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Abstract 

Cyanobacteria are photosynthetic bacteria that serve as a primary producer in aquatic 

ecosystems. Cyanobacterial harmful algal blooms (CyanoHABs) are a major cause of water 

quality degradation in rivers, lakes, and estuaries worldwide because they disrupt food-webs and 

cause substantial changes in pH and dissolved oxygen. Additionally, many cyanobacterial 

species are capable of producing a suite of potent toxins and other secondary metabolites that 

cause taste and odor problems in drinking water supplies. The primary goal of my dissertation is 

to better understand the factors controlling CyanoHABs and their associated secondary 

metabolites at local, regional, and global scales. 

 I examined the factors that control local-scale CyanoHABs and the cyanobacterial 

metabolites microcystin and geosmin by comparing 12 linear and non-linear regression modeling 

techniques using a continuous 14 year dataset collected from Cheney Reservoir, Kansas. In 

Chapter 2, I explored the factors that control regional-scale cyanobacterial abundance, 

microcystin, geosmin, and 2-methylisoborneol concentrations in 4 Midwestern US reservoirs. 

Then, I used a meta-analysis to evaluate the relation of persistent organic pollutants, which 

include herbicides, pesticides, pharmaceutical, personal care products, and industrial chemicals, 

to CyanoHABs on a global scale in Chapter 3. Overall, the three chapters indicate that 

cyanobacterial blooms and their associated metabolites are driven by numerous factors at 

different scales. 
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Introduction 

Cyanobacteria, also known as blue-green algae, are gram-negative bacteria that perform 

oxygenic photosynthesis (Paerl and Otten 2013a). Along with eukaryotic algae, cyanobacteria 

have a vital role as primary producers in aquatic ecosystems. Cyanobacterial harmful algal 

blooms (CyanoHABs), however, degrade water quality in rivers, lakes, and estuaries worldwide 

by disrupting food-webs and causing significant changes in dissolved oxygen and pH (Paerl 

2014). In addition, many cyanobacterial taxa produce a diverse suite of potent cyanotoxins 

(Codd et al. 1999), which include nitrogen- rich toxins like microcystin, anatoxin-a, and 

saxitoxin, as well as other carbon-rich cellular metabolites that create taste and odor problems in 

drinking water supplies (Graham et al. 2010). CyanoHABs can pose significant human and 

animal health hazards, impair fisheries, drinking water, and irrigation supplies, and result in 

substantial economic damage (Dodds et al. 2009; Sharma et al. 2013). 

Current research demonstrates that the abundance of cyanobacteria is strongly influenced 

by eutrophication, which is caused by the over-supply of two key nutrients, phosphorus (P) and 

nitrogen (N) to surface waters (Paerl and Otten 2013a). In particular, the absolute water column 

concentrations of total nitrogen (TN) and total phosphorus (TP) are critically important 

determinants of cyanobacterial biomass (Downing et al. 2001). Nitrogen: phosphorus (N:P) 

stoichiometry also effects cyanobacterial dominance, in particular cyanobacterial growth and 

toxin occurrence are favored when the N:P ratio is low (Smith 1983; Graham et al. 2004; Orihel 

et al. 2012; Harris et al. 2014). Other environmental factors also potentially influence nuisance 

cyanobacterial growth, including changes in food web structure (Elser 1999; Ekvall et al. 2014), 
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increased surface water temperature, longer water residence/stratification times, and nitrogen 

form (Blomqvist et al. 1994; Paerl et al. 2011; Schindler 2012; Paerl and Otten 2013a). 

Factors promoting blooms of cyanobacteria that produce metabolites are currently not 

well understood. In general, the synthesis of metabolites by primary producers in terrestrial, 

aquatic, and arid desert ecosystems depends on the relative proportions of carbon and nutrients 

(Downing et al. 2005; Reich et al. 2006; Van de Waal et al. 2009; Van de Waal et al. 2014; 

Downing et al. 2015). The regulation of carbon- and nitrogen-rich toxic metabolites in 

phytoplankton depends on water column nutrient proportions (Granéli and Flynn 2006; Van de 

Waal et al. 2014; Beversdorf et al. 2015). Specifically, nitrogen limitation caused a decrease in 

the synthesis of nitrogen-rich toxins (including microcystin), and production of these toxins 

increased with cellular N:P ratios. Synthesis of carbon-rich toxins increased under both nitrogen 

and phosphorus limitation, when cellular carbon availability is high relative to nitrogen and 

phosphorus (Granéli, Johansson & Panosso 1998; Granéli & Flynn 2006; Van de Waal et al. 

2014). Thus, the syntheses of metabolites that contain nitrogen seems favored when nitrogen 

availability is relatively high, while the syntheses of carbon-rich metabolites are favored when 

the availability of carbon is relatively high.  

Concentrations of cyanobacterial metabolites in the water column depend on (i) the 

abundance of metabolite-producing strains, and (ii) the amount of metabolites produced by the 

cells (cellular quota). In concurrence with cyanobacterial abundance, the former is considered to  

depend on the TN:TP ratio for metabolite (i.e., microcystin) occurrence, with high (>20 ug/L) 

metabolite events being most probable when the TN:TP ratio is <50 (Graham et al. 2004; Orihel 

et al. 2012; Harris et al. 2014). Recent studies, however, have questioned whether moderate 
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TN:TP ratios (~25) favor nitrogen-rich metabolite occurrence more than low (<25) TN:TP ratios 

(Scott et al. 2013). Other factors suggested to influence metabolite synthesis in cyanobacteria, 

including light level, temperature, nitrogen form, and the presence of persistent organic 

pollutants (i.e., organo-phosphates; Blomqvist et al. 1994; Sun et al. 2013; Paerl and Otten 

2013b; Paerl 2014). 

My dissertation explores factors that affect local-, regional-, and global-scale CyanoHAB 

frequency and intensity, and examines factors that can be used to predict cyanobacterial 

dominance and associated metabolite concentration and occurrence. Specifically, in Chapter 1 I 

examine factors affecting cyanobacteria and secondary metabolites at a local-scale by comparing 

12 unique linear and non-linear regression modeling techniques to predict cyanobacterial 

abundance and microcystin and geosmin using 14 years of physiochemical water-quality data 

collected from Cheney Reservoir, Kansas. The most important factors for predicting 

cyanobacterial abundance, microcystin, and geosmin were reservoir elevation, water 

temperature, and water column silica concentration, respectively. 

In Chapter 2, I examined the regional spatial scale effects of TN: TP ratios and inorganic 

nitrogen form on cyanobacterial abundance, microcystin, geosmin, and 2-methylisoborneol 

(MIB) in four Midwestern USA reservoirs. I also examined the relationship between water 

column concentrations of chemically oxidized (NO3) and reduced (NH3) nitrogen, the novel 

NO3:NH3 ratio, cyanobacterial biovolume, and associated secondary metabolites. Results showed 

that the cyanobacterial secondary metabolites geosmin, MIB, and microcystin primarily occurred 

when the TN:TP ratio was <30:1 (by mass), and that relative cyanobacterial biovolume was 

inversely related to the NO3:NH3 ratio. Additionally, cyanobacteria had higher metabolite 
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concentrations per unit biovolume when NO3:NH3 ratios were <5 compared to when NO3:NH3 

ratios were >5. 

In Chapter 3, I explored whether persistent organic pollutants (POPs), such as herbicides, 

pesticides, pharmaceuticals, personal care products, and industrial chemicals, have an effect on 

global-scale cyanobacterial dominance. I used a meta-analysis to show that POP stressors may be 

significantly aggravating nutrient-driven harmful cyanobacterial blooms by suppressing the 

growth of competing phytoplankton, and/or by indirectly or directly stimulating cyanobacterial 

growth. Overall, the three chapters indicate that cyanobacterial blooms and their associated 

metabolites are driven by numerous factors at different scales. 
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Chapter 1*  

Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water 

reservoir using a 14 year dataset 

 

 

 

 

 

 

 

 

 

 

 

 

*Harris, T.D. and Graham, J.L. 2017. Predicting cyanobacterial abundance, microcystin, and 
geosmin in a eutrophic drinking-water reservoir using a 14 year dataset. Lake Reserv Manag. 
33:1-17. 
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Abstract 

Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by 

producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public 

health concerns and lead to increased treatment costs for water utilities. There have been 

numerous attempts to create models that predict cyanobacteria and their secondary metabolites. 

Most studies have used linear models to predict cyanobacterial related events; however, linear 

models are limited by assumptions about the data and have had limited success as predictive 

tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately 

predict large bloom events that have the highest impact on recreational activities and drinking-

water treatment processes. In this study, I compared 12 unique linear and non-linear regression 

modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary 

metabolites microcystin and geosmin using 14 years of physiochemical water-quality data 

collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), 

boosted tree (BT), and cubist modeling techniques were the most predictive of the compared 

modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict 

cyanobacterial abundance, microcystin, and geosmin concentrations less than 60,000 cells/mL, 

2.5 µg/L, and 20 ng/L, respectively. Only cubist modeling predicted maxima concentrations of 

cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin 

concentrations. Because maxima concentrations are a primary concern for lake and reservoir 

managers, cubist modeling may help predict the largest and most noxious concentrations of 

cyanobacteria and their secondary metabolites. 
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Introduction 

Cyanobacteria are photosynthetic bacteria capable of forming large-scale harmful algal 

blooms (CyanoHABs) in aquatic systems. CyanoHABs are likely increasing in frequency, 

duration, intensity, and geographical extent worldwide (Paerl 2014; Otten & Paerl 2015). The 

apparent global increase in CyanoHABs has been linked to a multitude of factors including 

increased water temperature, longer periods of water stratification, and nutrient (N & P) and 

persistent organic pollutant loading (Paerl & Huisman 2008; Paerl & Otten 2013; Harris & Smith 

2016).  

CyanoHABs pose a serious problem for water users due to their ability to produce a suite 

of potent neuro- and hepatotoxins (cyanotoxins, e.g., microcystin; Otten & Paerl 2015). 

Cyanotoxins pose a health concern to water users due to their ability to adversely affect human 

health. Direct contact with blooms may cause asthma and skin irritations, whereas ingestion may 

cause vomiting, muscle weakness, and in rare cases death (Chorus & Bartram 1999; Otten & 

Paerl 2015). Additionally, CyanoHABs are the primary producers of metabolites that cause taste-

and-odor (e.g., geosmin and 2- methylisoborneol) events in drinking water supply reservoirs 

(Jüttner & Watson 2007). Taste-and-odor metabolites impart unpalatable tastes and earthy and/or 

musty odors to raw drinking water supplies, which ultimately lead to increases in customer 

complaints to the water utilities that supply the tainted finished drinking water (Dietrich 2006). 

In response, water utilities must use expensive advanced treatment options (e.g., activated carbon 

and/or ozone) to remove cyanotoxins and taste-and-odor compounds (Dunlap et al. 2015). Thus, 

CyanoHABs are an increasingly expensive problem for recreational concessionaires and drinking 

water utilities.  
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Given the health hazards and taste-and-odor problems that CyanoHABs cause, there have 

been numerous attempts to create models that predict cyanobacteria bloom formation and their 

noxious secondary metabolite production. Most studies have used linear models to predict 

cyanobacteria and their secondary metabolites (e.g., Smith et al. 2002; Dzialowski et al. 2009; 

Beaulieu et al. 2014, and references therein). Recent studies have used more extensive, non-

linear modeling techniques. These include neural networks (Nnet, Recknagel et al. 2006; Ahn et 

al. 2011; Parinet et al. 2013; Millie et al. 2014), support vector machines (SVM, Xie et al. 2012), 

and random forest (RF, Jacoby et al. 2015) modeling techniques, among others (e.g., mixed 

effect modeling, Taranu et al. 2012). Although these non-linear modeling techniques have been 

successful at predicting cyanobacteria and their secondary metabolites in the lakes and reservoirs 

studied, there are relatively few studies investigating if other non-linear modeling techniques 

(partial least squares, boosted tree (BT), multivariate adaptive regression splines (MARS), and 

cubist) can accurately predict cyanobacteria and their secondary metabolites.  

Several studies have developed predictive models for cyanobacteria and their secondary 

metabolites in Cheney Reservoir, KS. Smith et al. (2002) were the first to create predictive 

models for Cheney Reservoir; using linear models, they showed that chlorophyll-a (Chl-a) was 

related to total phosphorus (TP), and that geosmin concentrations were related to Chl-a. 

However, only a small (n=6) amount of data were collected. Christensen et al. (2006) used a 

slightly larger dataset and found that the cyanobacterium Anabaena (currently Dolichospermum) 

and geosmin (n=16 and 18, respectively) were related to turbidity and specific conductance 

through ordinary least-squares linear regression modeling. Although these models initially were 

effective at predicting cyanobacterial related events in Cheney Reservoir, these models were not 
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robust over time due to the relatively small amount of data collected. In contrast to earlier studies 

on Cheney reservoir that found relations between environmental variables, cyanobacteria, and 

their secondary metabolites, more recent studies were either unable to develop significant linear 

regression models (Dzialowski et al. 2009) or linear regression models that explained more than 

46% of the variation within the collected data (Stone et al. 2013). Given that linear models have 

performed poorly at predicting cyanobacteria and their secondary metabolites in Cheney 

Reservoir and many other lakes and reservoirs worldwide, studies investigating non-linear 

modeling techniques are needed to more accurately predict cyanobacteria and their secondary 

metabolites.  

In this study, I developed and compared 12 unique linear and non-linear regression 

modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary 

metabolites microcystin and geosmin using 14 years of physiochemical water-quality data 

collected from Cheney Reservoir. The primary study objectives were to (1) examine the temporal 

trends related to cyanobacterial blooms, (2) develop and compare modeling techniques, and (3) 

build the best predictive models for cyanobacterial abundance, microcystin, and geosmin 

occurrence. The three best modeling techniques for each response variable were chosen by 

lowest root mean square error (RMSE) and investigated further by comparing observed and 

predicted values. Additionally, the most important predictor variables of each modeling 

technique were examined to better understand the underlying factors that cause CyanoHABs in 

Cheney Reservoir.  

Methods 

Study Site 
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Cheney Reservoir (W 97°50′16.11″, N 37°45′32.99″) is a large (surface area = 31 km2), 

shallow (average depth= 6.1 m), eutrophic (average TP = 100 µg/L) impoundment located in 

south-central Kansas (Stone et al. 2013). The reservoir rarely thermally stratifies due to 

persistent winds and shallow depths. Cheney Reservoir serves as a water supply for the city of 

Wichita, Kansas; the reservoir supplies between 51 to 69 percent of the city’s municipal water 

supply (Ziegler et al. 2010). The reservoir has had cyanobacteria caused taste-and-odor and toxin 

events since 1990 (Smith et al. 2002; Christensen et al. 2006), which have resulted in 

recreational advisories and increased water treatment costs.  

Sample collection and data analysis 

Since April 2001, the U.S. Geological Survey (USGS) has routinely collected discrete 

water-quality samples at Cheney reservoir near the dam (USGS station 07144790). All sample 

collection and analyses were conducted using USGS protocols as described in Stone et al. 

(2013). Briefly, samples were collected at bi-weekly or monthly intervals from May 2001 – June 

2015. Samples were collected at the surface (0.5 m) with a Kemmerer sampler from May 2001 – 

July 2004; vertical integrated photic zone samples were collected from August 2004 – June 

2015. No significant differences existed between surface and vertical integrated photic zone 

samples (Stone et al. 2013). With the exception of geosmin, microcystin, and phytoplankton, 

samples were analyzed by the U.S. Geological Survey National Water Quality Laboratory and 

the Wichita Municipal Water and Wastewater Laboratory as per Stone et al. 2013. Geosmin was 

analyzed using gas chromatography-mass spectrometry (GC-MS) by Engineering Performance 

Solutions (Zimmerman et al. 2002). Microcystin was analyzed via the congener independent 

enzyme-linked immunosorbent assays (ELISA) by the USGS Organic Geochemistry Research 
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Laboratory. Phytoplankton analyses were conducted by BSA Environmental Services, Inc. using 

membrane-filtered slides (McNabb 1960); a minimum of 400 natural units were counted per 

sample.  

 More than 100 physiochemical water-quality variables were measured at least once 

between April 2001 and June 2015 on Cheney Reservoir. All water-quality data are available 

through the USGS National Water Information System at http://dx.doi.org/10.5066/F7P55KJN 

and in Graham and Harris (2016). To avoid collinearity between potential explanatory variables, 

all explanatory variables with correlation coefficients greater than |0.75| were removed from 

further analyses as per Kuhn & Johnson (2013). Additionally, any potential explanatory variable 

with >5% of the observations missing was removed from further analyses. Response and 

explanatory data with concentrations less than the analytical limit of detection were substituted 

with a value half of the limit of detection (see Harris et al. (2016) Supplemental Table 1). 

Because past studies (Christensen et al. 2006; Stone et al. 2013) on Cheney reservoir have noted 

seasonality as a strong explanatory variable, all models used Fourier transformed variables (i.e., 

sin and cos) as potential explanatory variables (Helsel & Hirsch 2002); this left 24 potential 

explanatory variables for the models (Table 1). Additionally, because I wanted to include the 

effects of antecedent weather conditions on physiochemical conditions at the sampling site, 

reservoir elevation was used as an explanatory variable and served as surrogate for extreme 

precipitation events. Data for cyanobacterial abundance, microcystin, and geosmin included 185, 

176, and 185 observations, respectively. 

Statistical Analyses 
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To examine temporal trends in cyanobacterial abundance, microcystin, and geosmin, all 

discrete samples were normalized to the standard deviation of each variable, x, using the 

formula: 

(𝑥𝑥 − 𝐴𝐴𝐴𝐴𝐴𝐴)/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴         (1) 

 where x = a single discrete sample of a response variable, Avg = the average of a response 

variable, and Stdev = the standard deviation of a response variable. One-way Analysis of 

Variance (ANOVA) was used to compare monthly means of normalized cyanobacterial 

abundance, microcystin, and geosmin. If an ANOVA had a significant result (p<0.05), post-hoc 

Tukey tests were used to distinguish differences among normalized monthly means. 

Predictive models were run in combination using the train function in the caret package 

in R (version 3.2.2) as per Kuhn & Johnson (2013, see chapter 10). Data were split into training 

and test datasets using the createDataPartion function in R; 75% of the response variable data 

was used in training. The createDataPartion function selects 75% of the data at random; the 

set.seed function in R was used so that the random data selection was consistent throughout the 

modeling procedures. Data were centered and scaled using the center and scale functions in the 

caret package in R prior to predictive modeling (Kuhn & Johnson 2013). Each model used 

repeated (repeats=5) 10-fold cross-validation using the trainControl function in R, and was tuned 

as per Kuhn & Johnson (2013).  

Twelve different predictive models were trained using the training dataset and were 

compared by root mean square error (RMSE) performance on the test dataset using the resamples 

function in the caret package in R. Models included linear and non-linear regression models 
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(Table 2); this suite of models was selected because they are commonly found (e.g., ordinary 

linear regression, neural networks, support vector machine, random forest) or are absent from the 

current literature (e.g., elastic net, cubist). For each response variable (i.e., cyanobacterial 

abundance, microcystin, and geosmin), the lowest 3 average RMSE predictive models 

(Supplemental Figure 1a-c Appendix A) were compared by examining predicted and observed 

response variable concentrations using temporal plots created with Sigmaplot (version 11.0). 

Additionally, predicted and observed values were extensively compared in bivariate plots by 

regressing observed values on predicted data using ordinary least squares linear regression. 

Results from all developed models are in Supplemental Tables 1-3 Appendix A. 

Variable importance  

Variable importance for each modeling technique and the varimp function from the caret 

package in R are explained in (Kuhn & Johnson 2013); scale was set to “TRUE” for each varimp 

function used. Briefly, regardless of the modeling technique, each variable importance score 

represents how relatively important each explanatory variable is in predicting the response 

variable; each variable importance score is scaled from 0 to 100 with 100 representing the most 

important predictor variable.  

Results 

Temporal patterns in cyanobacterial abundance, microcystin, and geosmin 

Cyanobacterial abundance ranged from 1 to 129,836 cells/mL (median = 1861, average = 

7532 cells/mL). Cyanobacterial blooms were evident in late summer from 2002-2015. 

Normalized cyanobacterial abundance was highest in August, September, and October (Figure 
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1a). May, August, September, and October had standard deviations greater than 1. March and 

June had the lowest normalized means and standard deviations compared to other months. 

Despite the apparent seasonal pattern, normalized means were not significantly different among 

months (ANOVA; p = 0.39).  

Microcystin ranged from 0.1 to 9.0 µg/L (median = 0.1, average = 0.37 µg/L). Similar to 

cyanobacterial abundance, microcystin was also constrained to late summer. However, the 

highest microcystin concentrations occurred in August, whereas the highest cyanobacterial 

abundance concentrations occurred in September and October. Normalized microcystin was 

greater than the mean in only 3 of the 12 months (i.e., July, August, and September; Figure 1b), 

and those months also had much higher (>0.2 normalized standard deviations) variability than 

other months. With the exception of September, the normalized microcystin mean for August 

was significantly (ANOVA; p< 0.001) higher than all other months, and also had the largest 

standard deviation. Thus, the highest and most variable microcystin concentrations seemed to 

precede the highest and most variable cyanobacterial abundances in Cheney Reservoir. 

Geosmin ranged from 1 to 113 ng/L (median = 2.5, average = 6.3 ng/L). Normalized 

geosmin showed more inter- and intra-annual variation than cyanobacterial abundance or 

microcystin (Figure 1c). Although geosmin was highest in June and July, which temporally 

proceeded the highest microcystin and cyanobacterial abundance concentrations, geosmin also 

had smaller peak concentrations in February and November. June, July, and October had 

standard deviations greater than 1, indicating substantial inter-annual variation. Therefore, 

geosmin was highly variable throughout the year but seemed to have the highest concentrations 

before the highest microcystin concentrations (August) and cyanobacterial abundances 
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(September and October). Normalized means were not significantly different among months 

(ANOVA; p = 0.24). 

Predicting cyanobacterial abundance 

Support vector machine (SVM), random forest (RF), and boosted tree (BT) models had 

the 3 lowest RMSE for cyanobacterial abundance (Supplemental Figure 1a Appendix1; Figure 

2a-c). The SVM model had the lowest RMSE of any of the cyanobacterial abundance models, 

and did the best (by RMSE) on cyanobacterial abundances less than 60,000 cells/mL (Figure 3a). 

For abundances greater than 60,000 cells/mL, RF and BT models slightly outperformed SVM 

(Figures 3b and c). The top 3 models by RMSE were unable to predict the highest cyanobacterial 

abundances in the dataset. Although the cubist model was outperformed by multiple models on 

cyanobacterial abundances less than 60,000 cells/mL, the cubist model outperformed all models 

on cyanobacterial abundances greater than 60,000 cells/mL and had the highest R2 value between 

predicted and observed abundances of all cyanobacteria models (Figure 3d). Additionally, the 

cubist model had a slope of observed vs. predicted of 0.70, whereas other models had slopes of 

0.44 or less, indicating the cubist model had a more robust fit on larger cyanobacterial 

abundances compared to the other modeling techniques. 

SVM, RF, and BT models all identified reservoir elevation and chlorophyll-a as 

relatively important predictor variables for cyanobacterial abundance (Figure 4a-c). 

Orthophosphate/phosphorus species, iron, temperature, and time of year (i.e., sin) were also 

important predictor variables to the SVM, RF, and BT models. In contrast to the SVM, RF, and 

BT models, cubist modeling identified specific conductance as an important predictor variable 

(Figure 4d). The most important variables for BT indicated that reservoir elevation and 
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chlorophyll-a had the most impact on predictive BT modeling. Variable importance plots for 

SVM, RF, and cubist modeling techniques had more variables with scaled scores >40 compared 

to BT, indicating that BT model performance is influenced by a smaller number of predictors 

than the other modeling approaches. 

Predicting microcystin 

Similar to cyanobacterial abundance, the SVM model for microcystin had the lowest 

RMSE compared to the other models (Supplemental Figure 1b Appendix A; Figure 5a). Cubist 

and BT models also had relatively low RMSE for predicting microcystin (Figures 5b and c). The 

cubist model outperformed SVM and BT models on the two largest microcystin concentrations 

in the dataset and explained nearly double the variance compared to the SVM and BT models in 

bivariate plots of predicted and observed concentrations (Figure 6a-c). Yet, none of the top three 

models predicted microcystin concentrations greater than 6 µg/L. With the exception of one 

predicted microcystin concentration of 6.1 µg/L by neural network modeling (observed 

concentration = 7.3 µg/L; Supplemental Table 2 Appendix A), no other modeling technique 

predicted microcystin concentrations greater than 2.5 µg/L, irrespective of the observed 

concentration.  

The SVM, cubist, and BT models showed that temperature and time of year (i.e., sin) 

were the most important variables for predicting microcystin concentrations (Figure 7a-c). 

Chlorophyll-a, iron, and dissolved oxygen also were important predictor variables for 

microcystin. Cubist and BT plots had fewer variables with scaled scores >40 compared to SVM, 

indicating that temperature, sin, and chlorophyll-a variables had a substantially larger impact on 

modeling efforts compared to other predictor variables. 
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Predicting geosmin 

RF, SVM, and BT had the 3 lowest RMSE values for predicting geosmin (Supplemental 

Figure 1c Appendix A; Figure 8a-c). When observed and predicted geosmin concentrations were 

compared, the RF model outperformed the SVM and BT models by RMSE overall, and 

especially on geosmin concentrations larger than 20 ng/L (Figure 8a and 9a-c). However, similar 

to the cyanobacterial abundance and microcystin models, the cubist model outperformed all 

models on the highest concentrations in the dataset (i.e., geosmin concentrations greater than 20 

ng/L; Figure 9d). Although the cubist model had a lower R2 than the RF model, the slope of the 

cubist model was much closer to 1 (0.85 compared to 0.45, respectively), indicating a more 

robust fit when geosmin concentrations exceeded 20 ng/L. Additionally, the cubist model for 

geosmin was the only model developed to accurately predict the highest concentration of a 

response variable (Figure 9d). The cubist model indicated that when turbidity was > 22.2 FNU 

and silica was < 10.4 mg/L, maxima geosmin concentrations could be accurately predicted using 

chlorophyll-a as an explanatory variable (data not shown).  

The RF model identified suspended sediment, nitrate plus nitrite, and time of year (i.e., 

cos) as the 3 most important predictor variables. The SVM and BT models also identified light 

(i.e., suspended sediment concentration), nitrogen species and/or ratios (i.e., total Kjeldahl 

nitrogen, NO3:NH3 ratio), and chlorophyll-a as important variables for geosmin prediction. In 

contrast to the other modeling techniques, the cubist model used substantially fewer explanatory 

variables and identified silica as the most important predictor variable (Figure 10a-d). Similar to 

microcystin variable importance scores, SVM, BT, and cubist plots had few variables with scaled 

scores >40, indicating that TKN, cos, and silica, respectively, had a substantial impact on 
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predicting geosmin whereas RF modeling used substantially more explanatory variables within 

the model. 

Discussion 

Overall, predictive models for cyanobacterial abundance, microcystin, and geosmin 

performed poorly at predicting maxima concentrations in Cheney Reservoir. With the exception 

of the geosmin cubist model, no model predicted the highest 3% (i.e., maxima) of cyanobacterial 

abundance, microcystin, or geosmin concentrations in the dataset. There are several probable 

reasons for the underestimation of maxima concentrations by developed models. The most 

important variables (i.e., reservoir elevation, nutrient concentrations, temperature; Figure 4a-d) 

for cyanobacterial prediction exhibited seasonal patterns throughout the study period, whereas 

maxima cyanobacterial abundances during 2002-2015 were not constrained to a specific season 

(Figure 1a). There were substantial intra- and inter-annual variations in maximum cyanobacterial 

abundance, timing, and dominant taxa during blooms. The underperformance of models for 

maxima cyanobacterial abundance likely indicates that models attempting to predict 

cyanobacteria using seasonally-changing variables could not differentiate bloom forming 

conditions between seasons and/or years because cyanobacterial blooms occurred across a wide 

range of environmental conditions.  

Although microcystin exhibited a clear seasonal pattern (Figure 1b), no modeling 

technique predicted maxima concentrations. All modeling techniques recognized the seasonal 

pattern (i.e., by temperature and sin predictor variables; Figure 7a-c) and accurately predicted 

that microcystin concentrations would occur, but no modeling approach discerned substantial 

inter-annual differences in the magnitude of late summer (July through September) microcystin 
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concentrations. Microcystis is likely the dominant microcystin producer in Cheney Reservoir 

(Otten et al. 2016), and observed inter-annual variation in microcystin concentrations are likely 

linked to the overall abundance of Microcystis. Additionally, each bloom, including those 

dominated by Microcystis, is unique in (i) the percentage of cells capable of producing 

microcystin and (ii) the amount of microcystin produced per cell (i.e., cell quota; Pearson et al. 

2016). Thus, although the maxima microcystin concentrations were confined to late summer, not 

all late summer cyanobacterial blooms were capable of producing microcystin, which in turn 

caused predictive models to underperform on maxima concentrations.  

Similar to cyanobacterial abundance, geosmin exhibited substantial intra- and inter-

annual variation (Figure 1c), which caused all modeling techniques except cubist to 

underestimate the highest concentrations observed in the dataset. In contrast to all other 

modeling approaches, cubist modeling recognized that when turbidity was relatively high (>22.2 

NTU) and silica was relatively low (<10.43 mg/L of SiO2), the highest concentrations were 

related to the chlorophyll-a concentration. The recognition of this pattern by cubist was likely 

due to its unique modeling structure. Similar to other tree-based modeling approaches, cubist 

models are constructed by creating a set of rules that split the data at terminal nodes; each of 

these nodes uses a linear equation to predict response variables. Cubist modeling differs from 

other approaches because it uses (i) a unique smoothing process for linear models created at each 

terminal node, (ii) a boosting-like procedure called committees, and (iii) finalized committees 

that are adjusted to increase prediction performance using a K nearest neighbors-like procedure 

(further details on cubist modeling construction and procedures can be found in Kuhn and 

Johnson 2013). Overall, these differences allowed the cubist modeling technique to be effective 
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at predicting maxima geosmin concentrations compared to other modeling attempts; however, 

the reason the cubist modeling technique could not accurately predict cyanobacterial abundance 

or microcystin concentration maxima is unknown. Therefore, although the cubist modeling 

technique should be attempted in a variety of systems before widespread implementation, it has 

the potential to improve regression modeling efforts aimed at predicting maxima cyanobacterial 

metabolites.  

In the earliest attempt to model cyanobacteria or their metabolites, Smith et al. (2002) 

found that geosmin concentration was linearly related to water-column chlorophyll-a 

concentrations in a small (n=6) dataset, and explained 72% of the variation within the collected 

data. Christensen et al. (2006) was able develop a linear model to predict geosmin 

concentrations; log transformed geosmin was related to log transformed turbidity and specific 

conductance and explained 71% of the variation in the data. Although the studies cited above 

explained more than 70% of the variation in geosmin concentrations with linear models, 

Dzialowski et al. (2009) was unable to develop any significant regression models for geosmin in 

Cheney Reservoir. Additionally, Stone et al. (2013) was only able to explain 21% of the 

variation in geosmin concentrations with a linear model based on turbidity and pH; a linear 

model for microcystin was only able to explain 46% of the variation in the data for Cheney 

Reservoir. Otten et al. (2016) also attempted linear regression models for cyanobacterial 

secondary metabolites, and found that a model with 4 explanatory variables was only able to 

explain 51% of the variation in geosmin concentrations in 2013 and 2014. In contrast, a 

microcystin model was able to explain 82% of the variation; however, the y-intercept in the 

model was -17 µg/L indicating poor predictive power. This study also attempted linear 
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regression models and found results consistent with Dzialowski et al. (2009) and Stone et al. 

(2013). It should be noted that the R2 of prior studies were likely overly optimistic because R2 

values were based on the computed fit model, whereas in my study computed R2 values were 

only on the validation (test) dataset.  

The range in predictive ability of, and explanatory variables in, developed models over 

time is likely because of several reasons. The earliest models developed (e.g., Smith et al. 2002; 

Christensen et al. 2006) used relatively small datasets, and data were primarily collected in 

spring and summer months. Because data were collected over a relatively small period of time 

and were constrained to relatively warm months, these datasets did not capture the full spectrum 

of intra- and inter-annual variability within the reservoir. Thus, these models were not robust 

over time, and also indicate the importance of using long-term datasets that capture multi-year 

variability within explanatory and response variables when developing predictive models. 

Second, climate change has caused environmental variability to increase over time throughout 

the Midwestern U.S., which also may affect model outcomes (Committee on Extreme Weather 

Events and Climate Change Attribution et al. 2016; discussed further below, but see 

http://www.ncdc.noaa.gov/extremes/cei/graph/wn/4/04-09 for data and graphics on increases in 

the frequency of extremes in 1-day precipitation for the Midwestern U.S. from 1910-2015). 

Thus, results of predictive modeling efforts have likely been so varied in Cheney Reservoir 

because (i) earlier models did not successfully capture the environmental variation occurring in 

the reservoir and (ii) environmental variability caused by climate change is likely increasing, and 

may pose challenges to developing predictive models. 

Effects of climate change on predictive models 

http://www.ncdc.noaa.gov/extremes/cei/graph/wn/4/04-09
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Predictive models rely on the recognition of pattern-based processes; however, these 

processes have been and will continue to be altered by climate change. As recently shown by the 

Committee on Extreme Weather Events and Climate Change Attribution et al. (2016), climate 

change will likely cause more frequent extreme heat and rainfall events, droughts, and severe 

storms, resulting in ever more extreme environmental variability. These climate change driven 

patterns have also been recognized to make existing models less predictive over time, which led 

Gail (2016) to term the upcoming era the “dark age” of predictive modeling. These extreme 

events have also been shown to stimulate cyanobacterial blooms in temperate, subtropical, and 

tropical regions of the world (Kosten et al. 2012; Jeppesen et al. 2015; Brasil et al. 2016). In 

Cheney Reservoir, several extreme weather events, possibly exacerbated by climate change, 

seemed to fuel cyanobacterial blooms and relatively high secondary metabolite concentrations 

while potentially reducing the predictive ability of models on maxima concentrations. For 

example, droughts from August 2006-April 2007 and August 2011-July 2013 caused extremes in 

reservoir elevation (Supplemental Figure 2 Appendix A) and reduced the mean depth of the 

reservoir by 1 and 2.5 meters, respectively. In both cases, lowered reservoir mean depth created 

conditions that resulted in the highest annual cyanobacterial abundances (Microcystis dominated) 

and microcystin concentrations observed in the reservoir (Figures 2a-c and 5a-c).  

Extreme rainfall events have also led to cyanobacterial related events in Cheney 

Reservoir. Following a severe drought from 2011-July 2013, a heavy precipitation event in the 

watershed caused the 9th largest sediment inflow event in the history of the reservoir 

(Supplemental Figure 2 Appendix A; Stone et al. 2015). This large inflow event stimulated an 

Anabaena bloom that caused geosmin concentrations to exceed 50 ng/L (Otten et al. 2016). The 
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results are consistent with Reichwaldt & Ghadouani (2012), who hypothesized that heavy 

rainfall events may cause sharp increases in cyanobacterial metabolites. Although my predictive 

models recognized that reservoir elevation (cyanobacterial abundance and geosmin, Figures 4a-d 

and 10d), and temperature (microcystin, Figures 7a-c) were important explanatory variables for 

cyanobacteria and secondary metabolite prediction in Cheney reservoir, drought and extreme 

rainfall events likely caused predictive models to underestimate observed maxima cyanobacteria 

and secondary metabolite concentrations. If the frequency of extreme drought and inflow events 

continue to increase, I hypothesize that larger, more frequent cyanobacterial blooms will occur in 

the future. Consequently, pattern-reliant modeling approaches for cyanobacterial abundance, 

microcystin, and geosmin based on historical datasets may not be robust over time (Gail, 2016). 

Important explanatory variables for predicting cyanobacteria and cyanobacterial metabolites 

Explanatory variables identified as important in Cheney Reservoir were consistent with 

what has been shown to be predictive of cyanobacteria in other studies. Similar to Cheney 

Reservoir, Taranu et al. (2012) found that water column TP, water temperature, and seasonality 

(similar to the sin and cos predictor variables) were predictive of cyanobacterial blooms in 

polymictic Canadian lakes, indicating that these factors likely promote cyanobacterial blooms in 

well-mixed systems regardless of waterbody location (Figure 4a-d). Beaulieu et al. (2013) and 

Millie et al. (2014) found that water column nutrient concentrations (TN and TP), water 

temperature, and chlorophyll were important factors in predicting cyanobacteria in 1147 US 

lakes and Lake Erie, USA, respectively. In contrast, few studies aimed at predicting 

cyanobacterial blooms in the current literature identified reservoir elevation as an important 

predictor variable (but see Francy et al. 2016; Figure 4a-d). Although not examined here, water 
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column stability and spring phosphorus loads were also identified as an important explanatory 

variables for predicting cyanobacterial blooms (Wagner & Adrian 2009; Millie et al. 2014; 

Bertani et al. 2016). Although Cheney Reservoir rarely stratifies, water column stability could be 

evaluated in future studies as changing environmental conditions may change patterns of 

stratification in the reservoir. Additionally, including spring phosphorus loading in predictive 

models was shown to substantially increase forecast accuracy of summer cyanobacterial blooms 

in Lake Erie (Bertani et al. 2016). Because spring nutrients loads are increased by heavy rainfall 

events within the lake watershed, and large inflow events seem to stimulate cyanobacterial 

related events in Cheney Reservoir (Otten et al. 2016), future studies on Cheney Reservoir may 

improve predictive models by including spring nutrient loading. Therefore, variables like 

reservoir elevation, water column stability, and spring nutrient loading may be important 

variables to consider in addition to water column nutrient concentrations and water temperature 

for cyanobacterial prediction in drinking water reservoirs. 

Water temperature, nutrients, and nutrient ratios have been shown to be predictive of 

microcystin and geosmin concentrations. For instance, multiple studies have found that elevated 

water temperatures are predictive of, and favor, elevated microcystin concentrations (Davis et al. 

2009; Joung et al. 2011; Dziallas & Grossart 2011; Beaver et al. 2014). Additionally, Jacoby et 

al. (2015) and Dzialowski et al. (2009) found relatively low TN:TP ratios were predictive of 

microcystin and geosmin concentrations, respectively, in Northwestern and Midwestern USA 

reservoirs, respectively. In contrast to other studies in the literature, accurate prediction of 

maxima geosmin concentrations depended on silica and turbidity (i.e. light environment) in 

Cheney Reservoir (Figure 10a, b, and d). Although Christensen et al. (2006) showed that 
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turbidity was a strong predictor variable for geosmin concentrations in Cheney Reservoir, few 

other studies have indicated that silica or turbidity are important predictors for geosmin. Thus, 

while some factors (e.g., nutrients, chlorophyll-a, and water temperature) identified here seem to 

be predictive of cyanobacteria and their metabolites throughout North America, including 

Cheney Reservoir, other factors (e.g., reservoir elevation, suspended solid 

concentration/turbidity, and silica; Figures 4a-d, 7a-c, and 10a-d) may be specific to Cheney 

Reservoir. 

Given that climate change likely will cause predictive models developed using historical 

datasets to underperform, further research using recent analytical and technological advances are 

needed to accurately predict cyanobacterial blooms. For example, the incorporation of analytical 

techniques such as quantitative polymerase chain reaction (qPCR) have been shown to 

significantly improve data inputs for cyanobacterial abundance and cyanobacterial secondary 

metabolite models (Francy et al. 2016; Otten et al. 2016). Advances in sensor technology could 

also improve modeling efforts. Specifically, sensors that can accurately measure cyanobacteria 

and other algal taxa in real-time will help reservoir managers better understand the factors that 

lead to cyanobacterial or other harmful algal blooms, and will allow for real-time prediction of 

events. Additionally, real-time measurement of nitrogen species and phosphorus concentrations 

will allow for (i) more frequent measurements of nutrient concentrations and (ii) the 

development of real-time cyanobacterial management, which will ultimately lessen the reliance 

on predictive modeling. Programs currently using discrete sampling to monitor cyanobacteria 

and their metabolites may need to consider continuous real-time monitoring using new advanced 

sensor technologies to provide public and private stakeholders more accurate predictions of 
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cyanobacterial related events. Therefore, although we may be entering a “dark age” (sensu Gail 

2016) of predicting environmental biotic variables, emerging analytical and technological 

advances could be used to combat historical pattern-based information made erroneous by 

climate change. 
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Figures and Figure legends 

Figure 1. Normalized temporal trends of cyanobacterial abundance (a), microcystin (b), and 

geosmin (c) concentrations. Each datapoint represents the average normalized value of 

observations collected from a specific month from 2002 to 2015. Error bars represent standard 

deviations from the normalized mean. 

 

Figure 1-1 
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Figure  2. Observed (dots) and predicted (line) cyanobacterial abundance from 2002 to 2015 in 

Cheney Reservoir using Support Vector Machine (SVM;a), Random Forest (RF;b), and Boosted 

Tree (BT;c) modeling approaches. 

 

Figure 1-2 
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Figure 3. Observed compared to predicted cyanobacterial abundance using Support Vector 

Machine (SVM;a), Random Forest (RF;b), Boosted Tree (BT;c), and Cubist (d) modeling 

approaches. Solid line represents linear regression line, dashed lines represent 95% prediction 

intervals, and dotted line represents 1:1 line. 

 

Figure 1-3 
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Figure 4. Top 20 most important variables for predicting cyanobacterial abundance for Support 

Vector Machine (SVM;a), Random Forest (RF;b), Boosted Tree (BT;c), and Cubist (d) modeling 

approaches. 

 

Figure 1-4 
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Figure 5. Observed (dots) and predicted (line) microcystin concentration from 2002 to 2015 in 

Cheney Reservoir using Support Vector Machine (SVM;a), Cubist (b), and Boosted Tree (BT;c) 

modeling approaches. 

 

Figure 1-5 
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Figure 6. Observed compared to predicted microcystin concentration using Support Vector 

Machine (SVM;a), Cubist (b), and Boosted Tree (BT;c) modeling approaches. Solid line 

represents linear regression line, dashed lines represent 95% prediction intervals, and dotted line 

represents 1:1 line. 

 

Figure 1-6 
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Figure 7. Top 20 (where applicable) most important variables for predicting microcystin 

concentration for Support Vector Machine (SVM;a), Cubist (b), and Boosted Tree (BT;c) 

modeling approaches. 

 

Figure 1-7 
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Figure 8. Observed (dots) and predicted (line) geosmin concentration from 2002 to 2015 in 

Cheney Reservoir using Random Forest (RF;a), Support Vector Machine (SVM;b), and Boosted 

Tree (BT;c) modeling approaches. 

 

Figure 1-8 
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Figure 9. Observed compared to predicted geosmin concentration using Random Forest (RF;a), 

Support Vector Machine (SVM;b), Boosted Tree (BT;c), and Cubist (d) modeling approaches. 

Solid line represents linear regression line, dashed lines represent 95% prediction intervals, and 

dotted line represents 1:1 line. 

 

Figure 1-9 
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Figure 10. Top 20 (where applicable) most important variables for predicting geosmin 

concentration for Random Forest (RF;a), Support Vector Machine (SVM;b), Boosted Tree 

(BT;c), and Cubist (d ) modeling approaches. 

 

Figure 1-10 

 



37 

 

Tables 

Table 1. List of variables used in model development. With the exception of the three response 

variables (cyanobacterial abundance, microcystin, and geosmin), all variables were used as 

explanatory variables. P-code represents US Geological Survey parameter code for the 

explanatory variable. NGVD 1929= National Geodetic Vertical Datum of 1929.  

 

Table 1-1 

 

Variable Abbreviation Units P-code
Fourier transformed date sin unitless -
Fourier transformed date cos unitless -
Dissolved oxygen DO mg/L P00300
Reservoir surface elevation above NGVD 1929 elev ft P62614
pH pH unitless P00400
Specific conductance Spc µS/cm P00095
Temperature Temp °C P00010
Turbidity Turb FNU P63680
Bicarbonate Bicarb mg/L P29806
Bromide Brom mg/L P71870
Silica Si mg/L as SiO2 P00956
Total kjeldahl nitrogen TKN mg/L as N P00625
Ammonia NH mg/L as N P00608
Nitrate plus nitrite NO mg/L as N P00631
Orthophosphate OP mg/L as P P00671
Dissolved phosphorus DP mg/L as P P00666
Total Phosphorus TP mg/L as P P00665
Total Nitrogen TN mg/L as N P00600
Fecal coliforms FC colonies per 100 mL P31625
Chlorophyll a Chl µg/L P70953
Iron Fe µg/L P01045
Suspended sediment concentration SSC mg/L P80154
Total nitrogen to total phosphorus ratio TNTP unitless -
Nitrate plus nitrite to ammonia ratio NONH unitless -
Cyanobacterial abundance Cyano cells/mL -
Microcystin MC µg/L P65210
Geosmin Geo ng/L P51285
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Table 2. List of compared modeling approaches and their abbreviation (Abbrev.) 

 

Table 1-2 
  

Model Abbrev.
Ordinary Linear Regression Linear
Partial Least Squares PLS
Elastic Net Enet
Neural Networks Nnet
Multivariate Adaptive Regression Splines MARS
Support Vector Machines SVM
Single Trees CART
Bagged Trees BagT
Boosted Trees BT
Conditional Inference Trees CI Tree
Random Forest RF
Cubist -
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Chapter 2*  

Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial 

metabolite concentrations in eutrophic Midwestern USA reservoirs 

 

 

 

 

 

 

 

 

 

 

 

*Harris, T.D., Smith, V.H., Graham, J.L., Van de Waal, D.B., Tedesco, L.P., Clercin, N. 2016. 
Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial 
metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters. 6:199-210.  
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Abstract 

Recent studies have shown that the total nitrogen to total phosphorus (TN:TP) ratio and 

nitrogen oxidation state may have substantial effects on secondary metabolite (e.g., microcystins) 

production in cyanobacteria. I investigated the relationship between the water column TN:TP ratio 

and the cyanobacterial secondary metabolites geosmin, 2-methylisoborneol (MIB), and microcystin 

using multiple years of data from 4 reservoirs located in the Midwestern United States. I also 

examined the relationship between water column concentrations of chemically oxidized (NO3) and 

reduced (NH3) nitrogen, the NO3:NH3 ratio, cyanobacterial biovolume, and associated secondary 

metabolites. I found that the cyanobacterial secondary metabolites geosmin, MIB, and microcystin 

primarily occurred when the TN:TP ratio was <30:1 (by mass), likely due to higher cyanobacterial 

biovolumes at lower TN:TP ratios. I also found that relative cyanobacterial biovolume was inversely 

related to the NO3:NH3 ratio. Both N2-and non-N2-fixing cyanobacteria seemed to produce secondary 

metabolites and had higher concentrations per unit biovolume when NO3:NH3 ratios were relatively 

low. The data thus are consistent with the hypothesis that lower TN:TP ratios favor cyanobacterial 

dominance and also suggest that relatively low NO3:NH3 ratios provide conditions that may favor the 

production of cyanobacterial secondary metabolites. The data further suggest that increases in the 

absolute concentrations of TP or NH3 (or both), causing decreases in TN:TP and NO3:NH3 ratios, 

respectively, may stimulate cyanobacteria having the metabolic ability to produce geosmin, MIB, or 

microcystins. Future studies should address how the NO3:NH3 ratio affects phytoplankton 

community structure and occurrence and production of cyanobacterial secondary metabolites. 
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Introduction 

Cyanobacterial blooms are increasing globally because of multiple factors, including 

nutrient enrichment, increased surface water temperature, persistent organic pollutant loading, 

and longer water residence and stratification times (Paerl et al. 2011, Schindler 2012, Paerl and 

Otten 2013, Harris and Smith 2016). In conjunction with increases in the frequency and intensity 

of cyanobacterial blooms, the occurrence of associated toxic and nuisance secondary metabolites 

also seems to be increasing worldwide (Winter et al. 2011). These cyanobacterial secondary 

metabolites include potent toxins (e.g., microcystins) capable of poisoning terrestrial and aquatic 

organisms (Stewart et al. 2008, Wood et al. 2010, Lurling and Faassen 2013) as well as 

compounds that cause taste and odor problems in drinking water supplies, such as geosmin and 

2-methylisoborneol (MIB; Graham et al. 2010). 

The concentrations of cyanobacterial secondary metabolites in the water column depend 

on (1) the abundance of secondary metabolite-producing species and strains, and (2) the quantity 

of secondary metabolites produced by the cells. In general, cyanobacterial  abundance is 

considered to be in part dependent on the total nitrogen to total phosphorus (TN:TP) ratio, with 

dominance by cyanobacteria often greatest when the TN:TP ratio is low (<29:1 by mass; Smith 

1983, Graham et al. 2004). In eutrophic systems where nutrients are not limiting, however, the 

TN:TP ratio is less predictive of cyanobacterial dominance (Paerl and Fulton 2006); thus, the 

absolute magnitude of nutrient supply rates and nutrient supply ratios are both important 

determinants of phytoplankton community structure.  

Recent research also has shown that nitrogen forms (nitrate, ammonium, or urea) may 

influence the abundance of cyanobacteria capable of producing nitrogen-rich microcystins (for 
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simplicity, all microcystin structural variants will be referred to here as microcystin; Finlay et al. 

2010, Donald et al. 2011, Monchamp et al. 2014, Beversdorf et al. 2015). Whether the oxidation 

state of nitrogen has an effect on carbon-rich cyanobacterial secondary metabolites such as 

geosmin and MIB has rarely been examined in empirical or experimental studies. Because the 

chemical form of inorganic nitrogen (i.e., oxidized nitrogen [NO3] vs. reduced nitrogen [NH3]) 

has different cellular energetic costs and assimilation rates for different phytoplankton taxa 

(Flores and Herrero 2005), the proportion of oxidized to reduced nitrogen (the NO3:NH3 ratio) 

may cause differences in phytoplankton community structure (Riegman et al. 1992, Hallegraeff 

1993, Riegman 1995, McCarthy et al. 2009, Glibert et al. 2016). Such cellular preferences for 

nitrogen oxidation state thus may in turn influence the abundance of cyanobacteria capable of 

producing toxic and nuisance secondary metabolites. 

The synthesis of secondary metabolites by primary producers in terrestrial, aquatic, and 

arid desert ecosystems has been consistently shown to depend on the relative proportions of 

carbon and nutrients (Downing et al. 2005, Reich et al. 2006, Van de Waal et al. 2009, 2014, 

Downing et al. 2015). The regulation of carbon- and nitrogen-rich toxic secondary metabolites in 

phytoplankton was shown to depend on water column nutrient proportions (Granéli and Flynn 

2006, Van de Waal et al. 2014, Beversdorf et al. 2015). More specifically, nitrogen limitation 

caused a decrease in the synthesis of nitrogen-rich toxins (including microcystin), and the 

production of these toxins was observed to increase with increases in intracellular N:P ratios. 

Synthesis of carbon-rich toxins increased under both nitrogen and phosphorus limitation and 

showed a V-shaped pattern in response to cellular N:P ratios (Granéli et al. 1998, Granéli and 

Flynn 2006, Van de Waal et al. 2014). Thus, the synthesis of secondary metabolites that contain 
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nitrogen seems to be favored when nitrogen availability is relatively high, whereas the synthesis 

of carbon-rich secondary metabolites is favored when the availability of nitrogen is relatively 

low (i.e., when carbon availability is high). Little is known, however, about the impact of 

chemical nitrogen forms on the synthesis of nitrogen- and carbon-rich secondary metabolites, 

particularly in cyanobacteria. 

The ratio of oxidized nitrogen (nitrate and nitrite) to reduced nitrogen (ammonia and 

ammonium) has important implications for the growth rate, mineral composition, and production 

of carbon-rich organic compounds in photosynthetic organisms (Warncke and Barber 1973, 

Johnson et al. 1984, Praveen et al. 2011). For example, the nitrate to ammonium ratio (NO3:NH4) 

plays a role in the formation of oxalic acid in terrestrial plants, with decreasing NO3:NH4 ratios 

causing decreases in oxalic acid concentrations (Palaniswamy et al. 2004, Zhang et al. 2005, 

Fontana et al. 2006). Furthermore, increases in the NO3:NH4 ratio caused increases in shikonin 

and betacyanins, whereas decreases in the NO3:NH4 ratio caused increases in berberine and 

ubiquinone, indicating that the synthesis of metabolites in terrestrial plant taxa may be modulated 

by the oxidized:reduced nitrogen ratio (Fujita et al. 1981, Nakagawa et al. 1984, Ramachandra 

Rao and Ravishankar 2002).  

The synthesis of metabolites by phytoplankton, including cyanobacteria, also has been 

shown to be affected by the oxidized:reduced nitrogen ratio. In marine environments, for 

example, the NO3:NH4 ratio affected the formation of algal colonies and the production of 

alkenones and may have altered the species composition of nuisance algal blooms (Riegman et 

al. 1992, Harada et al. 2003). Additionally, a study by Leong et al. (2004) showed that 

experimental additions of NH4 (thereby decreasing the NO3:NH4 ratio) resulted in higher cellular 
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quotas of the nitrogen-rich saxitoxin than additions of nitrate in cultures of the marine 

dinoflagellate Alexandrium tamarense. Furthermore, studies of freshwater phytoplankton have 

shown that cyanobacteria have low competitiveness for nitrate and high competitiveness for 

ammonium relative to other taxa (Blomqvist et al. 1994, Hyenstrand et al. 1998, McCarthy et al. 

2009). To my knowledge, however, no study has explored whether the NO3:NH3 ratio plays a 

role in the occurrence or magnitude of secondary metabolites produced by cyanobacteria in 

freshwater ecosystems.  

I investigated how total nutrients (TN, TP, TN:TP) and nitrogen speciation (NO3, NH3, 

and the NO3:NH3 ratio) affected the occurrence and abundance of cyanobacteria as well as the 

concentrations of a toxin  (microcystin) and 2 nuisance cyanobacterial secondary metabolites 

(geosmin and MIB) using a multi-year dataset from 4 eutrophic reservoirs in the Midwestern 

United States. Additionally, I examined the composition of N2-fixing (all potential N2-fixing 

cyanobacteria referred to as N2-fixers hereafter) and non-N2-fixing cyanobacteria relative to 

nitrogen speciation and cyanobacterial secondary metabolites. Specifically, I tested the 

hypothesis that relatively low NO3:NH3 ratios favored relatively high metabolite concentrations 

per N2- and non-N2-fixer biovolume compared to relatively high NO3:NH3 ratios.  

Methods 

Study sites 

Data from 4 Midwestern United States reservoirs were used because monitoring studies 

of each reservoir provided long-term (>2 years) data on geosmin, MIB, and microcystin. Cheney 

Reservoir (97°50′16.11″W, 37°45′32.99″N; surface area [A] = 31 km2, average depth [Z] = 6.1 
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m) is located 40 km west of Wichita, Kansas. It rarely thermally stratifies due to persistent winds 

averaging 19 km/h and a relatively shallow depth. The 1501 km2 watershed is dominated (>95%) 

by agricultural use (Stone et al. 2013). Eagle Creek Reservoir (86°18′13.07′′W, 39°51′09.84′′N; 

A = 5.0 km2; Z = 4.2 m), Geist Reservoir (85°57′47.22″W, 35°56′16.84″N; A = 7.5 km2; Z = 3.2 

m), and Morse Reservoir (86°2′17.22″W, 40°6′16.84″N; A = 6.0 km2; Z = 4.7 m) are located 

within 30 km of Indianapolis, Indiana, and have watersheds of 420 km2, 554 km2, and 567 km2, 

respectively; land use in each watershed is primarily (60%, 77%, and 60%, respectively) 

agricultural (Song et al. 2012). All 4 reservoirs are eutrophic to hypereutrophic, with mean TP 

concentrations ranging from 0.06 to 0.14 mg/L and mean TN concentrations ranging from 0.9 to 

4.1 mg/L (Song et al. 2012, Stone et al. 2013). 

Data collection and laboratory analyses 

Water samples were collected from a single site near the Cheney Reservoir dam at 

monthly or twice per month intervals from May 2001 to December 2012. From May 2001 

through July 2004, discrete water samples were collected at 0.5 m depth using a 1L Kemmerer 

sampler. From August 2004 through December 2012, integrated photic zone samples were 

collected using a check-valve bailer. The photic zone was defined as the vertical area through the 

water column to a depth where light is ~1% of that at the surface. Integrated photic zone samples 

were collected in Eagle Creek, Geist, and Morse reservoirs from a single site near the dam at 

monthly or twice per month intervals during April through November 2008–2010. Samples were 

collected using a Van Dorn sampler throughout the photic zone, which was estimated using the 

empirical formula Zphotic = 2.7 × ZS, where Zphotic = the depth of the photic zone and ZS = Secchi 

depth (Tedesco and Clercin 2011). 
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To determine concentrations of TN, TP, NO3-N, and NH3-N (NO3-N and NH3-N referred 

to as NO3 and NH3, respectively, hereafter) water samples were analyzed following 

Environmental Protection Agency (O’Dell 1993, Pfaff 1993) or Standard Methods (APHA 2005; 

see Supplemental Table 1 in Appendix C for specific methods used) for all reservoirs. All 

nutrient ratios were calculated by mass. Additionally, samples were analyzed for geosmin, MIB, 

microcystin, and phytoplankton identification, enumeration, and biovolume. To determine 

geosmin and MIB concentrations, solid phase microextraction gas chromatography/mass 

spectrometry was used following methods of Zimmerman et al. (2002) and APHA (2005) 

Method 6040D. Congener-independent total microcystin concentration was analyzed via Abraxis 

enzyme-linked immunosorbent assays (ELISA) using manufacturer methods (Abraxis LLC, 

Pennsylvania, USA). There were multiple limits of detection for geosmin and MIB, ranging from 

1 to 5 ng/L, because analytical techniques improved during the course of this study. All values 

below the limit of detection were set to half the limit of detection for statistical analyses (Manly 

2008); values for the limits of detection and the number of samples set to half the limit of 

detection for geosmin, MIB, microcystin, NO3, and NH3 were documented (Supplemental Table 

1 Appendix C). Phytoplankton from Cheney Reservoir were identified and enumerated using a 

compound microscope and membrane-filtered slides (McNabb 1960). As per Lund et al. (1958), 

a minimum of 400 natural units were counted from each sample, providing accuracy within 90% 

confidence limits. Membrane-filtered slides were counted at 630× and 400× magnification to 

ensure complete species reporting. Biovolume calculations were based on Hillebrand et al. 

(1999); further information is provided in Beaver et al. (2014). Phytoplankton from Eagle Creek, 

Geist, and Morse reservoirs were enumerated using a Nageotte counting chamber (50 µL), which 

is efficient at mitigating the flotation of gas-vacuolated cyanobacteria (Brient et al. 2008). 
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Identification of the algal taxa was carried out at 200× and 400× magnification. As reported for 

Cheney Reservoir, a minimum of 400 natural units were counted for each sample to fall within 

the 90% confidence interval. Biovolume was determined using the methods of Hillebrand et al. 

(1999) and Sun and Liu (2003). 

Data and statistical analyses 

To determine if low NO3:NH3 ratios favored metabolite-producing cyanobacteria, box 

plots were constructed where metabolite per biovolume data above and below the median 

NO3:NH3 ratio (5) were compared. The median NO3:NH3 ratio value was used as a threshold so 

that compared datasets had a similar (within 5 data points) number of data points. Statistically 

significant differences (p < 0.05) between data above and below the median of NO3:NH3 ratios 

were determined using nonparametric Wilcoxson rank-sum tests. Multivariate relations between 

water quality parameters (TN, TP, TN:TP, NO3, NH3, NO3:NH3), cyanobacteria, and 

cyanobacterial secondary metabolites were determined using principal components analysis 

(PCA) as described by Kuhn and Johnson (2013). Because changes in TN:TP or NO3:NH3 ratios 

should affect phytoplankton community composition, they were used as explanatory variables in 

analyses of relative cyanobacteria biovolume; by contrast, TN, TP, NO3, and NH3 were used as 

explanatory variables in analyses of absolute cyanobacteria biovolume. Cyanobacteria were 

classified as N2- or non-N2-fixers as per Paerl and Fulton (2006) and Tomitani et al. (2006; see 

Supplemental Table 2 in Appendix Cfor a list of all observed cyanobacteria that were 

categorized as N2-fixers). Metabolites were normalized to biovolume by dividing the metabolite 

concentration by N2-fixer and non-N2-fixer biovolumes. All statistics were run using R 3.0.1 (R 

Core Team 2014). 
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Results 

TN, TP, and the TN:TP ratio ranged from 0.16 to 7.96 mg/L (average: 1.68 mg/L, n = 

292), 0.014 to 1.77 mg/L (average: 0.103 mg/L, n = 289), and <1 to 223 (average: 26, n = 289), 

respectively, in the 4 reservoirs throughout the study period. NO3 and NH3 ranged from limits of 

detection to 5.60 and 0.49 mg/L, respectively (averages: 0.68 and 0.07, n = 292 and 293, 

respectively); the NO3:NH3 ratio ranged from 0.02 to 560.3 (average: 28.43, n = 289). 

Concentrations of geosmin, MIB, and microcystin ranged from limits of detection to 133 ng/L 

(average: 10.8 ng/L, n = 298), 224 (average: 4.6 ng/L, n = 298), and 9.0 µg/L (average: 0.45 

µg/L, n = 283), respectively.  

Relative cyanobacterial biovolume temporally increased as NO3:NH3 ratios decreased in 

all 4 study reservoirs (Figure 1a–d). A similar trend occurred when relative cyanobacterial 

biovolume was compared to TN:TP (Supplemental Figure 1 Appendix C). With the exception of 

one occurrence of a high (>50 ng/L) MIB concentration, the highest secondary metabolite 

concentrations occurred when TN:TP (Figure 2a–c) and NO3:NH3 ratios were relatively low (i.e., 

generally <30; Figure 2d–f). Geosmin, MIB, microcystin, (Figure 3a–c) and absolute 

cyanobacterial biovolume (Supplemental Figure 2 Appendix C), but not relative cyanobacterial 

biovolume (Figure 3d), seemed to have a nonlinear association with the TN:TP and NO3:NH3 

ratios (Figure 3e–h). 

Microcystin, geosmin, and MIB per N2- and non-N2-fixer biovolume were significantly 

higher when NO3:NH3 ratios were less than the median (NO3:NH3 = 5) compared to when 

NO3:NH3 ratios were greater than the median (Figure 4). A similar statistically significant result 
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occurred when the average NO3:NH3 ratio (28.5) was used as a threshold instead of the median 

(data not shown).  

The PCA analysis clearly defined patterns between nutrient concentrations and ratios and 

secondary metabolites. In PCA biplots, variables with strong positive correlations are close 

together, whereas strong negative correlations are shown in opposite directions in ordination 

space. The PCA analysis indicated that the TN:TP and NO3:NH3 ratios were closely related 

(Figure 5a), primarily due to strong correlations between TN and NO3, and TP and NH3 (Figure 

5b). Relative and absolute cyanobacterial biovolume variables were clustered with 

cyanobacterial secondary metabolites when both absolute nutrient concentrations and nutrient 

ratios were examined (Figure 5a and b). Relatively high amounts of secondary metabolite per 

N2-fixer and non-N2-fixer cyanobacterial biovolume were negatively correlated with TN:TP and 

NO3:NH3 ratios; however, secondary metabolite per N2-fixer biovolume formed a distinctly 

different cluster than secondary metabolite per non-N2-fixer biovolume (Figure 5c).  

A similar pattern formed when absolute nutrient concentrations were examined instead of 

nutrient ratios, but showed that high concentrations of secondary metabolite per non-N2-fixer 

biovolume were highly correlated with NH3, and both secondary metabolite per N2- and non-N2-

fixer biovolume were comparably correlated with TP (Figure 5d). Additionally, the absolute 

concentrations of TP and NH3 were positively correlated whereas TN and NO3 were negatively 

correlated with both secondary metabolite per N2-fixer and non- N2-fixer biovolume. The highest 

secondary metabolite concentrations per N2-fixer biovolume occurred when NO3 and NH3 

concentrations were near their limit of detection (and at low NO3:NH3 ratios). The highest 

secondary metabolite concentrations per non-N2-fixer biovolume were found when NO3 was near 
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its limit of detection, but while NH3 was analytically measureable. Thus, in general, the 

secondary metabolites studied here had the highest occurrence and concentration at relatively 

low TN:TP and NO3:NH3 ratios, with TP and NH3 seeming to influence secondary metabolites 

more than TN or NO3, especially for non-N2-fixers. 

Discussion 

The empirical data showed that both cyanobacterial biovolume and the concentrations of 

3 common cyanobacterial secondary metabolites were highest when TN:TP ratios were relatively 

low (Figure 2a–c and 3a–c). This finding suggests that the concentrations of cyanobacterial 

secondary metabolites likely increased as TN:TP ratio decreased because cyanobacteria also 

increased as the TN:TP ratio decreased (Supplemental Figures 1 and 2 Appendix C; Smith 1983) 

in the 4 systems studied here. This trend resembles those observed in other experimental and 

empirical studies (Graham et al. 2004, Orihel et al. 2012, Harris et al. 2014). When TN:TP ratios 

were low enough to favor dominance by cyanobacteria, relatively low NO3:NH3 ratios (primarily 

caused by increases in NH3; Figure 5d) generally seemed to (1) favor cyanobacteria, and (2) 

favor the growth of cyanobacterial strains capable of secondary metabolite synthesis, and/or 

increase synthesis of secondary metabolites by capable cyanobacteria (Figure 4), especially for 

non-N2-fixing cyanobacteria (Figure 5c–d). Specifically, N2-fixing cyanobacteria seemed to 

produce the monitored secondary metabolites when absolute concentrations of both NO3 and 

NH3 were relatively low, suggesting that N2-fixing cyanobacteria are favored when the 

availability of dissolved inorganic nitrogen is low. Non-N2-fixing cyanobacteria seemed to be 

favored and produced secondary metabolites when NO3 was low and NH3 was still measurable, 

indicating that reduced nitrogen forms possibly influence non-N2-fixing cyanobacteria, 
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especially those that can produce the investigated secondary metabolites, more than oxidized 

forms (Finlay et al. 2010, Donald et al. 2011). I thus hypothesize that when the TN:TP ratio is 

low enough to favor cyanobacteria, the presence of bio-available reduced nitrogen forms results 

in low NO3:NH3 ratios that seem to favor cyanobacterial species or strains that can produce the 3 

toxic or taste-and-odor secondary metabolites studied here. 

Resource competition between cyanobacteria and eukaryotic phytoplankton for 

chemically oxidized and reduced nitrogen forms may be why relative cyanobacterial biovolume 

increased as the NO3:NH3 ratio decreased. Cyanobacteria, especially non-N2-fixing taxa, are 

superior competitors for reduced nitrogen forms compared to eukaryotic algae (Blomqvist et al. 

1994, Hyenstrand et al. 1998, McCarthy et al. 2009) and possibly other bacteria (McCarthy et al. 

2013). For example, Blomqvist et al. (1994) showed that non-N2-fixing cyanobacteria were 

favored when NO3 was depleted but NH4 was simultaneously supplied or recycled at a sufficient 

rate for phytoplankton growth. Jacoby et al. (2000) and Chaffin et al. (2011) also found these 

conditions promoted non-N2-fixing (Microcystis sp.) cyanobacterial blooms in Northwestern US 

lakes and Lake Erie, respectively. Moreover, McCarthy et al. (2009) showed that as the 

NO3:NH4 ratio decreased, diatom abundance decreased while cyanobacterial abundance 

increased. The inverse relation between the NO3:NH4 ratio and cyanobacterial abundance was 

likely because nitrate/nitrite reductase is used more efficiently by eukaryotes than prokaryotes, 

whereas prokaryotes assimilate reduced nitrogen forms more efficiently than eukaryotes 

(Blomqvist et al. 1994, Donald et al. 2011). This relationship may also explain why 

cyanobacteria contributed the highest proportion to the overall phytoplankton community when 

NO3:NH3 ratios were low in the study reservoirs (Figure 1a–d). Decreases in the NO3:NH3 ratio 
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may therefore be an indicator of cyanobacterial proliferation, especially non-N2-fixing taxa, in 

eutrophic systems.  

Cyanobacteria producing the nitrogen-rich secondary metabolite microcystin seemed to 

be favored at relatively low NO3:NH3 ratios (Figure 3g and 4), possibly because of differences in 

cellular energetic costs and assimilation time associated with oxidized and reduced nitrogen 

forms. Chemically, reduced nitrogen forms are preferred by cyanobacteria because they do not 

require the use (or energetic cost) of nitrate or nitrite reductase (Flores and Herrero 2005); 

therefore, the assimilation time for reduced nitrogen forms is less than that for oxidized forms 

(Dortch 1990). Thus, increases in water column concentrations of reduced nitrogen forms likely 

cause cellular nitrogen to build up more efficiently than when oxidized nitrogen forms are the 

predominant source of bioavailable nitrogen. This, in turn, may favor the synthesis of nitrogen-

rich microcystins, and thereby perhaps also the cyanobacterial strains capable of producing these 

compounds.  

Cyanobacteria producing geosmin and MIB also seemed to be favored at relatively low 

NO3:NH3 ratios (Figure 3e, 3f, and 4). A decrease in cellular energetics when switching from 

oxidized to reduced nitrogen forms may allow reallocation of energy from reducing oxidized 

nitrogen forms to building carbon-containing compounds, a possible explanation for low 

NO3:NH3 ratios favoring carbon-rich secondary metabolites. Alternatively, because secondary 

metabolite concentrations were significantly larger at relatively low NO3:NH3 ratios (Figure 4), 

my data could suggest that secondary metabolite-producing cyanobacteria strains have an 

advantage over non-metabolite-producing cyanobacteria strains when NO3:NH3 ratios are 

relatively low. Thus, the proportion of secondary metabolite-producing strains may increase 
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within the phytoplankton community when NO3:NH3 ratios are relatively low, ultimately causing 

a larger concentration of secondary metabolites within the water column. Overall, my data 

suggests that changes in nitrogen oxidation state and/or absolute concentration may indicate 

conditions that favor the occurrence of carbon-rich secondary metabolites like geosmin and MIB.  

Field studies have indicated that chemical nitrogen forms affect carbon- and nitrogen-rich 

secondary metabolite occurrence. For example, increases in nitrogen, specifically reduced 

nitrogen forms (i.e., NH3), have been linked to increases in geosmin and MIB concentrations in 

reservoir and river systems (Lind and Katzif 1988, Uwins et al. 2007). Similarly, experimental 

mesocosm studies have shown increases in microcystin concentrations with the addition of 

reduced nitrogen forms (i.e., NH3 and urea; Finlay et al. 2010, Donald et al. 2011, Bogard et al. 

2012). Combined with this study, it thus seems that the chemical form of nitrogen could 

potentially play an important role in cyanobacterial secondary metabolite production and their 

occurrence in surface waters, either directly through effects on metabolic processes and/or 

indirectly by favoring secondary metabolite-producing strains. 

Overall, this study shows that the NO3:NH3 ratio may potentially affect, or at least be 

indicative of, conditions that favor changes in the phytoplankton community structure and in the 

production and occurrence of secondary cyanobacterial metabolites in surface waters. Although 

this study cannot specifically address whether the NO3:NH3 ratio is causally linked to 

metabolite-producing cyanobacteria, relatively low NO3:NH3 ratios may be predictive of 

conditions that favor metabolite-producing cyanobacterial blooms (Figure 4); therefore, the 

NO3:NH3 ratio merits further research. Given that geosmin, MIB, and microcystin production 

also can be affected by multiple additional environmental variables, such as temperature, light, 
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and pH (Wu and Jüttner 1988, Rashash et al. 1995, Zhang et al. 2009), future studies need to 

address how other variables, combined with the NO3:NH3 ratio, affect cyanobacterial secondary 

metabolite production and occurrence.  

Irrespective of other environmental factors, however, my data suggest that nitrogen forms 

and nutrient ratios can be linked to distinctive changes in secondary metabolite concentrations, 

and correlate to the amount of secondary metabolite per cyanobacterial biovolume. Nonetheless, 

my results must be further explored to confirm mechanistic relationships between TN:TP and 

NO3:NH3 ratios, cyanobacteria biovolumes, and secondary metabolite production. Additionally, 

future studies also will be needed to address whether other bacterial taxa capable of producing 

geosmin and MIB (e.g., actinomycetes) are affected by the NO3:NH3 ratio. Although these 

studies need to occur before the NO3:NH3 ratio can be used by water managers as a predictor 

variable for secondary metabolite-producing cyanobacterial blooms, the findings of this study 

have important implications.  

I suggest that because the risk of observing high microcystin concentrations in the water 

column increases as the TN:TP ratio decreases (Orihel et al. 2012, Harris et al. 2014), 

simultaneous increases in chemically reduced nitrogen forms (NH3 and urea) and phosphorus 

may cause similar TN:TP ratios but lower NO3:NH3 ratios; this cascade of events could in turn 

cause increases in secondary metabolite-producing cyanobacterial blooms in waterbodies in 

which the TN:TP ratio is low (i.e., typically already phosphorus rich systems; Bogard et al. 2012, 

Donald et al. 2013). I thus conclude that concurrent decreases in the TN:TP and NO3:NH3 ratios 

have the potential to create conditions that favor increases in toxic and taste-and-odor causing 

cyanobacterial blooms.   
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Figures and Figure legends 

Figure 1. Temporal dynamics of relative cyanobacterial biovolume, relative cyanobacterial N2-

fixer biovolume, and the NO3:NH3 ratio (by mass) in the 4 study reservoirs. Numbers on the x-

axis represent the last 2 digits of the year post 2000 for (a) Cheney, (b) Eagle Creek, (c) Geist, 

and (d) Morse.  

 

Figure 2-1 
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Figure 2. The relation between TN and TP (a-c) and NO3 and NH3 (d-f) with Geosmin (Geo), 2-

methylisoborneol (MIB), and microcystin (MC) concentration categories denoted by colors. The 

solid black line represents a TN:TP ratio and NO3:NH3 ratio of 30 for a-c and d-f, respectively, 

which are used only for reference. 
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Figure 3. The relation between geosmin, 2- methylisoborneol (MIB), microcystin, and relative 

cyanobacterial biovolume (% Cyanobacteria) and the TN:TP (a-d) and NO3:NH3 ratios (e-h). 
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Figure 4. Cyanobacterial metabolites (microcystin, MC; geosmin, Geo; and 2-methylisoborneol, 

MIB) per N2-fixer (/F) and non-N2-fixer (/NF) biovolume greater than and less than, the median 

NO3:NH3 ratio of 5. All six metabolite per biovolume comparisons between NO3:NH3 ratios 

above and below 5 were significantly different (all p-values < 0.001). 
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Figure 5. Principal component analysis (PCA) biplots for relative and absolute cyanobacterial 

biovolume (a and b, respectively), associated metabolites, and nutrient ratios, and for nutrient 

ratios and absolute nutrient concentrations (c and d, respectively) and metabolite per biovolume. 

Percentages in x and y axis labels represent the explained variation of each component. 

MC=microcystin, GEO=geosmin, MIB= 2-methylisoborneol, PF= percent N2-fixers, PNF= 

percent non-N2-fixers, TN= total nitrogen, TP= total phosphorus, CB= cyanobacterial 

biovolume, FIXB= N2-fixer biovolume, NONFIXB= non- N2-fixer biovolume, NO= nitrate, 

NH= ammonia, MC.F, GEO.F, MIB.F= metabolite per N2-fixer biovolume, MC.NF, GEO.NF, 

MIB.NF= metabolite per non-N2-fixer biovolume. 

 

Figure 2-5 
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Chapter 3*  

Do persistent organic pollutants stimulate cyanobacterial blooms? 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Harris, T.D., Smith, V.H. 2016. Do persistent organic pollutants stimulate cyanobacterial 
blooms? Inland Waters. 6:124-130. 
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Abstract 

The use of persistent organic pollutants (POPs), such as herbicides, pesticides, 

pharmaceutical and personal care products (PCPPs), and polycyclic aromatic hydrocarbons 

(PAHs), has more than doubled since 1950. POPs find their way into aquatic ecosystems through 

agricultural and industrial runoff, wastewater treatment effluent discharge, and atmospheric 

deposition. Cyanobacterial harmful algal blooms, which can produce toxins potent enough to 

cause human death, have been increasing in intensity, frequency, and spatial scale throughout the 

same time period as accelerated POP usage. Here, I provide a meta-analysis and suggest that 

POP stressors may be significantly aggravating nutrient-driven harmful cyanobacterial blooms 

by suppressing the growth of competing phytoplankton, and/or by indirectly or directly 

stimulating cyanobacterial growth.  
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Introduction 

Cyanobacterial harmful algal blooms (CyanoHABs) are a major cause of water quality 

degradation in rivers, lakes, and estuaries worldwide. CyanoHABs can disrupt food-webs and 

cause significant changes in dissolved oxygen and pH (Paerl 2014). In addition, because many 

cyanobacterial taxa produce a diverse suite of potent and deadly cyanotoxins (Codd et al. 1999), 

as well as other cellular metabolites that create taste and odor problems in drinking water 

supplies (Graham et al. 2010), CyanoHABs can pose significant human and animal health 

hazards, impair fisheries, drinking water, and irrigation supplies, and result in substantial 

economic damage (Sharma et al. 2013). 

Extensive research has demonstrated that the abundance and toxicity of cyanobacteria is 

strongly influenced by eutrophication, which is caused by the over-supply of two key nutrients, 

phosphorus (P) and nitrogen (N) to surface waters (Paerl and Otten 2013). Nitrogen: phosphorus 

stoichiometry also has significant effects on cyanobacterial dominance; in particular, 

cyanobacterial growth tends to be favored when the N:P ratio is low (Smith 1983; Orihel et al. 

2012; Harris et al. 2014). Other environmental factors also can potentially influence nuisance 

cyanobacterial growth, including changes in food web structure (Elser 1999; Ekvall et al. 2014) 

and global warming (Paerl and Huisman 2008; Kosten et al. 2012). 

A recent study showed that cyanobacterial blooms have significantly increased globally 

relative to other phytoplankton taxa since the 1950s, with relatively sharper increases in 

cyanobacteria biomass noted in low-nutrient alpine systems compared with nutrient-rich lowland 

systems (Taranu et al. 2015). The cause for this increase in relative cyanobacterial abundance is 

not yet fully understood, but I hypothesize here that anthropogenic inputs of organic stressors 
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may be a substantial (up to 10% of total biomass; Everaert et al. 2015) under-recognized direct 

and/or indirect contributor to cyanobacterial proliferation in the world’s surface waters.  

Persistent Organic Pollutants 

For more than six decades, a diverse mix of Persistent Organic Pollutants (POPs) that 

include more than 400 different herbicides, pesticides, fungicides (Figure 1), and a diverse suite 

of polycyclic aromatic hydrocarbons (PAHs), pharmaceutical and personal care products 

(PPCPs), and polychlorinated biphenyls (PCBs) have been released at accelerating rates into 

receiving waters via wastewater effluents, agricultural and industrial runoff, and atmospheric 

deposition (Boyd et al. 2003; Lohmann et al. 2009; Dougherty et al. 2010). Some of these 

compounds degrade in only a few weeks, while others persist for years, decades, or centuries 

before being degraded by abiotic and/or biotic processes (US EPA 2014a). POPs can persist in 

the environment in gas, liquid, or solid phases, and can be transported thousands of miles from 

their sources by atmospheric wind currents and bodily fluid excretion from birds and other 

migrating animals (Evenset et al. 2007). As a result, POPs frequently co-occur and are 

environmentally detectable throughout the year in a large proportion of the world’s surface 

waters (Stone et al. 2014), including in relatively pristine Arctic regions (Halsall 2004; Rigét et 

al. 2010) .  

Many POPs are known to have potent biological effects, including the taxon-specific 

modification of population growth in phytoplankton communities. I performed a synthetic 

review of the ecotoxicology literature to test the hypothesis that the presence of environmentally-

relevant concentrations of POPs in aquatic ecosystems directly or indirectly favors the growth 

cyanobacteria relative to other phytoplankton taxa (i.e the percent composition of cyanobacterial 
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abundance and/or biovolume was higher than eukaryotic taxa in the presence of POPs). Relevant 

publications from 1980-2015 were found by searching Google Scholar and Web of Science for 

key words, including “cyanobacteria” and the general chemical classes of POPs, as well as the 

common and formula names of specific compounds (Supplemental Table 1 Appendix D). 

References within relevant publications found via Google Scholar or Web of Science were then 

searched for additional relevant data. I only included experiments that directly evaluated the 

quantitative response of cyanobacteria and eukaryotic phytoplankton cell counts or biovolume to 

the presence of POPs. To prevent discrepancies between different publications, the relative 

taxon-specific responses (or the reported effective concentration (EC50) values) for a given suite 

of cyanobacteria and phytoplankton were only evaluated within a given study. I identified a total 

of 107 studies that examined a total of 227 individual compounds; 133 of these compounds were 

distinctly different POPs, and included 39 herbicides, 26 pesticides, 11 fungicides, 39 PPCPs, 17 

PAHs, and 1 PCB.  

Frequency histograms were created to quantify the results of the analysis (Figure 2, 

Supplemental Table 2 Appendix D). Each histogram depicts three categories that refer to the 

response of cyanobacteria relative to eukaryotic algae when both were exposed to a specific class 

of POP. A given POP response was classified as positive if its presence allowed cyanobacteria to 

become inhibited less by EC50 or become dominant by greater abundance in mixed cultures/field 

experiments relative to all other phytoplankton taxa tested for that specific compound, and was 

classified as negative if the quantitative response of cyanobacteria was depressed relative to all 

the other tested species. A POP was classified as neutral if the response of cyanobacteria was 

intermediate relative to the other taxa being tested. Within each of the 107 studies examined, an 
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evaluation of response frequency (f) was performed for each individual experiment performed. 

Thus, if a given study performed multiple experiments that examined the responses of 

cyanobacteria to multiple POPs, each individual experiment contributed a value of f=1 to one 

(and only one to avoid double counting) of the three different response categories. In cases where 

multiple studies investigated a single unique POP (e.g., glyphosate), the response observed in 

each individual study of this POP contributed a value of f=1.  

Effects of herbicides on cyanobacterial growth 

The 133 different compounds evaluated in the analysis of the POP literature can be 

broadly grouped into two categories, those that have a known mode of action against 

photosynthetic organisms (i.e., herbicides), and those that do not. Herbicides affect 

photosynthetic organisms through modes of action that include, but are not limited to: amino 

acid pathway inhibitors (e.g., glyphosate), photosynthesis inhibitors (e.g., atrazine), growth 

regulators (e.g., 2-4D), cell membrane disruptors (e.g., paraquat and diquat), and shoot and/or 

root inhibitors (e.g., alachlor).  

Since the introduction of genetically modified glyphosate-resistant crops in 1996, 

glyphosate (i.e., Roundup®) usage in the United States has increased from less than 15 to more 

than 50 million kilograms of glyphosate per year, and it has become the most widely used 

herbicide in the world (Perez et al. 2011). Herbicides containing glyphosate generally inhibit 

cyanobacterial growth less than the growth of other phytoplankton because cyanobacteria are not 

sensitive to glyphosate (Forlani et al. 2008; Perez et al. 2011). In the glyphosate-cyanobacteria 

studies that I surveyed, all showed either a positive or neutral effect on cyanobacteria relative to 

other phytoplankton taxa (Figure 2). Furthermore, likely with the help of heterotrophic bacteria 
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(Saxton et al. 2011), some species of cyanobacteria can even use the phosphorus bound within 

the glyphosate molecule to support their growth (Bai et al. 2014), allowing these cyanobacteria 

to have a potential competitive advantage over eukaryotic algal species that cannot use this 

source of organic phosphorus.  

Atrazine and metribuzin herbicides in environmentally relevant concentrations also have 

been found to favor cyanobacterial growth, at the cost of other algal species (Lürling and 

Roessink 2006; Pannard et al. 2009). For example, Pannard et al. (2009) demonstrated a high 

sensitivity of multispecies phytoplankton assemblages to long-term herbicide exposure, and 

observed significant effects of atrazine on algal community structure even at herbicide 

concentrations as low as 0.1 μg L−1. They concluded that cyanobacteria were more tolerant to 

atrazine than other phytoplankton taxa, particularly under conditions of elevated nutrient supply. 

Other studies have found that cyanobacteria and/or diatoms are more tolerant to atrazine than 

chlorophyte phytoplankton taxa (DeLorenzo et al. 1999; Magnusson et al. 2012). This suggests 

that in systems that are cyanobacteria-chlorophyte co-dominated, the presence of herbicides like 

atrazine may have the potential to shift the system to cyanobacterial dominance. Additionally, 

although most relevant studies in the meta-analysis held nutrient concentrations and temperature 

constant when comparing cyanobacteria and eukaryotic phytoplankton taxa in the presence of 

POPs, Bérard et al. (1999) reported that inhibition of cyanobacterial growth by herbicides is 

reduced at elevated water temperatures, and I thus have concerns that global warming could 

potentially influence or modify interactions between eutrophication and POP stressors.  

Metribuzin and other herbicides have also been shown to favor cyanobacteria relative to 

other phytoplankton taxa (Figure 2; Fairchild et al. 1998; Gustavson et al. 2003; Caquet et al. 
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2005). For example, in a lab-based competition experiment between a cyanobacteria and a 

chlorophyte alga, cyanobacteria became dominant in the presence of 100 μg L−1 of metribuzin; in 

sharp contrast, the chlorophyte alga completely dominated cyanobacteria in mixed cultures that 

did not contain metribuzin (Lürling and Roessink 2006). This led Lürling and Roessink (2006) to 

conclude that herbicide-contaminated surface waters potentially may be “on the way to 

cyanobacterial blooms”.  

Effects of non-herbicide POPs on cyanobacteria 

Pesticides and fungicides 

POPs that do not have a specific mode of action against photosynthetic organisms include 

pesticides, fungicides, PPCPs, PAHs, and PCBs. Although pesticides (i.e., insecticides) and 

fungicides have been found to favor cyanobacteria over other phytoplankton taxa in laboratory 

studies (Wendt-Rasch et al. 2003; Ma et al. 2008), other mesocosm and laboratory studies have 

shown mixed results (Figure 2; DeLorenzo et al. 1999; Leboulanger et al. 2011). In natural 

systems, heterotrophic bacteria, zooplankton, and fungi community composition may play a role 

in the success of cyanobacteria in the presence of POPs compared to other phytoplankton. For 

example, Saxton et al. (2011) showed that the heterotrophic bacterial community was 

instrumental in allowing cyanobacteria to use phosphorus that is bound within phosphorus-rich 

POPs, which can serve as a novel potential organic phosphorus source that cannot be utilized by 

other phytoplankton. This microbial interaction may explain why some studies have shown that 

organophosphorus pesticides stimulate cyanobacterial growth at environmentally-relevant 

pesticide concentrations (Sun et al. 2013). Thus, POP-specific changes associated within the 
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heterotrophic bacteria, zooplankton, and/or fungi communities could be one reason why mixed 

results were seen in the pesticide and fungicide frequency histogram (Figure 2). Given that the 

current literature shows an ambiguous response of cyanobacteria to organic pesticides and 

fungicides, more research is needed to determine whether cyanobacteria are directly and/or 

indirectly favored over other phytoplankton taxa in the presence of pesticide and fungicide POPs. 

Pharmaceutical and Personal Care Products (PPCPs), Polycyclic Aromatic Hydrocarbons 

(PAHs), and Polychlorinated Biphenyls (PCBs) 

 PPCPs include pharmaceutical compounds like prescription antibiotics and anti-cancer 

drugs, as well as personal care products like over the counter antimicrobials, fragrances, and UV 

blockers (Bernot and Justice 2014). The analysis suggests that some of these POPs may favor the 

growth of cyanobacteria (Stoichev et al. 2011; Liu et al. 2012; Nietch et al. 2013; Brezovšek et 

al. 2014), while others, especially antibiotics, appear to favor other phytoplankton taxa over 

cyanobacteria (Figure 2; Ebert et al. 2011; Qian et al. 2012; González-Pleiter et al. 2013). 

However, a very intriguing trend is evident in the literature:  recent studies show that 

cyanobacteria may be favored in the presence of antibiotics (Figure 3), contrasting past 

observations. A recent study even found that the presence of antibiotics caused increased 

production of the cyanobacterial hepatotoxin microcystin (Liu et al. 2015). This could reflect 

differences among the antibiotics used in these experiments, or differences in experimental 

methodology, but this observation could also potentially suggest that cyanobacteria may be 

becoming more tolerant or possibly antibiotic-resistant over ecological and evolutionary time 

(i.e., pollution-induced community tolerance; sensu Blanck and Wängberg 1988).  
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Similarly, a diverse set of other PPCPs has consistently been observed to favor 

cyanobacteria relative to eukaryotic phytoplankton taxa. For example, Drury et al. (2013) 

observed a 6-fold increase in the relative abundance of cyanobacteria in the presence of common 

antimicrobial agents like triclosan. Proia et al. (2013) have recently attributed substantial 

increases in cyanobacteria and decreases of other algal taxa in a Mediterranean river to the 

presence of ibuprofen and paracetamol in the water column. Moreover, because PPCP 

concentrations are in general 3-5 times higher in winter months compared to summer months due 

to the temperature dependence of their biological degradation (Vieno et al. 2005), winter-time 

relative cyanobacterial abundance may perhaps increase in surface waters experiencing high 

PPCP loading, especially in areas where nutrient and light conditions are already favorable for 

cyanobacterial growth. 

PAHs and PCBs also have been observed to stimulate relative cyanobacterial abundance 

and/or biovolume in experimental laboratory communities. Indeed, of the seven studies 

examining these compounds that I identified in my literature survey, four showed that the 

presence of PAHs and PCBs had a positive effect on cyanobacteria relative to eukaryotic taxa 

(Figure 2). Although the manufacturing of PCBs was banned in the United States in 1979 (US 

EPA 2014b), substantial concentrations of legacy PCBs still remain in marine and freshwater 

sediments, and their presence could help to favor the growth and ecological success of 

cyanobacterial akinetes (resting cells) and/or viable sedimented cyanobacterial cells (Latour et al. 

2004) over other phytoplankton taxa. Given that relatively few studies have investigated the 

relative effects of cyanobacterial abundance in the presence of PAHs and PCBs, additional 
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research is needed to fully understand the relative response of cyanobacteria to PAHs and PCBs, 

as well as other organic stressors such as polybrominated diphenyl ethers (PBDEs). 

Conclusions and future research directions 

Is our aquatic future thus likely to be increasingly blue-green (Elliott 2012)? 

Unfortunately, the extensive empirical evidence that I have provided here suggests that the 

answer to this question may be yes. I conclude that cyanobacteria are in general favored over 

other phytoplankton taxa when taxon-sensitive POPs are present because cyanobacteria (1) have 

a higher tolerance (less sensitive) to POPs than other taxa, and (2) in some cases have the ability 

to use nutrients bound within POPs to stimulate their growth, possibly in conjunction with POP 

biodegradation by heterotrophic bacteria. The results of the meta-analysis suggest that systems 

with relatively high POP loading will potentially have higher relative cyanobacterial abundance 

relative to systems experiencing relatively low POP loading, especially in areas where 

environmental conditions are already favorable for cyanobacteria bloom development. 

Nonetheless, as shown by the survey of the current literature, there are some studies that 

have shown other phytoplankton taxa are favored over cyanobacteria in the presence of POPs 

(Figure 2), indicating that ambiguity exists concerning whether cyanobacteria are consistently 

favored relative to other phytoplankton taxa in the complex chemical mixtures that exist in the 

world’s surface waters. Given that most studies present in the literature are laboratory based 

(Supplemental Table 2 Appendix D), I am hopeful that future field-based experimental and 

empirical studies will quantitatively elucidate whether relative cyanobacterial abundance is 

indeed higher in natural systems exposed to relatively high POP loading. At a minimum, I hope 

that future studies can answer important new questions that are raised by this study, including (1) 
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Do current POP mixtures released into surface waters promote more frequent CyanoHABs? (2) 

Will inputs of future POPs (e.g., Enlist Duo® herbicide) favor cyanobacteria over other 

phytoplankton taxa? (3) Do sedimented POPs cause cyanobacteria resting cells to outcompete 

the resting cells of eukaryotic phytoplankton? (4) Will/have winter-time CyanoHABs increase(d) 

because of increased POP loading? (5) Are cyanobacteria becoming more tolerant or even 

possibly resistant to common POPs like antibiotics and herbicides over ecological and 

evolutionary time? and (6) Can POPs cause changes within the consumer community, which in 

turn may lead to consumer-driven nutrient recycling stoichiometry that indirectly promotes 

CyanoHABs?  

I conclude that selective pressures from multiple POPs, in combination with the 

previously recognized factors of nutrient enrichment and warmer temperatures, will favor 

increases in the frequency, intensity, and geographical extent of nuisance cyanobacterial blooms 

in the world’s surface waters. Therefore, I hypothesize that aquatic ecosystems receiving 

significant inputs of POPs may exhibit a greater probability of experiencing CyanoHABs than 

nearby ecosystems that have a similar nutrient content, but low POP loading. Because the 

formation of cyanobacterial blooms is multifactorial in nature, I strongly suggest that future 

water quality management efforts must focus upon more than nutrient loading control alone to 

fully combat the expansion of undesirable CyanoHABs in the world’s surface waters. 
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Figures and Figure legends 

Figure 1. Total kilograms of active ingredient biocides (herbicides, pesticides, and fungicides) 

applied to the U.S. landscape from 1931–2007. Note: the data shown represent time trends 

derived from a merger of multiple published datasets (Donaldson et al. 2002; Aspelin 2003; 

Grube et al. 2011); these databases overlapped between 1964–2007. 

 

Figure 3-1   
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Figure 2. Histograms showing the response of cyanobacteria relative to eukaryotic 

phytoplankton taxa in the presence Persistent Organic Pollutants (POPs). The positive (green), 

neutral (brown), and negative (blue) categories refer to POPs that favored cyanobacteria, showed 

taxa more and less sensitive than cyanobacteria, and did not favor cyanobacteria relative to 

eukaryotic taxa, respectively, in multi-phytoplankton species experiments. The herbicide POP 

category includes glyphosate experiments; dashed red bars indicate the frequency of herbicide 

POP experiments without glyphosate. Numbers above histogram bars represent the number of 

POP experiments in each category. PPCPs = pharmaceutical and personal care products 

(including antibiotics); PAHs & PCBs = polycyclic aromatic hydrocarbons and polychlorinated 

biphenyls. 

 

Figure 3-2  
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Figure 3. Percentage of experiments that compared cyanobacteria and eukaryotic phytoplankton 

in the presence of antibiotics by year, with positive (green), neutral (brown), and negative (blue) 

categories referring to antibiotics that favored cyanobacteria, showed taxa more and less 

sensitive than cyanobacteria, and did not favor cyanobacteria relative to eukaryotic taxa, 

respectively, in multi-phytoplankton species experiments. Numbers inside histogram bars 

represent the number of experiments comparing cyanobacteria and eukaryotic taxa in the 

presence of antibiotics each year. 

 

 

Figure 3-3 
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Appendices 

Appendix A: Chapter 1 Supplemental Figures and Tables 

Supplemental Figure 1. Boxplots of the Root Mean Square Error (RMSE) values of 12 

predictive modeling techniques for cyanobacterial abundance (a), microcystin (b), and geosmin 

(c) concentrations in Cheney Reservoir, KS. The models were trained using a training dataset 

comprised of 75% of the response variable data and models were computed on a test dataset 

comprised of the other 25% of the dataset. Each modeling technique used a repeated (repeats = 

5) 10-fold cross validation to generate multiple RMSE values and ensure the most robust fit of 

the models. The models with the 3 lowest average RMSE values were the most robust, and thus 

were deemed the best predictive modeling techniques for the response variable. Black dots 

represent the average RMSE for each modeling technique.

 

Supplemental Figure 1a 
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Supplemental Figure 1b 

 

Supplemental Figure 1c  
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Supplemental Figure 2. Hourly measurements of reservoir elevation of Cheney Reservoir 

throughout the study period (2001-2015). Reservoir elevation is in feet above the National 

Geodetic Vertical Datum of 1929. Solid, dotted, and dashed lines represent the mean, 1 standard 

deviation, and 3 standard deviations from the mean, respectively.  Drought events in 2006-2007 

and 2011-2013 and corresponding large inflow events after droughts caused data to exceed 1 

and/or 3 standard deviations from the mean, respectively, and thus represent extremes in 

reservoir elevation. Data from the USGS National Water Information System at http://dx.doi 

.org/10.5066/F7P55KJN. 
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Supplemental Table 1. Observed (Obs.) and predicted model outcomes for developed 

cyanobacterial abundance models. See Table 2 for model abbreviations. Cyanobacterial 

abundance is in cells/mL. 

 

  

Date Obs. Cyano Linear PLS Enet MARS SVM Nnet CART CI Tree BagT RF BT Cubist
8/7/2002 48 7842 11114 5118 7638 -1491 2692 5118 7262 7335 6851 1845 3133
9/4/2002 2278 15716 10910 6596 7638 1827 6366 5118 7262 6167 5322 3786 5063

2/10/2003 2228 51 8346 2641 7638 3862 6344 5118 7262 6064 5769 5175 2545
6/20/2003 2934 4401 9242 3922 7638 4572 1161 5118 7262 3452 4571 5850 2957
7/7/2003 5326 2834 9767 8877 7638 6959 11785 5118 7262 12038 7815 6890 5329

7/17/2003 13910 16831 15812 17830 7638 15550 25833 5118 7262 13679 15714 19289 13405
7/28/2003 14271 15201 14911 11756 7638 12636 22793 5118 7262 13861 14576 13580 14486
3/10/2004 412 -3725 2830 2709 7638 781 -1085 5118 7262 2096 2681 695 1271
4/8/2004 16662 7744 -606 4454 7638 -3300 4797 5118 7262 1980 3704 -6808 1088
5/5/2004 84 2034 2759 3194 7638 -4375 -9197 5118 7262 2852 2545 297 885

7/15/2004 2645 6311 11204 4907 7638 1272 5975 5118 7262 3885 7447 10822 3271
8/12/2004 930 19175 1068 10256 7638 2565 5970 5118 7262 10690 6665 5120 5429
8/27/2004 643 17627 9984 10979 7638 2282 9860 48307 7262 31104 8043 4772 1998
9/9/2004 987 17030 10168 11315 7638 5029 14898 48307 7262 31754 17608 14892 9800

3/16/2005 1966 -390 10648 4027 7638 3253 11652 5118 7262 3533 3199 1663 4175
4/13/2005 4534 19 7650 4531 7638 2895 8520 5118 7262 2966 4419 707 3700
5/4/2005 1191 -8 7216 3500 7638 2395 3570 5118 7262 1341 2177 -269 1538

5/16/2005 3237 1415 9491 8281 7638 4875 -1704 5118 7262 3956 4818 3968 3426
6/1/2005 138 1258 8104 2753 7638 2941 -2793 5118 7262 3056 5135 5261 2588

6/15/2005 5847 -5531 7735 4919 7638 4209 5894 5118 7262 4198 5758 4132 5698
6/29/2005 914 3801 2782 3830 7638 1295 -1887 5118 7262 1891 2428 -205 1823
7/13/2005 25600 6460 5912 13212 7638 23963 13615 5118 7262 11892 14299 17443 15937
7/27/2005 26944 3457 10928 20181 7638 6639 11814 5118 7262 6281 7311 14118 7522
8/30/2005 10699 18234 10367 12944 7638 9060 10967 5118 7262 8832 9948 10573 7771
9/7/2005 19544 18162 10340 11049 7638 17914 17935 5118 7262 9478 14847 15264 14022

10/13/2005 17333 16092 12950 12974 7638 15695 18924 5118 7262 11961 16958 17577 14297
10/27/2005 1839 12813 10105 7660 7638 3476 11182 5118 7262 4132 4101 2333 5694
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1/11/2006 8920 19950 10108 5932 7638 7282 7045 5118 7262 4350 6848 7686 7927
3/1/2006 1463 6484 9397 2666 7638 3099 5606 5118 7262 2743 3545 3447 3268

3/29/2006 3803 -3670 8499 3710 7638 2165 8705 5118 7262 8664 4497 5092 3572
4/25/2006 4196 1929 7252 6709 7638 2559 5736 5118 7262 3693 5269 8261 4026
5/17/2006 555 11730 8350 10068 7638 2196 9447 5118 7262 7340 6128 5640 1831
5/31/2006 98382 15537 11724 12879 7638 6723 4751 5118 7262 4966 8886 17711 5120
6/14/2006 1258 22080 8530 8595 7638 5904 12034 5118 7262 4025 9587 7957 5288
6/28/2006 6213 23107 10802 10864 7638 7847 15855 5118 7262 5912 7254 6065 6371
7/13/2006 3509 4879 12550 9934 7638 8656 13632 48307 7262 31703 16155 13299 23086
7/26/2006 11954 22282 15054 17280 7638 13586 11503 48307 7262 34159 16116 12880 14423
8/10/2006 83054 34643 18375 22252 8129 26510 32194 48307 7262 35699 20635 24620 88631
9/6/2006 129836 40298 19502 30888 14370 34658 44448 48307 7262 36005 75294 53560 115671

9/20/2006 53810 55269 20625 25546 10205 52179 27541 48307 7262 36741 53756 56731 54305
10/11/2006 100983 40671 14182 22110 7638 34596 47632 48307 7262 35131 60720 52611 84663
10/25/2006 40922 27665 13198 15275 7638 39281 28081 48307 7262 33964 34123 39469 45908
12/12/2006 8377 25400 14724 8864 7638 10011 15937 5118 7262 7698 11425 16642 10947

2/7/2007 3267 9617 11024 4206 7638 2680 10825 5118 7262 5921 5563 13548 5938
3/7/2007 5705 14740 9951 4568 7638 4070 11402 5118 7262 3874 10625 8643 4105
4/9/2007 2921 12076 8707 8639 7638 4560 6923 5118 7262 4647 3864 2589 3545
5/8/2007 22 1245 6052 1764 7638 1212 7084 5118 7262 2369 3094 19 742

5/31/2007 18 8063 1116 2050 7638 1654 -3159 5118 7262 1797 5134 2206 636
6/13/2007 80 -3914 -2891 1782 7638 -2220 -2572 5118 7262 1065 2240 -2868 110
6/25/2007 656 8218 -138 3870 7638 -978 -69 5118 7262 1689 1697 212 1192
7/9/2007 643 2731 2374 7830 7638 -1000 399 5118 7262 3272 2104 -1131 1118

7/23/2007 1236 2779 6506 13500 7638 2877 4715 5118 7262 4854 3257 1245 2817
8/7/2007 1127 8883 8667 14436 7638 -513 7270 5118 7262 5916 3057 1687 2779

8/15/2007 2634 13968 10854 12221 7638 3607 9606 5118 7262 9070 5204 3053 5376
8/28/2007 14652 13117 9044 13318 7638 5886 10081 5118 7262 8294 5643 2281 6585
9/12/2007 9120 16362 11781 14342 7638 10809 18997 5118 7262 8236 9549 10878 8699
9/24/2007 7625 21536 13425 14836 7638 13244 18467 5118 7262 10431 16049 17334 27792

10/15/2007 10955 17382 10460 10359 7638 9895 18885 5118 7262 6318 8211 9134 7764
10/29/2007 8410 13061 9429 7326 7638 9463 12769 5118 7262 6592 7227 7632 7642
11/13/2007 7788 14535 11340 8435 7638 9429 13711 5118 7262 6484 6812 6166 9289
12/19/2007 6811 -3137 8244 3587 7638 5174 5997 5118 7262 3407 6817 7212 3999
2/11/2008 28601 293 9186 3016 7638 3045 6117 5118 7262 5197 6333 8462 2722
4/1/2008 12490 3308 11096 5550 7638 4896 10235 5118 7262 4701 8395 6894 6313

4/16/2008 5892 -4732 8112 4707 7638 3717 7189 5118 7262 4058 5279 4636 3258
4/29/2008 555 -1203 5724 3014 7638 2195 6409 5118 7262 2947 4674 2763 1339
5/13/2008 367 -563 4826 2017 7638 819 441 5118 7262 2947 3838 1746 989
6/3/2008 838 3044 2387 5099 7638 2471 -5290 5118 7262 2276 2145 1714 3038
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6/18/2008 1029 7470 4403 5496 7638 6255 11504 5118 7262 4392 3974 7276 4924
7/7/2008 7884 5602 7471 8229 7638 3607 7626 5118 7262 5843 6878 7381 6254

7/21/2008 9229 10127 11461 19715 7807 10869 12806 5118 7262 9516 9381 15941 6449
8/18/2008 12420 8364 7295 7001 7638 7463 6716 5118 7262 5660 8677 8382 7443
9/2/2008 7519 13997 12541 9618 7638 9158 11281 5118 7262 7742 7212 9191 10620

9/17/2008 13698 9865 8238 8495 7638 7926 12039 5118 7262 9515 6994 12066 8895
10/1/2008 25661 13723 9781 8667 7638 13952 18695 5118 7262 13091 15633 19123 14150

10/15/2008 6623 14007 7378 7360 7638 8264 10611 5118 7262 4514 6886 9781 7315
11/4/2008 4403 9761 4536 4295 7638 4527 268 5118 7262 2330 4152 3836 4072
12/2/2008 4754 3804 3643 4152 7638 3117 -187 5118 7262 3195 4391 5241 3513
1/6/2009 2141 1238 3507 3709 7638 3782 537 5118 7262 5574 5134 3482 2482

1/20/2009 6390 203 9664 2850 7638 1907 4369 5118 7262 5107 4761 4015 5524
2/2/2009 8705 12089 13541 2154 2095 7076 6626 5118 7262 7269 11050 10148 6293

2/18/2009 4010 2329 9311 4231 7638 2372 5724 5118 7262 3379 3908 660 3960
2/25/2009 1880 667 10063 3354 7638 2093 8163 5118 7262 3354 3237 699 3223
3/3/2009 5268 -1102 10997 2746 7638 444 6317 5118 7262 4885 3398 7508 3148
3/9/2009 22 163 9695 3495 7638 1658 7447 5118 7262 4443 3515 4557 2519

3/16/2009 1701 3617 12598 4049 6879 3561 7593 5118 7262 6354 4226 7120 4991
3/25/2009 5768 4077 10242 5713 7638 4796 12194 5118 7262 4487 5247 6427 4762
4/8/2009 4767 -6749 8720 4244 7638 2625 8491 5118 7262 4487 5185 296 4309

4/29/2009 362 -2689 5184 2032 7638 1991 521 5118 7262 1951 3777 2604 436
5/27/2009 3824 -2193 1694 5814 7638 -2457 -1560 5118 7262 2125 2530 1167 2947
6/9/2009 107 2141 1156 3226 7638 -420 -304 5118 7262 1065 544 -724 1091

6/23/2009 1437 2666 4407 16209 7415 3069 5226 5118 7262 5053 2597 5522 1943
7/7/2009 4412 6486 11513 15448 7638 3687 12799 5118 7262 6108 5786 2759 2930

7/21/2009 705 3015 7811 4879 7638 2341 4551 5118 7262 3363 1891 664 2488
8/5/2009 5542 5028 7268 5116 7638 3022 3280 5118 7262 3300 4616 4335 4116

8/24/2009 934 8355 8289 6482 7638 3850 5168 5118 7262 3622 4180 1724 4436
9/2/2009 951 9626 9964 8034 7638 3003 9073 5118 7262 6478 6157 3618 5676

9/16/2009 6 4130 5127 3695 7638 1639 -173 5118 7262 3242 2850 3650 4632
10/5/2009 1 -107 1580 4445 7638 1636 2765 5118 7262 5313 1992 2636 2733

10/19/2009 1 2216 4640 3299 7638 1635 3741 5118 7262 2354 2050 4458 2452
11/23/2009 27 9867 3735 3765 7638 1666 -663 5118 7262 1497 775 245 1796
12/16/2009 1 -2214 1909 2729 7638 363 -2441 5118 7262 1258 897 279 898
1/12/2010 1 437 2342 2153 7638 1349 -629 5118 7262 1745 1437 -437 963
2/10/2010 2855 7128 11701 -788 -4704 176 4061 5118 7262 7089 9213 2012 2306
2/17/2010 12 20712 21554 -4016 -22375 1648 9662 5118 7262 7215 6233 2323 2227
2/24/2010 1 10568 19946 -112 -13997 2246 7027 5118 7262 7415 6972 4502 6515
3/3/2010 9 12780 18313 9103 -12567 1652 7383 5118 7262 7415 6121 8995 1242

3/10/2010 1 5900 12507 6175 4861 1638 7359 48307 7262 33249 7907 12751 3956
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3/22/2010 1 1895 12142 3058 1243 1644 7270 5118 7262 6170 6023 7306 1725
4/12/2010 1 -2854 6843 5302 7638 -100 948 5118 7262 2936 2454 -645 1163
5/18/2010 1 2421 3598 1702 7638 640 -1164 5118 7262 1910 1839 -1777 180
6/17/2010 166 3425 909 7770 7638 -2353 -4992 5118 7262 2824 3551 2659 2915
6/30/2010 1251 905 439 3308 7638 1353 2143 5118 7262 1689 3146 4625 1559
7/14/2010 153 -6159 -2313 2515 7638 -119 2864 5118 7262 1681 992 3252 231
7/29/2010 1 8339 668 5609 7638 6399 3209 5118 7262 9840 13690 4008 2113
8/12/2010 133 4423 -1688 4899 7638 1767 -211 5118 7262 2300 1283 555 497
8/26/2010 1 124 -2419 3886 7638 1634 3340 5118 7262 1206 398 353 99
9/8/2010 268 -2159 -4193 1879 7638 246 1706 5118 7262 1206 324 2572 168

9/22/2010 1 3284 -7331 2390 7638 1137 432 5118 7262 5096 1473 2318 112
10/4/2010 1 3694 -6624 1552 7638 3998 2709 5118 7262 5253 4389 4545 365

10/18/2010 1 -2441 -10616 1703 7638 1633 604 5118 7262 1048 814 4107 144
11/15/2010 1 -3107 -8749 1781 7638 1032 -3337 5118 7262 1206 475 -1849 15
12/6/2010 1 -9849 -11232 1156 7638 1636 -4264 5118 7262 1048 250 -517 5
1/18/2011 1 4299 -19937 867 7638 1638 -9857 5118 7262 1065 876 -3084 152
2/14/2011 1 -11150 -9118 797 7638 808 -5979 5118 7262 1065 815 -2726 54
3/14/2011 1 -9501 -5794 1623 7638 -1635 -6810 5118 7262 1742 357 -684 150
4/11/2011 1 -629 -6780 2865 7638 1629 1881 5118 7262 1478 1324 -892 72
5/11/2011 1 -4054 -6170 1979 7638 -2445 -7754 5118 7262 1065 813 -2122 69
6/13/2011 1 -7589 -6445 3420 7638 163 1584 5118 7262 1065 871 -256 99
7/11/2011 657 162 -5301 5451 7638 4095 1483 5118 7262 4418 5512 678 3147
8/1/2011 18719 12022 4680 13034 7638 17079 13116 5118 7262 7437 16500 17428 15317
8/8/2011 40298 15645 10069 24922 9850 38666 19507 5118 7262 18224 29162 30873 28766

8/15/2011 2685 -1226 4083 3292 7638 4323 6498 5118 7262 5045 6827 6726 5543
8/30/2011 128 -3916 -3946 1967 7638 1699 2518 5118 7262 1206 3018 1227 2134
9/6/2011 3217 -3283 -1226 7552 7638 4852 5316 5118 7262 2590 4724 7890 4017

9/20/2011 1526 3864 4303 19096 10971 3157 8972 5118 7262 8070 7142 16377 4169
10/4/2011 280 8093 7114 7709 7638 3365 1768 5118 7262 6814 8292 9599 5029
11/1/2011 3288 10769 6494 6438 7638 2528 5836 5118 7262 1972 2687 2480 2246

12/12/2011 1 -6799 2892 2602 7638 -1969 -9 5118 7262 1206 1858 0 295
1/18/2012 1 -7273 10 2416 7638 -1640 863 5118 7262 1065 601 -12 107
2/14/2012 1 -6478 1325 2565 7638 -1113 -3553 5118 7262 1478 578 1099 382
3/12/2012 1 7049 10667 7023 4725 1634 7518 5118 7262 4771 2303 5409 3700
4/16/2012 1 -4933 -422 3441 7638 1637 -223 5118 7262 1566 1989 -3289 807
5/16/2012 1 18513 5097 4922 7638 1636 2993 5118 7262 1155 2395 2306 1479
6/11/2012 241 2753 3997 5477 7638 1876 2370 5118 7262 1154 1876 1287 1895
6/27/2012 7377 4579 7182 5505 7638 4582 2172 5118 7262 1778 3264 2924 3434
7/9/2012 1860 15122 11403 16320 7638 11377 6493 5118 7262 8652 11615 12731 8881
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7/31/2012 285 18831 10521 9554 7638 1924 6333 5118 7262 7216 5236 4124 2582
8/21/2012 356 14743 10892 8992 7638 1996 4626 5118 7262 1972 1266 -656 3161
9/19/2012 247 21687 12800 12352 7638 1880 13779 5118 7262 6028 1965 7241 3332

10/16/2012 6841 18874 13867 10539 7638 5202 14295 5118 7262 4935 5161 9322 4741
11/13/2012 1 16696 12940 8763 7638 1637 11425 5118 7262 5659 1968 5024 3277
12/11/2012 1 17453 13124 7578 7638 1641 5670 5118 7262 5364 2461 728 2858
1/15/2013 32993 18414 16109 5634 7638 29248 11903 5118 7262 19510 25864 29755 27300
1/23/2013 24537 21247 16872 5678 7638 26172 11903 5118 7262 19597 24827 29393 26543
2/12/2013 56820 15659 15600 5899 7638 16740 14442 5118 7262 17205 28214 30928 40879
3/19/2013 1 13919 15485 6062 7638 6230 15177 5118 7262 9307 5406 4298 7707
4/9/2013 6879 13295 14753 6548 7638 6638 12914 5118 7262 9873 7883 7242 9061
5/7/2013 1 -3220 9073 5505 7638 1629 4354 5118 7262 10730 5551 4335 4917
6/6/2013 1 8440 9645 5847 7638 7364 17055 5118 7262 1730 3196 2768 3875
7/8/2013 30014 19868 15284 19146 7677 27964 20184 5118 7262 14964 20693 25604 21857
8/6/2013 17286 13028 12122 15280 7638 17951 8287 5118 7262 9738 11498 12653 12960

8/19/2013 878 -7529 1425 1925 7638 -755 -485 5118 7262 2828 2771 -659 1705
9/9/2013 1328 7831 9273 14423 7638 2964 5252 5118 7262 8655 5119 6165 3704

9/25/2013 4107 9429 8688 12352 7638 5738 13482 5118 7262 9477 6152 4619 6327
10/21/2013 2892 11420 7661 9663 7638 4533 11974 5118 7262 5046 3054 5269 3502
11/6/2013 2489 505 6397 7310 7638 2843 6013 5118 7262 4913 4860 520 4216

11/18/2013 5053 2285 6304 5439 7638 3414 5304 5118 7262 4337 5123 4144 5120
12/12/2013 248 -7213 4559 3646 7638 1889 814 5118 7262 3361 2498 1483 1532
1/15/2014 2112 -16026 766 2073 7638 4277 -2912 5118 7262 2443 1941 441 1624
2/19/2014 1 -16330 577 2199 7638 262 -2689 5118 7262 2327 1342 -1872 710
3/19/2014 3232 -8755 13476 1236 -13374 2232 5383 5118 7262 7278 8106 2900 2528
4/16/2014 4319 -4999 9165 3867 7638 5392 4827 5118 7262 3037 5636 5236 4138
5/20/2014 2349 -5602 8066 7185 7638 3460 -1675 5118 7262 3441 3753 1815 2828
7/10/2014 35 454 6513 7642 7638 1985 7174 5118 7262 4977 3354 1000 4611
7/22/2014 1249 5541 8420 12216 7638 3090 6840 5118 7262 5506 3060 2865 5373
8/5/2014 15018 8476 10817 12777 7638 10505 5124 5118 7262 8885 11447 11541 9833

9/16/2014 12966 11706 12354 15467 7638 11334 11672 5118 7262 8982 11624 13581 9944
10/28/2014 11406 15933 11490 11188 7638 12710 17037 5118 7262 9797 10105 9884 11509
11/20/2014 10203 8943 14440 6974 7638 8959 10251 5118 7262 8234 8087 8641 7932
12/16/2014 10854 10976 12139 5672 7638 9220 2386 5118 7262 11080 12088 9225 9960
1/13/2015 645 4432 4105 3646 7638 2280 5989 5118 7262 7267 6405 5230 4979
2/10/2015 790 5624 13427 4564 7638 2430 7687 5118 7262 5972 5877 4794 3544
3/10/2015 91 -3419 12030 3204 7638 5383 8207 5118 7262 6744 10048 9858 2945
4/15/2015 405 3546 8029 4468 7638 6506 3765 5118 7262 3711 6374 -84 4461
6/9/2015 14313 5956 12163 6808 7638 12678 1848 5118 7262 11418 14388 15538 11130
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Supplemental Table 2. Observed (Obs.) and predicted model outcomes for developed 

microcystin models. See Table 2 for model abbreviations. Microcystin concentrations are in 

µg/L. 

 

Date Obs. MC Linear PLS Enet MARS SVM Nnet CART CI Tree BagT RF BT Cubist
9/4/2002 0.2 0.77 0.84 0.57 0.40 0.34 0.67 0.22 0.33 0.97 0.64 0.73 0.44

2/10/2003 0.18 0.28 -0.05 0.19 0.22 0.12 0.08 0.22 0.33 0.11 0.14 0.15 0.05
7/17/2003 0.11 0.62 0.67 0.83 0.24 0.17 0.25 1.04 0.33 0.49 0.50 0.65 0.22
7/28/2003 0.05 0.54 0.62 0.57 0.22 0.13 0.24 1.04 0.33 0.51 0.29 0.55 0.16
3/10/2004 0.14 0.04 -0.09 0.14 0.22 0.11 0.35 0.22 0.33 0.10 0.25 0.18 0.05
4/8/2004 0.26 -0.14 -0.35 -0.14 0.22 0.18 0.08 0.22 0.33 0.10 0.20 0.12 0.07
5/5/2004 0.14 -0.33 0.05 -0.20 0.22 0.06 -0.01 0.22 0.33 0.10 0.17 0.15 0.07

8/27/2004 0.13 0.59 0.64 0.66 0.22 0.23 0.27 0.22 0.33 0.47 0.44 0.48 0.32
9/9/2004 0.15 0.75 0.64 0.68 0.22 0.23 0.36 0.22 0.33 0.53 0.46 0.54 0.21
6/1/2005 0.05 0.16 0.38 -0.04 0.39 0.04 -0.05 0.22 0.33 0.13 0.19 0.17 0.08

6/15/2005 0.13 0.92 0.43 0.46 0.38 0.19 0.79 0.22 0.33 0.18 0.28 0.20 0.10
6/29/2005 0.05 0.34 0.44 0.16 0.22 0.13 0.20 0.22 0.33 0.22 0.15 0.26 0.10
7/13/2005 1.74 0.59 0.47 0.83 0.22 0.28 0.34 1.04 0.33 0.75 0.70 0.70 0.23
7/27/2005 0.61 0.59 0.72 0.98 0.22 0.38 0.56 0.22 0.33 0.39 0.73 0.52 0.22
8/30/2005 2.28 0.86 0.66 0.96 0.22 0.33 1.97 1.04 0.33 1.32 1.42 0.92 0.90
9/7/2005 2.08 0.81 0.60 0.89 0.22 0.32 1.91 0.22 0.33 1.16 1.52 0.72 0.85

10/13/2005 0.38 0.54 0.46 0.56 0.22 0.28 0.94 0.22 0.33 0.54 0.38 0.42 0.33
10/27/2005 0.2 0.21 0.29 0.08 0.22 0.20 0.21 0.22 0.33 0.26 0.17 0.33 0.16
1/11/2006 0.05 0.47 -0.17 0.09 0.22 0.14 0.47 0.22 0.33 0.10 0.10 0.21 0.06
3/1/2006 0.05 0.09 -0.15 -0.01 0.22 0.13 0.05 0.22 0.33 0.11 0.08 0.13 0.05

3/29/2006 0.05 -0.23 0.08 -0.07 0.22 0.12 0.06 0.22 0.33 0.14 0.17 0.12 0.05
4/25/2006 0.05 -0.03 0.09 -0.03 0.22 0.12 0.02 0.22 0.33 0.10 0.15 0.16 0.08
5/17/2006 0.05 0.30 0.26 0.11 0.22 0.09 0.00 0.22 0.33 0.14 0.20 0.12 0.08
5/31/2006 0.05 0.53 0.46 0.27 0.44 0.13 0.15 0.22 0.33 0.25 0.16 0.16 0.12
6/14/2006 0.05 0.09 0.51 0.10 0.48 0.13 0.03 0.22 0.33 0.29 0.16 0.20 0.11
6/28/2006 0.21 0.45 0.50 0.40 0.50 0.20 0.11 0.22 0.33 0.21 0.34 0.24 0.11
7/13/2006 0.17 0.56 0.69 0.49 0.57 0.26 0.19 0.22 0.33 0.27 0.38 0.27 0.16
7/26/2006 0.18 0.78 0.80 0.81 0.61 0.28 0.63 1.04 0.33 0.80 0.30 0.58 0.17
8/10/2006 1.61 0.89 0.67 1.04 0.66 0.25 1.19 1.04 0.33 1.21 0.85 0.89 1.68
9/6/2006 2.65 1.32 0.87 1.37 0.39 0.47 2.51 0.22 0.33 1.03 1.66 0.72 1.73

9/20/2006 1.25 1.15 0.68 1.16 0.32 0.60 1.26 0.22 0.33 0.68 0.97 0.57 1.42
10/11/2006 0.72 0.46 0.38 0.51 0.22 0.24 0.39 0.22 0.33 0.62 0.78 0.55 2.28
10/25/2006 0.32 0.19 0.17 0.18 0.22 0.24 0.19 0.22 0.33 0.27 0.38 0.36 0.23
12/12/2006 0.05 -0.16 0.10 -0.15 0.22 0.13 0.03 0.22 0.33 0.10 0.11 0.14 0.05
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2/7/2007 0.05 -0.03 0.01 0.07 0.22 0.06 0.06 0.22 0.33 0.10 0.08 0.16 0.05
3/7/2007 0.05 -0.06 0.15 0.21 0.22 0.08 0.08 0.22 0.33 0.11 0.17 0.19 0.06
4/9/2007 0.05 -0.08 0.07 -0.01 0.22 0.11 0.14 0.22 0.33 0.10 0.18 0.17 0.06
5/8/2007 0.1 0.25 0.25 0.04 0.22 0.06 0.14 0.22 0.33 0.10 0.19 0.20 0.08

5/31/2007 0.23 0.33 -0.05 -0.02 0.22 0.16 0.18 0.22 0.33 0.17 0.24 0.25 0.08
6/13/2007 0.05 0.23 0.18 0.04 0.22 0.08 0.04 0.22 0.33 0.18 0.11 0.21 0.09
6/25/2007 0.05 0.04 0.40 0.01 0.22 0.19 -0.03 0.22 0.33 0.20 0.23 0.27 0.10
7/9/2007 0.22 0.21 0.47 0.35 0.22 0.30 0.28 0.22 0.33 0.25 0.24 0.40 0.15

7/23/2007 0.61 0.62 0.71 0.85 0.22 0.53 0.56 1.04 0.33 0.68 0.65 0.75 0.21
8/7/2007 0.66 0.68 0.82 0.83 0.22 0.50 0.27 1.04 0.33 0.96 0.66 0.87 0.88

8/15/2007 1.39 0.79 0.84 0.84 0.22 0.47 0.95 1.04 0.33 1.13 1.15 0.93 0.78
8/28/2007 1.12 0.84 0.68 0.92 0.22 0.41 0.69 1.04 0.33 1.11 0.80 0.78 0.35
9/12/2007 0.63 0.72 0.76 0.86 0.22 0.46 0.66 0.22 0.33 0.78 0.67 0.54 0.41
9/24/2007 0.68 0.31 0.66 0.50 0.22 0.36 0.21 0.22 0.33 0.51 0.54 0.50 0.34

10/15/2007 0.28 0.39 0.45 0.36 0.22 0.26 0.13 0.22 0.33 0.28 0.26 0.31 0.22
10/29/2007 0.15 0.26 0.39 0.11 0.22 0.23 0.11 0.22 0.33 0.17 0.21 0.26 0.15
11/13/2007 0.1 0.28 0.36 0.11 0.22 0.18 0.04 0.22 0.33 0.12 0.19 0.19 0.19
12/19/2007 0.05 -0.19 0.13 -0.12 0.22 0.08 0.05 0.22 0.33 0.12 0.08 0.17 0.05
2/11/2008 0.15 -0.09 0.01 0.12 0.22 0.09 0.03 0.22 0.33 0.10 0.12 0.15 0.05
4/1/2008 0.12 0.07 0.26 0.08 0.22 0.12 0.08 0.22 0.33 0.10 0.11 0.23 0.06

4/16/2008 0.05 -0.28 0.07 -0.04 0.22 0.09 0.01 0.22 0.33 0.10 0.09 0.19 0.06
4/29/2008 0.05 -0.29 -0.21 -0.08 0.22 0.12 0.05 0.22 0.33 0.10 0.08 0.19 0.06
5/13/2008 0.05 0.11 -0.14 0.03 0.22 0.13 0.09 0.22 0.33 0.10 0.08 0.19 0.07
6/3/2008 0.05 0.39 0.23 0.15 0.29 0.13 0.00 0.22 0.33 0.14 0.10 0.22 0.09

6/18/2008 0.1 0.20 0.20 0.21 0.26 0.17 0.03 0.22 0.33 0.19 0.14 0.24 0.09
7/7/2008 0.83 0.39 0.58 0.46 0.23 0.32 0.41 0.22 0.33 0.38 0.63 0.40 0.20

7/21/2008 1.06 0.82 0.70 1.10 0.25 0.46 0.97 1.04 0.33 0.61 0.73 0.75 0.24
7/28/2008 0.43 0.71 0.79 1.03 0.26 0.49 0.62 1.04 0.33 0.66 0.58 0.75 0.34
8/18/2008 0.19 0.67 0.67 0.66 0.30 0.27 0.20 0.22 0.33 0.42 0.29 0.41 0.36
9/2/2008 0.05 0.88 0.80 0.74 0.33 0.40 0.78 0.22 0.33 0.40 0.60 0.49 0.68

9/17/2008 0.11 0.84 0.62 0.72 0.22 0.39 1.44 0.22 0.33 0.51 0.45 0.46 0.27
10/1/2008 0.05 1.15 0.60 0.73 0.22 0.33 0.65 0.22 0.33 0.41 0.29 0.38 0.25

10/15/2008 0.05 0.40 0.18 0.27 0.22 0.13 0.16 0.22 0.33 0.23 0.09 0.29 0.13
11/4/2008 0.11 0.43 0.10 0.07 0.22 0.15 0.17 0.22 0.33 0.15 0.10 0.18 0.07
12/2/2008 0.05 0.24 0.04 0.05 0.22 0.12 0.06 0.22 0.33 0.10 0.07 0.10 0.06
1/6/2009 0.05 0.29 0.00 0.17 0.22 0.12 0.23 0.22 0.33 0.12 0.29 0.20 0.05

1/20/2009 0.05 0.19 -0.03 0.14 0.22 0.10 0.05 0.22 0.33 0.10 0.07 0.22 0.05
2/2/2009 0.05 0.74 0.03 0.14 0.22 0.14 0.95 0.22 0.33 0.10 0.14 0.25 0.05

2/18/2009 0.05 0.07 0.08 0.14 0.22 0.08 0.00 0.22 0.33 0.11 0.06 0.13 0.05
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2/25/2009 0.05 0.02 0.14 0.12 0.22 0.09 0.00 0.22 0.33 0.11 0.09 0.24 0.05
3/3/2009 0.05 -0.02 0.26 0.13 0.22 0.09 0.05 0.22 0.33 0.11 0.10 0.26 0.05
3/9/2009 0.05 0.09 0.21 0.13 0.22 0.09 -0.01 0.22 0.33 0.11 0.09 0.26 0.05

3/16/2009 0.05 0.15 0.19 0.11 0.22 0.12 0.03 0.22 0.33 0.10 0.07 0.22 0.05
3/25/2009 0.05 0.20 0.29 0.09 0.22 0.13 0.04 0.22 0.33 0.11 0.09 0.21 0.06
4/8/2009 0.05 -0.27 0.18 -0.04 0.22 0.12 0.07 0.22 0.33 0.11 0.15 0.19 0.05

4/29/2009 0.05 -0.10 -0.09 -0.06 0.22 0.10 0.03 0.22 0.33 0.10 0.08 0.18 0.07
5/27/2009 0.05 0.25 0.20 0.13 0.22 0.19 0.26 0.22 0.33 0.12 0.15 0.19 0.10
6/9/2009 0.05 -0.21 0.18 -0.13 0.22 0.08 0.11 0.22 0.33 0.16 0.09 0.14 0.08

6/23/2009 0.05 0.40 0.53 0.77 0.22 0.34 0.08 0.22 0.33 0.25 0.37 0.39 0.27
7/7/2009 0.13 0.27 0.76 0.62 0.22 0.31 0.05 0.22 0.33 0.38 0.33 0.39 0.20

7/21/2009 0.05 0.11 0.59 0.28 0.22 0.17 0.15 0.22 0.33 0.38 0.19 0.26 0.17
8/5/2009 0.05 0.26 0.64 0.39 0.22 0.21 -0.03 0.22 0.33 0.36 0.34 0.34 0.27

8/24/2009 0.05 0.41 0.65 0.52 0.22 0.31 0.16 0.22 0.33 0.40 0.22 0.31 0.17
9/2/2009 0.05 0.45 0.67 0.55 0.22 0.28 0.35 0.22 0.33 0.31 0.23 0.42 0.14

9/16/2009 2.91 0.72 0.58 0.48 0.22 0.27 2.10 0.22 0.33 0.79 1.59 0.61 0.65
10/5/2009 0.05 0.05 0.14 0.27 0.22 0.13 0.03 0.22 0.33 0.35 0.15 0.27 0.08

10/19/2009 0.05 -0.18 0.04 -0.09 0.22 0.11 0.00 0.22 0.33 0.24 0.13 0.33 0.06
11/23/2009 0.05 0.35 0.09 -0.01 0.22 0.13 0.09 0.22 0.33 0.14 0.07 0.19 0.07
12/16/2009 0.05 -0.05 -0.07 -0.06 0.22 0.10 0.05 0.22 0.33 0.10 0.12 0.11 0.05
1/12/2010 0.05 -0.03 -0.23 0.05 0.22 0.13 0.05 0.22 0.33 0.10 0.13 0.11 0.05
2/10/2010 0.05 0.55 0.15 0.09 0.22 0.13 0.11 0.22 0.33 0.10 0.20 0.21 0.05
2/17/2010 0.05 1.07 0.42 -0.02 0.22 0.16 1.02 0.22 0.33 0.10 0.23 0.23 0.05
2/24/2010 0.1 0.53 0.26 0.10 0.22 0.14 0.12 0.22 0.33 0.10 0.17 0.21 0.05
3/3/2010 0.05 0.39 0.20 -0.11 0.22 0.13 0.07 0.22 0.33 0.10 0.19 0.24 0.05

3/10/2010 0.05 -0.20 0.12 -0.03 0.22 0.11 0.03 0.22 0.33 0.14 0.31 0.23 0.05
3/22/2010 0.05 -0.23 0.19 -0.10 0.22 0.13 0.06 0.22 0.33 0.10 0.20 0.20 0.05
4/12/2010 0.05 -0.26 0.07 -0.19 0.22 0.07 -0.09 0.22 0.33 0.10 0.08 0.09 0.07
5/18/2010 0.05 -0.10 0.01 -0.13 0.22 0.08 0.03 0.22 0.33 0.10 0.12 0.11 0.08
6/17/2010 0.05 1.09 0.48 0.69 0.22 0.15 0.39 0.22 0.33 0.19 0.33 0.27 0.11
6/30/2010 0.05 -0.15 0.12 0.16 0.22 0.13 0.06 1.04 0.33 0.41 0.19 0.59 0.11
7/14/2010 0.05 0.65 0.31 0.42 0.22 0.13 0.57 1.04 0.33 0.54 0.37 0.61 0.09
7/29/2010 0.05 0.24 0.26 0.15 0.22 0.19 0.30 1.04 0.33 0.59 0.75 0.64 0.08
8/12/2010 0.05 -0.01 0.39 0.22 0.22 0.13 0.03 1.04 0.33 0.84 0.19 0.64 0.20
8/26/2010 0.05 0.09 0.29 0.20 0.22 0.13 0.10 1.04 0.33 0.82 0.19 0.61 0.12
9/8/2010 0.1 0.15 0.33 0.17 0.22 0.18 0.10 0.22 0.33 0.27 0.19 0.35 0.23

9/22/2010 0.05 0.31 0.23 0.16 0.22 0.13 0.12 0.22 0.33 0.39 0.15 0.34 0.09
10/4/2010 0.05 0.19 0.02 -0.24 0.22 0.09 0.59 0.22 0.33 0.35 0.18 0.33 0.07

10/18/2010 0.05 0.30 -0.11 -0.09 0.22 0.12 0.08 0.22 0.33 0.20 0.13 0.32 0.07
11/15/2010 0.05 -0.01 -0.21 -0.30 0.22 0.06 0.20 0.22 0.33 0.14 0.14 0.19 0.06
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12/6/2010 0.05 -0.34 -0.38 -0.42 0.22 0.13 0.06 0.22 0.33 0.13 0.11 0.13 0.06
1/18/2011 0.05 0.52 -0.62 0.05 0.22 0.13 0.17 0.22 0.33 0.12 0.15 0.09 0.05
2/14/2011 0.05 -0.38 -0.42 -0.09 0.22 0.12 0.54 0.22 0.33 0.11 0.26 0.14 0.05
3/14/2011 0.05 -0.53 -0.25 0.15 0.22 0.13 0.06 0.22 0.33 0.10 0.09 0.10 0.05
4/11/2011 0.05 -0.35 -0.42 -0.14 0.22 0.10 0.12 0.22 0.33 0.10 0.10 0.13 0.07
5/11/2011 0.05 -0.22 -0.07 -0.18 0.22 0.13 0.06 0.22 0.33 0.11 0.08 0.13 0.08
6/13/2011 0.05 0.32 0.01 0.17 0.33 0.13 0.12 0.22 0.33 0.11 0.10 0.15 0.10
7/11/2011 0.55 0.64 0.30 0.52 0.58 0.44 0.47 1.04 0.33 0.75 0.42 0.65 0.24
8/1/2011 2.16 0.87 0.85 1.33 0.74 0.73 1.95 1.04 0.33 1.02 1.55 0.82 0.88
8/8/2011 8.985 0.83 0.94 1.82 0.59 0.58 2.48 1.04 0.33 1.23 1.55 0.86 2.44

8/15/2011 0.905 0.54 0.80 0.40 0.48 0.57 0.79 1.04 0.33 1.12 0.80 0.75 0.36
8/30/2011 0.225 0.16 0.41 0.33 0.65 0.20 0.14 0.22 0.33 0.73 0.49 0.50 0.11
9/6/2011 0.295 0.62 0.70 0.79 0.56 0.33 0.26 0.22 0.33 0.32 0.35 0.42 0.28

9/20/2011 0.65 0.36 0.51 2.37 0.30 0.20 0.08 0.22 0.33 0.51 0.82 0.49 1.63
10/4/2011 0.19 0.53 0.64 0.53 0.23 0.30 0.29 0.22 0.33 0.35 0.34 0.40 0.10
11/1/2011 0.14 0.28 0.44 0.13 0.22 0.19 0.13 0.22 0.33 0.17 0.17 0.26 0.08

12/12/2011 0.12 -0.10 0.04 -0.38 0.22 0.07 0.24 0.22 0.33 0.11 0.24 0.18 0.05
1/18/2012 0.1 -0.18 -0.07 -0.08 0.22 0.10 0.10 0.22 0.33 0.14 0.12 0.18 0.05
2/14/2012 0.11 -0.37 -0.11 0.15 0.22 0.07 0.03 0.22 0.33 0.11 0.14 0.17 0.05
3/12/2012 0.05 0.05 0.27 0.40 0.22 0.13 0.06 0.22 0.33 0.13 0.28 0.24 0.06
4/16/2012 0.05 0.34 -0.11 0.05 0.22 0.13 0.11 0.22 0.33 0.10 0.08 0.13 0.08
5/16/2012 0.1 0.78 0.34 0.19 0.50 0.12 0.09 0.22 0.33 0.10 0.17 0.15 0.09
6/11/2012 0.4 0.51 0.49 0.23 0.99 0.32 0.32 0.22 0.33 0.22 0.44 0.27 0.11
6/27/2012 0.39 0.60 0.63 0.38 1.26 0.35 0.23 0.22 0.33 0.40 0.37 0.36 0.27
7/9/2012 0.79 1.06 0.87 1.13 1.78 0.50 1.04 1.04 0.33 0.93 0.83 0.71 0.35

7/31/2012 0.22 0.79 0.85 0.79 1.91 0.30 0.36 1.04 0.33 0.91 0.87 0.70 0.26
8/21/2012 0.19 0.84 0.73 0.83 1.25 0.27 0.41 0.22 0.33 0.51 0.52 0.30 0.21
9/19/2012 0.1 0.88 0.67 0.88 0.68 0.18 0.30 0.22 0.33 0.64 0.23 0.39 0.18

10/16/2012 0.1 0.51 0.52 0.40 0.22 0.13 0.20 0.22 0.33 0.51 0.30 0.35 0.15
12/11/2012 0.05 0.12 0.30 0.04 0.22 0.07 0.13 0.22 0.33 0.44 0.21 0.19 0.06
1/15/2013 0.05 -0.01 0.20 0.06 0.22 0.13 0.07 0.22 0.33 0.42 0.35 0.19 0.05
1/23/2013 0.05 0.00 0.19 0.10 0.22 0.13 0.05 0.22 0.33 0.42 0.28 0.19 0.05
2/12/2013 0.05 -0.36 0.26 0.08 0.22 0.10 0.13 0.22 0.33 0.42 0.24 0.19 0.05
3/19/2013 0.1 -0.52 0.24 -0.08 0.22 0.10 0.04 0.22 0.33 0.42 0.44 0.15 0.05
4/9/2013 0.05 -0.26 0.28 -0.09 0.22 0.11 -0.42 0.22 0.33 0.42 0.29 0.17 0.06
5/7/2013 0.05 -5.69 -0.66 -0.14 0.22 0.20 2.44 0.22 0.33 0.41 0.30 0.14 0.06
6/6/2013 0.05 0.05 0.34 0.08 0.83 0.13 0.04 0.22 0.33 0.42 0.39 0.17 0.08
7/8/2013 3 0.93 0.72 1.43 1.55 0.32 2.15 0.22 0.33 0.64 0.74 0.38 0.16
8/6/2013 7.3 1.74 0.91 1.74 1.71 0.54 6.14 1.04 0.33 1.54 3.61 0.93 2.57

8/19/2013 1.1 1.42 0.79 0.88 0.22 0.44 1.14 0.22 0.33 0.56 0.85 0.53 0.41
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9/9/2013 0.43 1.00 0.94 1.51 0.22 0.55 0.74 1.04 0.33 1.07 0.95 0.93 0.48
9/25/2013 0.47 0.76 0.61 0.97 0.22 0.40 0.76 0.22 0.33 0.37 0.37 0.40 0.27

10/21/2013 0.3 0.27 0.41 0.35 0.22 0.28 0.25 0.22 0.33 0.24 0.26 0.33 0.19
11/6/2013 0.14 0.31 0.24 0.23 0.22 0.19 0.22 0.22 0.33 0.13 0.17 0.18 0.15

11/18/2013 0.12 0.33 0.17 0.13 0.22 0.13 0.18 0.22 0.33 0.13 0.14 0.16 0.09
12/12/2013 0.05 -0.08 -0.08 -0.03 0.22 0.10 0.17 0.22 0.33 0.10 0.18 0.13 0.05
1/15/2014 0.11 0.07 -0.15 0.11 0.22 0.11 0.09 0.22 0.33 0.10 0.13 0.12 0.05
2/19/2014 0.11 -0.16 -0.25 0.22 0.22 0.11 0.07 0.22 0.33 0.10 0.15 0.13 0.05
3/19/2014 0.18 0.00 0.20 -0.07 0.22 0.17 0.09 0.22 0.33 0.10 0.26 0.29 0.05
4/16/2014 0.19 -0.36 0.19 -0.05 0.22 0.11 0.02 0.22 0.33 0.11 0.20 0.16 0.06
5/20/2014 0.13 0.11 0.36 0.14 0.22 0.18 0.13 0.22 0.33 0.11 0.15 0.15 0.08
7/10/2014 0.27 0.68 0.60 0.62 0.55 0.19 0.12 0.22 0.33 0.32 0.26 0.33 0.11
7/22/2014 0.45 0.93 0.70 0.95 0.60 0.37 0.61 0.22 0.33 0.39 0.44 0.45 0.27
8/5/2014 0.37 1.10 0.83 1.13 0.70 0.41 1.08 0.22 0.33 0.64 0.46 0.61 0.41

9/16/2014 0.43 1.13 0.64 1.08 0.39 0.30 1.89 0.22 0.33 0.54 0.39 0.48 1.42
10/28/2014 0.19 0.69 0.43 0.54 0.22 0.18 0.35 0.22 0.33 0.19 0.24 0.33 0.27
11/20/2014 0.2 0.38 0.41 0.15 0.22 0.12 0.14 0.22 0.33 0.17 0.15 0.31 0.24
12/16/2014 0.05 0.06 -0.04 0.05 0.22 0.13 0.03 0.22 0.33 0.11 0.12 0.14 0.06
1/13/2015 0.05 0.17 0.03 0.23 0.22 0.13 0.06 0.22 0.33 0.11 0.20 0.15 0.05
2/10/2015 0.12 0.28 0.20 0.22 0.22 0.08 0.04 0.22 0.33 0.11 0.10 0.18 0.05
3/10/2015 0.05 -0.01 0.20 0.17 0.22 0.09 0.05 0.22 0.33 0.11 0.09 0.18 0.05
4/15/2015 0.05 0.19 0.14 0.06 0.22 0.11 0.04 0.22 0.33 0.11 0.08 0.14 0.07
6/9/2015 0.19 1.24 0.77 0.54 1.08 0.26 0.48 0.22 0.33 0.22 0.48 0.32 0.12
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Supplemental Table 3. Observed (Obs.) and predicted model outcomes for developed geosmin 

models. See Table 2 for model abbreviations. Geosmin is in ng/L. 

 

  

Date Obs. Geo Linear PLS Enet MARS SVM Nnet CART CI Tree BagT RF BT Cubist
6/19/2002 5.7 15.2 7.7 6.9 4.9 5.2 5.3 5.6 5.6 10.2 10.9 8.7 5.7
8/7/2002 3.7 3.0 8.6 5.4 4.9 2.7 4.1 5.6 5.6 4.3 7.2 5.8 4.8
9/4/2002 4.8 5.9 8.5 4.6 4.9 3.5 3.6 5.6 5.6 3.4 6.9 6.1 4.8

2/10/2003 22 6.6 5.9 1.4 4.9 10.7 13.0 20.6 5.6 14.6 14.7 8.6 22.0
6/20/2003 63 -3.6 8.7 2.5 4.9 2.5 3.9 20.6 5.6 13.3 10.2 9.0 3.5
7/7/2003 7 11.1 9.7 8.0 4.9 5.7 6.3 5.6 5.6 14.1 12.8 9.1 7.0

7/17/2003 113 44.5 17.8 29.8 81.2 11.6 109.6 5.6 18.6 23.5 59.5 11.8 113.0
3/10/2004 2.5 2.8 5.3 2.4 4.9 3.4 8.1 5.6 5.6 4.3 5.3 4.5 2.0
4/8/2004 2.5 -0.4 3.8 4.1 4.9 2.1 1.9 5.6 5.6 2.5 3.3 3.9 2.5
5/5/2004 2.5 2.6 5.3 2.4 4.9 1.2 1.9 5.6 5.6 2.5 2.7 4.7 2.5
6/3/2004 2.5 -2.5 6.9 4.5 4.9 1.8 2.2 5.6 5.6 2.9 4.3 4.8 2.5

7/15/2004 5 10.8 11.9 5.8 4.9 4.7 4.3 5.6 5.6 10.8 9.8 9.0 5.0
8/12/2004 2.5 -9.6 4.9 4.5 4.9 7.3 1.7 5.6 5.6 4.8 13.0 4.8 58.8
8/27/2004 2.5 11.8 11.0 7.7 4.9 2.1 0.7 5.6 5.6 4.3 7.1 6.7 0.0
9/9/2004 2.5 4.4 10.3 6.9 4.9 2.4 2.8 5.6 5.6 8.1 4.0 7.3 2.5

3/16/2005 2.5 8.1 9.9 6.3 4.9 6.2 9.3 5.6 5.6 5.3 5.7 6.4 2.5
4/13/2005 2.5 4.3 7.8 3.4 4.9 3.8 2.9 5.6 5.6 4.3 3.2 5.0 2.5
5/4/2005 2.5 9.4 7.0 3.8 4.9 2.3 2.4 5.6 5.6 3.7 3.0 4.5 2.5

5/16/2005 2.5 4.8 8.9 5.9 4.9 4.3 2.7 5.6 5.6 5.1 4.9 6.7 2.5
6/1/2005 2.5 8.5 8.9 7.1 4.9 4.0 3.6 5.6 5.6 4.2 6.7 7.3 2.5

6/15/2005 43 17.1 10.8 8.5 4.9 6.7 35.2 5.6 5.6 15.9 25.0 9.5 43.0
6/29/2005 2.5 6.8 6.3 4.6 4.9 2.6 2.9 5.6 5.6 4.9 4.5 6.7 2.5
7/13/2005 43 17.6 11.1 15.9 12.1 10.2 43.1 20.6 18.6 20.1 29.0 11.9 43.0
7/27/2005 64 34.8 13.0 23.1 4.9 14.5 64.0 20.6 5.6 21.2 36.8 12.7 64.0
8/30/2005 2.5 17.2 11.2 10.2 4.9 3.8 3.5 5.6 5.6 5.8 6.8 6.3 2.5
9/7/2005 2.5 7.7 10.2 6.1 4.9 2.8 3.4 5.6 5.6 6.2 6.2 5.2 2.5

10/13/2005 2.5 13.2 10.7 7.2 4.9 3.8 3.5 5.6 5.6 4.2 6.9 7.4 2.5
10/27/2005 2.5 13.5 9.0 6.9 4.9 3.8 1.2 5.6 5.6 4.2 7.2 6.5 2.5
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1/11/2006 2.5 5.7 8.0 3.7 4.9 4.5 5.7 5.6 5.6 4.3 6.6 8.0 6.1
3/1/2006 5 9.2 8.1 4.1 4.9 6.3 5.7 20.6 5.6 14.1 9.1 8.5 5.0

3/29/2006 2.5 8.0 7.7 4.2 4.9 3.8 3.1 5.6 5.6 3.7 3.8 6.0 2.5
4/25/2006 2.5 5.5 9.0 6.8 9.2 3.4 2.1 5.6 5.6 3.4 5.2 6.7 2.5
5/17/2006 2.5 -1.1 8.1 3.2 4.9 1.7 2.4 5.6 5.6 3.2 2.9 3.8 2.5
5/31/2006 2.5 5.6 11.2 8.4 4.9 3.7 2.5 5.6 5.6 4.5 4.3 7.2 2.5
6/14/2006 2.5 0.2 8.9 7.4 4.9 1.5 2.8 5.6 5.6 6.9 4.9 5.6 2.5
6/28/2006 2.5 -2.3 9.8 7.6 4.9 2.4 3.1 5.6 5.6 4.4 3.8 7.4 2.5
7/13/2006 2.5 8.0 11.1 7.6 4.9 3.6 2.3 5.6 5.6 8.2 7.1 8.1 2.5
7/26/2006 2.5 1.8 11.1 5.9 4.9 3.1 2.7 5.6 5.6 9.6 10.0 6.9 1.9
8/10/2006 5 20.4 15.8 21.5 29.6 6.3 4.3 5.6 18.6 15.0 9.3 7.1 5.0
9/6/2006 6.5 7.1 13.7 12.9 10.2 5.2 5.9 5.6 18.6 7.4 5.9 8.3 6.5

9/20/2006 2.5 -9.5 5.3 6.2 11.6 3.8 2.2 5.6 5.6 5.5 5.1 7.6 2.5
10/11/2006 2.5 -8.3 8.3 7.6 4.9 2.1 -1.2 5.6 5.6 4.1 6.4 7.0 3.3
10/25/2006 5 -8.4 5.4 4.6 4.9 3.7 2.0 5.6 5.6 4.7 6.7 6.8 5.0
12/12/2006 2.5 9.0 9.2 12.9 8.8 3.8 2.9 5.6 18.6 7.6 5.6 8.2 2.5

2/7/2007 32 5.0 6.2 4.8 4.9 6.3 13.4 20.6 5.6 13.3 20.3 8.8 32.0
3/7/2007 20 11.4 6.3 9.0 4.9 5.4 7.5 5.6 5.6 3.3 5.8 6.3 2.6
4/9/2007 2.5 8.5 8.4 8.7 4.9 3.8 4.6 5.6 5.6 3.4 4.0 5.6 2.5
5/8/2007 2.5 4.7 8.9 6.1 4.9 3.9 5.8 5.6 5.6 6.1 6.8 6.1 5.3

5/31/2007 2.5 3.7 7.9 8.9 11.8 2.4 4.2 5.6 5.6 5.9 3.7 5.6 2.5
6/13/2007 2.5 2.9 3.9 4.2 4.9 1.7 3.4 5.6 5.6 4.4 3.6 5.5 2.5
6/25/2007 2.5 3.9 4.9 4.1 4.9 2.2 3.1 5.6 5.6 4.2 3.5 7.3 2.5
7/9/2007 2.5 9.0 7.0 9.1 4.9 2.6 2.3 5.6 5.6 2.9 4.0 6.3 2.5

7/23/2007 2.5 10.6 9.4 9.1 4.9 3.4 3.8 5.6 5.6 7.2 6.7 6.4 0.7
8/7/2007 2.5 9.6 10.2 9.8 4.9 3.8 4.5 5.6 5.6 5.1 4.5 5.8 2.5

8/15/2007 2.5 13.0 11.0 8.3 4.9 3.8 4.9 5.6 5.6 4.5 4.8 5.8 2.5
8/28/2007 2.5 10.6 8.9 8.3 4.9 3.5 2.6 5.6 5.6 4.5 4.0 5.4 2.5
9/12/2007 2.5 10.8 9.9 7.9 4.9 3.8 5.0 5.6 5.6 6.5 3.8 6.1 2.5
9/24/2007 2.5 9.0 9.5 9.7 4.9 3.8 5.0 5.6 5.6 6.3 6.0 6.2 2.5

10/15/2007 3.5 7.2 7.5 7.1 4.9 4.8 5.0 5.6 5.6 4.2 5.3 6.0 3.5
10/29/2007 3.5 14.0 7.2 8.9 4.9 4.8 3.8 5.6 5.6 2.5 4.3 5.2 3.5
11/13/2007 3.5 10.8 7.8 7.0 4.9 5.5 11.2 5.6 5.6 3.8 5.7 5.8 4.3
12/19/2007 2.5 8.9 5.7 4.5 4.9 6.7 2.4 5.6 5.6 3.0 5.1 7.2 4.7
2/11/2008 5.4 5.5 7.3 5.4 4.9 6.7 7.8 20.6 5.6 13.5 7.0 7.8 5.4
4/1/2008 11 5.4 9.7 7.9 4.9 7.0 8.9 5.6 5.6 5.7 9.1 7.1 11.0

4/16/2008 8 14.3 8.8 9.7 4.9 6.1 5.2 5.6 5.6 4.8 6.6 6.7 8.0
4/29/2008 2.5 11.2 7.5 10.0 26.1 3.5 1.7 5.6 18.6 12.9 3.5 6.0 2.5
5/13/2008 2.5 12.3 8.9 10.3 29.6 3.1 2.5 5.6 18.6 15.4 4.4 5.6 2.5
6/3/2008 2.5 0.7 5.6 6.2 4.9 2.9 1.7 5.6 5.6 2.5 2.6 3.7 2.5
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6/18/2008 2.5 6.5 7.7 10.5 4.9 3.8 2.8 5.6 5.6 2.8 5.5 7.7 2.5
7/7/2008 4.65 11.1 9.1 9.3 4.9 3.3 2.7 5.6 5.6 2.9 4.3 6.2 4.7

7/21/2008 2.5 11.2 11.1 11.5 4.9 4.7 3.8 5.6 5.6 3.5 6.0 8.3 2.5
7/28/2008 1 10.9 10.5 10.1 4.9 4.7 11.0 5.6 5.6 6.4 3.1 5.3 1.0
8/18/2008 1 0.5 6.9 4.4 4.9 1.8 3.2 5.6 5.6 2.5 3.6 4.0 1.6
9/2/2008 5 9.8 10.3 6.2 4.9 3.3 4.3 5.6 5.6 3.5 4.3 4.7 5.0

9/17/2008 1 7.9 7.7 4.9 4.9 2.3 1.1 5.6 5.6 2.6 2.5 4.8 1.0
10/1/2008 2.8 8.8 8.3 5.6 4.9 3.3 5.0 5.6 5.6 2.6 6.8 5.4 2.8

10/15/2008 1 2.7 5.5 5.8 4.9 2.3 2.8 5.6 5.6 2.7 2.4 5.0 1.0
11/4/2008 1 4.5 4.2 4.4 4.9 1.8 3.4 5.6 5.6 3.2 2.9 4.7 0.3
12/2/2008 1 -0.7 3.1 2.2 4.9 2.3 1.6 5.6 5.6 2.5 1.5 3.7 1.0
1/6/2009 2.7 -19.1 0.5 -4.8 4.9 4.0 2.6 5.6 5.6 4.3 4.2 7.4 2.7

1/20/2009 1 16.1 8.4 7.2 4.9 2.3 3.9 5.6 5.6 4.6 4.1 7.5 1.0
2/2/2009 1 1.5 9.8 2.4 4.9 2.3 3.8 5.6 5.6 6.9 4.9 7.4 1.0

2/18/2009 9.7 1.0 7.5 2.5 4.9 7.7 10.8 5.6 5.6 7.3 9.1 7.8 9.7
2/25/2009 8.2 3.0 8.1 3.4 4.9 7.3 10.3 5.6 5.6 6.0 8.7 7.4 8.2
3/3/2009 17 1.3 8.4 3.0 4.9 7.2 13.1 5.6 5.6 6.6 12.9 8.4 17.0
3/9/2009 11.6 1.1 7.9 3.5 4.9 7.0 10.1 5.6 5.6 5.8 8.6 7.5 16.3

3/16/2009 8.6 8.1 10.9 8.3 4.9 7.1 9.3 5.6 5.6 7.8 9.2 8.8 2.7
3/25/2009 8.5 2.0 8.3 5.0 4.9 6.6 3.1 5.6 5.6 5.6 8.2 7.2 11.1
4/8/2009 4.3 10.2 8.3 6.9 4.9 5.7 7.5 5.6 5.6 5.0 5.6 5.8 11.1

4/29/2009 1 4.2 7.3 5.7 4.9 2.3 2.0 5.6 5.6 6.0 3.3 5.3 1.0
5/27/2009 1 12.8 6.8 8.8 4.9 2.3 2.2 5.6 5.6 5.6 4.2 4.7 1.0
6/9/2009 6.2 2.7 4.8 4.9 4.9 2.8 2.8 5.6 5.6 2.8 5.5 5.2 6.2

6/23/2009 4.7 7.3 7.3 11.8 4.9 5.5 5.8 5.6 5.6 4.6 7.0 8.6 4.7
7/7/2009 14.3 5.1 11.3 8.2 4.9 4.4 4.9 5.6 5.6 10.5 11.7 10.5 14.3

7/21/2009 4.6 10.8 9.0 8.3 4.9 4.3 3.1 5.6 5.6 5.0 5.9 7.1 4.6
8/5/2009 1 4.8 7.3 4.3 4.9 2.2 2.0 5.6 5.6 2.7 2.9 4.3 1.0

8/24/2009 1 7.1 7.8 5.8 4.9 2.3 2.8 5.6 5.6 2.5 2.1 4.3 1.0
9/2/2009 1 10.8 9.2 7.2 4.9 4.1 4.4 5.6 5.6 2.9 3.9 5.6 1.0

9/16/2009 1 2.3 6.1 1.8 4.9 2.2 1.6 5.6 5.6 2.5 2.1 5.3 1.0
10/5/2009 1 12483.1 675.0 4688.8 4.9 5.3 97.0 5.6 5.6 2.7 7.1 4.5 0.4

10/19/2009 1 2.2 3.9 4.8 4.9 2.3 2.7 5.6 5.6 2.7 2.7 4.2 1.0
11/23/2009 1 -0.9 3.6 4.0 4.9 2.2 1.0 5.6 5.6 2.5 1.2 4.0 1.0
12/16/2009 1 1.1 2.7 3.5 4.9 2.3 1.3 5.6 5.6 2.5 1.4 3.8 1.0
1/12/2010 1 5.2 3.9 7.4 4.9 1.0 2.7 20.6 5.6 8.7 4.1 5.4 1.0
2/10/2010 3.1 7.2 9.2 7.5 4.9 2.4 3.4 5.6 5.6 3.0 3.8 7.5 3.1
2/17/2010 3.8 10.7 16.0 14.5 18.9 3.6 4.3 5.6 18.6 15.8 4.8 7.4 3.8
2/24/2010 5 29.2 17.4 22.5 33.7 4.1 29.7 5.6 18.6 16.2 17.4 8.2 5.4
3/3/2010 4.8 23.2 15.6 14.1 23.1 4.4 5.0 5.6 18.6 16.3 7.9 9.0 4.8
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3/10/2010 5.8 12.8 11.8 5.6 9.7 6.3 7.4 5.6 18.6 6.9 11.1 9.0 4.6
4/12/2010 5.9 9.2 8.4 6.7 4.9 4.9 5.3 5.6 5.6 4.4 6.5 6.8 5.4
5/18/2010 1 5.0 6.3 4.7 4.9 2.3 -0.9 5.6 5.6 2.9 2.1 3.7 1.0
6/17/2010 3.5 -8.5 4.4 0.5 4.9 3.1 2.7 5.6 5.6 5.9 6.7 6.0 3.5
6/30/2010 3.5 -0.6 5.6 6.9 4.9 3.2 3.6 5.6 5.6 2.8 5.4 8.0 3.5
7/14/2010 1 6.9 6.0 3.7 4.9 1.8 4.8 5.6 5.6 5.5 7.2 6.7 2.5
7/29/2010 1 -11.5 4.5 3.1 4.9 2.3 2.5 5.6 5.6 7.0 4.7 6.6 1.0
8/12/2010 1 4.6 2.8 3.6 4.9 2.3 3.0 5.6 5.6 3.6 2.6 4.1 1.0
8/26/2010 1 2.1 2.0 1.8 4.9 2.5 3.3 5.6 5.6 2.7 2.4 4.4 1.0
9/8/2010 2 14.0 1.8 4.4 4.9 3.7 3.0 5.6 5.6 2.4 3.0 4.4 1.0

9/22/2010 1 9.7 -1.0 2.9 4.9 2.3 2.4 5.6 5.6 2.4 1.5 4.6 1.0
10/4/2010 1 11.2 -1.1 5.3 4.9 2.3 2.5 5.6 5.6 2.7 3.4 4.8 1.0

10/18/2010 1 5.0 -3.9 3.1 4.9 2.0 1.7 5.6 5.6 2.4 1.5 5.1 1.0
11/15/2010 4.6 8.5 -3.1 2.5 4.9 3.3 3.8 5.6 5.6 2.5 2.9 4.8 4.6
12/6/2010 1 6.2 -5.1 2.7 4.9 2.3 2.0 5.6 5.6 2.5 1.5 4.5 1.0
1/18/2011 1 64.8 -6.0 24.2 4.9 5.3 44.4 5.6 5.6 2.5 6.7 5.0 1.2
2/14/2011 1 -0.3 -2.8 -0.4 4.9 2.3 -0.6 5.6 5.6 2.5 2.6 4.8 1.0
3/14/2011 4.7 -9.4 -0.8 0.3 4.9 3.4 0.5 5.6 5.6 2.6 4.9 4.5 4.7
4/11/2011 3.9 8.4 -0.3 7.2 4.9 2.6 4.4 5.6 5.6 2.5 5.6 5.0 3.9
5/11/2011 1 -4.4 -0.9 1.2 4.9 2.1 2.6 5.6 5.6 2.5 2.4 3.9 1.0
6/13/2011 1 -3.2 -1.7 1.0 4.9 1.9 -4.2 5.6 5.6 2.8 3.9 5.2 1.2
7/11/2011 1 -3.1 -1.4 2.9 4.9 2.3 3.6 5.6 5.6 3.7 3.9 6.6 1.0
8/1/2011 2 2.3 4.8 5.8 4.9 3.7 2.9 5.6 5.6 4.2 4.4 5.1 2.3
8/8/2011 3.2 1.2 7.0 7.4 4.9 4.5 2.3 5.6 5.6 10.2 7.5 8.1 3.2

8/15/2011 5.6 5.6 4.3 4.8 4.9 4.3 4.6 5.6 5.6 6.5 5.9 5.9 5.6
8/30/2011 5.1 -10.9 -3.0 0.0 4.9 5.0 3.4 5.6 5.6 2.5 5.2 4.8 5.1
9/6/2011 9 5.7 0.4 5.7 4.9 7.7 5.9 5.6 5.6 5.9 8.0 6.3 9.0

9/20/2011 3.7 0.9 1.8 9.2 4.9 5.0 4.5 5.6 5.6 5.3 6.8 7.4 3.7
10/4/2011 3.2 13.2 3.8 8.6 4.9 4.5 10.2 5.6 5.6 8.6 6.5 6.5 3.2
11/1/2011 2.2 15.2 2.6 7.4 4.9 4.4 8.1 5.6 5.6 2.7 5.5 5.4 3.1

12/12/2011 1 15.6 -0.3 4.9 4.9 3.0 7.6 5.6 5.6 2.5 4.7 5.0 1.8
1/18/2012 2 3.0 -2.2 1.6 4.9 1.9 2.0 5.6 5.6 2.5 3.3 4.9 2.0
2/14/2012 2 0.1 -0.4 1.0 4.9 1.6 2.9 5.6 5.6 2.5 2.5 4.1 2.0
3/12/2012 1 -0.2 6.3 4.6 4.9 2.3 3.1 5.6 5.6 4.6 4.0 6.8 1.0
4/16/2012 1 7.0 -0.4 1.4 4.9 2.3 3.4 5.6 5.6 2.5 3.1 3.8 1.0
5/16/2012 2 2.1 3.7 5.1 4.9 3.3 -0.9 5.6 5.6 2.5 3.2 4.0 2.0
6/11/2012 3.5 -0.1 2.0 2.3 4.9 2.2 2.9 5.6 5.6 2.9 3.3 5.5 3.5
6/27/2012 1 4.4 4.3 4.2 4.9 2.8 3.2 5.6 5.6 3.0 2.5 6.5 1.0
7/9/2012 2.9 6.0 6.5 7.6 4.9 3.8 3.5 5.6 5.6 8.0 4.2 8.9 2.9

7/31/2012 1 -2.6 4.3 4.4 4.9 2.3 4.1 5.6 5.6 4.1 2.6 4.9 1.0
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8/21/2012 2.1 9.9 4.6 9.1 4.9 3.4 3.8 5.6 5.6 3.6 3.4 4.8 2.1
9/19/2012 3.4 8.9 4.4 9.3 4.9 3.7 4.5 5.6 5.6 10.7 7.6 7.6 2.4

10/16/2012 4.2 17.1 4.4 13.2 4.9 4.5 21.0 5.6 5.6 7.3 10.2 6.7 1.2
11/13/2012 1.3 4.7 2.4 7.2 4.9 2.6 3.3 5.6 5.6 7.6 4.4 6.8 1.3
12/11/2012 0.5 3.2 1.9 5.9 4.9 0.7 4.8 5.6 5.6 4.6 2.6 5.7 0.5
1/15/2013 2.8 10.3 3.8 5.9 4.9 2.0 4.2 5.6 5.6 6.7 7.3 7.7 2.8
1/23/2013 0.5 5.9 4.5 5.7 4.9 1.8 2.4 5.6 5.6 6.7 5.2 7.7 0.5
2/12/2013 2.3 2.1 3.7 4.5 4.9 1.5 4.4 5.6 5.6 5.6 2.9 7.1 2.3
3/19/2013 2.1 -2.0 4.1 4.6 4.9 1.2 4.4 5.6 5.6 4.7 3.6 5.9 2.1
4/9/2013 0.5 3.0 4.9 7.3 4.9 1.8 2.8 5.6 5.6 5.1 2.8 5.4 0.5
5/7/2013 1.7 1.9 5.0 4.4 4.9 3.0 2.9 5.6 5.6 5.4 5.2 4.8 1.7
6/6/2013 0.5 5.4 4.4 7.1 4.9 4.3 2.7 5.6 5.6 7.0 6.0 6.6 11.2
7/8/2013 12.5 13.2 7.8 13.3 4.9 7.1 12.7 5.6 5.6 13.1 12.0 10.1 12.5
8/6/2013 17.5 14.6 8.2 10.4 4.9 6.7 17.8 5.6 5.6 8.2 5.7 7.3 2.9

8/19/2013 3.9 13.6 7.5 5.0 4.9 5.2 4.5 5.6 5.6 6.2 4.8 5.4 3.9
9/9/2013 12.6 15.4 9.9 7.8 4.9 8.5 10.9 5.6 5.6 7.3 12.9 8.5 12.6

9/25/2013 50 12.3 8.1 6.8 4.9 6.9 39.4 5.6 5.6 15.0 28.2 9.4 50.0
10/21/2013 54.1 15.0 6.7 8.7 4.9 7.6 46.7 5.6 5.6 14.8 32.7 10.1 54.1
11/6/2013 27.9 13.0 5.6 5.3 4.9 6.9 25.6 5.6 5.6 13.4 18.2 8.1 27.9

11/18/2013 16.5 10.7 5.0 3.6 4.9 6.7 29.2 5.6 5.6 3.5 5.7 5.3 16.1
12/12/2013 5.8 12.2 3.4 2.0 4.9 6.3 5.4 5.6 5.6 3.4 6.0 6.0 5.8
2/19/2014 2.5 5.9 2.0 0.6 4.9 3.8 2.9 5.6 5.6 2.6 3.3 4.6 2.5
3/19/2014 1.9 7.9 12.0 11.7 14.7 3.2 1.8 5.6 18.6 9.3 7.2 7.7 1.9
4/16/2014 2.1 11.9 9.7 9.5 4.9 7.6 8.7 5.6 5.6 5.8 6.1 7.1 7.4
5/20/2014 0.5 10.9 8.1 6.5 4.9 6.6 4.7 5.6 5.6 4.7 5.0 5.4 4.5
7/10/2014 4.3 1.8 7.4 6.5 4.9 5.6 3.2 5.6 5.6 5.9 5.2 7.9 4.3
7/22/2014 16.6 9.2 8.4 8.9 4.9 6.7 12.2 5.6 5.6 8.2 12.0 7.6 16.6
8/5/2014 4.3 8.4 9.5 9.2 4.9 5.6 5.0 5.6 5.6 3.8 4.7 5.9 4.3

9/16/2014 11.8 9.1 8.7 8.7 4.9 8.2 7.7 5.6 5.6 6.5 9.5 7.2 11.8
10/28/2014 5 1.0 6.1 4.1 4.9 6.8 3.5 5.6 5.6 5.3 9.3 6.4 12.0
11/20/2014 13.1 17.1 8.6 7.9 4.9 7.0 25.9 5.6 5.6 6.2 7.5 7.5 4.2
12/16/2014 11.1 3.1 5.0 6.8 4.9 9.8 8.3 5.6 5.6 6.9 9.6 7.2 11.1
1/13/2015 7.6 3.3 1.5 1.3 4.9 6.3 3.2 20.6 5.6 14.2 9.3 8.3 7.6
2/10/2015 5 8.5 8.4 5.8 4.9 6.3 5.6 20.6 5.6 14.1 9.7 8.7 5.0
3/10/2015 2.7 11.0 7.6 5.8 4.9 6.7 8.3 20.6 5.6 14.1 12.2 8.7 5.0
4/15/2015 0.5 3.8 5.8 6.2 4.9 5.2 1.3 5.6 5.6 4.3 4.9 4.8 7.1
6/9/2015 8.4 14.3 10.6 7.2 4.9 7.1 8.7 5.6 5.6 10.6 9.0 8.8 8.4
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Appendix B: Chapter 2 Supplemental Figures and Tables  

Supplemental Figure 1. Temporal dynamics of relative cyanobacterial biovolume, relative 

cyanobacterial N2-fixer biovolume, and the TN:TP ratio (by weight) in the four study reservoirs 

used in the study. Numbers on the x-axis represent the last two digits of the year post 2000 for 

Cheney (a) and Eagle Creek, Geist, and Morse (b-d), respectively. 
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Supplemental Figure 2. The relationship between cyanobacterial biovolume and the TN:TP (a) 

and NO3:NH3 ratio (b).  
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Supplemental Table 1. Limit of detection (LOD), number (No.) of samples below the LOD, and 

total number of samples in each data set for each reservoir. 
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Supplemental Table 2. Cyanobacteria, and their capability to fix N2, present in the study. 

Asterisks indicate species where the capability to fix N2 is likely strain specific.  

Genus species N2-fixer?   Genus species N2-fixer? 

Order: Chroococcales 0/39  Order: Oscillatoriales 8/12 

Aphanocapsa delicatissima No  Lyngbya contorta Yes 

Aphanocapsa holsatica No  Lyngbya limnetica Yes 

Aphanocapsa incerta No  Lyngbya sp. Yes 

Aphanocapsa planctonica No  Oscillatoria anguina Yes* 

Aphanocapsa pulchra No  Oscillatoria limnetica Yes* 

Aphanocapsa sp. No  Oscillatoria nitida Yes* 

Aphanothece clathrata No  Oscillatoria sp. Yes* 

Aphanothece minutissima No  Oscillatoria tenuis Yes* 

Aphanothece sp. No  Phormidium sp. No 

Aphanothece stagnina No  Planktothrix cf. agardhii No 

Chroococcus cf. aphanocapsoides No  Planktothrix rubescens No 

Chroococcus dispersus No  Planktothrix sp. No 

Chroococcus limneticus No    

Chroococcus minimus No  Order: Pseudanabaenales 8/9 

Chroococcus minutus No  Leptolyngbya sp. Yes 

Chroococcus sp. No  Limnothrix redekei No 

Chroococcus turgidus No  Planktolyngbya circumcreta Yes 

Coelosphaerium dubium No  Planktolyngbya contorta Yes 

Coelosphaerium kuetzingianum No  Planktolyngbya limnetica Yes 

Coelosphaerium sp. No  Planktolyngbya sp. Yes 

Dactylococcopsis fascicularis No  Pseudanabaena galeata Yes* 
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Gomphosphaeria aponina No  Pseudanabaena limnetica Yes* 

Gomphosphaeria lacustris No  Pseudanabaena sp. Yes* 

Gomphosphaeria sp. No    

Gomphosphaeria virieuxii No  Order: Nostocales 19/20 

Merismopedia elegans No  Anabaena circinalis Yes 

Merismopedia glauca No  Anabaena flos-aquae Yes 

Merismopedia hyalina No  Anabaena helicoidea Yes 

Merismopedia sp. No  Anabaena limnetica Yes 

Merismopedia tenuis No  Anabaena planctonica Yes 

Merismopedia tenuissima No  Anabaena sp. Yes 

Microcrocis sp. No  Anabaena spiroides Yes 

Microcystis aeruginosa No  Anabaena viguieri Yes 

Microcystis flos-aquae No  Anabaenopsis circularis Yes 

Microcystis incerta No  Anabaenopsis elenkinii Yes 

Microcystis sp. No  Anabaenopsis sp. Yes 

Snowella lacustris No  Aphanizomenon elenkinii Yes 

Woronichinia karelica No  Aphanizomenon flos-aquae Yes 

   Aphanizomenon issatchenkoi Yes 

Order: Synechococcales 1/6  Aphanizomenon sp. Yes 

Cyanogranis basifixa No  Cylindrospermopsis raciborskii Yes 

Rhabdoderma irregulare No  Cylindrospermopsis sp. Yes 

Rhabdoderma lineare No  Cylindrospermum cf. musicola Yes 

Rhabdoderma sigmoidea No  Cylindrospermum sp. Yes 

Synechococcus sp. Yes*  Raphidiopsis curvata No 

Synechocystis aquatilis No    
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Appendix C: Chapter 3 Supplemental Tables  

Supplemental Table 1: Keywords used to search for relevant studies. All 3 phytoplankton 

keywords were combined using the “OR” search function in each search. Each search paired the 

phytoplankton keywords with either the herbicide, pesticide, PPCP, or PAH & PCB keywords to 

find relevant studies. PPCPs = pharmaceutical and personal care products (including antibiotics); 

PAHs & PCBs = polycyclic aromatic hydrocarbons and polychlorinated biphenyls. 
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Supplemental Table 2. Persistent Organic Pollutant (POP) class, authors of studies, publication 

year of studies, response of cyanobacteria to compound, POP compound studied, and study 

scale, respectively, of studies used to create frequency histograms.  
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