on, the alignment pipeline produced higher proportion of bad markers compared to the de novo 

pipeline. Finally, the proportion of markers with too many “impossible” genotypes in the KS BC was 
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35.5% and 55.2% for the alignment and de novo pipelines, respectively. Those numbers shrink to 7.8% 

and 10.4%, respectively, when the read depth filter is utilized. 

 

DISCUSSION 

 

Effect of mapping RAD tags to a reference genome 

Does using a draft genome assembly aid in the re-construction of genetic loci when studying natural 

populations of non-model organisms? To answer that question, I used MSG data from 4 mapping 

populations.  This is essentially an experiment to determine if marker identification pipelines can identify 

loci that survive the test of Mendelian segregation.  Segregation is directly evident in mapping 

populations but difficult to evaluate in natural samples (unless one samples both parents and offspring).  I 

treat the mapping populations as if they were samples from natural populations, and then examined the 

quality of genetic markers produced by two bioinformatic pipelines that are commonly used in population 

genomics studies. In one of the pipelines, I discovered markers based on the alignment of reads to a draft 

assembly, and in the other pipeline, the markers were created de novo. Overall, the use of the genome 

assembly consistently produced a larger proportion of “good” markers. However, that proportion was 

unexpectedly low, sometimes less than 1%.  

 

In all populations, all else being equal, the loci generated by the alignment contained a higher percentage 

of “good” reads. This makes sense because aligning sequence reads to a reference sequence allows alleles 

from different loci but with high sequence similarity to be assigned correctly. In that kind of situation, the 

degree of fragmentation of the assembly should not make a difference unless the loci are completely or 

partially missing from the assembly. In this study, both genome assemblies are fairly fragmented. 

However, the total assembly size for both is approximately the expected size of the genome (see Results 

in Chapter 1 and Chapter 2).  
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The highest proportion of “good” reads was in the alignment pipeline of the KS BC, and it was still only 

about 28%. That means that, at best, only 1 in 3 markers are behaving as one would expect given that the 

individuals are from a backcross. This is particularly troubling for two reasons. First, when sampling 

natural populations, one has a limited number of sanity checks to use in determining if a marker is good 

or bad. So, using these pipelines with default parameters is almost certainly leading to a data set with a 

high percentage of markers that are not consistent with Mendelian expectations. The consequences of 

using erroneous markers are discussed later. Second, here, I used a parameter in the de novo pipeline to 

restrict the number of alleles per locus (max_locus_stacks) to 2. While that is true for the populations that 

I was dealing with, natural populations don’t have that kind of prior knowledge. So, even with a favorable 

parameter, the pipeline was unable to properly construct loci.  

 

Previous studies have suggested that read depth is a factor in genotyping error rate (Hohenlohe, Catchen, 

and Cresko 2012; Davey, Cezard, and Utrilla 2013; Catchen et al. 2013). Here, the Achroia populations 

provide an excellent illustration that low read depth can lead to spurious genotype calls. When calling 

genotypes without requiring a minimum number of reads, the proportion of “good” loci in the KS BC is 

miniscule (0.5-1%, Table 3.2). When a read depth filter (RDF) of 6 is applied to the same data, the 

proportion increases to 17.8-21.9%. Removing genotypes with low read coverage decreases the number 

of genotyped individuals per marker. However, those genotypes have an inherently higher error rate. For 

a locus with two segregating alleles, the probability of sampling only one of them in 5 trials is a 0.03125, 

a heterozygote will appear as a homozygote about 3% of the time when the coverage is 5 reads have been 

sequenced. That probability increases as the number of reads decreases. With only two reads, the 

probability of sampling only one of the two alleles is 0.25. Therefore, a read depth filter for genotype 

calling seems a necessary step in bioinformatics pipelines that aim to accurately estimate allele or 

genotype frequencies. Depending on the read coverage per locus, the minimum read depth required for a 
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genotype call can be less than or greater than 6 depending on how many loci one can afford to discard 

based on the goal of the study.  

 

Another interesting observation is the total number of loci assembled through the alignment and de novo 

pipelines. In an ideal world, where one has access to a high-quality reference genome, it would be 

possible to optimize the input parameters for the construction of loci in both pipelines.  Then, the number 

of loci produced in the two pipelines should be approximately the same. Here, we see large differences 

between the two pipelines, and the pattern in the two species is exactly the opposite. In Achroia, the 

alignment pipeline produced twice as many loci as the de novo pipeline. In Tolpis, the de novo pipeline 

produced 3-4 times the number of loci generated by the alignment. If the genome assemblies of the two 

species are largely error-free, these numbers indicate that the de novo pipeline in Achroia is over-merging 

alleles whereas the de novo pipeline in Tolpis is under-merging alleles. Without additional data, it is 

impossible to decide where the misassembly occurred, in constructing the loci de novo, or in mapping 

reads to a poorly assembled genome.  

 

Effects of assembly errors on population genetic estimates 

A large portion of loci in my data sets are “bad,” many of them likely due to misassembly of alleles into 

loci. The way in which a locus fails to assemble properly is important because the resulting erroneous loci 

are used to estimate basic population statistics, which are in turn used to calculate various population 

genetic parameters. Therefore, it is essential to understand the indirect effects of misassemblies of 

markers on statistics commonly used when studying natural population.  

 

The estimates I will be discussing are the the building blocks of populations genetics: nucleotide 

polymorphism (S), nucleotide diversity (π), observed heterozygosity (Ho), and the inbreeding coefficient 

(F). These estimates are necessary when testing for deviations from selective neutrality, quantifying 

population differentiation and migration, or determining effective population size and linkage 
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disequilibrium, and other processes of evolutionary interest. Nucleotide polymorphism (or nucleotide 

heterozygosity) is simply the number of segregating nucleotide positions in a set of aligned sequences. 

The nucleotide diversity, on the other hand, is the average number of nucleotide mismatches per possible 

pairwise comparison in a set of aligned sequences (Nei and Li 1979). The observed heterozygosity is the 

proportion of heterozygous individuals in the population. The inbreeding coefficient is defined as the 

deviation of observed heterozygosity (HO) from the expected (HE) under Hardy-Weinberg equilibrium, 

𝐹 = #$%#&
#$

. All of these parameters are estimated in the context of a locus in a population. In reality, 

when sampling natural populations, questions usually revolve around multiple populations or 

subpopulations and any evolutionary forces acting on them. At the larger scale, an important estimate is 

that of genetic differentiation among subpopulations, or FST. I chose to focus on FST because it is a widely 

used population genetic parameter in studies of natural populations. Here, FST is defined as the variance of 

allele frequency between the subpopulations as a fraction of the expected heterozygosity under Hardy-

Weinberg when subpopulation allele frequency is equal to the average population allele frequency in the 

total population. Namely, 𝐹'( = 	
*+

, -%,
, where 𝜎/ is the variance in allele frequency among 

subpopulations, and 𝑝 is the average frequency of the allele in the total population. For sake of simplicity, 

in the following examples, subpopulations are in Hardy-Weinberg equilibrium.  

 

The two main ways in which a locus is not assembled correctly are over- and under-merging of alleles. 

Under-merged alleles are segregating alleles at a polymorphic locus that do not get grouped together as a 

marker; instead they are split into multiple loci. Consider as an example a population that is polymorphic 

for locus A* with 2 segregating alleles (a.1 and a.2) at some intermediate frequency. Here, the average 

number of nucleotide mismatches is greater than 0, and the number of segregating nucleotide sites is ³ 1. 

                                                        

* I use capital letters to represent true loci, capital letters with a prime symbol (¢ ) to represent misassembled loci, 
and small letters to represent alleles.  



 
 

86 

Thus, nucleotide polymorphism (S) and nucleotide diversity (π) are both > 0. In this instance, under-

merging would result in the two alleles being split into two monomorphic loci (A.1¢ and A.2¢ ) for all 

heterozygous individuals. The allele frequency for the a.1 allele at the A.1¢  locus is now 1, and, similarly, 

the frequency of a.2 at the A.2¢  locus is also 1. Therefore, the number of segregating nucleotide sites and 

the number of nucleotide mismatches is 0 for the two loci, which in turn leads to π = 0 and S=0 for both 

A.1¢ and A.2¢. It follows that splitting a polymorphic locus into two monomorphic loci results in 

underestimating genetic variation at the nucleotide level. Finally, since all heterozygotes for locus A now 

appear as homozygotes, the heterozygosity estimate in the population will be 0, and the estimated 

inbreeding coefficient is F = 1.  

 

Over-merging occurs when artificial polymorphic loci are assembled by grouping alleles from different 

loci. The artificially combined loci may be either monomorphic or polymorphic. The simplest example is 

to consider a single population with two truly monomorphic loci (A and B with alleles a and b, 

respectively). Since the loci are monomorphic, S and π are 0. With over-merging, non-homologous alleles 

with low sequence divergence are grouped into an erroneous polymorphic marker (AB¢ ) with two 

segregating alleles (a and b). The merge of the two non-homologous alleles results in creation of at least 

one spurious segregating site and at least one pairwise nucleotide difference. Therefore, S and π are going 

to be estimated as ³ 0. Importantly, when the genotypes are called in the population, individuals with 

enough reads for both loci will appear as heterozygotes, and individuals with reads only for one of the 

two loci will appear as homozygotes for the respective allele. So, over-merging of monomorphic loci 

introduces artificial polymorphism that leads to inflated values of S, π, Ho, and an underestimated F.  

 

Here is a simple example of two subpopulations (P1 and P2) of equal size with a biallelic locus (A), and 

with one of the segregating alleles being present in both subpopulations. So, p.1 and p.2 are segregating in 

P1 at some intermediate frequency, and p.2 and p.3 are segregating in P2. Consider the case of under-
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merging, where the de novo assembly of loci fails to recognize p.1, p.2, and p.3 as homologous alleles, 

and instead clusters p.1 and p.3 into one polymorphic locus (A.1¢ ) and p.2 into its own monomorphic 

locus (A.2¢ ). Heterozygotes from P1 will be called homozygotes for both A.1¢ and A.2¢. Similarly, 

heterozygotes from the second subpopulation, P2, will appear homozygous at the two artificial loci, A.1¢ 

and A.2¢. It is immediately obvious that the heterozygosity in the assembled loci is 0. Additionally, p.1 

and p.2 are fixed in P1, and p.2 and p.3 are fixed in P2. Since A.2¢ appears monomorphic for p.2 in both 

populations, FST = 0 for said locus. Since A.1¢ is fixed for different alleles in the two populations, the 

estimate of FST for this locus is 1. Without specific allele frequencies for the initial subpopulations, I 

cannot estimate the genetic differentiation. However, given that the alleles in the subpopulations are of 

intermediate frequency, I expect that the true value of FST would be a value greater than 0 but also less 

than 1. Therefore, the incorrect assembly of loci has an effect on the FST estimate, and the direction and 

magnitude of that effect depends on the true allele frequencies in the two subpopulations. 

 

Conclusion 

Even when pipelines for marker discovery are implemented with default parameters and without any 

organism-specific optimization, I found that a reference genome sequence helps improve the final set of 

markers by increasing the proportion of “good” markers relative when compared to the final set produced 

in the absence of a reference sequence. Furthermore, I found that using a read depth threshold for 

genotype calling is necessary to reduce noise stemming from low-coverage genotypes. Nevertheless, 

because of the relatively low proportion of “good” markers in the final data sets, I would urge caution 

when using default parameters for bioinformatics pipelines reconstructing loci from reduced genome 

complexity libraries because misassemblies introduce error in the estimation of important population 

statistics. A natural next step is to understand how to optimize input parameters to minimize 

misassemblies, and to explore ways to utilize even a highly-fragmented genome assembly to aid in the 

proper re-construction of loci. While it is true that RAD-seq has inherent problems (Arnold et al. 2013; 
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Mastretta-Yanes et al. 2014), the range of applications in non-model organisms is wide (Ekblom and 

Galindo 2011; Ellegren 2014; da Fonseca et al. 2016) and it will remain an important technique for the 

foreseeable future.   
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TABLES 

Table 3.1. For the Tolpis F2.25 and F2.27 populations: Number of markers discovered with at least one 
genotyped individual, number of markers with a sufficient number of genotyped individuals to be 
evaluated (the proportion of discovered markers that were evaluated), and number of “good” markers (the 
proportion of evaluated markers that were “good”) for each pipeline (“A” = alignment pipeline, D” = de 
novo pipeline) with and without a read depth filter (RDF) for genotype calling. a. No filtering was done 
during genotyping b. a minimum of 6 reads were required for a genotype to be included in the analysis.  
 

a.  

Population Pipeline 
Number of Markers 

with Called 
Genotypes 

Number of Markers 
Tested Good markers 

F2.25 A 99,717 49,784 (50%) 8,498 (17.1%) 
F2.25 D 297,142 189,350 (64%) 10,856 (5.7%) 
F2.27 A 59,034 18,711 (32%) 6,072 (32.5%) 
F2.27 D 212,843 92108 (43%) 10,718 (11.6%) 

	
	
	
b. 

Population Pipeline 
Number of Markers 

with Called 
Genotypes 

Number of Markers 
Tested Good markers 

F2.25 A 77,082 40,897 (53%) 9,873 (24.1%) 
F2.25 D 282,655 156,160 (55%) 14,570 (9.3%) 
F2.27 A 46,215 12,857 (28%) 4,354 (33.9%) 
F2.27 D 204,822 65,317 (32%) 10,790 (16.5%) 
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Table 3.2 For the Achroia KS BC and FL BC populations: Number of markers discovered with at least 
one genotyped individual, number of markers with a sufficient number of genotyped individuals to be 
evaluated (the proportion of discovered markers that were evaluated), number of markers containing >5% 
“impossible” genotypes (the proportion of evaluated markers with >5% “impossible” genotypes), and 
number of “good” markers (the proportion of evaluated markers that were “good”) for each pipeline (“A” 
= alignment pipeline, D” = de novo pipeline) with and without a read depth filter (RDF) for genotype 
calling. a. No filtering was done during genotyping b. a minimum of 6 reads were required for a genotype 
to be included in the analysis. 
 

a. 

Population Pipeline 
Number of 
Markers 

Discovered 
Markers Tested 

Number of markers 
with "impossible" 

genotypes 
Good markers 

KS BC A 80,734 63,109 (78%) 22428 (35.5%) 795 (1.3%) 
KS BC D 41,001 32,301 (79%) 17817 (55.2%) 191 (0.6%) 
FL BC A 66,085 50,014 (76%) 29155 (58.3%) 919 (1.8%) 
FL BC D 36,587 29,010 (79%) 19418 (66.9%) 62 (0.2%) 

	
	
b. 

Population Pipeline 
Number of 
Markers 

Discovered 
Markers Tested 

Number of markers 
with "impossible" 

genotypes 
Good markers 

KS BC A 66666 52042 (78%) 4064 (7.8%) 14628 (28.1%) 
KS BC D 35376 27470 (78%) 2848 (10.4%) 6310 (23.0%) 
FL BC A 54006 39923 (74%) 6602 (16.5%) 8685 (21.8%) 
FL BC D 31510 24162 (77%) 3914 (16.2%) 4381 (18.1%) 
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