

Delineating Sea-Level Rise Inundation: An Exploration of Data

Structures and Performance Optimization

By

 © 2017

Charles Grady

B.Sc., University of Kansas, 2006

Submitted to the graduate degree program in Geography and the Graduate Faculty of the

University of Kansas in partial fulfillment of the requirements

for the degree of Master of Science.

Chair: Xingong Li

James Miller

 Ting Lei

Date Defended: 10 May 2017

ii

The thesis committee for Charles Grady certifies that this is the approved version of the

following thesis:

Delineating Sea-Level Rise Inundation: An Exploration of Data

Structures and Performance Optimization

Chair: Xingong Li

Date Approved: 10 May 2017

iii

Abstract

Based on a conservative projection by the IPCC (IPCC 2007), inundation caused by sea level rise

will likely disrupt the physical, economic, and social systems in coastal regions around the

world. This research proposed an innovative method to calculate the minimum sea level rise

required to inundate a cell in a Digital Elevation Model (DEM). The method, which accounts for

water connectivity when determining inundation height for each cell, performs better than the

simple “bathtub” approach, especially with sea level rises below 1 m. Several implementation

data structures are proposed and compared. The combination of a binary heap and hash table data

structure gives the most efficient implementation. The implementation is further parallelized

using a master / worker paradigm. The parallel approach significantly outperforms serial

implementations with respect to running time and memory footprint. Performance can be further

improved with additional processing cores and using the supercomputing resources in the

XSEDE (Towns, et al., 2014) program.

iv

Acknowledgements

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which

is supported by National Science Foundation grant number ACI-1053575. Allocation TG-

ASC160011. This work was enabled, in part, by U.S.NSF BIO/DBI #1356732.

v

Table of Contents

Chapter 1: Introduction ... 1

Chapter 2: Delineating Sea Level Rise Inundation Using Dijkstra’s Algorithm 3

Introduction ... 3

Methods... 5

Inundation by a Specific Sea Level Rise .. 6

Inundation Height ... 8

Data Structures .. 12

Data ... 19

Results and Discussions .. 20

Conclusions ... 25

Chapter 3: Parallelizing Inundation Height Calculation ... 27

Introduction ... 27

Motivation ... 27

Existing methods ... 28

Data ... 34

Method .. 35

A complete example ... 39

Handling tiles with different spatial resolutions ... 47

Implementation ... 49

vi

Results ... 50

West Coast Experiment... 51

Entire NGDC Dataset Experiment .. 53

Conclusions ... 55

Chapter 4: Conclusions ... 58

References ... 60

Appendix ... 65

Appendix A: West coast inundation height benchmarks. ... 65

Appendix B: NGDC experiment running time in seconds. .. 66

1

Chapter 1: Introduction

If sea-level continues to rise, as the Intergovernmental Panel on Climate Change (IPCC) predicts

(Intergovernmental Panel On Climate Change -- IPCC, 2007), it is important to determine at

what point and which coastal areas will be inundated. Coastal inundation could have

significantly impacts as nearly a quarter of the world’s population lives at lower than 100m and

within 100km of the coast (Nicholls, et al., 2011). It is critical to know at what sea-level height

and which coastal areas might be inundated in order to predict and mitigate economic and

environmental impacts.

Inundation height is not simply the elevation of a given location. If there are terrain barriers to

prevent water from reaching a region, then the inundation height is actually greater than the

elevation at the location. There are multiple methods for delineating potentially inundated areas

while accounting for barriers to water propagation. An example of one of these methods is

region grouping (Li, et al., 2009) where cells in a raster that have elevation values less than a

specific value are inspected and those that are connected to ocean cells are marked as inundated.

A major drawback of the approach is that it is computed for specific sea-level rises. To address

this limitation, a new method is proposed in chapter two that calculates the minimum sea-level

rise required to inundate every cell. By creating a raster of the minimum sea-level rise required

to inundate every cell, we can perform the computations once and then query the areas of

inundation at specific sea-level rises rather than computing for each sea-level rise. The

performance of this method, both execution time and memory usage, is the major concern and

the focus of this research.

2

The second chapter presents the method for calculating inundation height on a DEM. The

method uses Dijkstra’s algorithm (Dijkstra, 1959) for graph traversal by treating each raster cell

as a node and creating edges between each cell and its adjacent cells. Dijkstra’s algorithm relies

on a priority queue data structure to explore a graph. Two different heap implementations, binary

and Fibonacci heaps, are evaluated to determine which is better suited for our method.

Chapter three presents an extension to the method that utilizes a parallel approach. The new

method uses a master-worker paradigm to spread computations across multiple CPU cores,

which addresses the traditional limitations of Dijkstra’s algorithm. The parallel method is also

evaluated on supercomputing resources using the Stampede supercomputer at the Texas

Advanced Computing Center through the XSEDE program (Towns, et al., 2014).

3

Chapter 2: Delineating Sea Level Rise Inundation Using Dijkstra’s Algorithm

Introduction

During the 20th century, world sea levels rose by 0.17 ± 0.05 m (Intergovernmental Panel On

Climate Change -- IPCC, 2007). The Intergovernmental Panel on Climate Change (IPCC)

estimates that the rate of sea level rise will roughly double over the next century due to

increasing global temperatures, with a conservative projection of global sea level rise of 0.18-

0.59 m by 2100 (Intergovernmental Panel On Climate Change -- IPCC, 2007). The IPCC report,

however, acknowledges that its sea level rise appraisal does not take into account the recent rapid

changes to the ice sheets that have been observed since 2003. The Greenland Ice Sheet contains a

volume of water equivalent to 6 m of sea level rise, and the West Antarctic Ice Sheet, an unstable

ice mass grounded well below sea level, contains a volume of water equivalent to 5 m of sea

level rise (Bindschadler, 1998). Both the Greenland Ice Sheet and the West Antarctic Ice Sheet

are currently showing rapid increases in mass loss that may significantly increase sea level if

such mass loss continues (Thomas, et al., 2004; Rignot & Kanagaratam, 2006). Overpeck et al.

(2006) indicated that warming polar temperature may reach a level this century similar to that of

the Last Interglaciation (LIG), which led to sea levels about 4 to 6 meters higher than present.

Nearly a quarter of the world’s population lives at elevations below 100 m and within 100 km

from a coast (Nicholls, et al., 2011). Coastal regions also have the greatest concentration of

economic activities. Inundation caused by sea level rise will likely disrupt the physical processes,

economic activities, and social systems in coastal regions around the world (Nicholls & Tol,

2006). Numerous assessments of present and future coastal impacts of sea level rise have been

conducted at global, regional, and local scales with different focuses on population, land

4

use/cover, flora, fauna, and biodiversity (Nicholls & Tol, 2006; Hopkinson, Lugo, Alber, Covich,

& Van Bloem, 2008; Legra, Li, & Townsend, 2008; Li, et al., 2009; Craft, et al., 2009; Virah-

Sawmy, Willis, & Gillson, 2009; Menon, Soberón, Li, & Peterson, 2010; Peterson, Navarro-

Sigüenza, & Li, 2010). One of the key requirements in those analyses is the delineation of

potentially inundated areas by different sea level rises (SLRs). Delineation of inundation from

SLR differs from existing event flood models that describe short-term, pulsed-flood events

(Poulter & Halpin, 2008). These flood models depend on parameters that include surface

roughness coefficients and the magnitude and duration of the flooding (Marks & Bates, 2000).

The long-term and near steady-state inundation resulting from SLR is less dependent on surface

roughness features and individual storm characteristics, and research is needed to improve our

understanding on hydraulic characteristics of coastal flooding from SLR (Poulter & Halpin,

2008).

Inundation by a specific SLR could be simply identified as the areas whose elevation is below or

equal to the SLR. Although this “bathtub” approach is simple, it has one important shortcoming:

water connectivity is not considered when delineating the inundation. It is possible that there are

areas that have an elevation below the SLR, but they will not be inundated because terrain

barriers exist between them and ocean water. Several inundation delineation methods, which do

consider water connectivity, have been proposed (Poulter & Halpin, 2008; Li, et al., 2009). Li et

al. (2009) discussed two methods of delineating inundation by a specific SLR. One of the

methods uses the region group GIS function (also called component labeling in image

processing) to delineate spatially contiguous inundation. The other method is similar to the

method used by Poulter and Halpin (2008), where water propagates from current oceans and

inundates the cells whose elevation is below a specific SLR. While the efficiency of their method

5

was not documented in Poulter and Halpin (2008), Li et al. (2009) found the method

significantly slower than the method based on the region group GIS function. One common

limitation among those existing methods is that they can only delineate the inundation by a

specific SLR. Although those methods could be called multiple times to compile a map of

inundation by several SLRs, this approach is not efficient, and more importantly, it does not take

the full advantage of the vertical resolution, which continues to improve, of the DEM.

The research reported here first proposed yet another method of delineating inundation by a

specific SLR. The method used the cost distance GIS function and could be easily implemented

in any raster GIS having the function available. Inspired by the cost-distance based method, this

research also developed an innovative method which calculated the minimum SLR needed to

inundate each cell in a DEM. Once calculated, this inundation height raster layer can be used to

query the inundation by any SLRs. Several data structures were proposed and compared for

efficient implementation of the method.

Methods

While the “bathtub” method simply selects the cells whose elevation is less than or equal to a

specific SLR as the inundation, methods that consider water connectivity only include those cells

in inundation if their elevation is less than or equal to the SLR and can be reached by ocean

water through spatial propagation. Two methods are proposed in this research, both considering

water connectivity through either 4- or 8-neighbors. The first method delineates inundation by a

specific SLR while the second method calculates the minimum SLR to inundate each cell in a

DEM.

6

Inundation by a Specific Sea Level Rise

Figure 2.1. Delineating inundation by a specific sea level rise using the cost distance GIS function. (a) An example

DEM with elevation ranging from -5 to 8 m; (b) current oceans (blue) and land (green); (c) the friction surface

where blue cells are less than or equal to 2 m and have a friction of 1 and brown cells are physical barriers; (d)

shortest distance calculated by the cost distance function where light blue indicates farther away from current

oceans; € inundation by 2 m SLR (red)

7

Li et al. (2009) used the region group GIS function to test whether the cells under a specific SLR

are spatially connected to oceans. As illustrated in Figure 2.1, our first method here used the cost

distance GIS function to delineate spatially connected cells under a specific SLR. The cost

distance GIS function calculates the least cost from each cell to some source cells (i.e., cells to

which least cost is calculated) based on a friction surface. The function requires two input raster

layers, one for the friction surface and the other one for the source cells. For the purpose of

delineating the inundation by a specific SLR, current ocean cells (Figure 2.1b) are treated as the

source cells from which ocean water propagates. The friction surface (Figure 2.1c) is created by

setting a friction of 1 to the cells whose elevation is below and equal to the SLR and physical

barriers to the cells whose elevation is above the SLR. With the source and friction raster layers

thus created, the cost distance GIS function can then be used to calculate the least cost distance

(Figure 2.1d) from current oceans to the cells to which ocean water can “travel”, i.e., the cells

that are not blocked by any physical barriers (i.e., terrain that is above the SLR). The inundation

cells (Figure 2.1e), therefore, are the cells whose distance to the current oceans is greater than

zero (current ocean cells have the distance of zero because they are the source cells). Figure 2.2

8

illustrates how this method can be implemented as a ModelBuilder© model with the ESRI

ArcGIS© software.

Figure 2.2. Cost distance based inundation model built using ModelBuilder of the ArcGIS software. Rectangles are

GIS operations. The blue and green ellipses connected to the rectangles are, respectively, the inputs and outputs of

the GIS operations. Ellipses with a letter “P” indicate the parameters of the model.

Inundation Height

Our second method was inspired by the cost distance function in the first method. Instead of just

taking advantage of the implicit spatial propagation in the cost distance GIS function, we

developed a method which calculates the minimum SLR needed to inundate each cell in a DEM.

We call the minimum SLR inundation height.

Our method is based on the Dijkstra algorithm which is a graph traversal algorithm that finds the

minimum cost and path on a graph with non-negative costs (Dijkstra, 1959). It begins at a start

node and adds all nodes directly connected to it to a set of possible nodes (front nodes hereafter).

Then, the node that has the least cost in the front nodes is extracted and added to the set of

visited nodes. All the nodes connected to the extracted node are added to the front nodes, and

9

any nodes in the front that can be reached (through the extracted node) with less cost than before

have their costs reduced. The process repeats until all nodes have been visited.

Dijkstra’s algorithm can be adapted for computing inundation height for a DEM raster layer by

treating each cell center as a node and creating edges between each cell and its neighbors. Our

method supports both 4- and 8-connetivity neighbors, although all the analyses were based on 8-

connectivity neighbors. With this graph view on a raster layer, current ocean cells are the start

nodes and the algorithm iteratively spreads from the ocean cells by maintaining a set of land cells

which are the immediate neighbors of ocean cells. We call this set of land cells the inundation

front hereafter. Initially, the inundation front contains all the land cells next to current ocean cells

with their elevation as their inundation height. In each iteration, the algorithm extracts from the

inundation front the cell with the lowest inundation height (low-cell hereafter), writes the

inundation height on the output raster layer, and updates the inundation front by finding the low-

cell’s neighbor cells, calculating their inundation heights, and inserting those cells into the

inundation front. When there are several cells having the same lowest inundation height in the

inundation front, the low-cell is the cell that enters the inundation front the first. The inundation

height for a cell is calculated as:

𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 = max (𝑙𝑜𝑤 − 𝑐𝑒𝑙𝑙′𝑠 𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙) (2.1)

The above process repeats until all the cells have their inundation height calculated. Figure 2.3

gives an example DEM (Figure 2.3a) and a current ocean (Figure 2.3b) raster layer from which

inundation height is calculated. The example DEM has six rows and six columns and the ocean

layer has three current ocean cells. Figure 2.3c shows the initial cells in the inundation front and

10

their inundation heights. Figure 2.3d to 2.3j illustrate the snapshots of running the algorithm a

few more iterations. The primary output of the algorithm is a raster layer where the value at a

cell represents the minimum SLR required to inundate the cell. A possible secondary product is

a raster layer that stores the shortest path by which a cell is inundated by ocean water.

11

Figure 2.3. Calculating the inundation height on an example DEM. (a) The DEM; (b) current ocean raster layer with

3 ocean cells; (c) initial inundation front and their inundation height; (d) – (g) inundation height calculation for four

cells and the evolution of the inundation front.

12

Data Structures

The key data structure in the algorithm is to represent and manage the inundation front from

which ocean water propagates. Any data structure used to manage the inundation front must

provide two operations: the extraction operation which finds the cell with the lowest inundation

height in the front and removes it from the front; and the insertion operation which either adds a

new cell into the front if the cell does not exist in the front or updates the cell’s inundation height

if necessary. The front expands and shrinks during its propagation. As the size of the raster layer

increases, so does the number of cells in the front, and the number of iterations will increase

quadratically. This means the extraction and insertion operations will be called more times with

more cells in the front. Designing efficient data structures for the operations on the inundation

front becomes the most crucial component of implementing the algorithm.

The front behaves like a minimum priority queue (Cormen, Leiserson, Rivest, & Stein, 2009),

where each item in the queue has an associated priority, which, in our case, is inundation height.

One way to build a minimum priority queue is to use a binary heap. A binary heap is a complete

binary tree which has as many nodes as it can hold at all levels except for the leaves. Any nodes

on the leaves are pushed to the left. In a minimum binary heap (min-heap hereafter), each tree

node is, at most, as large as its two children. While the two children must be at least as large as

their parent, either may be larger than the other. Because each node is at most as large as the two

nodes below, the root node is always the smallest node in a min-heap. This makes min-heaps a

good data structure for implementing a minimum priority queue. A binary heap also has several

important properties. First, it is the shortest tree that can hold a given number of nodes. Second,

if a binary heap contains N nodes, its height is log(N). Last, a binary heap can be stored very

compactly in an array.

13

To remove the smallest items from a min-heap, the last item is moved to the top of the tree. The

item is then pushed down until it reaches its final position and the tree is again a valid min-heap.

Because the tree has a height of log(N), this process can take, at most, log(N) steps. This means a

min-heap based priority queue takes Θ(log N) run time to extract its smallest item. To add a new

item to a min-heap, the item is placed at the bottom of the tree and then pushed upward until the

tree is again a valid min-heap. Because the tree has a height of log(N), this process also can take,

at most, Θ(log N) run time. Decreasing an item’s priority is similar to adding a new item. After

the priority of the item is reduced, the item is pushed upward until the tree is again a valid min-

heap. This will take, at most, Θ(log N) run time too. Figure 2.4b and c give the examples of

extracting a node and decreasing the priority of a node in a min-heap.

Figure 2.4. An example min-heap and some operations on the heap. (a) The min-heap after items 15, 14, 13, 9, 10,

12, 4, 3, 1, 8, 6, 7, 11, 2, and 5 are inserted into the heap; (b) the min-heap after item 1 is extracted; (c) the min-heap

after 11’s priority in (b) is decreased to 4.

Another way to build a minimum priority queue is to use a Fibonacci heap (Fredman & Tarjan,

1987). A Fibonacci heap is a more complicated data structure than a binary heap but may

provide potential performance gains. Figure 2.5a shows an example Fibonacci heap. In a

Fibonacci heap, every node is a sub-heap and each node has four pointers: one to its parent (null

if it is a root node), one to its left sibling, one to its right sibling, and one to its child with the

14

smallest key. Each node has a key, which is the value used to determine its position in the heap,

which, in our case, is inundation height. Additionally, each node has a rank that indicates how

tall the sub-heap is at that location and a bit indicating if the node has been marked, meaning it

has lost a child.

15

Figure 2.5. An example Fibonacci heap and operations on the heap. (a) The original Fibonacci heap; (b) the heap

after item 7 is inserted; (c)-(f) the extract minimum operation. The minimum pointer is moved to a sibling and the

minimum node’s children are promoted to the root level. Sub-heaps with the same degree are merged until their

root level no longer contains any two sub-heaps with the same degree (height); (g)-(j) the Reduce Key operation.

Item (18) has its key reduced and is cut from its parent and moved to the root level. Then the minimum pointer is

reset to the new heap minimum.

16

The insert operation for a Fibonacci heap creates a new sub-heap and inserts it into the heap’s

ring of root sub-heaps and performs a merge operation. If the newly inserted item has the lowest

key for the entire heap, the minimum pointer changes to point at it and the operation is complete.

The efficiency of this operation is Θ(1) and runs in constant time. Figure 2.5b illustrates the heap

after a new item (7) is inserted into the heap shown in Figure 2.5a.

To remove the smallest item from a Fibonacci heap, the children of the item pointed at by the

minimum pointer are added to the root ring of sub-heaps. In the worst case, this can result in all

items being in the root ring of sub-heaps and become very inefficient. To combat this, when the

extract operation takes place, sub-heaps with the same rank are linked together by making one a

child of the other so that the heap property is maintained. If a node is marked, it is moved to the

root level. Once all of the sub-heaps are linked, the minimum pointer is set to the sub-heap with

the item with the smallest key. The amortized cost of this operation is O(log N). The operation is

demonstrated in Figure 2.5c-f, where the minimum item (2) is deleted by first moving the root

minimum pointer to the sibling on the right (10). Then, the children of node (2) are promoted to

the root level of the heap. From there, link operations are performed on sub-heaps with the same

rank until no two sub-heaps at the root level have the same rank. At that point, the root

minimum pointer is reset to the smallest root item (3).

To reduce an item’s key in a Fibonacci heap is similar to insert an item. First, the key of the item

in question is reduced. If the heap property is no longer satisfied, the parent of the item is

marked and the entire sub-heap is cut from its parent and inserted at the top level of the heap.

From there, the same procedure used for insert is performed. The amortized efficiency of this

operation is θ(1). Figure 2.5g-j demonstrate the process, where item 18 has its key reduced to 1.

17

The parent of the item 18 is marked and the entire sub-heap is cut and moved to the root level.

Finally, the root minimum pointer is reset to item 1.

The data structures used to implement the minimum priority queue can greatly influence the

performance of the method. Both binary heap and Fibonacci heap have advantages and

drawbacks. While binary heaps are simpler to implement, Fibonacci heaps provide better

theoretical computational complexity as shown in Table 1, where N is the number of items in a

heap.

Operation Binary Heap Fibonacci Heap

Insert an Item Θ(log N) Θ(1)

Remove the Minimum Item Θ(log N) O(log N)

Reduce Key Θ(log N) Θ(1)

Table 1. Theoretical computational complexity of the three main operations in the heap implementation of a

minimum priority queue

Whether a min-heap or a Fibonacci heap is used to implement the minimum priority queue, a

crucial step in the insertion operation is to determine whether a low-cell’s neighbor cells are

already in the inundation front before adding them to the front or updating their inundation

height. The operation has to search through the front based on the location of a cell. Depending

on how the spatial connectivity is defined, this operation is called four or eight times in each

iteration. As the number of cells in the front increases, this operation becomes a bottleneck if a

sequential search is performed. Therefore, we built a location index for front cells using a hash

table. With the hash table index, the average time to access a cell in the front is Θ(1) and the

worst-case time is Θ(N) where N is the number of cells in the front.

18

Figure 2.6. Data structures used in the min-heap implementation of the inundation height method

Our min-heap implementation used a dynamic array which expands and shrinks as cells are

inserted and extracted from it (Figure 2.6). An item in the array is a pointer to a front cell object.

Each front cell object stores inundation height, a linear index, and its position index in the min-

heap array. Inundation height is the key in the min-heap. A hash table is used to create a location

index to front cell objects. Each hash table node stores a location key, which is the linear index

of a cell on a DEM raster layer, and a pointer to a front cell object. Maintaining a position index

in a front cell object adds extra complexity to the extraction and insertion operations which move

front cells in the min-heap array. However, this effort is rewarded when the insertion operation

19

has to quickly find a cell in the min-heap array by its location index, and when the inundation

height of a cell needs to be decreased.

The two heaps and the hash table data structures were implemented in C++ and wrapped to work

with MATLAB. All the calculations were performed using a Lenovo Thinkpad x220t machine

with a 2.70 Intel Core i7-2620M processor with 8 GB RAM running MATLAB R2007b.

Data

Figure 2.7. A DEM covering the east coast of the state of North Carolina, USA. Ocean is in blue and elevation is in

shades of gray, the darker the lower.

20

To test our methods and to evaluate the efficiency of different implementation data structures,

we used a DEM covering the East coast zone of North Carolina (Figure 2.7). The DEM was

downloaded from the USGS National Elevation Dataset (NED) website. Several individual tiles

of the DEMs were first downloaded then pieced together to cover the entire region at a spatial

resolution of 30 meters. Since LiDAR data was used to generate the DEM, it has high vertical

accuracy and resolution. The DEM grid has a dimension of 9188 x 9360 (about 86 million) cells.

Among them, 54% are land cells, which have a mean elevation of 14.83 m and range between -

0.12 m and 121.36 m.

Results and Discussions

To compare the simple “bathtub” approach and our methods, we used Equation 2.2 to calculate

an error percentage. We used the equation and the term “error” here because the “bathtub”

approach overestimates inundation and our methods are theoretically correct, and the true

inundation is not available.

𝑒𝑟𝑟𝑜𝑟 % =
𝐵𝑎𝑡ℎ𝑡𝑢𝑏 𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛−𝑂𝑢𝑟 𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛

𝑂𝑢𝑟 𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛
 (2.2)

21

Figure 2.8. Percentage error of the "bathtub" method with different sea level rises.

Figure 2.8 shows the error percentages calculated using Equation (2.2) with 28 SLRs. The error

percentage decreases from 48% to 0.3% as SLR increases from 0.1 to 10 m. The average error

percentage for the SLRs of less than 1 m is 17%. However, the error percentage drops drastically

to 1.5% when SLR reaches 1 m and reduces to an average of 0.6% for SLRs above 1 m. With

IPCC’s projection of global SLR of 0.18-0.59 m by 2100, the error percentage ranges between

40% and 6% on the North Carolina DEM. Those results indicate that it is especially important to

consider water connectivity in delineating inundation with small and conservative SLR

scenarios.

22

Figure 2.9. Running time comparison between a binary-heap-based implementation and a pure-MATLAB

implementation.

To see how the choice of data structures may affect the efficiency of calculating inundation

height, we also implemented the method using only matrix functions (i.e., no heap and hash table

data structures) in MATLAB to perform the operations (pure-MATLAB implementation

hereafter). Figure 2.9 shows the running time for an implementation using a binary heap and

hash table and the pure-MATLAB implementation with 8 different sizes of sub-DEMs from the

North Carolina DEM. The sub-DEMs have the land cells range from 197,000 to 8 million. With

the increase of land cells on those sub-DEMs, running time also increased in both

implementations. While the running time for the heap based implementation increased linearly

23

with the increase of land cells, the running time for the pure-MATLAB implementation,

however, increased quadratically. For example, with the smallest sub-DEM, which has 197,000

land cells, the running time for the heap based and pure-MATLAB implementation are 38 and 84

seconds, respectively. The heap based implementation is only twice faster than the pure-

MATLAB implementation. However, when the sub-DEM with 8 million land cells was used, the

running time for the heap based and pure-MATLAB implementations are 0.47 and 15 hours,

respectively, a difference of over 30 times. This comparison clearly indicated the importance of

the data structures used in implementing the method.

We calculated inundation height for the entire North Carolina DEM using both binary heap and

Fibonacci heap based implementations. The raster layer has more than 46 million land cells.

The binary heap implementation ran in 5,821 seconds and the Fibonacci heap version ran in

50,358 seconds. Since both heap implementations used the same hash table, the computational

complexity of the two heaps (Table 1) would indicate that the results should be the opposite of

what they really were. However, there are two reasons for these results. First, as shown by

Goldberg and Tarjan (1996), the constant factor for the extract minimum operation of the

Fibonacci heap is much greater than that of the binary heap, thus making the operation more

computationally expensive for the Fibonacci heap. Second, much of the performance gains

found by using a Fibonacci heap over a binary heap are due to the efficiency of the reduce key

operation. However, the binary heap outperforms the Fibonacci heap in calculating inundation

height because the reduce key operations did not take place. This is true due to the function used

to calculate inundation height (i.e., equation (2.1)) and the property of Dijkstra’s algorithm. If a

low-cell has an inundation height of IHlc and one of its neighbors has an inundation height of

IHnbr and an elevation of Enbr, and already exists in the inundation front, then the relationship Enbr

24

≤ IHnbr = IHlc or IHlc < IHnbr = Enbr must be true. When the low-cell is extracted from the front,

the new inundation height (IH’nbr) of the neighbor is calculated, using Equation (2.2), as IH’nbr =

max (IHlc, Enbr), which is always equal to its existing inundation height (IHlc) in the front.

Therefore, the neighbor’s inundation height in the front will never need to be reduced. These

factors eliminated the benefit of using a Fibonacci heap for this particular application.

A hash table was used to create an index for the cells in the inundation front to quickly locate

them in the minimum priority queue. In addition to hash table, there are several other data

structures which can be used to search the cells in the front (Li, Larson, & Rex, 2005). However,

with the observation that the inundation height of front cells are never reduced, our binary heap

based implementation can be further improved. One possibility is to remove the hash table at all

and flag the front cells on the output raster layer using some special value, for example, a

negative inundation height. This way, the algorithm can check the output raster to see whether

the neighbors of the low-cell are already in the front. Only the neighbors which are not in the

front will be added and no other action is needed.

The first method was implemented as a model tool in ESRI ArcGIS and the ModelBuilder

diagram was shown in Figure 2.2. The method can also be implemented in any raster GIS

software with the cost distance function available. The second method was implemented using

C++ and MATLAB and can be accessed through MATLAB. We are considering implementing

the second method using the Python programming language and making it available in ESRI

ArcGIS as a Python script tool in the future.

One important limitation of the existing inundation delineation methods, including the two

methods developed here, is that they can only handle single DEM raster layer. As higher spatial

resolution DEMs become more and more available and are commonly distributed as DEM tiles,

25

creating a single DEM raster layer for inundation calculation is not feasible. The process of

creating a single raster layer from DEM tiles is tedious and the size of the DEM can easily

exceed computer memory, which makes the calculation impossible if the methods are not disk-

based (which means entire raster layers have to be loaded into memory in order to perform the

calculation). Even if we can process single large DEM, the output raster layers usually have to

be tiled, more often than not, to distribute the results. We are currently developing parallelized

inundation delineation methods which can handle tiled DEMs and also take the advantages of

multicore and cluster computing systems.

As indicated in the introduction, delineation of inundation from SLR differs from short-term and

pulsed-flood inundation modeling which depends on surface parameters and the characteristics

of individual storm events. Inundation from SLR, instead, reflects long-term and near steady-

state flooding, which completely ignores storm effects and the possible changes of storm

characteristics caused by SLRs.

Conclusions

One of the key requirements in the assessments of present and future impacts of SLR is the

delineation of potentially inundated areas by different SLR scenarios. This research developed

two methods for delineating potential inundation by SLRs. The methods require a DEM and

current ocean as the inputs and can be used to delineate inundation for different types of coastal

landscapes and for any SLRs as long as DEM’s vertical resolutions are comparable with the SLR

scenarios.

26

Both methods consider water connectivity and performed better than the simple “bathtub”

approach. The error (overestimate of inundation) from the “bathtub” method, based on the North

Carolina DEM, is the largest with SLRs below 1 m, ranging from 48% to 1.5% with an average

of 17%. With SLRs above 1 m, the average error is only 0.6%. The methods, therefore, make the

biggest difference in low SLRs, which are the most likely future projections according to the

IPCC (2007).

The first method is based on the cost distance GIS function and was implemented using the ESRI

ArcGIS software. The method, like other existing methods, however, can only delineate the

inundation by a specific SLR. Inspired by the cost distance function, we also developed an

innovative method which calculates the minimum SLR (i.e., inundation height) to inundate each

cell in a DEM. The importance of data structures used in implementing this method is clearly

demonstrated in our research. While the running time of a binary heap based implementation

increased linearly with the increase of DEM size, the running time of a non-heap implementation

increased quadratically. The min-heap implementation outperformed the non-heap

implementation significantly, especially with large DEMs. The Fibonacci heap data structure has

a better theoretical computational complexity than the binary heap. However, the Fibonacci heap

based implementation did not perform well because the reduce key operation is not necessary in

this particular application.

Several improvements can be further explored ranging from using a better location index for

searching the cells in the inundation front to removing the location index entirely. More

important, all the existing methods, including the two we developed, are limited to handle single

DEM. We need parallelized methods which can handle tiled DEMs and take the advantages of

multicore and cluster computing systems.

27

Chapter 3: Parallelizing Inundation Height Calculation

Introduction

There is a class of computationally expensive raster GIS functions which propagate a property of

interest from certain cells (often called source cells) to all the other cells in a raster (Gao &

Sudhakar, 1994). Examples of these raster GIS propagation functions include cost distance and

coastal inundation height (Li, Grady, & Peterson, 2014). Graph traversal algorithms, such as

Dijkstra’s algorithm (Dijkstra, 1959) and the Bellman-Ford algorithm (Bellman, 1958; Ford Jr,

1956; Moore, 1959) can be used for implementing these calculations when each cell in a raster is

treated as a node and the links between a cell and its adjacent cells are edges. As input raster

files become large, the time and resources required to perform these calculations with traditional

implementations becomes unsustainable. This work aims to improve the running time and

reduce the memory footprint of these calculations as well as to enable new analyses that are not

possible with the traditional implementations.

Motivation

Using the Dijkstra’s algorithm, Li et al. (2014) calculated inundation height due to sea level rise

from a raster that had approximately 46 million cells and took almost two hours. The

calculations were for one tile from the National Geophysical Data Center Coastal Relief Model

(NGDC) dataset that has 537 one degree by one degree tiles (NOAA National Geophysical Data

Center, 2014). Extrapolating for the entire dataset suggests that the amount of time and

resources needed for the existing approach would not be feasible without specialized, high-

memory, hardware. Even if a machine were able to handle the large data size, the running time

28

required to perform the calculations would likely take longer with better and finer resolution

data.

Computing resources have multiplied over time, today even commodity computing hardware

resources have multiple processing cores that can be used for computations. Additionally, the

accessibility of supercomputing resources has become more prevalent through the U.S. Extreme

Science and Engineering Discovery Environment (XSEDE) program (Towns, et al., 2014).

These hardware resources provide great potential for reducing total running time for many

applications through parallelization if their algorithms can be adapted to utilize these resources.

In recent years, computing processor speed has not made the large jumps forward as it has in the

past and instead has increased the quantity of processing units, be that computing cores, GPUs,

or coprocessors, to enable greater levels of parallelism for improving overall speed (National

Research Council, 2011). It is imperative that new algorithms be developed with an eye towards

parallelism and that existing algorithms be assessed to see how they might be adapted to take

advantage of this computing architectures potential, not only to improve running time, but also to

more efficiently utilize the available resources. In this research, we parallelized the algorithm for

calculating inundation from sea level rise. Although the algorithm is a special version of the cost

distance calculation, we have design hooks in place to expand the algorithm for more general

cost distance computations.

Existing methods

There have been various efforts to speed up least cost path and cost distance computations.

Some of these efforts relax requirements, such as being absolutely correct versus approximately

correct (Hart, Nilsson, & Raphael, 1968). Others precompute every possible scenario in order to

optimize “on demand” requests (Sun & Sun, 2016). Still others explore alternative data

29

structures and heap implementations in order to optimize computations as much as possible

(Crauser, Mehlhorn, Meyer, & Sanders, 1998; 2014; Solka, Perry, Poellinger, & Rogers, 1995;

Träff & Zaroliagis, 1996).

Accuracy versus performance is an important consideration when selecting an implementation

for the proposed function. Dijkstra’s algorithm was chosen because it guarantees that the least

cost path will be calculated (Cormen, Leiserson, Rivest, & Stein, 2009). There are faster and

less resource-intensive algorithms for determining the cost from a source cell to a destination

cell. One of these algorithms is “A*” (Hart, Nilsson, & Raphael, 1968). A* produces an

approximation of the least cost path between two points by using a heuristic function to estimate

the cost left to reach the destination and then explores the route with the smallest cost. There are

two issues with this algorithm. First, the result is only an approximation, meaning that the true

cost and path may not be found. This is a critical shortcoming for applications that require

accurate results. A second issue is that the algorithm is designed for a single origin/source and a

single destination. It may be possible to add multiple source locations to this algorithm, but the

heuristic function can only estimate the cost to a specific destination. Propagation functions in

general and the coastal inundation height function, specifically, require calculating the cost

(height in this case) to many destinations.

Another alternative algorithm is the Bellman-Ford algorithm (Bellman, 1958; Ford Jr, 1956;

Moore, 1959). Like Dijkstra’s algorithm, the Bellman-Ford algorithm guarantees that the least

cost path will be found. This algorithm works in a similar way to Dijkstra’s algorithm as it

determines the least cost required to reach, at least one, node in each iteration. In each iteration,

every node is analyzed to see if the cost to reach it has changed. If it has, then the cost is

updated, and this update may trigger the update of the connected nodes in the next iteration. A

30

primary difference between Dijkstra’s algorithm and the Bellman-Ford algorithm is that

Dijkstra’s algorithm holds all of the next possible nodes in memory and selects one at a time,

while the Bellman-Ford algorithm explores all connected nodes at every iteration. The absence

of a priority queue data structure means the memory footprint of the Bellman-Ford algorithm is

smaller than Dijkstra’s algorithm. However, the number of calculations required by the Bellman-

Ford algorithm is much more than Dijkstra’s algorithm as every cell is evaluated at every step.

One advantage of the Bellman-Ford algorithm is that it allows negative weights on edges.

However, this is not an important consideration for most, if not all, propagation functions as the

edge weights (costs) are not negative.

Gao and Sudhakar (1994) have attempted to reduce the calculations involved with the Bellman-

Ford algorithm. They divided a raster into chunks and then processing adjacent chunks once

their edges were reached, allowing only a portion of the study area to be in memory. This was

designed to reduce the number of calculations and memory footprint but not for parallelization.

The research method presented here approaches the problem in a similar fashion but will

parallelize and operate on the calculations in the chunks concurrently. There is a possibility to

expand the proposed method with the Bellman-Ford algorithm but the number of required

calculations may outweigh memory savings.

There have been prior efforts to parallelize Dijkstra’s algorithm (Crauser, Mehlhorn, Meyer, &

Sanders, 1998; Solka, Perry, Poellinger, & Rogers, 1995; Träff & Zaroliagis, 1996). These

studies focused on parallelizing the processing of items in the heap that are not likely to collide.

Crauser (1998) processed edges costs within a certain threshold in parallel. Solka (1995)

processed edges in parallel based on the angle between them. This implementation is more

similar to Träff and Zaroliagis (1996) that divided a graph into regions and then applied

31

Dijkstra’s algorithm to each of them. However, the above approaches are more concerned with

creating a work-efficient algorithm, whereby the total number of calculations is minimized, and

where all of the processors need to communicate with each other to find the boundary node with

the least cost. These implementations use a centralized heap or a different priority queue data

structure, which allows for a traditional implementation of Dijkstra’s algorithm to operate in the

same manner. This, however, limits their implementations to architectures with shared memory.

This research decentralizes the priority queue structure so that there is an instance with each tile.

This allows for the implementation to reduce the memory footprint required for computations, as

the size of the tiles can be controlled and with a focus on speed, but the method may add more

total work to be done as it can require the cost to be calculated multiple times for each tile.

Jasika et al. (2012) implemented a parallel version of Dijkstra’s algorithm that they ran on

multiple processing cores using OpenMP as well as GPUs using OpenCL but found that it was

not significantly faster than a serial implementation. They parallelized the computations by

running separate processes for each source cell and processing all the connected edges for a

vertex in parallel. They suggest that the overhead added for parallelization was not offset by the

speed up from the parallelization itself. The overhead of parallelization was a concern for the

presented research as well and was addressed by configuring the tool with multiple tile sizes.

Meyer and Sanders (2003) presented a shortest path algorithm that also allows for recalculation

of path costs. Their algorithm creates “buckets” that each contains path nodes that fall within a

specified cost window. The algorithm allows for nodes that are near each other, cost-wise, to be

explored in parallel and if a node is reached with a smaller cost, it can be re-inserted into the

bucket. This approach creates a similar result to Crauser’s (1998) method. At first glance, the

buckets that Meyer and Sanders used seem similar to the chunks, or regions, used here.

32

However upon deeper examination it is clear that this research is very different from theirs.

They used multiple processors to explore the nodes in a bucket, one bucket at a time. This

research uses one processor per region and works on multiple regions simultaneously. While

they do allow for a node to be re-inserted into a bucket if it is reached with a smaller cost, the

methods described here allow entire, or partial regions to be recalculated as necessary.

Sun and Sun (2016) explored options for speeding up Dijkstra’s algorithm computations with

parallelism and region decomposition but they focused on road networks and pre-computed

intermediate results with the goal of speeding up dynamic requests. They used single source

computations and pre-computed all of the paths between each node and every other node. They

then focused on compressing those results and speeding up “online” requests for retrieval of any

particular path between two nodes. They decomposed networks into regions using k-means

clustering. Their approach is different from the presented research because it focuses (1) on

single source / single destination pairs and (2) on speeding up the final step of retrieving those

paths between those pairs. This work focuses on speeding up computations from source nodes to

all other nodes.

The most similar effort to this proposed method is that of the MrGeo software

(https://github.com/ngageoint/mrgeo/wiki). MrGeo uses a single source version of Dijkstra’s

algorithm to compute cost distance values for a set of tiles. As the computations reach the edge

of a tile, they report the adjacent tiles that should be computed in the next iteration. The cost of

each cell is determined by a friction surface resulting in cost per meter values for each cell. It

does not seem to be possible to compute inundation height using MrGeo, but conceptually, the

computations are similar. The primary difference between MrGeo and our method is that MrGeo

is based on the MapReduce framework and is locked into discrete iterations (Li, Hu, Li, Wu, &

33

Yang, 2016). This means that all active tiles are started at once and no new computations can

begin until all existing computations are finished. Our method propagates computations between

tiles as soon as the computations on a tile finishes. The advantage of our approach is that we can

begin new computations immediately rather than waiting for the slowest computation / tile to

complete at each iteration.

There have been many efforts to both improve the performance of cost distance computations

and Dijkstra’s algorithm that we rely on. These optimizations of cost distance calculations may

not maintain the same requirements for results. Examples of these concessions include only

providing an approximation of the least cost path and limiting computations to a single source

cell. Other least cost algorithms, such as the Bellman-Ford algorithm (Bellman, 1958; Ford Jr,

1956; Moore, 1959), make trade-offs of a reduced memory footprint at the cost of potentially

many recomputations for the same cell. The efforts to optimize Dijkstra’s algorithm have

produced limited gains as they have mainly focused on parallelizing and / or optimizing the

priority queue data structure that Dijkstra’s algorithm relies on. There have been other efforts

that resemble ours and relax the requirements of a strict implementation of Dijkstra’s algorithm,

but those too have their limitations that we will address in our approach.

Here we present a parallel approach for computing inundation height for coastal regions of the

United States. Our approach provides the flexibility to work with datasets with multiple

resolutions and can be deployed on heterogeneous hardware. To evaluate our approach, we

compare it to a serial implementation for the same data. We then deploy our method with a

larger dataset on supercomputing resources to see if the same patterns hold.

34

Data

The Digital Elevation Model (DEM) data used for this method is the Coastal Relief Model

(CRM) dataset from the National Geophysical Data Center (NGDC) (NOAA National

Geophysical Data Center, 2014). Shown in Figure 3.1, the dataset is comprised of ten volumes

representing different coastal regions of the United States. For nine of these regions, the data is

made available as a large raster file for each volume. For the tenth volume (Volume 6 in Figure

3.1), the data is available as a set of one degree by one degree tiles. There are two versions of

these tiles, the first set has a resolution of three arc seconds, matching the resolution of the other

volumes. The second option has a resolution of one arc second. For this project, this dataset was

manipulated into multiple forms: (1) A set of raster files, one per region, (2) sets of half degree,

one degree, and two degree tiles for the entire dataset, and (3) a single aggregated raster file

where all of the volumes are merged into one raster file.

Figure 3.1. Image of NGDC Coastal Relief Model Dataset.

35

Method

This research focuses on the calculation of coastal inundation height, i.e., the minimum sea level

rise required to inundate a cell. This operation is a specialized version of cost distance function,

which has a few caveats that allow for greater optimization than standard cost distance

computations (Li, Grady, & Peterson, 2014). The cost equation used in calculating inundation

height is:

𝑐𝑜𝑠𝑡 = max(𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑜𝑤𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑙𝑙) (3.1)

Coastal inundation height was chosen for this research due to the simplicity of the cost equation

(3.1) and the limits of the methods in processing large DEM (Li, Grady, & Peterson, 2014). It

would not take much effort, however, to generalize this method for other propagation functions.

Parallelizing the calculation of coastal inundation height relies on three core concepts in order to

break free of the limits constraining the serial implementations based on Dijkstra’s algorithm.

The first concept in our parallelization is region decomposition. To enable parallelization and to

limit computational resources required at any given time, a study area is decomposed into

smaller sub-regions. This is similar to the region decomposition approach used by Sun and Sun

(2016) but the sub-graphs generated from a raster dataset are more dense, regularly-spaced, and

uniform, which offers other advantages for parallelization.

The second concept is a calculate-and-correct approach, where calculations are performed with

the information available at the time they run and then corrected when new information is

available. The re-calculations are limited so that they stop when there are no additional updates

to perform. The calculate-and-correct approach can be visualized using a profile of a sample

36

surface as illustrated in Figure 3.2(a). In this example, the profile is inundated from the left by

sea level rise. Since inundation height is the maximum between the elevation and the minimum

sea level rise to inundate an adjacent cell (Equation 3.1), it follows the profile until the first

depression from the left is reached. At that point, the inundation height remains constant as the

depression is filled until a greater elevation is reached. The inundation height follows the profile

again until it reaches its highest point. Then, for this left inundation of the profile, the inundation

height remains constant from that point to the right edge. Figure 3.2(b) illustrates the inundation

height on the profile calculated by sea level rise from the left, where dotted lines indicating

locations where the inundation height computed is greater than the elevation of those locations.

Next, consider that the profile is inundated again from the right. Moving from right to left along

the profile, the inundation height follows the profile until it reaches the peak. Inundation height

is not further reduced moving to the left, so the calculations stop from this direction. The result

is an inundation height represented by the profile shown in Figure 3.2(c). This example

illustrates how the calculate-and-correct approach works. Inundation heights are calculated

using the available ocean fronts at any given iteration and it is then updated if new ocean fronts

arise in future iterations.

(a) (b)

37

(c)

Figure 3.2. (a) A profile of a sample surface; (b) Inundation height calculated from left inundation; (c) Updated

inundation height after inundation from the right.

For a raster dataset which is decomposed into regions, only source cells located within a region

are used for computation at the beginning. It is possible, and likely, that some regions cannot be

calculated because they do not have source cells. However, the regions that do have source cells

can carry out the computation. Once the computation has completed for the initial run over a

region, the edges of the region can be used as source cells for adjacent regions. Figure 3.3 shows

how the edge of one tile is exported and added to an adjacent tile for further computations. In

the figure, the right edge of the left tile is exported and added as the left edge of the right tile

(shown in blue). This approach allows the calculations to propagate to the regions without initial

source cells. As the computations continue, calculated regions may be reached from other

regions with a potentially lower inundation height. Once this happens, the inundation heights of

the region are re-computed using the edge from the adjacent region(s) (“calculate-and-correct”).

Using these values, the calculations are run again but stop when no additional heights are

reduced. This allows for the total number of computations to be reduced, as only changed cells

are visited and calculations propagate to adjacent regions only if edge inundation heights are

38

changed. Computations for the entire area continue until no additional propagations occur

among the regions.

Figure 3.3. Export vector as the source cells of an adjacent tile

By splitting large grids into smaller grids, the resources needed at any given time can be limited.

Potentially, multiple region computations can be fit on a single machine to take advantage of

multiple processing cores, achieving the third core concept of parallelization. For this work, we

accomplish parallelism by deploying worker processes on each of the available processing cores

that connect to the master process. These workers perform calculations for a single tile at a time,

send the results back to the master process, and then request more work. Parallelization can be

taken a step farther by addressing how the computations are arranged. This means that the

architecture of the environment where the computations are run can be taken advantage of to

potentially distribute the computations across multiple machines.

By using region decomposition and calculate-and-correct, these calculations can be parallelized

at the region level, be that a tile, or potentially within a tile. It is more obvious how the

parallelization takes place between tiles. Each tile is stored as individual files and then each

instance of a computational worker will load a single raster tile. The computations can be done

one at a time on a single machine. This is useful for commodity hardware that may not have a

39

lot of processing power. Computations will be slower, but it is still possible to perform the

calculations on a large dataset that would be impossible with methods that need to load the entire

study area at one time.

A complete example

Here we use an example to show how region decomposition, parallelism, and calculate-and-

correct, work together to perform the computation. The initial ten cell by ten cell surface is split

into tiles, or regions. Each of the regions is operated on at the same time for parallelism.

Finally, the results of each of the region computations are propagated to adjacent regions and

used as new source cells to make corrections to the computed values for those regions if

necessary. For this example, intermediate results are shown in discrete iterations. In reality,

computations can begin on adjacent tiles as soon as they finish for a tile.

Figure 3.4 shows the example surface with each value representing the elevation value a cell.

Elevation values of zero are used as source cells in this example.

40

(a) (b)

Figure 3.4. An example surface and its decomposition

The first step is to perform a decomposition of the surface. For this example, the surface is split

into four equally sized five cell by five cell regions. But it is not required that the regions are the

same size. An exploded view of the surface (Figure 3.5) will be used for visual clarity.

41

Figure 3.5. Exploded view of region decomposition

Now that the surface is divided into regions, the computation can be run on each region,

concurrently, starting from the source cells (i.e., cells with elevation values of zero) within each

42

region. Figure 3.6 shows the first iteration of calculations of inundation height on each of the

regions.

Figure 3.6. First iteration of example computations. Each tile is explored for source cells and any found are used for

computations.

Three of the regions have source cells (one in each) which are shown in blue. Cells with

changed inundation height values in any given iteration are shown in yellow and at the end of the

first iteration, every cell in the regions that have source cells have been changed. White cells did

not change in this iteration. The value in each cell is the sea level rise required to inundate a

particular cell from the information currently available. These cell values are stylized as the

current inundation height on the left, a slash, followed by the elevation of the cell on the right.

This provides a clear visual representation of the cells that have inundation heights that are

greater than the elevation of the cells and therefore could potentially have their values reduced.

43

In the first iteration, the top-left, top-right, and bottom-left regions had a single source cell and

every cell in those regions were inundated. The bottom-right region does not have a source cell,

therefore, none of the cells were inundated in the first iteration.

Figure 3.7. Second iteration of example computations. Vectors exported from adjacent regions are represented in

blue. Cells changed are in yellow.

In the second iteration, shown in Figure 3.7, and every subsequent iteration, source cells are no

longer determined by inspecting a region looking for specific values, and instead come from

edge vectors exported from previous computations. This is how computations, inundation height

in this example, propagate between tiles and enable calculate-and-correct. The above Figure 3.7

shows how the edge vectors from adjacent regions are used as source cells. These values come

from adjacent regions and are shown as blue rows and columns. In this iteration, the top-left

region receives source cells from the top-right region and the bottom-left region. These source

values result in five cells changing in the top-left region. The top-right and bottom-left regions

44

receive source cells from the top-left region, but these source cells do not result in any changes

for either region. The bottom-right region, which was not inundated in the first iteration,

receives source cells from the top-right and bottom-left regions and all of the cells are inundated

from these source cells.

Figure 3.8. Third iteration of example computations. Only the top-right and bottom-left tiles are active in this

iteration.

Figure 3.8 shows the third iteration of computations. Since the top-right and bottom-left regions

did not have any changes in the second iteration, they do not export source edges in the third

iteration. They do, however, receive source edges from the top-left and bottom-right regions.

These source edges result in changes in six cells in the bottom-left region and two cells in the

top-right region.

45

Figure 3.9. Results of fourth iteration of example computations. Cells are changed in the top-left tile but none are

changed in the bottom-right tile.

The bottom-left and top-right regions produced source edges that are sent to the top-left and

bottom-right regions in the fourth iteration. None of the inundation heights change in the

bottom-right region and the inundation height of three cells is reduced in the top-left region

(Figure 3.9).

46

Figure 3.10. The fifth iteration does not change any cells so the computations are finished.

Since only the top-left region produced source edges in the fourth iteration, the bottom and right

edges from the region are exported to the top-right and bottom-left regions. Figure 3.10 shows

that these source vectors do not result in any changes in the fifth iterations and therefore the

computations are complete.

47

Figure 3.11. Completed computations using parallel computation method.

Comparing the inundation height surface produced by the parallel approach (Figure 3.11) and the

surface generated by the traditional serial technique shows that the results are the same. This

indicates that our method produces correct results with the parallel, calculate-and-correct

approach.

Handling tiles with different spatial resolutions

The edges of each inundation height tile are exported to adjacent tiles for computations. For

large surfaces distributed as tiles, adjacent tiles may have different spatial resolutions. This

happens with the NGDC dataset where the resolution of nine volumes is three arc seconds and

the resolution of one volume is one arc second. Without special handling, it would require that

the resolution of the entire surface be artificially increased to one arc second or for the higher

resolution dataset to be resampled down to three arc seconds to use our method.

48

We handle this situation by modifying the adjacency vectors as necessary. If the adjacent tile

has a higher resolution, the adjacency vector is densified and the new cell values are interpolated

from the adjacency vector. If the adjacency vector has a higher resolution than the adjacent tile,

the vector reduced to match the adjacent tile. The new adjacency vector is defined by Equation

3.2.:

𝑛𝑒𝑤𝑉𝑒𝑐𝑡𝑜𝑟[𝑖] = 𝑜𝑙𝑑𝑙𝑉𝑒𝑐𝑡𝑜𝑟 [𝑖𝑛𝑡(
𝑜𝑙𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ∗𝑖

𝑛𝑒𝑤𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ
)] , 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑛𝑒𝑤𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ − 1 (3.2)

Equation 3.2 is a simple scheme that does not interpolate between values, but other interpolation

schemes are possible. Figure 3.12 shows how adjacency vectors may be contracted (on the left)

or expanded (on the right) using nearest-neighbor to determine cell values.

Figure 3.12. Example of contracting or expanding exported vectors as necessary. The right example shows a simple

contraction of an exported vector from eight cells to four. The right side shows an expansion from four cells to

eight.

49

Implementation

The approach described above has been implemented using the Python programming language

(http://python.org, version 2.7). Python was chosen because of the availability of libraries that

were utilized in the implementation (NumPy and Work Queue) and author familiarity.

Integration tools through GitHub, such as Travis CI and ability to automatically test code

commits are also attractive reasons for choosing Python. Multiple other languages, such as C /

C++, would have been appropriate, but Python allowed for faster development and

demonstration of the validity of the method.

At the computational level, raster tiles are read and stored as ASCII grids. This was done for

simplicity and ease of debugging but should be extended in the future to other raster formats.

The raster files are read into, and manipulated as, NumPy arrays (van der Walt, Colbert, &

Varoquaux, 2011) because they can be addressed easily and they are a more optimized data

structure than a traditional Python list. The source code for the project is available as a GitHub

repository (https://github.com/cjgrady/parallel-cost-distance). Documentation is available as part

of the repository and by utilizing Travis CI, build testing and test code coverage information is

available at a glance from the GitHub repository page.

A pool of a configurable number of workers is created and calculations are performed on each

region in a tile. As calculations complete, calculations for adjacent regions are submitted to the

pool for computation when worker threads become available.

For multiple-tile parallelism, computations are managed by using Work Queue. Work Queue is

part of the CCTools package produced by The Cooperative Computing Lab at the University of

http://python.org/
https://github.com/cjgrady/parallel-cost-distance

50

Notre Dame, Indiana (Bui, Rajan, Abdul-Wahid, Izaguirre, & Thain, 2011). Work Queue

provides a master / worker paradigm for computations and handles the communication between

the workers and the master process. Work Queue allows for workers to be distributed across a

single or multiple machines and still connect to a single master process. As the calculations on a

single tile complete, any edge that was altered is exported as a registered Work Queue output to

the master process. A controlling process takes these exported edges and initializes computation

on the tile adjacent to that edge. These computations are submitted as tasks to a Work Queue

master process and the computation is picked up when a worker is available.

We carried out several experiments to show under what, if any, scenarios this implementation

performs better than existing, serial, implementations. Better can be defined as running in less

time, a smaller memory footprint, or potentially measured with other metrics. The primary

metric that will be used for comparison for these experiments is running time with additional

commentary about memory footprint where appropriate.

Results

To evaluate the effectiveness of the proposed method, an experiment was designed to gather

benchmarks for comparison, specifically, total running time and memory footprint. The

independent variables for these experiments were the size of the regions within the study area

and the number of workers (one per CPU) working on the experiment at once.

The NGDC dataset is split into ten volumes. Nine of these volumes are organized as a single

raster for each volume and the last volume is split into one degree by one degree raster files. A

serial implementation of Dijkstra’s algorithm cannot operate on the entire dataset in that

51

condition so the raster files were merged into a single raster for computation. The merged raster

file, in ASCII grid format, was 25 gigabytes in size and caused the serial implementation of

Dijkstra’s algorithm to fail because the machine ran out of memory. The experimental machine

has twelve processing cores and 32 gigabytes of primary memory with an additional 32

gigabytes of swap memory. The serial experiment with the entire raster used all 64 gigabytes of

available memory before the process was killed by the operating system.

West Coast Experiment

In response to the failure with the serial implementation of Dijkstra’s algorithm using a raster

that covers the entire study area, smaller raster files were created by limiting the data to each

coast of the Continental United States. The resulting files were 6.8 gigabytes for the east coast

and 6.5 gigabytes for the west coast. The east coast dataset was tested with the serial

implementation and it used all of the memory available on the system and failed again. The west

coast dataset was tested and it was able to fit into approximately 60 gigabytes of memory and the

inundation height for the western dataset was computed in 34 minutes and 36 seconds. Running

time was determined by a timer embedded in the software starting the clock before starting the

computations and stopping when they are finished and memory footprint was determined by

watching the system monitor as the measurement did not need to be exact and assessing the

memory footprint of the parallel application is difficult without additional overhead.

For the parallel implementation, the western United States dataset was divided into half degree,

one degree, and two degree tiles. The experiments were all run on the same machine that

produced the initial benchmark for the serial experiment but with one, two, four, eight, and

twelve workers / CPUs. The goal of this experiment was to determine if there is an optimal

52

configuration of tile size / number of workers to perform the computations as fast as possible

with a manageable memory footprint.

The savings on memory footprint of the experiment proved to be very significant. For two

degree tiles the memory footprint was less than one gigabyte per core, a very manageable

amount for current hardware. For smaller tiles the memory to processing core ratio was smaller

still. This showed that memory footprint would not be an issue with the tile sizes chosen for

these experiments and therefore memory monitoring was discontinued for future experiments.

Figure 3.13. Running time of west coast dataset using various parallel configurations. The red line is the running

time using serial computations.

Figure 3.13 shows that running time was reduced each time the number of workers was

increased, however the pattern between the various tile sizes was not completely consistent.

Unsurprisingly, the one worker configuration was consistently slower than the serial method.

This can be explained by the overhead of reading and writing files multiple times. As seen in the

supplemental materials, each tile is read approximately three times. While each file read and

0

1000

2000

3000

4000

5000

6000

R
u

n
n

in
g

Ti
m

e
(s

)

Number of Workers - Tile Size (dd)

Serial Method

53

write is smaller than the serial method, the aggregate reads and writes are three times that of the

serial method and is a significant source of overhead. This overhead is overcome with additional

parallelism, but the difference between eight and twelve workers is not as drastic as the

difference between other numbers of workers. Additional benchmarks would be needed to

determine if this is due to limits of the hard disk hardware, processing at the management layer,

or other factors. The relationship between tile sizes generally favored half or one degree tiles but

it was not always the same between experiments. Full results for this experiment can be found in

Appendix A.

Entire NGDC Dataset Experiment

A second experiment was performed over the entire NGDC dataset to determine if the same

patterns hold for running time. Additionally, the application was deployed on XSEDE (Towns,

et al., 2014) resources, specifically the Stampede Supercomputer at The Texas Advanced

Computing Center, to see if and how those patterns change with multiple machines, more

processing cores, and a dedicated, parallel file system. The same tile sizes were used for this

experiment with one, two, four, eight, and twelve processing cores on the single machine and 32,

64 and 128 cores (two, four, and eight machines) on Stampede. In the Stampede experiments,

one core was reserved for the master process, leaving 31, 63, and 127 cores for workers.

54

Figure 3.14. Running time for computations over entire NGDC dataset.

The results of this experiment, available in Appendix B and summarized in Figure 3.14, are

similar to those of the west coast dataset. The total running time decreases as the number of

workers increased but the difference between eight and twelve workers is significantly less than

the difference between the previous concurrency steps for single machine experiments.

Results from Stampede machines show that running time generally decreases as more workers

are added, though with some exceptions. The inconsistencies are likely due to a bottleneck with

the Lustre file system on Stampede. Stampede is a community resource, and while users are

allocated entire machines for each job, jobs are not given exclusive access to the parallel file

system and thus performance is likely influenced by other user tasks as well as the concurrency

1 2 4 8 12 31 63 127

Half Degree 13499 6828 3461 2290 2280 861 556 1486

One Degree 13077 6675 3402 2324 2259 905 1573 1455

Two Degree 13575 6944 3509 2474 2397 964 626 510

0

2000

4000

6000

8000

10000

12000

14000

16000
R

u
n

n
in

g
Ti

m
e

(s
ec

o
n

d
s)

Number of Workers

Half Degree One Degree Two Degree

55

within the user’s application. There are many articles discussing the performance of Lustre file

systems under concurrent load but that is outside of the scope of this research.

It is interesting to see large increases in running time in the Stampede experiments as well as

continued improvements in running time. Unfortunately, performance information, more than

running time, was not collected about the file system that could reveal what other factors may

contribute to the increase in running time in some of the experiments. This is an area for future

exploration to determine if there are configuration changes that can be made for more predictable

performance on Stampede or if a different XSEDE resource may be more suitable for this

application. Overall, performance gains are very promising. Half degree tiles had fastest running

time with 63 cores at 556 seconds. One degree tiles were fastest at 31 workers with 905 seconds.

Finally, two degree tiles performed best with 127 workers at 510 seconds. Comparing these with

the single worker running times of 13499 seconds, 13077 seconds, and 13575 seconds, this

represents a speed up 24.3x, 14.4x, and 26.6x for half degree, one degree, and two degree tiles

respectively.

Conclusions

To claim that this research is an appreciable improvement upon a standard implementation of

Dijkstra’s algorithm for calculating inundation height, the results must show that at least one of

the following is true: (1) the computations run in less time, (2) the computations require fewer

resources to run, or (3) new computations are enabled that were not previously possible. Our

results show that this research meets all three criteria.

56

This parallel implementation of inundation height calculations runs in significantly less time than

a serial implementation as the number of processing cores increases. For the west coast raster

surface, the serial calculations ran in 34 minutes and 36 seconds. Of the parallel configurations,

the half degree tiles and twelve processing cores combination gave the best running time of 13

minutes and 24 seconds. The parallel approach ran in less than half of the time required for the

serial approach and these experiments were only done on a single machine. In fact, all

experiments that utilized two or more processing cores ran in less time than the serial

experiment. Experiments running with only a single processing core did run in more time than

the serial method due to the overhead added for calculate-and-correct computations.

The serial version of the west coast experiment required approximately 60 gigabytes of memory

to perform the calculations. Each of the parallel experiments required a gigabyte or less of

memory per core. The exact value was determined by the tile sizes with the maximum occurring

with the two degree tiles. With 12 processing cores, the memory required at any given time is 12

gigabytes or less. This number can be reduced by utilizing smaller tiles or fewer processing

cores, however, one gigabyte per core is a reasonable ratio with current hardware. An interesting

experiment would be to configure a tile size such that the required memory per core more closely

matches the memory per core available on the machine.

The third criterion is met because the research enabled computations that were larger than

previously possible. This is directly related to the second criterion as the memory required to

perform computations is reduced. This is shown by the experiment over the entire NGDC

dataset. With a merged raster size of 25 gigabytes, the memory required to perform the

calculations for the serial implementation was more than what was available on the machine.

While there may be “high memory” machines with enough local memory to perform these

57

calculations, the memory per core balance would be very poor at potentially hundreds of

gigabytes needed with only a single processing core utilized. Furthermore, a raster size limit still

exists that would not fit, even on these high memory machines. Our approach also allows for

computations over raster tiles with variable resolutions. Serial implementations require a single

resolution on a merged raster, thus requiring at least a portion of the tiles to be resampled to fit.

Our approach adjusts the resolution of the individual tiles at computation time.

This research also enables the deployment of our approach on highly-parallel XSEDE resources,

such as Stampede at TACC. This takes the parallelization beyond what is available on a single

machine and allows it to scale to much higher levels of concurrency as the calculations can

potentially expand to more than one supercomputing resources through the use of Work Queue.

The experiments show that these resources present different bottlenecks to overcome, such as

parallel disk performance. Addressing these and optimizing the calculations is still an open

question. Even with the new bottlenecks, deploying this tool on Stampede provided a very

significant improvement on running time on the NGDC dataset, more than 26 times faster at

peak.

While we have accomplished our goals with respect to inundation height computations, we still

need to expand our development to work for the cost distance function and other raster

propagation functions. We would also like to experiment with GPU computations for individual

tiles, most likely by utilizing the Bellman-Ford algorithm rather than Dijkstra’s algorithm.

Furthermore, continued research is needed to determine which, if any, of the other XSEDE

resources would provide a better architecture, especially with respect to parallel I/O, for our

computations in order to enable additional parallelism and improved performance.

58

Chapter 4: Conclusions

We have shown that our approaches overcome the limitations of previous approaches for

determining coastal inundation due to sea-level rise. First, we presented a new approach for

computing the minimum sea level rise needed to inundate every cell in a raster, addressing the

limits of previous techniques that only reported what cells are inundated by specific sea-level

rises. We then addressed the performance limitations of our approach by creating a parallel

version that is able to run across processing cores on a single machine as well as be deployed on

supercomputing resources.

The second chapter discussed our approach to determining the minimum sea-level rise required

to inundate every cell for a surface and explored the effects of different data structures on

performance. We showed that by treating a raster as a graph, with each cell being a node and

adding edges between the adjacent cells, Dijkstra’s algorithm could be used to create a surface

representing the minimum sea-level rise required to inundate each cell. This allows the

computations to be run one time to determine the inundation height for every cell. This is an

improvement upon older methods that only answered the question of which cells were inundated

at a specific sea-level rise and therefore required the computations to be run for every sea-level

rise in question.

We then explored the performance effects of different priority queue implementations, binary

and Fibonacci heaps. We found that, while Fibonacci heaps have better theoretical performance

for many operations, in practice, those operations were not used in our calculations. We

determined that the remove minimum operation, called once for each cell in a raster, had the

59

same order of asymptotic performance (Big O) but the constant associated with binary heaps is

smaller, resulting in faster running times for binary heaps.

In the third chapter, we presented a new parallel implementation of calculating inundation height

for the NGDC dataset. Our method was shown to be an effective alternative to a traditional

implementation of Dijkstra’s algorithm when used for inundation height calculations. We

showed that our parallel approach enabled us to work with larger datasets than traditional

methods and it is able to complete the computations in less time. We then deployed the method

on XSEDEs Stampede Supercomputer at the Texas Advanced Computing Center where we

explored how our method can be scaled. We were able to run our method on multiple machines

and see performance improvements. While we encountered new bottlenecks to continued

performance improvement, we were able to achieve a peak performance that was 26 times faster

than using a single core.

We have shown that our approaches provide effective methods for determining the inundation

height for all cells in a raster. Moreover, we have presented a parallel method that addresses the

performance limitations and allows for the method to be deployed in multi-processor and

supercomputing resources. The processing time savings that we were able to achieve show that

we were able to effectively incorporate parallelism into the inundation height computations and

allow us to explore additional supercomputing resources for future performance improvements.

60

References

Bellman, R. E. (1958). On a routing problem. Quarterly of applied mathematics, 16(1), 87-90.

Bindschadler, R. (1998). Future of the West Antarctic ice sheet. Science, 282(5388), 428-429.

Bui, P., Rajan, D., Abdul-Wahid, B., Izaguirre, J., & Thain, D. (2011). Work queue+ python: A

framework for scalable scientific ensemble applications. Workshop on python for high

performance and scientific computing at sc11.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms

(Third ed.). Cambridge, Massachusetts: The MIT Press.

Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., . . . Machmuller, M. (2009).

Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services.

Frontiers in Ecology and the Environment, 7(2), 73-78.

Crauser, A., Mehlhorn, K., Meyer, U., & Sanders, P. (1998). A parallelization of Dijkstra's

shortes path algorithm. Mathematical foundations of computer science 1998, 722-731.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

mathematik, 1(1), 269-271.

Ford Jr, L. R. (1956). Network flow theory. DTIC Document.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM (JACM), 34(3), 596-615.

61

Gao, P., & Sudhakar, M. (1994). A Divide and Iterate Approach to a Class of Propagation

Functions. Advances in GIS Research: proceedings of the Sith International Symposium

on Spatial Data Handling, pp. 117-189.

Goldberg, A. V., & Tarjan, R. E. (1996). Expected performance of Dijkstra's shortest path

algorithm. NEC Research Institute Report.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for heuristic determination of

minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 100-

107.

Hopkinson, C. S., Lugo, A. E., Alber, M., Covich, A. P., & Van Bloem, S. J. (2008). Forecasting

effects of sea-level rise and windstorms on coastal and inland ecosystems. Frontiers in

Ecology and the Environment, 6(5), 255-263.

Intergovernmental Panel On Climate Change -- IPCC. (2007). Climate Change 2007: The

physical science basis: Summary for policymakers. Intergovernmental Panel on Climate

Change, Geneva, Switzerland.

Jasika, N., Alispahic, N., Elma, A., Ilvana, K., Elma, L., & Nosovic, N. (2012). Dijkstra's

shortest path algorithm serial and parallel execution performance analysis. MIPRO, 2012

proceedings of the 35th international convention (pp. 1811-1815). IEEE.

Legra, L., Li, X., & Townsend, P. A. (2008). Biodiversity consequences of sea level rise in New

Guinea. Pacific Conservation Biology, 14(3), 191-199.

62

Li, R., Hu, H., Li, H., Wu, Y., & Yang, J. (2016, August). MapReduce Parallel Programming

Model: A State-of-the-Art Survey. International Journal of Parallel Programming,

44(4), 832-866. doi:10.1007/s10766-015-0395-0

Li, X., Grady, C., & Peterson, A. T. (2014). Delineating Sea Level Rise Inundation Using a

Graph Traversal Algorithm. Marine Geodesy, 37(2), 267-281.

Li, X., Larson, C. M., & Rex, A. B. (2005). Creating buffers on surfaces. Cartography and

Geographic Information Science, 32(3), 195-212.

Li, X., Rowley, R. J., Kostelnick, J. C., Braaten, D., Meisel, J., & Hulbutta, K. (2009). GIS

analysis of global impacts from sea level rise. Photogrammetric Engineering & Remote

Sensing, 75(7), 807-818.

Marks, K., & Bates, P. (2000). Integration of high-resolution topographic data with floodplain

flow models. Hydrological Processes, 14(11-12), 2109-2122.

Menon, S., Soberón, J., Li, X., & Peterson, A. T. (2010). Preliminary global assessment of

terrestrial biodiversity consequences of sea-level rise mediated by climate change.

Biodiversity and Conservation, 19(6), 1599-1609.

Meyer, U., & Sanders, P. (2003). Δ-stepping: a parallelizable shortest path algorithm. Journal of

Algorithms, 49(1), 114-152.

Moore, E. F. (1959). The shortest path through a maze. Bell Telephone System.

National Research Council. (2011). The Future of Computing Performance: Game Over or Next

Level? National Academies Press.

63

Nicholls, R. J., & Tol, R. S. (2006). Impacts and responses to sea-level rise: a global analysis of

the SRES scenarios over the twenty-first century. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

364(1841), 1073-1095.

Nicholls, R. J., Marinova, N., Lowe, J. A., Brown, S., Vellinga, P., De Gusmao, D., . . . Tol, R.

S. (2011). Sea-level rise and its possible impacts given a 'beyond 4 C world' in the

twenty-first century. Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 369(1934), 161-181.

NOAA National Geophysical Data Center. (2014). Coastal Relief Model. Retrieved from

http://www.ngdc.noaa.gov/mgg/coastal/crm.html

Overpeck, J. T., Otto-Bliesner, B. L., Miller, G. H., Muhs, D. R., Alley, R. B., & Kiehl, J. T.

(2006). Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise.

Science, 311(5768), 1747-1750.

Peterson, A. T., Navarro-Sigüenza, A. G., & Li, X. (2010). Joint effects of marine intrusion and

climate change on the Mexican avifauna. Annals of the Association of American

Geographers, 100(4), 908-916.

Poulter, B., & Halpin, P. N. (2008). Raster modeling of coastal flooding from sea-level rise.

International Journal of Goegraphical Information Science, 22, 167-182.

Rignot, E., & Kanagaratam, P. (2006). Changes in the velocity structure of the Greenland Ice

Sheet. Science, 311, 986-990.

64

Solka, J. L., Perry, J. C., Poellinger, B. R., & Rogers, G. W. (1995). Fast computation of optimal

paths using a parallel Dijkstra algorithm with embedded constraints. Neurocomputing,

8(2), 195-212.

Sun, J., & Sun, G. (2016). SPLZ: An efficient algorithm for single source shortest path problem

using compression method. GeoInformatica, 20(1), 1-18.

Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuña, C., Akins, T., . . . Krabill, W.

(2004). Accelerated sea-level rise from West Antarctica. Science, 306(5694), 255-258.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., . . . Peterson, G. D.

(2014). XSEDE: accelerating scientific discovery. Computing in Science & Engineering,

16(5), 62-74.

Träff, J. L., & Zaroliagis, C. D. (1996). A simple parallel algorithm for the single-source shortest

path problem on planar digraphs. International Workshop on Parallel Algorithms for

Irregularly Structured Problems (pp. 183-194). Berlin Heidelberg: Springer.

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a structure for

efficient numerical computation. Computing in Science & Engineering, 13(2), 22-30.

Virah-Sawmy, M., Willis, K. J., & Gillson, L. (2009). Threshold response of Madagascar's

littoral forest to sea-level rise. Global Ecology and Biogeography, 18(1), 98-110.

65

Appendix

Appendix A: West coast inundation height benchmarks.

Tile Size (dd) Number of

workers

 Number of

tiles

Number of

tiles computed

Cells changed Running time

(s)

0.5 1 804 2558 335446065 4870

1 1 218 648 338422580 4742

2 1 68 184 379099967 4809

0.5 2 804 804 206005204 1354

1 2 218 218 249750002 1557

2 2 68 68 338763611 1946

0.5 4 804 2594 336386812 1242

1 4 218 659 338406323 1233

2 4 68 193 386091306 1324

0.5 8 804 2591 336263039 830

1 8 218 638 331456587 806

2 8 68 189 385300333 931

0.5 12 804 2569 329762652 804

1 12 218 657 337004449 832

2 12 68 197 386090007 888

66

Appendix B: NGDC experiment running time in seconds.

Number of Workers Half Degree One Degree Two Degree

1 13499 13077 13575

2 6828 6675 6944

4 3461 3402 3509

8 2290 2324 2474

12 2280 2259 2397

31 861 905 964

63 556 1573 626

127 1486 1455 510

