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Wedeveloped a new age-structured deterministicmodel for the transmission dynamics of chikungunya virus.Themodel is analyzed
to gain insights into the qualitative features of its associated equilibria. Some of the theoretical and epidemiological findings indicate
that the stable disease-free equilibrium is globally asymptotically stable when the associated reproduction number is less than unity.
Furthermore, the model undergoes, in the presence of disease induced mortality, the phenomenon of backward bifurcation, where
the stable disease-free equilibrium of the model coexists with a stable endemic equilibrium when the associated reproduction
number is less than unity. Further analysis of the model indicates that the qualitative dynamics of the model are not altered by the
inclusion of age structure.This is further emphasized by the sensitivity analysis results, which shows that the dominant parameters
of the model are not altered by the inclusion of age structure. However, the numerical simulations show the flaw of the exclusion
of age in the transmission dynamics of chikungunya with regard to control implementations. The exclusion of age structure fails
to show the age distribution needed for an effective age based control strategy, leading to a one size fits all blanket control for the
entire population.

1. Introduction

Chikungunya is a viral disease that is transmitted to humans
from an infected mosquito of the Aedes genus (particularly
the Aedes aegypti and Aedes albopictus mosquitoes [1, 2]).
It is an RNA virus that belongs to Alphavirus genus of the
family Togaviridae [3]. It was first described about 1952
during an outbreak in southern Tanzania [3]. Chikungunya
in the Kimakonde language (the language from where the
name was derived) means to become contorted or “bend
over” [3].There have been numerous cases of reemergence of
chikungunya in Africa, Asia, Europe, and more recently the
Caribbean [4]. The virus was isolated in 1960s in Bangkok
and in 1964, the virus resurfaced in parts of India includ-
ing Vellore, Calcutta, and Maharastha [5]. Other outbreaks
include Sri Lanka in 1969, Vietnam in 1975, Myanmar in
1975, and Indonesia in 1982 [5]. A large outbreak occurred in

the Democratic Republic of the Congo in 1999-2000 [3]. In
the years 2005–2007, an outbreak occurred in the islands
of the Indian Ocean. Gabon was hit with an outbreak in
2007 [3]. Since 2005, India, Indonesia, Thailand, Maldives,
and Myanmar have encountered over 1.9 million cases [3].
The disease spread to Europe by 2007 with 197 cases being
recorded [3]. More recently, in December 2013, the French
part of the Caribbean island of St. Martin reported two
laboratory-confirmed autochthonous (native) cases [3, 4].
Since then, local transmission have been confirmed in the
Dutch part of Saint Martin (St Maarten), Anguilla, British
Virgin Islands, Dominica, French Guiana, Guadeloupe, Mar-
tinique, and St Barthelemy [3]. As of October 2014, over
776,000 suspected cases of chikungunya have been recorded
in theCaribbean islands, LatinAmerican countries, and some
south American countries [3]. About 152 deaths have also
been attributed to the disease during the same period.Mexico
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and USA have also recorded imported cases. On October
21, 2014, France confirmed four cases of chikungunya locally
acquired infection in Montpellier, France [3].

In 2005-2006, a major chikungunya outbreak involving
numerous islands in the Indian Ocean (notably La Reunion
Island) occurred; one-third of the population were infected
[6]. According to Schuffenecker et al. [7] and Vazeille et
al. [8], in two concurrent studies, the chikungunya virus
strains in the Reunion Island outbreak mutated to facilitate
the disease transmission byAedes albopictus (Tigermosquito)
[6, 9]. The mutation was a point mutation in one of the
viral envelope genes (E1 glycoprotein gene (E1-226V)) [10, 11].
Dubrulle et al. [6] found that this mutation allowed the virus
to be present in the mosquito saliva only two days after the
infection, instead of approximately seven days in the Aedes
aegypti mosquitoes. This shows that Aedes albopictus is a
slightly more efficient host thanAedes aegypti in transmitting
the variant E1-226V of chikungunya virus. Hence, this result
indicates that other areas where the tiger mosquitoes are
present could be at greater risk of outbreak with an enhanced
transmission of chikungunya virus by Aedes albopictus.

Following an effect bite (i.e., a bite leading to an infection)
from infected mosquitoes [1, 2], the incubation period is
usually within 3–7 days; symptoms include fever, headache,
nausea, fatigue, rash, and severe joint pain (including lower
back, ankle, knees, wrists, or phalanges) [1, 2]. There is no
antiviral medicine to treat the disease [1, 2]; all the treatments
are directed at relieving the disease symptoms [3].There is no
preventative vaccine for chikungunya [3]; however, findings
of an experimental vaccine in an early-stage clinical trial are
promising; it prompted an immune response in all 25 volun-
teers [12].

Chikungunya rarely results in death and infected individ-
uals are expected to make full recovery with life-long immu-
nity [2]. However there are some cases where individuals
experience joint pains for several months or years after the
initial infection [3]. There have also been reports of eye, neu-
rological, and heart complications and gastrointestinal com-
plaints [3].The disease symptoms, generally, are mild and the
infection may go unrecognized; however, several studies [13–
16] have shown that children (especially neonates), the elderly
(≥65 years), and peoplewithmedical conditions (such as high
blood pressure, diabetes, or heart disease) have more severe
clinical manifestation of chikungunya than in older children
and adults (<65 years). The severity of the symptoms can be
described by aU-shaped curve,with amaximumoccurring in
young infants and the elderly and a minimum in older chil-
dren [16]. Furthermore, the rate of asymptomatic infection
among children varies according to different outbreak
reports (range 35–40%) [16]; overall, approximately 3–28%
of infected individuals will remain asymptomatic [17, 18]. In
the study of the 2006-2007 chikungunya epidemic in Kerala,
South India, Vijayakumar et al. [19] showed an age distribu-
tion of people affected with chikungunya. Their study indi-
cates that the adult group (ages 15–59) were the most affected
age group; they consist of about 73.4%of the entire study pop-
ulation; this is followed by the elderly group (ages > 60); this
group make up about 15.6% of the study population. Finally,
11% of the cases occurred in persons ages <15 years. Similar

age distribution was reported in other epidemics in India
[20], Thailand [21], and Reunion Islands [5, 22] and across
Europe [23] (including Austria, Czech Republic, Estonia,
Finland, France, Germany, Greece, Hungary, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, Poland, Romania,
Slovakia, Slovenia, Spain, Sweden, and United Kingdom).

A number of studies have been carried out to study the
chikungunya virus, considering different factors that effect
the outbreak of the disease (see [21, 24–30]). Ruiz-Moreno
et al. [24] analyzed the potential risk of chikungunya intro-
duction into the US; their study combines a climate-based
mosquito population dynamics stochastic model with an epi-
demiological model to identify temporal windows that have
epidemic risk. Dumont et al. [25] propose a model, including
human and mosquito compartments, that is associated with
the time course of the first epidemic of chikungunya in
Reunion Island. Using entomological results, they investi-
gated the links between the episode of 2005 and the outbreak
of 2006. Manore et al. [26] investigated, via an adapted math-
ematical model, the differences in transient and endemic
behavior of chikungunya and dengue, risk of emergence for
different virus-vector assemblages, and the role that virus
evolution plays in disease dynamics and risk. Poletti et al. [29]
developed a chikungunya transmission model for the spread
of the epidemic in both humans and mosquitoes; the model
involves a temporal dynamics of vector (Aedes albopictus),
depending on climatic factors. In the study, they provided
estimates of the transmission potential of the virus and
assessed the efficacy of the measures undertaken by public
health authorities to control the epidemic spread in Italy.
Yakob and Clements [30] developed a simple, determinis-
tic mathematical model for the transmission of the virus
between humans and mosquitoes. They fitted the model to
the large Reunion epidemic data and estimated the type
reproduction number for chikungunya; theirmodel provided
a close approximation of both the peak incidence of the
outbreak and the final epidemic size. Pongsumpun and
Sangsawang [21] developed and studied theoretically an age-
structured model for chikungunya involving juvenile and
adult human populations, giving conditions for the disease-
free and endemic states, respectively. They also suggested
alternative way for controlling the disease.

The aim of this study is to develop a new deterministic
transmission model to gain qualitative insight into the effects
of age on chikungunya transmission dynamics and to deter-
mine the importance or otherwise of the inclusion of age in
the transmission dynamics. A notable feature of the model
is the incorporation of three different human age classes
involving juvenile, adult, and senior human populations; the
model also involves two infectious human classes, notably
the asymptomatic and symptomatic classes. The paper is
organized as follows; themodel is formulated in Section 2, the
analysis of the mathematical properties of the model is stated
in Section 3. The effect of the age structure on the disease
transmission is explored in Section 4.The sensitivity analysis
of the model is investigated in Section 4.1. Following the
result obtained from the sensitivity analysis, various control
strategies are implemented in Section 5. The key theoretical
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and epidemiological results from this study are discussed and
summarized in Section 6.

2. Model Formulation

Themodel is formulated as followswith human andmosquito
subgroups. The human population is divided into juvenile,
adult, and senior subpopulations.Thehuman subgroup is fur-
ther divided into susceptible (𝑆

𝑖
), exposed (𝐸

𝑖
), symptomatic

(𝐼
𝑆𝑖
), asymptomatic (𝐼

𝐴𝑖
), and recovered (𝑅

𝑖
), where 𝑖 = 𝐽, 𝐴, 𝑆

for the juvenile, adult, and senior subpopulations. Thus, the
total human population 𝑁

𝐻
(𝑡) = 𝑆

𝐽
(𝑡) + 𝐸

𝐽
(𝑡) + 𝐼

𝐴𝐽
(𝑡) +

𝐼
𝑆𝐽
(𝑡) + 𝑅

𝐽
(𝑡) + 𝑆

𝐴
(𝑡) + 𝐸

𝐴
(𝑡) + 𝐼

𝐴𝐴
(𝑡) + 𝐼

𝑆𝐴
(𝑡) + 𝑅

𝐴
(𝑡) +

𝑆
𝑆
(𝑡) + 𝐸

𝑆
(𝑡) + 𝐼

𝐴𝑆
(𝑡) + 𝐼

𝑆𝑆
(𝑡) + 𝑅

𝑆
(𝑡). The mosquito popu-

lation is divided into three classes consisting of susceptible
mosquitoes (𝑆

𝑀
), exposed mosquitoes (𝐸

𝑀
), and infected

mosquitoes (𝐼
𝑀
). Hence, the total mosquito population

𝑁
𝑀
(𝑡) = 𝑆

𝑀
(𝑡) + 𝐸

𝑀
(𝑡) + 𝑅

𝑀
(𝑡).

Individuals move from one class to the other as their
status evolves with respect to the disease. The population of
susceptible juvenile (𝑆

𝐽
) is generated at the rate 𝜋

𝐽
via birth or

immigration. It is assumed that there is no vertical transmis-
sion or immigration of infectious humans; thus there is no
inflow into the infectious classes. The population is reduced
by the juvenile maturation at the rate 𝛼 and by natural death
at the rate 𝜇

𝐽
. The infection rate of susceptible juveniles 𝜆

𝐽
is

given as

𝜆
𝐽
=

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀

𝑁
𝐻

. (1)

The parameter 𝛽
𝐽
in (1) is the probability that a bite from

an infectious mosquito leads to infection of the susceptible
juvenile and the parameter 𝑏

𝑀
is themosquito biting rate.The

derivation of (1) is given in Appendix A.
Similarly, it can be shown that the rate at which

mosquitoes acquire infection from infectious (asymptomatic
and symptomatic) human hosts is given by

𝜆
𝑀
=

𝛽
𝑀
𝑏
𝑀
(𝐼
𝐴𝐽
+ 𝐼
𝑆𝐽
+ 𝐼
𝐴𝐴

+ 𝐼
𝑆𝐴
+ 𝐼
𝐴𝑆
+ 𝐼
𝑆𝑆
)

𝑁
𝐻

. (2)

The parameter 𝛽
𝑀

is the probability that a bite from a
susceptible mosquito to a human leads to infection of the
mosquito.

Susceptible juveniles are infected by the chikungunya
virus at a rate 𝜆

𝐽
and move into the exposed class. Thus, the

susceptible population is given as

𝑑𝑆
𝐽

𝑑𝑡
= 𝜋
𝐽
−

𝛽
𝐽
𝑏
𝑀
𝑆
𝐽
𝐼
𝑀

𝑁
𝐻

− 𝛼𝑆
𝐽
− 𝜇
𝐽
𝑆
𝐽
. (3)

The exposed juvenile population is generated following infec-
tion of the susceptible juveniles by infected mosquitoes. A
fraction (1 − 𝜀

𝐽
) of exposed juveniles enter the asymptomatic

class 𝐼
𝐴𝐽
(𝑡) at the rate (1 − 𝜀

𝐽
)𝜎
𝐽
and the remaining fraction

(𝜀
𝐽
) goes into the symptomatic class (𝐼

𝐴𝑆
) at the rate 𝜀

𝐽
𝜎
𝐽
. The

population of the exposed juvenile is reduced by the juvenile
maturation at the rate 𝛼. The exposed juvenile population is

further reduced by natural death at the rate 𝜇
𝐽
. Thus, the

exposed population is given as

𝑑𝐸
𝐽

𝑑𝑡
=

𝛽
𝐽
𝑏
𝑀
𝑆
𝐽
𝐼
𝑀

𝑁
𝐻

− 𝛼
𝐽
𝐸
𝐽
− (𝜎
𝐽
+ 𝜇
𝐽
) 𝐸
𝐽
. (4)

Members of the juvenile asymptomatic class 𝐼
𝐴𝐽
(𝑡) are gener-

ated from the fraction that moved from the juvenile exposed
class. This class is reduced by maturation to the adult asymp-
tomatic class (𝐼

𝐴𝐴
) at the rate 𝛼, by recovery (either naturally

or via the use of treatment) at a rate 𝛾
𝐴𝐽

to the recovered
class. Similarly, members of the juvenile symptomatic class
𝐼
𝑆𝐽
(𝑡) are populated from the fraction that moved from the

juvenile exposed class.The class is reduced due tomaturation
to the adult symptomatic class (𝐼

𝑆𝐴
) at the rate 𝛼 and by

progression to the recovered class recovery at a rate 𝛾
𝑆𝐽
.These

populations are further reduced by natural death at the rate
𝜇
𝐽
; chikungunya rarely results in death [1, 2]; as such we have

ignored the disease induced death rate. Thus, the equations
for these classes are given as follows:

𝑑𝐼
𝐴𝐽

𝑑𝑡
= 𝜀
𝐽
𝜎
𝐽
𝐸
𝐽
− 𝛼𝐼
𝐴𝐽
− (𝛾
𝐴𝐽
+ 𝜇
𝐽
) 𝐼
𝐴𝐽
,

𝑑𝐼
𝑆𝐽

𝑑𝑡
= (1 − 𝜀

𝐽
) 𝜎
𝐽
𝐸
𝐽
− 𝛼𝐼
𝑆𝐽
− (𝛾
𝑆𝐽
+ 𝜇
𝐽
) 𝐼
𝑆𝐽
.

(5)

The juvenile recovered class 𝑅
𝐽
is populated from the juvenile

asymptomatic and symptomatic classes; the class is reduced
by maturation to the adult class at a rate 𝛼 and by natural
death at a rate 𝜇

𝐽
. The equation for this class is given as

follows:
𝑑𝑅
𝐽

𝑑𝑡
= 𝛾
𝐴𝐽
𝐼
𝐴𝐽
+ 𝛾
𝑆𝐽
𝐼
𝑆𝐽
− 𝛼𝑅
𝐽
− 𝜇
𝐽
𝑅
𝐽
. (6)

The corresponding equations (susceptible, exposed, asymp-
tomatic, symptomatic, and recovered) for the adult and senior
classes are similarly obtained; additionally there is a matu-
ration rate 𝜉 from the adult population into the senior class.
We assume that the recovery rates from adults asymptomatic
and symptomatic classes are greater than those from juvenile
classes which in turn are greater than those from the senior
classes (i.e., 𝛾

𝐴𝐴
, 𝛾
𝑆𝐴

> 𝛾
𝐴𝐽
, 𝛾
𝑆𝐽

> 𝛾
𝐴𝑆
, 𝛾
𝑆𝑆
) [36]. Further-

more, we assume that seniors progress more quickly to the
asymptomatic and symptomatic classes than juveniles and
adults (i.e., 𝜎

𝑆
> 𝜎
𝐽
, 𝜎
𝐴
) [36].

The population of the susceptible mosquitoes (𝑆
𝑀
) is

generated by the recruitment rate 𝜋
𝑀
and reduced following

effective contact with an infected human. All mosquitoes
classes are reduced by natural death at a rate𝜇

𝑀
.The equation

for this class is given as follows:

𝑑𝑆
𝑀

𝑑𝑡

= 𝜋
𝑀

− 𝛽
𝑀
𝑏
𝑀
[

𝐼
𝐴𝐽
+ 𝐼
𝑆𝐽
+ 𝐼
𝐴𝐴

+ 𝐼
𝑆𝐴
+ 𝐼
𝐴𝑆
+ 𝐼
𝑆𝑆

𝑁
𝐻

] 𝑆
𝑀

− 𝜇
𝑀
𝑆
𝑀
.

(7)
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Mosquitoes in the exposed class 𝐸
𝑀

are generated following
the infection of the susceptible mosquitoes. They progress to
the infected class at a rate 𝜎

𝑀
. The equation for the exposed

mosquitoes dynamics is given as follows:

𝑑𝐸
𝑀

𝑑𝑡
= 𝛽
𝑀
𝑏
𝑀
[

𝐼
𝐴𝐽
+ 𝐼
𝑆𝐽
+ 𝐼
𝐴𝐴

+ 𝐼
𝑆𝐴
+ 𝐼
𝐴𝑆
+ 𝐼
𝑆𝑆

𝑁
𝐻

] 𝑆
𝑀

− 𝜇
𝑀
𝑆
𝑀
− 𝜎
𝑀
𝐸
𝑀
.

(8)

The infected mosquitoes class are populated from the
exposed mosquitoes. The equation for this class is given as
follows:

𝑑𝐼
𝑀

𝑑𝑡
= 𝜎
𝑀
𝐸
𝑀
− 𝜇
𝑀
𝐼
𝑀
. (9)

Combining the aforementioned derivations and assumptions
the model for the transmission dynamics of chikungunya
virus in a population is given by the following deterministic
system of nonlinear differential equations:

𝑑𝑆
𝐽

𝑑𝑡
= 𝜋
𝐽
−

𝛽
𝐽
𝑏
𝑀
𝑆
𝐽
𝐼
𝑀

𝑁
𝐻

− 𝛼𝑆
𝐽
− 𝜇
𝐽
𝑆
𝐽
,

𝑑𝐸
𝐽

𝑑𝑡
=

𝛽
𝐽
𝑏
𝑀
𝑆
𝐽
𝐼
𝑀

𝑁
𝐻

− 𝛼𝐸
𝐽
− (𝜎
𝐽
+ 𝜇
𝐽
) 𝐸
𝐽
,

𝑑𝐼
𝐴𝐽

𝑑𝑡
= 𝜀
𝐽
𝜎
𝐽
𝐸
𝐽
− 𝛼𝐼
𝐴𝐽
− (𝛾
𝐴𝐽
+ 𝜇
𝐽
) 𝐼
𝐴𝐽
,

𝑑𝐼
𝑆𝐽

𝑑𝑡
= (1 − 𝜀

𝐽
) 𝜎
𝐽
𝐸
𝐽
− 𝛼𝐼
𝑆𝐽
− (𝛾
𝑆𝐽
+ 𝜇
𝐽
) 𝐼
𝑆𝐽
,

𝑑𝑅
𝐽

𝑑𝑡
= 𝛾
𝐴𝐽
𝐼
𝐴𝐽
+ 𝛾
𝑆𝐽
𝐼
𝑆𝐽
− 𝛼𝑅
𝐽
− 𝜇
𝐽
𝑅
𝐽
,

𝑑𝑆
𝐴

𝑑𝑡
= 𝛼𝑆
𝐽
−
𝛽
𝐴
𝑏
𝑀
𝑆
𝐴
𝐼
𝑀

𝑁
𝐻

− 𝜉𝑆
𝐴
− 𝜇
𝐴
𝑆
𝐴
,

𝑑𝐸
𝐴

𝑑𝑡
= 𝛼𝐸
𝐽
+
𝛽
𝐴
𝑏
𝑀
𝑆
𝐴
𝐼
𝑀

𝑁
𝐻

− 𝜉𝐸
𝐴
− (𝜎
𝐴
+ 𝜇
𝐴
) 𝐸
𝐴
,

𝑑𝐼
𝐴𝐴

𝑑𝑡
= 𝛼𝐼
𝐴𝐽
+ 𝜀
𝐴
𝜎
𝐴
𝐸
𝐴
− 𝜉𝐼
𝐴𝐴

− (𝛾
𝐴𝐴

+ 𝜇
𝐴
) 𝐼
𝐴𝐴
,

𝑑𝐼
𝑆𝐴

𝑑𝑡
= 𝛼𝐼
𝑆𝐽
+ (1 − 𝜀

𝐴
) 𝜎
𝐴
𝐸
𝐴
− 𝜉𝐼
𝑆𝐴
− (𝛾
𝑆𝐴
+ 𝜇
𝐴
) 𝐼
𝑆𝐴
,

𝑑𝑅
𝐴

𝑑𝑡
= 𝛼𝑅
𝐽
+ 𝛾
𝐴𝐴
𝐼
𝐴𝐴

+ 𝛾
𝑆𝐴
𝐼
𝑆𝐴
− 𝜉𝑅
𝐴
− 𝜇
𝐴
𝑅
𝐴
,

𝑑𝑆
𝑆

𝑑𝑡
= 𝜉𝑆
𝐴
−
𝛽
𝑆
𝑏
𝑀
𝑆
𝑆
𝐼
𝑀

𝑁
𝐻

− 𝜇
𝑆
𝑆
𝑆
,

𝑑𝐸
𝑆

𝑑𝑡
= 𝜉𝐸
𝐴
+
𝛽
𝑆
𝑏
𝑀
𝑆
𝑆
𝐼
𝑀

𝑁
𝐻

− (𝜎
𝑆
+ 𝜇
𝑆
) 𝐸
𝑆
,

𝑑𝐼
𝐴𝑆

𝑑𝑡
= 𝜉𝐼
𝐴𝐴

+ 𝜀
𝑆
𝜎
𝑆
𝐸
𝑆
− (𝛾
𝐴𝑆
+ 𝜇
𝑆
) 𝐼
𝐴𝑆
,

𝑑𝐼
𝑆𝑆

𝑑𝑡
= 𝜉𝐼
𝑆𝐴
+ (1 − 𝜀

𝑆
) 𝜎
𝑆
𝐸
𝑆
− (𝛾
𝑆𝑆
+ 𝜇
𝑆
) 𝐼
𝑆𝑆
,

𝑑𝑅
𝑆

𝑑𝑡
= 𝜉𝑅
𝐴
+ 𝛾
𝐴𝑆
𝐼
𝐴𝑆
+ 𝛾
𝑆𝑆
𝐼
𝑆𝑆
− 𝜇
𝑆
𝑅
𝑆
,

𝑑𝑆
𝑀

𝑑𝑡

= 𝜋
𝑀

− 𝛽
𝑀
𝑏
𝑀
[

𝐼
𝐴𝐽
+ 𝐼
𝑆𝐽
+ 𝐼
𝐴𝐴

+ 𝐼
𝑆𝐴
+ 𝐼
𝐴𝑆
+ 𝐼
𝑆𝑆

𝑁
𝐻

] 𝑆
𝑀

− 𝜇
𝑀
𝑆
𝑀
,

𝑑𝐸
𝑀

𝑑𝑡

= 𝛽
𝑀
𝑏
𝑀
[

𝐼
𝐴𝐽
+ 𝐼
𝑆𝐽
+ 𝐼
𝐴𝐴

+ 𝐼
𝑆𝐴
+ 𝐼
𝐴𝑆
+ 𝐼
𝑆𝑆

𝑁
𝐻

] 𝑆
𝑀

− (𝜎
𝑀
+ 𝜇
𝑀
) 𝐸
𝑀
,

𝑑𝐼
𝑀

𝑑𝑡
= 𝜎
𝑀
𝐸
𝑀
− 𝜇
𝑀
𝐼
𝑀
.

(10)

The flow diagram of the age-structured chikungunya model
(10) is depicted in Figure 1 and the associated variables and
parameters are described in Table 1. Model (10) is an exten-
sion of some of the chikungunya transmission models (e.g.,
those in [21, 25–30]) by (inter alia):

(a) Including a compartment for the exposed humans
and mosquitoes (this was not considered in [21, 27,
28]).

(b) Adding a compartment for asymptomatic and symp-
tomatic individuals (these were not considered in
[25, 26, 30]).

(c) Including an age structure for humans (this was not
included in [26, 29]).

(d) Adding compartments for seniors (these were not
included in [21, 25–28, 30]).

3. Analysis of the Model

3.1. Basic Qualitative Properties

3.1.1. Positivity and Boundedness of Solutions. For the age-
structured chikungunya transmission model (10) to be epi-
demiologically meaningful, it is important to prove that all
its state variables are nonnegative for all time. In other words,
solutions of the model system (10) with non-negative initial
data will remain non-negative for all time 𝑡 > 0.

Lemma 1. Let the initial data 𝐹(0) ≥ 0, where 𝐹(𝑡) =

(𝑆
𝐽
, 𝐸
𝐽
, 𝐼
𝐴𝐽
, 𝐼
𝑆𝐽
, 𝑅
𝐽
, 𝑆
𝐴
, 𝐸
𝐴
, 𝐼
𝐴𝐴
, 𝐼
𝑆𝐴
, 𝑅
𝐴
, 𝑆
𝑆
, 𝐸
𝑆
, 𝐼
𝐴𝑆
, 𝐼
𝑆𝑆
, 𝑅
𝐴
, 𝑆
𝑀
,

𝐸
𝑀
, 𝐼
𝑀
). Then the solutions 𝐹(𝑡) of the age-structured
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Table 1: Description of the variables and parameters of the age-
structured chikungunya model (10).

Variable Description

𝑆
𝐽
, 𝑆
𝐴
, 𝑆
𝑆

Population of susceptible juvenile,
adult, and senior humans

𝐸
𝐽
, 𝐸
𝐴
, 𝐸
𝑆

Population of exposed juvenile,
adult, and senior humans

𝐼
𝐴𝐽
, 𝐼
𝑆𝐽

Population of asymptomatic and
symptomatic juvenile humans

𝐼
𝐴𝐴
, 𝐼
𝑆𝐴

Population of asymptomatic and
symptomatic adult humans

𝐼
𝐴𝑆
, 𝐼
𝑆𝑆

Population of asymptomatic and
symptomatic senior humans

𝑅
𝐽
, 𝑅
𝐴
, 𝑅
𝑆

Population of recovered juvenile,
adult, and senior humans

𝑆
𝑀

Population of susceptible
mosquitoes

𝐸
𝑀 Population of exposed mosquitoes

𝐼
𝑀 Population of infectious mosquitoes
Parameter Description

𝜋
𝐽

Recruitment rate of juvenile
humans

𝜋
𝑀 Recruitment rate of mosquitoes
𝛼, 𝜉 Juvenile and adult maturation rates

𝛽
𝐽
, 𝛽
𝐴
, 𝛽
𝑆

Transmission probability per
contact for susceptible humans

𝛽
𝑀

Transmission probability per
contact for susceptible mosquitoes

𝑏
𝑀 Mosquito biting rate

𝜇
𝐽
, 𝜇
𝐴
, 𝜇
𝑆

Natural death rate of juvenile, adult,
and senior humans

𝜇
𝑀 Natural death rate of mosquitoes

𝜀
𝐽
, 𝜀
𝐴
, 𝜀
𝑆

Fraction of exposed humans
becoming asymptomatic and
symptomatic

𝜎
𝐽
, 𝜎
𝐴
, 𝜎
𝑆

Progression rate of exposed
juvenile, adult, and senior humans

𝛾
𝐴𝐽
, 𝛾
𝑆𝐽

Recovery rate of asymptomatic and
symptomatic juvenile humans

𝛾
𝐴𝐴
, 𝛾
𝑆𝐴

Recovery rate of asymptomatic and
symptomatic adult humans

𝛾
𝐴𝑆
, 𝛾
𝑆𝑆

Recovery rate of asymptomatic and
symptomatic senior humans

𝜎
𝑀

Progression rate of exposed
mosquitoes

chikungunya model (10) are nonnegative for all 𝑡 > 0. Further-
more

lim sup
𝑡→∞

𝑁
𝐻 (𝑡) =

𝜋
𝐽

𝜇
𝐻

,

lim sup
𝑡→∞

𝑁
𝑀 (𝑡) =

𝜋
𝑀

𝜇
𝑀

(11)
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Figure 1: Systematic flow diagram of the age-structured chikun-
gunya model (10).

with

𝑁
𝐻 (𝑡) = 𝑆𝐽 (𝑡) + 𝐸𝐽 (𝑡) + 𝐼𝐴𝐽 (𝑡) + 𝐼𝑆𝐽 (𝑡) + 𝑅𝐽 (𝑡)

+ 𝑆
𝐴 (𝑡) + 𝐸𝐴 (𝑡) + 𝐼𝐴𝐴 (𝑡) + 𝐼𝑆𝐴 (𝑡)

+ 𝑅
𝐴 (𝑡) + 𝑆𝑆 (𝑡) + 𝐸𝑆 (𝑡) + 𝐼𝐴𝑆 (𝑡)

+ 𝐼
𝑆𝑆 (𝑡) + 𝑅𝑆 (𝑡) ,

𝑁
𝑀 (𝑡) = 𝑆𝑀 (𝑡) + 𝐸𝑀 (𝑡) + 𝐼𝑀 (𝑡) .

(12)

The proof of Lemma 1 is given in Appendix B.

3.1.2. Invariant Regions. The age-structured chikungunya
model (10) will be analyzed in a biologically feasible region
as follows. Consider the feasible region

Ω = Ω
𝐻
× Ω
𝑀
⊂ R
15

+
×R
3

+
(13)

with

Ω
𝐻
= {𝑆
𝐽
, 𝐸
𝐽
, 𝐼
𝑆𝐽
, 𝐼
𝐴𝐽
, 𝑅
𝐽
, 𝑆
𝐴
, 𝐸
𝐴
, 𝐼
𝑆𝐴
, 𝐼
𝐴𝐴
, 𝑅
𝐴
, 𝑆
𝑆
, 𝐸
𝑆
, 𝐼
𝑆𝑆
,

𝐼
𝐴𝑆
, 𝑅
𝑆
: 𝑁
𝐻 (𝑡) ≤

𝜋
𝐽

𝜇
𝐻

} ,

Ω
𝑀
= {𝑆
𝑀
, 𝐸
𝑀
, 𝐼
𝑀
: 𝑁
𝑀 (𝑡) ≤

𝜋
𝑀

𝜇
𝑀

} .

(14)

Lemma 2. The region Ω ⊂ R18
+

is positively invariant for
the age-structured chikungunya model (10) with nonnegative
initial conditions in R18

+
.
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The proof of Lemma 2 is given in Appendix C.
In the next section, the conditions for the existence and

stability of the equilibria of the age-structured chikungunya
model (10) are explored.

3.2. Stability of Disease-Free Equilibrium (DFE). The age-
structured chikungunya model (10) has a disease-free equi-
librium (DFE), obtained by setting the right-hand sides of the
equations in the model to zero, given by

E
0
= (𝑆
∗

𝐽
, 𝐸
∗

𝐽
, 𝐼
∗

𝐴𝐽
, 𝐼
∗

𝑆𝐽
, 𝑅
∗

𝐽
, 𝑆
∗

𝐴
, 𝐸
∗

𝐴
, 𝐼
∗

𝐴𝐴
, 𝐼
∗

𝑆𝐴
, 𝑅
∗

𝐴
, 𝑆
∗

𝑆
, 𝐸
∗

𝑆
, 𝐼
∗

𝐴𝑆
,

𝐼
∗

𝑆𝑆
, 𝑅
∗

𝑆
, 𝑆
∗

𝑀
, 𝐸
∗

𝑀
, 𝐼
∗

𝑀
) = (

𝜋
𝐽

𝛼 + 𝜇
𝐽

, 0, 0, 0, 0,

𝛼𝑆
∗

𝐽

𝜉 + 𝜇
𝐴

, 0, 0,

0, 0,
𝜉𝑆
∗

𝐴

𝜇
𝑆

, 0, 0, 0, 0,
𝜋
𝑀

𝜇
𝑀

, 0, 0) .

(15)

The linear stability of E
0
can be established using the next

generation operator method on system (10). Taking 𝐸
𝐽
,

𝐼
𝑆𝐽
, 𝐼
𝐴𝐽
, 𝐸
𝐴
, 𝐼
𝑆𝐴
, 𝐼
𝐴𝐴

, 𝐸
𝑆
, 𝐼
𝑆𝑆
, 𝐼
𝐴𝑆
, 𝐸
𝑀
, 𝐼
𝑀

as the infected
compartments and then using the notation in [42], the

Jacobian matrices 𝐹 and 𝑉 for the new infection terms and
the remaining transfer terms are, respectively, given by

𝐹

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 0 0 0 0 0 0 0 0 Φ
𝐽

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Φ
𝐴

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Φ
𝑆

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 Φ
𝑀

Φ
𝑀

0 Φ
𝑀

Φ
𝑀

0 Φ
𝑀

Φ
𝑀

0 0

0 0 0 0 0 0 0 0 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(16)

where Φ
𝐽
= 𝛽
𝐽
𝑏
𝑀
𝜇
𝐻
/𝑘
1
, Φ
𝐴
= 𝛽
𝐴
𝑏
𝑀
𝛼/𝑘
1
, Φ
𝑆
= 𝛽
𝑆
𝑏
𝑀
𝜉𝛼/

𝜇
𝐻
𝑘
1
, Φ
𝑀
= 𝜋
𝑀
𝛽
𝑀
𝑏
𝑀
𝜇
𝐻
/𝜇
𝑀
𝜋
𝐽
, and

𝑉 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑘
2

0 0 0 0 0 0 0 0 0 0

−𝜀
𝐽
𝜎
𝐽

𝑘
3

0 0 0 0 0 0 0 0 0

− (1 − 𝜀
𝐽
) 𝜎
𝐽

0 𝑘
4

0 0 0 0 0 0 0 0

−𝛼 0 0 𝑘
7

0 0 0 0 0 0 0

0 −𝛼 0 −𝜀
𝐴
𝜎
𝐴

𝑘
8

0 0 0 0 0 0

0 0 −𝛼 − (1 − 𝜀
𝐴
) 𝜎
𝐴

0 𝑘
9

0 0 0 0 0

0 0 0 −𝜉 0 0 𝑘
11

0 0 0 0

0 0 0 0 −𝜉 0 −𝜀
𝑆
𝜎
𝑆

𝑘
12

0 0 0

0 0 0 0 0 −𝜉 − (1 − 𝜀
𝑆
) 𝜎
𝑆

0 𝑘
13

0 0

0 0 0 0 0 0 0 0 0 𝑘
14

0

0 0 0 0 0 0 0 0 0 −𝜎
𝑀

𝜇
𝑀

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (17)

where 𝑘
1
= 𝜋
𝐽
, 𝑘
2
= 𝛼 + 𝜎

𝐽
+ 𝜇
𝐽
, 𝑘
3
= 𝛼 + 𝛾

𝐴𝐽
+ 𝜇
𝐽
, 𝑘
4
=

𝛼+𝛾
𝑆𝐽
+𝜇
𝐽
, 𝑘
7
= 𝜉+𝜎

𝐴
+𝜇
𝐴
, 𝑘
8
= 𝜉+𝛾

𝐴𝐴
+𝜇
𝐴
, 𝑘
9
= 𝜉+𝛾

𝑆𝐴
+𝜇
𝐴
,

𝑘
11
= 𝜎
𝑆
+𝜇
𝑆
, 𝑘
12
= 𝛾
𝐴𝑆
+𝜇
𝑆
, 𝑘
13
= 𝛾
𝑆𝑆
+𝜇
𝑆
, and 𝑘

14
= 𝜎
𝑀
+𝜇
𝑀
.

It follows that the reproduction number of the age-
structured chikungunya model (10) is given by

R
0
= 𝜌 (𝐹𝑉

−1
) = √(R

𝐽𝑀
+R
𝐴𝑀

+R
𝑆𝑀
)R
𝑀𝐻

, (18)

where 𝜌 is the spectral radius and

R
𝐽𝑀

= 𝛽
𝐽
𝑏
𝑀
𝑆
∗

𝐽
[𝑘
11
𝑘
12
𝑘
13
𝑘
7
𝑘
8
𝑘
9
𝜎
𝐽
[(1 − 𝜀

𝐽
) 𝑘
3

+ 𝜀
𝐽
𝑘
4
]

+ 𝛼𝑘
11
𝑘
12
𝑘
13
(𝜎
𝐽
𝑘
7
[(1 − 𝜀

𝐽
) 𝑘
3
𝑘
8
+ 𝜀
𝐽
𝑘
9
𝑘
4
]

+ 𝜎
𝐴
𝑘
4
𝑘
3
[(1 − 𝜀

𝐴
) 𝑘
8
+ 𝜀
𝐴
𝑘
9
])

+ 𝜉𝛼 {𝜎
𝐽
𝑘
11
𝑘
7
[(1 − 𝜀

𝐽
) 𝑘
3
𝑘
8
𝑘
12
+ 𝜀
𝐽
𝑘
4
𝑘
9
𝑘
13
]

+ 𝜎
𝐴
𝑘
3
𝑘
4
𝑘
11
[(1 − 𝜀

𝐴
) 𝑘
8
𝑘
12
+ 𝜀
𝐴
𝑘
9
𝑘
13
]

+ 𝜎
𝑆
𝑘
3
𝑘
4
𝑘
8
𝑘
9
[(1 − 𝜀

𝑆
) 𝑘
12
+ 𝜀
𝑆
𝑘
13
]}] ,

R
𝐴𝑀

= 𝛽
𝐴
𝑏
𝑀
𝑆
∗

𝐴
𝑘
2
𝑘
3
𝑘
4
[𝜎
𝐴
𝑘
12
𝑘
11
𝑘
13
[(1 − 𝜀

𝐴
) 𝑘
8

+ 𝜀
𝐴
𝑘
9
] + 𝜉 {𝜎

𝐴
𝑘
11
[(1 − 𝜀

𝐴
) 𝑘
8
𝑘
12
+ 𝜀
𝐴
𝑘
9
𝑘
13
]

+ 𝜎
𝑆
𝑘
8
𝑘
9
[(1 − 𝜀

𝑆
) 𝑘
12
+ 𝜀
𝑆
𝑘
13
]}] ,

R
𝑆𝑀

= 𝛽
𝑆
𝑏
𝑀
𝜎
𝑆
𝑆
∗

𝑆
𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
[(1 − 𝜀

𝑆
) 𝑘
12
+ 𝑘
13
𝜀
𝑆
] ,

R
𝑀𝐻

=
𝜎
𝑀
𝛽
𝑀
𝑆
∗

𝑀
𝜇
2

𝐻
𝑏
𝑀

(𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14
𝜇
𝑀
𝜋
2

𝐽
)

.

(19)
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Figure 2: Simulation of the age-structured chikungunya model (10) as a function of time when R
0
< 1. (a) Total number of infectious

(asymptomatic and symptomatic) juveniles. (b) Total number of infectious (asymptomatic and symptomatic) adults. (c) Total number of
infectious (asymptomatic and symptomatic) seniors. (d) Total number of infectiousmosquitoes. Parameter values used are as given in Table 3.

Furthermore, the expressionR
𝐽𝑀

is the number of secondary
infections in juveniles by one infectious mosquito, R

𝐴𝑀
is

the number of secondary infections in adults by one intro-
duced infectious mosquito,R

𝑆𝑀
is the number of secondary

infections in seniors as a result of one infectious mosquito,
and lastly R

𝑀𝐻
is the number of secondary infections in

mosquitoes resulting from a newly introduced infectious
juvenile, adult, and senior. Further, using Theorem 2 in [42],
the following result is established.

Lemma 3. The disease-free equilibrium (DFE) of the age-
structured chikungunya model (10) is locally asymptotically
stable (LAS) ifR

0
< 1 and unstable ifR

0
> 1.

The basic reproduction number R
0
is defined as the

average number of new infections that result from one
infectious individual in a population that is fully susceptible
[42–45].The epidemiological significance of Lemma 3 is that
chikungunya will be eliminated from the community if the
reproduction number (R

0
) can be brought to (and main-

tained at) a value less than unity. Figure 2 shows convergence
of the solutions of the age-structured chikungunyamodel (10)

to theDFE (E
0
) for the casewhenR

0
< 1 (in accordancewith

Lemma 3).

3.3. Global Asymptotic Stability of the DFE. Consider the
feasible region

Ω
1
= {𝑋 ∈ Ω : 𝑆

𝐽
≤ 𝑆
∗

𝐽
, 𝑆
𝐴
≤ 𝑆
∗

𝐴
, 𝑆
𝑆
≤ 𝑆
∗

𝑆
, 𝑆
𝑀
≤ 𝑆
∗

𝑀
} , (20)

where 𝑋 = 𝑆
𝐽
, 𝐸
𝐽
, 𝐼
𝑆𝐽
, 𝐼
𝐴𝐽
, 𝑅
𝐽
, 𝑆
𝐴
, 𝐸
𝐴
, 𝐼
𝑆𝐴
, 𝐼
𝐴𝐴
, 𝑅
𝐴
, 𝑆
𝑆
, 𝐸
𝑆
, 𝐼
𝑆𝑆
,

𝐼
𝐴𝑆
, 𝑅
𝑆
, 𝑆
𝑀
, 𝐸
𝑀
, 𝐼
𝑀
.

Lemma 4. The region Ω
1
is positively invariant for the age-

structured chikungunya model (10).

The proof of Lemma 4 is given in Appendix D.

Theorem 5. The DFE, E
0
, of the age-structured chikungunya

model (10), is globally asymptotically stable (GAS) in Ω
1

wheneverR
0
≤ 1.

The proof of Theorem 5 is given in Appendix E.
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3.4. Existence of Endemic Equilibrium Point (EEP). In this
section, we will investigate conditions for the existence
of endemic equilibria (i.e., equilibria where the infected
components of the age-structured model (10) are nonzero).

Let

E
1
= (𝑆
∗∗

𝐽
, 𝐸
∗∗

𝐽
, 𝐼
∗∗

𝐴𝐽
, 𝐼
∗∗

𝑆𝐽
, 𝑅
∗∗

𝐽
, 𝑆
∗∗

𝐴
, 𝐸
∗∗

𝐴
, 𝐼
∗∗

𝐴𝐴
, 𝐼
∗∗

𝑆𝐴
, 𝑅
∗∗

𝐴
, 𝑆
∗∗

𝑆
,

𝐸
∗∗

𝐴
, 𝐼
∗∗

𝐴𝑆
, 𝐼
∗∗

𝑆𝑆
, 𝑅
∗∗

𝑆
, 𝑆
∗∗

𝑀
, 𝐸
∗∗

𝑀
, 𝐼
∗∗

𝑀
)

(21)

be an arbitrary endemic equilibrium of age-structured
chikungunya model (10). Also, let

𝜆
∗∗

𝐽
=

𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀

𝑁
∗∗

𝐻

,

𝜆
∗∗

𝐴
=
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀

𝑁
∗∗

𝐻

,

𝜆
∗∗

𝑆
=
𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀

𝑁
∗∗

𝐻

,

𝜆
∗∗

𝑀
= 𝛽
𝑀
𝑏
𝑀
[

𝐼
∗∗

𝐴𝐽
+ 𝐼
∗∗

𝑆𝐽
+ 𝐼
∗∗

𝐴𝐴
+ 𝐼
∗∗

𝑆𝐴
+ 𝐼
∗∗

𝐴𝑆
+ 𝐼
∗∗

𝑆𝑆

𝑁
∗∗

𝐻

]

(22)

be the forces of infection for susceptible juveniles, adults,
and seniors and susceptible mosquitoes at steady state,
respectively. Components of the steady-state solution of the
equations of the age-structured chikungunya model (10) are
given inAppendix F. Substituting the expressions for 𝐼∗∗

𝐴𝐽
, 𝐼∗∗
𝑆𝐽
,

𝐼
∗∗

𝐴𝐴
, 𝐼∗∗
𝑆𝐴
, 𝐼∗∗
𝐴𝑆

and 𝐼∗∗
𝑆𝑆

into (22) for 𝜆∗∗
𝑀

and simplifying gives

𝜆
∗∗

𝑀
=

𝑏
2

𝑀
𝛽
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
[𝑎
2
(𝐼
∗∗

𝑀
)
2
+ 𝑎
1
𝐼
∗∗

𝑀
+ 𝑎
0
]

𝑘
2
𝑘
3
𝑘
4
𝑘
7
𝑘
8
𝑘
9
𝑘
11
𝑘
12
(𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝑘
1
𝜋
𝐽
) (𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝑘
6
) (𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
) 𝑘
13

, (23)

where

𝑎
2
= 𝛽
𝐽
𝛽
𝐴
𝛽
𝑆
𝑏
2

𝑀
𝜇
2

𝐻
{𝑘
12
𝑘
11
𝑘
13
{𝜎
𝐽
𝑘
9
𝑘
8
𝑘
7
[𝜀
𝐽
𝑘
4

+ (1 − 𝜀
𝐽
) 𝑘
3
] + 𝛼 (𝜎

𝐽
𝑘
7
[𝜀
𝐽
𝑘
4
𝑘
9
+ (1 − 𝜀

𝐽
) 𝑘
8
𝑘
3
]

+ 𝜎
𝐴
𝑘
4
𝑘
3
[𝜀
𝐴
𝑘
9
+ 𝑘
8
(1 − 𝜀

𝐴
)])}

+ 𝛼𝜉 (𝜎
𝐽
𝑘
11
𝑘
7
[𝜀
𝐽
𝑘
13
𝑘
9
𝑘
4
+ (1 − 𝜀

𝐽
) 𝑘
12
𝑘
8
𝑘
3
]

+ 𝜎
𝐴
𝑘
11
𝑘
4
𝑘
3
[𝑘
9
𝑘
13
𝜀
𝐴
+ (1 − 𝜀

𝐴
) 𝑘
12
𝑘
8
]

+ 𝜎
𝑆
𝑘
9
𝑘
8
𝑘
4
[𝜀
𝑆
𝑘
13
+ (1 − 𝜀

𝑆
) 𝑘
12
])} ,

𝑎
1
= 𝜋
𝐽
𝑏
𝐻
𝜇
𝐻
{𝜎
𝐽
𝛽
𝐽
𝑘
13
𝑘
12
𝑘
11
𝑘
9
𝑘
8
𝑘
7
(𝑘
6
𝛽
𝑆
+ 𝜇
𝑆
𝛽
𝐴
)

⋅ [𝜀
𝐽
𝑘
4
+ (1 − 𝜀

𝐽
) 𝑘
3
] + 𝑘
13
𝑘
12
𝑘
11
𝛼𝛽
𝐽
(𝛽
𝐴
𝜇
𝑆

+ 𝑘
6
𝛽
𝑆
) {𝑘
7
[𝜀
𝐽
𝑘
4
𝑘
9
+ 𝑘
3
𝑘
8
(1 − 𝜀

𝐽
)] 𝜎
𝐽

+ 𝑘
4
𝑘
3
[𝜀
𝐴
𝑘
9
+ (1 − 𝜀

𝐴
) 𝑘
8
] 𝜎
𝐴
}

+ 𝛼𝛽
𝐴
𝛽
𝑆
𝑘
13
𝑘
12
𝑘
11
𝑘
4
𝑘
3
𝑘
2
𝜎
𝐴
[𝜀
𝐴
𝑘
9
+ (1 − 𝜀

𝐴
) 𝑘
8
]

+ 𝛼𝜉𝛽
𝐴
𝛽
𝑆
𝑘
4
𝑘
3
𝑘
2
{𝜎
𝐴
𝑘
11
[𝜀
𝐴
𝑘
13
𝑘
9

+ (1 − 𝜀
𝐴
) 𝑘
8
𝑘
12
] + 𝜎
𝑆
𝑘
9
𝑘
8
[𝜀
𝑆
𝑘
13
+ (1 − 𝜀

𝑆
) 𝑘
12
]}

+ 𝛼𝜉𝛽
𝐽
(𝛽
𝐴
𝜇
𝑆
+ 𝛽
𝑆
𝑘
6
) (𝜎
𝐽
𝑘
11
𝑘
7
[𝜀
𝐽
𝑘
13
𝑘
9
𝑘
4

+ (1 − 𝜀
𝐽
) 𝑘
12
𝑘
8
𝑘
3
] + 𝜎
𝐴
𝑘
11
𝑘
4
𝑘
3
[𝜀
𝐴
𝑘
13
𝑘
9

+ (1 − 𝜀
𝐴
) 𝑘
12
𝑘
8
] + 𝜎
𝑆
𝑘
9
𝑘
8
𝑘
4
𝑘
3
[𝜀
𝑆
𝑘
13

+ (1 − 𝜀
𝑆
) 𝑘
12
])} ,

𝑎
0
= 𝜋
2

𝐽
{𝛽
𝐽
𝜎
𝐽
𝜇
𝑆
𝑘
13
𝑘
12
𝑘
11
𝑘
9
𝑘
8
𝑘
7
𝑘
6
[𝜀
𝐽
𝑘
4
+ (1 − 𝜀

𝐽
)

⋅ 𝑘
3
] + 𝛼𝛽

𝐽
𝜇
𝑆
𝑘
13
𝑘
12
𝑘
11
𝑘
6
(𝜎
𝐽
𝑘
7
[𝑘
9
𝑘
4
𝜀
𝐾

+ (1 − 𝜀
𝐽
) 𝑘
8
𝑘
3
] + 𝜎
𝐴
𝑘
4
𝑘
3
[𝜀
𝐴
+ (1 − 𝜀

𝐴
) 𝑘
9
𝑘
8
])

+ 𝛼𝛽
𝐴
𝜇
𝑆
𝑘
13
𝑘
12
𝑘
11
𝑘
4
𝑘
3
𝑘
2
𝜎
𝐴
[𝜀
𝐴
𝑘
9
+ (1 − 𝜀

𝐴
) 𝑘
8
]

+ 𝜉𝛼𝛽
𝐽
𝜇
𝑆
𝑘
6
(𝜎
𝐽
𝑘
11
𝑘
7
[𝜀
𝐽
𝑘
13
𝑘
9
𝑘
4

+ (1 − 𝜀
𝐽
) 𝑘
12
𝑘
8
𝑘
3
] + 𝜎
𝐴
𝑘
11
𝑘
4
𝑘
3
[𝜀
𝐴
𝑘
13
𝑘
9

+ (1 − 𝜀
𝐴
) 𝑘
12
𝑘
8
] + 𝑘
9
𝑘
8
𝑘
4
𝑘
3
[𝜀
𝑆
𝑘
13
+ (1 − 𝜀

𝑆
) 𝑘
12
]

⋅ 𝜎
𝑆
) + 𝜉𝛼𝛽

𝐴
𝜇
𝑆
𝑘
4
𝑘
3
𝑘
2
(𝜎
𝐴
𝑘
11
[𝜀
𝐴
𝑘
13
𝑘
9

+ (1 − 𝜀
𝐴
) 𝑘
8
𝑘
12
] + 𝜎
𝑆
𝑘
9
𝑘
8
[𝜀
𝑆
𝑘
13
+ (1 − 𝜀

𝑆
) 𝑘
12
])

+ 𝜉𝛼𝛽
𝑆
𝑘
4
𝑘
9
𝜎
𝑆
𝑘
8
𝑘
7
𝑘
3
𝑘
2
[𝜀
𝑆
𝑘
13
+ (1 − 𝜀

𝐽
) 𝑘
12
]} .

(24)

Substituting expression for 𝐼∗∗
𝑀

into the force of infection 𝜆∗∗
𝐽

in (22) gives

𝜆
∗∗

𝐽
=

𝛽
𝐽
𝑏
𝑀
𝜎
𝑀
𝜆
∗∗

𝑀
𝜋
𝑀
𝜇
𝐻

𝑘
14
𝜇
𝑀
𝜋
𝐽
(𝜆
∗∗

𝑀
+ 𝜇
𝑀
)

(25)

and then solving for 𝜆∗∗
𝑀

gives

𝜆
∗∗

𝑀
= −

𝜆
∗∗

𝐽
𝑘
14
𝜇
2

𝑀
𝜋
𝐽

(𝜆
∗∗

𝐽
𝑘
14
𝜇
𝑀
𝜋
𝐽
− 𝛽
𝐽
𝑏
𝑀
𝜎
𝑀
𝜋
𝑀
𝜇
𝐻
)

. (26)

Substituting this result into (23), and simplifying, leads to the
following cubic equation:

𝑏
3
(𝜆
∗∗

𝐽
)
3

+ 𝑏
2
(𝜆
∗∗

𝐽
)
2

+ 𝑏
1
𝜆
∗∗

𝐽
+ 𝑏
0
(1 −R

2

0
) , (27)
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Table 2: Number of possible positive real roots of 𝑓(𝑥) forR
0
> 1.

Cases 𝑐
3

𝑐
2

𝑐
1

𝑐
0

R
0

Number of sign changes Number of possible positive real roots (endemic equilibrium)
1 + + + − R

0
> 1 1 1

2 + − − − R
0
> 1 1 1

3 + + − − R
0
> 1 1 1

where

𝑏
3

= 𝜋
4

𝐽
𝛽
𝐽
𝛽
𝐴
𝛽
𝑆
𝑏
𝑀
𝜇
𝐻
𝜇
2

𝑀
𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14

+ 𝜋
3

𝐽
𝛽
𝑀
𝜇
𝑀
𝑘
14
𝑎
2
,

𝑏
2

= 𝜋
4

𝐽
𝛽
𝐽
𝛽
𝐴
𝛽
𝑆
𝑏
𝑀
𝜇
𝐻
𝜇
2

𝑀
𝑘
1
𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14

− 𝜋
2

𝐽
𝛽
𝐽
𝜋
𝑀
𝛽
𝑀
𝑏
𝑀
𝜎
𝑀
𝜇
𝐻
𝑎
2

+ 𝜋
2

𝐽
𝛽
𝐽
𝜇
𝐻
𝛽
𝑀
𝜇
𝑀
𝑏
𝑀
𝑘
14
𝑎
1

+ 𝜋
4

𝐽
𝛽
2

𝐽
𝛽
𝐴
𝑏
𝑀
𝜇
𝑆
𝜇
2

𝐻
𝜇
2

𝑀
𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
𝑘
12
𝑘
11
𝑘
13
𝑘
14

+ 𝜋
4

𝐽
𝛽
2

𝐽
𝛽
𝑆
𝜇
𝐻
𝑏
𝑀
𝜇
2

𝑀
𝑘
2
𝑘
3
𝑘
4
𝑘
6
𝑘
7
𝑘
8
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14
,

𝑏
1

= 𝜋
𝐽
𝛽
2

𝐽
𝜇
2

𝐻
𝛽
𝑀
𝑏
2

𝑀
𝜇
𝑀
𝑘
14
𝑎
0

+ 𝜋
4

𝐽
𝛽
2

𝐽
𝛽
𝐴
𝑏
𝑀
𝜇
𝑆
𝜇
2

𝐻
𝜇
2

𝑀
𝑘
1
𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14

− 𝜋
𝐽
𝛽
2

𝐽
𝑏
2

𝑀
𝜋
𝑀
𝛽
𝑀
𝜎
𝑀
𝜇
2

𝐻
𝑎
1

+ 𝜋
4

𝐽
𝛽
3

𝐽
𝑏
𝑀
𝜇
𝑆
𝜇
2

𝐻
𝜇
2

𝑀
𝑘
2
𝑘
3
𝑘
4
𝑘
6
𝑘
7
𝑘
8
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14

+ 𝜋
4

𝐽
𝛽
2

𝐽
𝛽
𝑆
𝑏
𝑀
𝜇
𝐻
𝜇
2

𝑀
𝑘
1
𝑘
2
𝑘
3
𝑘
4
𝑘
6
𝑘
7
𝑘
8
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14
,

𝑏
0
= 𝜋
4

𝐽
𝛽
3

𝐽
𝑏
𝑀
𝜇
2

𝐻
𝜇
𝑆
𝜇
2

𝑀
𝑘
1
𝑘
2
𝑘
3
𝑘
4
𝑘
6
𝑘
8
𝑘
7
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14
.

(28)

Thus, the number of possible positive real roots polynomial
(27) can have depends on the signs of 𝑏

2
and 𝑏

1
. This can

be analyzed using the Descartes Rule of Signs on the cubic
polynomial 𝑓(𝑥) = 𝑐

3
𝑥
3
+ 𝑐
2
𝑥
2
+ 𝑐
1
𝑥 + 𝑐
0
, given in (27) (with

𝑥 = 𝜆
∗∗

𝐽
, 𝑐
3
= 𝑏
3
, 𝑐
2
= 𝑏
2
, 𝑐
1
= 𝑏
1
, 𝑐
0
= 𝑏
0
(1−R2

0
)).The various

possibilities for the roots of 𝑓(𝑥) are tabulated in Table 2.
The following results (Theorem 6) follow from the various

possible combinations for the roots of 𝑓(𝑥), in Table 2.

Theorem 6. The age-structured chikungunya model (10) has a
unique endemic equilibrium ifR

0
> 1.

Numerical simulations of the age-structured chikun-
gunya model (10), depicted in Figure 3, show convergence to
a unique endemic equilibrium whenR

0
> 1 (suggesting that

the unique EEP of the age-structured chikungunya model
(10) is asymptotically stable when it exists).

3.5. Backward Bifurcation Analysis: Special Case. Chikun-
gunya rarely leads to death of the infected individuals [1, 2];

however a number of deaths have been reported as a result
of the infection [3, 5, 30, 46, 47]. We introduced into
the asymptomatic and symptomatic human compartments
disease-inducedmortality parameters (𝛿

𝐴𝐽
, 𝛿
𝑆𝐽
, 𝛿
𝐴𝐴

, 𝛿
𝑆𝐴
, 𝛿
𝐴𝑆
,

𝛿
𝑆𝑆
) and study the implication on the dynamics of the dis-

ease transmission. Thus, the asymptomatic and symptomatic
juveniles, adults, and seniors compartments of age-structured
chikungunya model (10) can be written as follows:

𝑑𝐼
𝐴𝐽

𝑑𝑡
= 𝜀
𝐽
𝜎
𝐽
𝐸
𝐽
− 𝛼𝐼
𝐴𝐽
− (𝛾
𝐴𝐽
+ 𝜇
𝐻
+ 𝛿
𝐴𝐽
) 𝐼
𝐴𝐽
,

𝑑𝐼
𝑆𝐽

𝑑𝑡
= (1 − 𝜀

𝐽
) 𝜎
𝐽
𝐸
𝐽
− 𝛼𝐼
𝑆𝐽
− (𝛾
𝑆𝐽
+ 𝜇
𝐻
+ 𝛿
𝑆𝐽
) 𝐼
𝑆𝐽
,

𝑑𝐼
𝐴𝐴

𝑑𝑡
= 𝛼𝐼
𝐴𝐽
+ 𝜀
𝐴
𝜎
𝐴
𝐸
𝐴
− 𝜉𝐼
𝐴𝐴

− (𝛾
𝐴𝐴

+ 𝜇
𝐻
+ 𝛿
𝐴𝐴
) 𝐼
𝐴𝐴
,

𝑑𝐼
𝑆𝐴

𝑑𝑡
= 𝛼𝐼
𝑆𝐽
+ (1 − 𝜀

𝐴
) 𝜎
𝐴
𝐸
𝐴
− 𝜉𝐼
𝑆𝐴

− (𝛾
𝑆𝐴
+ 𝜇
𝐻
+ 𝛿
𝑆𝐴
) 𝐼
𝑆𝐴
,

𝑑𝐼
𝐴𝑆

𝑑𝑡
= 𝜉𝐼
𝐴𝐴

+ 𝜀
𝑆
𝜎
𝑆
𝐸
𝑆
− (𝛾
𝐴𝑆
+ 𝜇
𝐻
+ 𝛿
𝐴𝑆
) 𝐼
𝐴𝑆
,

𝑑𝐼
𝑆𝑆

𝑑𝑡
= 𝜉𝐼
𝑆𝐴
+ (1 − 𝜀

𝑆
) 𝜎
𝑆
𝐸
𝑆
− (𝛾
𝑆𝑆
+ 𝜇
𝐻
+ 𝛿
𝑆𝑆
) 𝐼
𝑆𝑆
.

(29)

It can be shown that the reproduction number for the age-
structured chikungunya model (10) with the asymptomatic
and symptomatic human compartments stated in (29) is
given by

R̃
0
= R
0

󵄨󵄨󵄨󵄨𝛿𝐴𝐽,𝛿𝑆𝐽,𝛿𝐴𝐴,𝛿𝑆𝐴,𝛿𝐴𝑆,𝛿𝑆𝑆 ̸=0

= √(R̃
𝐽𝑀

+ R̃
𝐴𝑀

+ R̃
𝑆𝑀
) R̃
𝑀𝐻

,

(30)

where

R̃
𝐽𝑀

= 𝛽
𝐽
𝑏
𝑀
𝑆
∗

𝐽
[𝑘
11
𝑘
12
𝑘
13
𝜎
𝐽
𝑘
7
𝑘
8
𝑘
9
[(1 − 𝜀

𝐽
) 𝑘
3

+ 𝜀
𝐽
𝑘
4
]

+ 𝛼𝑘
11
𝑘
12
𝑘
13
(𝜎
𝐽
𝑘
7
[(1 − 𝜀

𝐽
) 𝑘
3
𝑘
8
+ 𝜀
𝐽
𝑘
9
𝑘
4
]

+ 𝜎
𝐴
𝑘
4
𝑘
3
[(1 − 𝜀

𝐴
) 𝑘
8
+ 𝜀
𝐴
𝑘
9
])

+ 𝜉𝛼 {𝜎
𝐽
𝑘
11
𝑘
7
[(1 − 𝜀

𝐽
) 𝑘
3
𝑘
8
𝑘
12
+ 𝜀
𝐽
𝑘
4
𝑘
9
𝑘
13
]

+ 𝜎
𝐴
𝑘
3
𝑘
4
𝑘
11
[(1 − 𝜀

𝐴
) 𝑘
8
𝑘
12
+ 𝜀
𝐴
𝑘
9
𝑘
13
]

+ 𝜎
𝑆
𝑘
3
𝑘
4
𝑘
8
𝑘
9
[(1 − 𝜀

𝑆
) 𝑘
12
+ 𝜀
𝑆
𝑘
13
]}] ,
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Figure 3: Simulation of the age-structured chikungunya model (10) as a function of time when R
0
> 1. (a) Total number of infectious

(asymptomatic and symptomatic) juveniles. (b) Total number of infectious (asymptomatic and symptomatic) adults. (c) Total number of
infectious (asymptomatic and symptomatic) seniors. (d) Total number of infectiousmosquitoes. Parameter values used are as given in Table 3.

R̃
𝐴𝑀

= 𝛽
𝐴
𝑏
𝑀
𝑆
∗

𝐴
𝑘
2
𝑘
3
𝑘
4
[𝜎
𝐴
𝑘
12
𝑘
11
𝑘
13
[(1 − 𝜀

𝐴
) 𝑘
8

+ 𝜀
𝐴
𝑘
9
] + 𝜉 {𝜎

𝐴
𝑘
11
[(1 − 𝜀

𝐴
) 𝑘
8
𝑘
12
+ 𝜀
𝐴
𝑘
9
𝑘
13
]

+ 𝜎
𝑆
𝑘
8
𝑘
9
[(1 − 𝜀

𝑆
) 𝑘
12
+ 𝜀
𝑆
𝑘
13
]}] ,

R̃
𝑆𝑀

= 𝛽
𝑆
𝑏
𝑀
𝜎
𝑆
𝑆
∗

𝑆
𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
[(1 − 𝜀

𝑆
) 𝑘
12
+ 𝑘
13
𝜀
𝑆
] ,

R̃
𝑀𝐻

=
𝜎
𝑀
𝛽
𝑀
𝑆
∗

𝑀
𝜇
2

𝐻
𝑏
𝑀

(𝑘
2
𝑘
3
𝑘
4
𝑘
8
𝑘
7
𝑘
9
𝑘
11
𝑘
12
𝑘
13
𝑘
14
𝜇
𝑀
𝜋
2

𝐽
)

,

(31)

with 𝑘
3
= 𝛼 + 𝛾

𝐴𝐽
+ 𝜇
𝐽
+ 𝛿
𝑆𝐽
, 𝑘
4
= 𝛼 + 𝛾

𝑆𝐽
+ 𝜇
𝐽
+ 𝛿
𝑆𝐽
, 𝑘
8
=

𝜉+𝛾
𝐴𝐴
+𝜇
𝐴
+𝛿
𝐴𝐴

, 𝑘
9
= 𝜉+𝛾

𝑆𝐴
+𝜇
𝐴
+𝛿
𝑆𝐴
, 𝑘
12
= 𝛾
𝐴𝑆
+𝜇
𝑆
+𝛿
𝐴𝑆
,

and 𝑘
13
= 𝛾
𝑆𝐴
+ 𝜇
𝑆
+ 𝛿
𝑆𝐴
.

Models of disease transmission typically undergo a simple
transcritical bifurcation (exchange of stability from the DFE
to an endemic equilibrium) at R̃

0
= 1. The age-structured

chikungunya model (10) with the asymptomatic and symp-
tomatic human compartments stated in (29) is investigated

for the possibility of the phenomenon of backward bifur-
cation (where a stable DFE coexists with a stable endemic
equilibrium when the reproduction number, R̃

0
, is less than

unity) [48–57].The epidemiological implication of backward
bifurcation is that the effective control (or elimination)
of chikungunya virus in the system is dependent on the
initial sizes of the subpopulations. The possibility of the
phenomenon of backward bifurcation in the age-structured
chikungunya model (10) with the asymptomatic and symp-
tomatic human compartments stated in (29) is explored
using the centre manifold theory [51], as described in [58,
Theorem 4.1].

Theorem 7. The age-structured chikungunya model (10) with
the asymptomatic and symptomatic human compartments
stated in (29) undergoes backward bifurcation at R̃

0
= 1when-

ever inequality (G.9), given in Appendix G, holds.

Theproof ofTheorem 7 is given inAppendix G.Theback-
ward bifurcation property of the age-structured chikungunya
model (10) with the asymptomatic and symptomatic human
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Table 3: Parameters values of models (10) and (32).

Parameter Values Range References
𝜋
𝐽
, 𝜋
𝐻 400 ×

1

15 × 365
400 ×

1

15 × 365
–400 × 1

12 × 365
[26, 31]

𝛼 1

16 × 365

1

18 × 365
– 1

15 × 365
Assumed

𝜉 1

50 × 365

1

55 × 365
– 1

45 × 365
Estimated

𝛽
𝐽
, 𝛽
𝐴
, 𝛽
𝑆
, 𝛽
𝐻 0.24 0.001–0.54 [25, 26, 29, 32, 33]

𝑏
𝑀 0.25 0.19–0.39 [26, 34]
𝜇
𝐽

1

3 × 365

1

5 × 365
– 1

1 × 365
Assumed

𝜇
𝐴

1

40 × 365

1

60 × 365
– 1

18 × 365
Assumed

𝜇
𝑆

1

70 × 365

1

80 × 365
– 1

60 × 365
Assumed

𝜇
𝐻

1

70 × 365

1

76 × 365
– 1

68 × 365
[26, 31]

𝜀
𝐽
, 𝜀
𝐴
, 𝜀
𝑆
, 𝜀
𝐻 0.155 0.03–0.28 [17]

𝜎
𝐽
, 𝜎
𝑆

1

2 × 3

1

2 × 4
– 1

2 × 2
Assumed

𝜎
𝐴
, 𝜎
𝐻

1

3

1

4
–1
2

[5, 26, 32, 35–37]

𝛾
𝐴𝐽
, 𝛾
𝑆𝐽

1

1.5 × 4.5

1

1.5 × 8
– 1

1.5 × 3
Assumed

𝛾
𝐴𝐴
, 𝛾
𝑆𝐴

1

4.5

1

7
–1
3

[26, 28, 36, 37]

𝛾
𝐴𝑆
, 𝛾
𝑆𝑆

1

2.5 × 4.5

1

2.5 × 8
– 1

2.5 × 3
Assumed

𝛾
𝐴𝐻
, 𝛾
𝑆𝐻

1

4.5

1

7
–1
3

[26, 28, 36, 37]

𝜋
𝑀 500 × 0.1675 500 × 0.015–500 × 0.32 [26, 31, 38, 39]
𝛽
𝑀 0.24 0.005–0.35 [25, 29, 33, 40, 41]
𝜎
𝑀

1

3.5

1

6
–1
2

[6, 28, 32, 36]

𝜇
𝑀

1

14

1

42
– 1

14
[28, 32, 35–37]

compartments given in (29) is illustrated by simulating the
model using a set of parameter values given in Table 3
(such that the bifurcation parameters, 𝑎 and 𝑏, given in
Appendix G, take the values 𝑎 = 0.001792 and 𝑏 = 0.09056,
resp.). The backward bifurcation phenomenon of the age-
structured chikungunya model (10) with the asymptomatic
and symptomatic human compartments stated in (29) makes
the effective control of the chikungunya in the population
difficult, since in this case, disease control when R̃

0
< 1

is dependent on the initial sizes of the subpopulations of
the age-structured chikungunya model (10) with the asymp-
tomatic and symptomatic human compartments stated in
(29).This phenomenon is illustrated numerically in Figure 4.

4. Effect of Age Structure

Following the approach in [59], the effect of age structure on
the dynamics of the age-structured chikungunya model (10)
will now be investigated by comparing its dynamical behavior

with those of an equivalentmodel with no age structure given
by

𝑑𝑆
𝐻

𝑑𝑡
= 𝜋
𝐻
−
𝛽
𝐻
𝑏
𝑀
𝐼
𝑀

𝑁
𝐻

𝑆
𝐻
− 𝛼𝑆
𝐻
− 𝜇
𝐻
𝑆
𝐻
,

𝑑𝐸
𝐻

𝑑𝑡
=
𝛽
𝐻
𝑏
𝑀
𝐼
𝑀

𝑁
𝐻

𝑆
𝐻
− 𝛼𝐸
𝐻
− (𝜎
𝐻
+ 𝜇
𝐻
) 𝐸
𝐻
,

𝑑𝐼
𝐴𝐻

𝑑𝑡
= 𝜀
𝐻
𝜎
𝐻
𝐸
𝐻
− 𝛼𝐼
𝐴𝐻

− (𝛾
𝐴𝐻

+ 𝜇
𝐻
) 𝐼
𝐴𝐻
,

𝑑𝐼
𝑆𝐻

𝑑𝑡
= (1 − 𝜀

𝐻
) 𝜎
𝐻
𝐸
𝐻
− 𝛼𝐼
𝑆𝐻
− (𝛾
𝑆𝐻
+ 𝜇
𝐻
) 𝐼
𝑆𝐻
,

𝑑𝑅
𝐻

𝑑𝑡
= 𝛾
𝐴𝐻
𝐼
𝐴𝐻

+ 𝛾
𝑆𝐻
𝐼
𝑆𝐻
− 𝛼𝑅
𝐻
− 𝜇
𝐻
𝑅
𝐻
,

𝑑𝑆
𝑀

𝑑𝑡
= 𝜋
𝑀
− 𝛽
𝑀
𝑏
𝑀
[
𝐼
𝐴𝐻

+ 𝐼
𝑆𝐻

𝑁
𝐻

] 𝑆
𝑀
− 𝜇
𝑀
𝑆
𝑀
,
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Figure 4: Backward bifurcation plot of the age-structured model (10) with the asymptomatic and symptomatic human compartments given
in (29). (a) Asymptomatic juvenile; (b) symptomatic juvenile. (c) Asymptomatic adult; (d) symptomatic adult. (e) Asymptomatic senior; (f)
symptomatic senior. Parameter values used are as given in Table 3.
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𝑑𝐸
𝑀

𝑑𝑡
= 𝛽
𝑀
𝑏
𝑀
[
𝐼
𝐴𝐻

+ 𝐼
𝑆𝐻

𝑁
𝐻

] 𝑆
𝑀
− (𝜎
𝑀
+ 𝜇
𝑀
) 𝐸
𝑀
,

𝑑𝐼
𝑀

𝑑𝑡
= 𝜎
𝑀
𝐸
𝑀
− 𝜇
𝑀
𝐼
𝑀
,

(32)

where 𝑆
𝐻
= 𝑆
𝐽
+𝑆
𝐴
+𝑆
𝑆
,𝐸
𝐻
= 𝐸
𝐽
+𝐸
𝐴
+𝐸
𝑆
, 𝐼
𝐴𝐻

= 𝐼
𝐴𝐽
+𝐼
𝐴𝐴
+𝐼
𝐴𝑆
,

𝐼
𝑆𝐻

= 𝐼
𝑆𝐽
+𝐼
𝑆𝐴
+𝐼
𝑆𝑆
, 𝑅
𝐻
= 𝑅
𝐽
+𝑅
𝐴
+𝑅
𝑆
and 𝜎
𝐻
= 𝜎
𝐽
+𝜎
𝐴
+𝜎
𝑆
,

𝛾
𝐴𝐻

= 𝛾
𝐴𝐽
+ 𝛾
𝐴𝐴

+ 𝛾
𝐴𝑆
, 𝛾
𝑆𝐻

= 𝛾
𝑆𝐽
+ 𝛾
𝑆𝐴
+ 𝛾
𝑆𝑆
, and 𝛼 = 𝜉 = 0.

The DFE of model (32) is given by

E
01
= (𝑆
∗

𝐻
, 𝐸
∗

𝐻
, 𝐼
∗

𝐴𝐻
, 𝐼
∗

𝑆𝐻
, 𝑅
∗

𝐻
, 𝑆
∗

𝑀
, 𝐸
∗

𝑀
, 𝐼
∗

𝑀
)

= (
𝜋
𝐻

𝜇
𝐻

, 0, 0, 0, 0,
𝜋
𝑀

𝜇
𝑀

, 0, 0)

(33)

and the associated reproduction number is

R
𝐻

fl √
𝜋
𝑀
𝛽
𝑀
𝜎
𝑀
𝜋
𝐻
𝛽
𝐻
𝑏
2

𝑀
[𝑔
4
𝜀
𝐻
𝜎
𝐻
+ 𝑔
3
(1 − 𝜀

𝐻
) 𝜎
𝐻
]

𝑔
2
𝑔
3
𝑔
4
𝑔
6
𝜇
2

𝑀
𝜇
𝐻

,

(34)

where 𝑔
1
= 𝜇
𝐻
, 𝑔
2
= 𝜎
𝐻
+𝜇
𝐻
, 𝑔
3
= 𝛾
𝐴𝐻

+𝜇
𝐻
, 𝑔
4
= 𝛾
𝑆𝐻
+𝜇
𝐻
,

𝑔
5
= 𝜇
𝐻
, and 𝑔

6
= 𝜎
𝑀
+ 𝜇
𝑀
.

Using the approach in Section 3.3, we can show that the
reduced model (32) has a DFE that is GAS if 𝛿

𝐴𝐻
= 𝛿
𝑆𝐻

= 0,
wheneverR

𝐻
< 1; as suchmodel (32) will not undergo back-

ward bifurcation since the bifurcation coefficient, 𝑎, is given
by

𝑎 =
2𝑏
𝑀
𝜇
𝐻
(V
2
𝑤
1
𝑤
8
𝛽
𝐻
+ V
7
𝑤
3
𝑤
6
𝛽
𝑀
+ V
7
𝑤
4
𝑤
6
𝛽
𝑀
)

𝜋
𝐻

; (35)

using the expression in (38) below, (35) becomes

𝑎 = −
2𝑏
5

𝑀
𝜇
2

𝐻
𝜎
2

𝐻
𝜋
2

𝑀
𝛽
3

𝑀
𝜎
𝑀
[𝜀
𝐻
𝑔
4
+ (1 − 𝜀

𝐻
) 𝑔
3
]
2
𝛽
2

𝐻
{𝑔
3
𝑔
4
𝜇
𝑀
𝑔
2
+ 𝑏
𝑀
𝛽
𝑀
𝜎
𝐻
𝑔
1
[𝜀
𝐻
𝑔
4
+ (1 − 𝜀

𝐻
) 𝑔
3
]}

𝜇
4

𝑀
𝑔
6
𝜋
3

𝐻
𝑔
3

3
𝑔
3

4
𝑔
3

2

, (36)

where 𝑔
1
= 𝜇
𝐻
, 𝑔
2
= 𝜎
𝐻
+ 𝜇
𝐻
, 𝑔
3
= 𝛾
𝐴𝐻

+ 𝜇
𝐻
, and 𝑔

4
=

𝛾
𝑆𝐻
+ 𝜇
𝐻
.

However, if 𝛿
𝐴𝐻
, 𝛿
𝑆𝐻

̸= 0, then it follows that the
reduced model (32) will undergo backward bifurcation if the
coefficient 𝑎, in this case, given as

𝑎 =
−2𝑏
𝑀
[V
2
𝑤
8
𝑥
1
(𝑤
2
+ 𝑤
3
+ 𝑤
5
) 𝛽
𝐻
+ V
7
𝑤
3
𝑥
6
(𝑤
3
+ 𝑤
1
+ 𝑤
2
+ 𝑤
5
) 𝛽
𝑀
− V
7
𝑤
3
𝑤
6
𝑥
1
𝛽
𝑀
]

𝑥
2

1

, (37)

is positive, where

𝑤
1
=
−𝛽
𝐻
𝑏
𝑀
𝑤
8

𝑔
1
𝜇
𝑀

,

𝑤
2
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𝛽
𝐻
𝑏
𝑀
𝑤
8

𝑔
2

,

𝑤
3
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𝜀
𝐻
𝜎
𝐻
𝑤
2

𝑔
3

,

𝑤
4
=
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𝐻
) 𝜎
𝐻
𝑤
2

𝑔
4

,

𝑤
5
=
(𝛾
𝐴𝐻
𝑤
3
+ 𝛾
𝑆𝐻
𝑤
4
)

𝑔
5

,

𝑤
6
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𝑥
6
𝛽
𝑀
𝑏
𝑀
(𝑤
3
+ 𝑤
4
)

𝜇
𝑀
𝑥
1
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=
𝑥
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𝛽
𝑀
𝑏
𝑀
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3
+ 𝑤
4
)

𝑔
6
𝑥
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,

𝑤
8
> 0,

V
1
= 0,

V
5
= 0,

V
6
= 0,

V
2
=
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𝐻
𝜎
𝐻
V
3
+ (1 − 𝜀

𝐻
) 𝜎
𝐻
V
4
]

𝑔
2

,

V
3
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1

𝑔
3
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𝐴𝐻

V
5
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𝑥
6
𝛽
𝑀
𝑏
𝑀
(V
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6
)

𝑥
1

) ,

V
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1

𝑔
4
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𝑆𝐻
V
5
+
𝑥
6
𝛽
𝑀
𝑏
𝑀
(V
7
− V
6
)

𝑥
1

) ,

V
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=
𝜎
𝑀
V
8

𝑔
6

,

V
8
=
(𝛽
𝐻
𝑏
𝑀
V
2
)

𝜇
𝑀

(38)
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Figure 5: Backward bifurcation plot for without age-structured model (32). (a) Asymptomatic humans; (b) symptomatic humans. Parameter
values used are as given in Table 3.

with 𝑔
1
= 𝜇
𝐻
, 𝑔
2
= 𝜎
𝐻
+ 𝜇
𝐻
, 𝑔
3
= 𝛾
𝐴𝐻

+ 𝜇
𝐻
+ 𝛿
𝐴𝐻

, 𝑔
4
=

𝛾
𝑆𝐻
+ 𝜇
𝐻
+ 𝛿
𝑆𝐻
, 𝑔
5
= 𝜇
𝐻
, and

𝑏 =
V
7
𝑥
6
𝑏
𝑀
𝑤
3

𝑥
1

> 0. (39)

The phenomenon of backward bifurcation for model (32)
without age structure is illustrated numerically in Figure 5.

Hence, the preceding analysis shows that the age-
structured chikungunya model (10) and model (32) without
age structure have the same qualitative dynamics with respect
to the local and global asymptotic stability of the associated
disease-free equilibrium (DFE) and the phenomenon of
backward bifurcation.

Next, we compare the dynamics of the endemic equilib-
rium points of models (10) and (32). Let

E
1
= (𝑆
∗∗

𝐻
, 𝐸
∗∗

𝐻
, 𝐼
∗∗

𝑆𝐻
, 𝐼
∗∗

𝐴𝐻
, 𝑅
∗∗

𝐻
, 𝑆
∗∗

𝑀
, 𝐸
∗∗

𝑀
, 𝐼
∗∗

𝑀
) (40)

be an arbitrary endemic equilibrium of the reduced model
(29) and let

𝜆
∗∗

𝐻
=
𝛽
𝐻
𝑏
𝑀
𝐼
∗∗

𝑀

𝑁
∗∗

𝐻

,

𝜆
∗∗

𝑀
= 𝛽
𝑀
𝑏
𝑀
[
𝐼
∗∗

𝐴𝐻
+ 𝐼
∗∗

𝑆𝐻

𝑁
∗∗

𝐻

]

(41)

be the forces infection for susceptible humans and susceptible
mosquitoes at steady state, respectively. Solving the equations
of the reduced model (32) at steady state gives

𝑆
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𝐻
=

𝜋
𝐻
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2
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3
]
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𝑔
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𝑔
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𝑔
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𝑔
6
𝜇
𝑀
(𝜆
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𝑀
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𝑀
)
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(42)

Substituting (42) into (41) shows that the positive endemic
equilibrium of model (32) satisfies

𝜆
∗∗

𝐻

=

𝜋
𝐻
𝑔
6
𝜇
2

𝑀
𝑔
2
𝑔
3
𝑔
4
𝑔
1
𝜋
𝐻
(R2
𝐻
− 1)

𝜋
2

𝐻
𝑔
6
𝜇
𝑀
{𝑔
2
𝑔
3
𝑔
4
𝜇
𝑀
+ 𝑏
𝑀
𝛽
𝑀
𝜇
𝐻
[𝜀
𝐻
𝜎
𝐻
𝑔
4
+ (1 − 𝜀

𝐻
) 𝜎
𝐻
𝑔
3
]}
,

(43)

where R
𝐻
= R̃
𝐻
|
𝛿𝐴𝐻,𝛿𝑆𝐻 ̸=0

. Hence, model (32) has a unique
endemic equilibrium (obtained by substituting (42) into (43))
whenever R̃

𝐻
> 1.

4.1. SensitivityAnalysis. Sensitivity analysis [60–62] is carried
out, on the parameters of the age-structured chikungunya
model (10), to determine which of the parameters have the
most significant impact on the outcome of the numerical
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Table 4: Initial conditions used in the simulations of model (10) with age structure.

𝑆
𝐽
(0) = 1130 𝐸

𝐽
(0) = 123 𝐼

𝐴𝐽
(0) = 84 𝐼

𝑆𝐽
(0) = 211 𝑅

𝐽
(0) = 0

𝑆
𝐴
(0) = 2196 𝐸

𝐴
(0) = 264 𝐼

𝐴𝐴
(0) = 351 𝐼

𝑆𝐴
(0) = 1404 𝑅

𝐴
(0) = 0

𝑆
𝑆
(0) = 300 𝐸

𝑆
(0) = 224 𝐼

𝐴𝑆
(0) = 75 𝐼

𝑆𝑆
(0) = 298 𝑅

𝑆
(0) = 0

𝑆
𝑀
(0) = 500 𝐸

𝑀
(0) = 100 𝐼

𝑀
(0) = 250.
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Figure 6: PRCC values for chikungunya models (10) and (32), using as response functions (a) the reproduction number R
0
; (b) the

reproduction numberR
𝐻
. Parameter values (baseline) and ranges used are as given in Table 3.

simulations of the model. Figure 6(a) depicts the partial rank
correlation coefficient (PRCC) values for each parameter of
the models, using the ranges and baseline values tabulated
in Table 3 (with the basic reproduction number, R

0
, as the

response function), fromwhich it follows that the parameters
that have the most influence on chikungunya transmission
dynamics are the mosquito biting rate (𝑏

𝑀
), the transmission

probability per contact in mosquitoes (𝛽
𝑀
) and in humans

(𝛽
𝑆
), mosquito recruitment rate (𝜋

𝑀
), and the death rate

of the mosquitoes (𝜇
𝑀
). It is interesting to note that, from

Figure 6(a), the transmission probability per contact in juve-
nile and adult (𝛽

𝐽
and 𝛽

𝐴
) is not as significant as that of

the seniors. Thus, this study identifies the most important
parameters that drive the transmission mechanism of the
disease. The identification of these key parameters is vital to
the formulation of effective control strategies for combating
the spread of the disease. In other words, the results of this
sensitivity analysis suggest that a strategy that reduces the
mosquito biting rate (reduces 𝑏

𝑀
), the mosquito recruitment

rate (reduces 𝜋
𝑀
), and the transmission probability per

contact in mosquitoes (reduces 𝛽
𝑀
) and in humans (reduces

𝛽
𝑆
) and increases the death rate of the mosquito (increases

𝜇
𝑀
) will be effective in curtailing the spread of chikungunya

virus in the community.
The sensitivity analysis was also carried out using model

(32) without age-structured with R
𝐻
, as the response func-

tion. The dominant parameters in this case are 𝑏
𝑀
, 𝛽
𝑀
, 𝛽
𝐻
,

𝜋
𝑀
, and 𝜇

𝑀
. These results show that the same parameters are

dominant for the two response functions (R
0
andR

𝐻
). This

result further emphasizes the fact that the inclusion of age

structure does not alter the dynamics of the transmission of
the infection.

5. Assessment of Control Strategies

In order to reduce the number of infected human cases, values
of some dominant parameters (the mosquito recruitment
rate (𝜋

𝑀
), the death rate of the mosquito (𝜇

𝑀
), and the

transmission probability per contact in mosquitoes (𝛽
𝑀
)

and in humans (𝛽
𝐽
, 𝛽
𝐴
, and 𝛽

𝑆
)) obtained from the sensi-

tivity analysis were adjusted to capture mosquito-reduction
strategy, personal-protection strategy, and the effect of the
combination of both strategies (universal strategy). The
reduction in the mosquito biting rate, a dominant parameter,
is captured implicitly by the reduction of all the transmission
probabilities. Three effectiveness levels (low, moderate, and
high) were evaluated for each of the strategies using the initial
conditions in Table 4 obtained from [19]. The numbers in
Table 4 were estimated using the 1913 infected individuals
obtained in [19], so that 11% were in the juvenile age group,
73.4% in the adult group, and 15.6% in the seniors group age.
The susceptible population were a total of 3623 individuals
[19]; this population was distributed into juvenile, adult, and
senior age groups based on the 2015 India’s national age
distribution [63], adjusted to match the age profile in [19],
so that 31.2% were juveniles, 60.6% adults, and 8.3% seniors.
The asymptomatic populations were estimated so that 40% of
the infected juveniles were asymptomatic [16] and 25% of the
infected adults and seniors were asymptomatic, respectively
[17, 18]. Table 5 shows the initial conditions used in the
simulation of model (32) without age structure.
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Table 5: Initial conditions used in the simulations of model (32) without age structure.

𝑆
𝐻
(0) = 3623 𝐸

𝐻
(0) = 611 𝐼

𝐴𝐻
(0) = 510 𝐼

𝑆𝐻
(0) = 1913 𝑅

𝐻
(0) = 0

𝑆
𝑀
(0) = 500 𝐸

𝑀
(0) = 100 𝐼

𝑀
(0) = 250.

Table 6: Simulation results of the cumulative number of new cases at 𝑡 = 150 days for the age-structured chikungunya model (10) using
mosquito-reduction strategy and the control profile of model (32) without age structure.

Humans Low effectiveness Moderate effectiveness High effectiveness
Juveniles 154.1849 78.3505 16.6460
Adults 300.8889 153.0260 32.3984
Seniors 41.6331 21.2259 4.4462
Without age structure 471.2875 184.6136 51.9926

The low and high effectiveness levels were set to the upper
and lower bound, respectively, of the ranges used in the
sensitivity analysis and the moderate effectiveness levels were
set to the baseline values. It should be pointed out that the
parameters values and initial conditions used in these simu-
lations are only of theoretical sense to illustrate the control
strategies proposed in this paper.

5.1. Mosquito-Reduction Strategy. A reduction in the birth
rates (𝜋

𝑀
) and the average lifespan (𝜇

𝑀
) of mosquitoes signi-

fies the effectiveness of adulticiding (such as the use of DDT
and indoor residual spraying). For simulation purposes, the
following three effectiveness levels of themosquito-reduction
control strategy are considered:

(1) Low effectiveness of themosquito-reduction strategy:
𝜋
𝑀
= 500 × 0.32/day, 𝜇

𝑀
= (1/21)/day.

(2) Moderate effectiveness of the mosquito-reduction
strategy: 𝜋

𝑀
= 500 × 0.1675/day, 𝜇

𝑀
= (1/14)/day.

(3) High effectiveness of the mosquito-reduction strat-
egy: 𝜋

𝑀
= 500 × 0.015/day, 𝜇

𝑀
= (1/7)/day.

The cumulative number of new cases of infections in juve-
niles, adults, and seniors (see Figure 7) is simulated for the
three effectiveness levels of this strategy. A comparison of
the three effectiveness levels in all the three age groups in
Table 6 at 𝑡 = 150 days (the end of simulation period) shows
that the high-effectiveness mosquito-reduction strategy led
to a considerable reduction in the number of new cases; this
is followed by the moderate-effectiveness level and the low-
effectiveness level produces the most number of new cases.
Thus, there is a clear decrease in the cumulative number of
new cases with increasing effectiveness level.

A look at Table 6 shows the control profile of model (32)
without age structure; as expected, the inclusion of age struc-
ture does not change the overall total number of individuals
following the implementation of each control strategy. How-
ever, the exclusion fails to show the age distribution that will
be required for an age based cost effective control strategy.

5.2. Personal-Protection Strategy. A reduction in the trans-
mission rates (𝛽

𝐽
, 𝛽
𝐴
, 𝛽
𝑆
, 𝛽
𝑀
) implies the effectiveness of

an individual’s protection against mosquito bites, thereby
implicitly leading to a reduction inmosquito biting rate (𝑏

𝑀
).

This is typically achieved by using suitable insect repellents
or similar products.The following three effectiveness levels of
personal protection are considered:

(1) Low effectiveness of the personal-protection strategy:
𝛽
𝐽
= 𝛽
𝐴
= 𝛽
𝑆
= 𝛽
𝑀
= 0.54/day.

(2) Moderate effectiveness of the personal-protection
strategy: 𝛽

𝐽
= 𝛽
𝐴
= 𝛽
𝑆
= 𝛽
𝑀
= 0.24/day.

(3) High effectiveness of the personal-protection strat-
egy: 𝛽

𝐽
= 𝛽
𝐴
= 𝛽
𝑆
= 𝛽
𝑀
= 0.15/day.

Simulations of the age-structured chikungunya model (10)
show a decrease in the cumulative number of new cases
with increasing levels of effectiveness (see Figure 8).The high
effectiveness personal-protection strategy at 𝑡 = 150 days
(the end of simulation period) led to a considerable reduction
in the number of new cases compared to the moderate-
effectiveness level (see Table 7) at the same time period. The
low-effectiveness level performed the poorest producing the
most number of new cases.

The control profile of model (32) without age structure
and the overall total number of individuals following the
implementation of each control strategy is depicted in Table 7
and as expected, the inclusion of age structure does not
change the total number of individuals obtained after imple-
menting each control strategy. Table 7 equally shows the flaw
in excluding age distribution in the transmission model, as
the model lacking age structure fails to show the age distri-
bution required for an efficient and cost effective age based
control strategy.

5.3. Universal Strategy. Simulations for the universal strat-
egy (where both the mosquito-reduction and personal-
protection strategies are implemented at once) are assessed by
simulation of the model for the following three effectiveness
levels:

(1) Low effectiveness of the universal strategy: 𝜋
𝑀

=

500 × 0.32/day, 𝜇
𝑀
= (1/21)/day, 𝛽

𝐽
= 𝛽
𝐴
= 𝛽
𝑀
=

0.54/day.

(2) Moderate effectiveness of the universal strategy:𝜋
𝑀
=

500 × 0.1675/day, 𝜇
𝑀
= (1/14)/day, 𝛽

𝐽
= 𝛽
𝐴
= 𝛽
𝑀
=

0.24/day.
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Table 7: Simulation results of the cumulative number of new cases at 𝑡 = 150 days for the age-structured chikungunya model (10) using
personal-protection strategy and the control profile of model (32) without age structure.

Humans Low effectiveness Moderate effectiveness High effectiveness
Juveniles 154.1849 98.2295 48.7211
Adults 300.8889 192.2149 95.3561
Seniors 41.6331 26.8144 13.3071
Without age structure 471.2875 192.5576 91.4392
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Figure 7: Simulation of age-structured chikungunya model (10) for various effectiveness levels of the mosquito-reduction strategy. (a) The
cumulative number of juveniles’ new cases. (b)The cumulative number of adults’ new cases. (c)The cumulative number of seniors’ new cases.
Parameter values used are as given in Table 3.

(3) High effectiveness of the universal strategy: 𝜋
𝑀

=

500 × 0.015/day, 𝜇
𝑀
= (1/7)/day, 𝛽

𝐽
= 𝛽
𝐴
= 𝛽
𝑀
=

0.15/day.

The cumulative number of new cases of infections in juve-
niles, adults, and seniors is simulated for the three levels

of effectiveness for the universal strategy (see Figure 9).
A comparison of the three effectiveness levels in Table 8 at
𝑡 = 150 days shows that the high-effectiveness level leads
to a considerable reduction in the number of new cases; this
is followed by the moderate-effectiveness level and the low-
effectiveness level produced the most number of new cases.
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Table 8: Simulation results of the cumulative number of new cases at 𝑡 = 150 days for the age-structured chikungunya model (10) using
universal strategy and the control profile of model (32) without age structure.

Humans Low effectiveness Moderate effectiveness High effectiveness
Juveniles 154.1849 38.0114 4.4823
Adults 300.8889 74.2880 8.7228
Seniors 41.6331 10.3224 1.1966
Without age structure 471.2875 81.0076 14.1767
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Figure 8: Simulation of age-structured chikungunya model (10) for various effectiveness levels of the personal-protection strategy. (a) The
cumulative number of juveniles’ new cases. (b)The cumulative number of adults’ new cases. (c)The cumulative number of seniors’ new cases.
Parameter values used are as given in Table 3.

A comparison of the various high-effectiveness levels of
the three control strategies (mosquito-reduction, personal-
protection, and universal strategies) in each individual age
group at 𝑡 = 150 days (see Table 9) shows as expected
that the universal strategy is more effective than the other
two strategies implemented separately. This is followed by

mosquito-reduction strategy which is more effective than the
personal protection strategy in reducing chikungunya disease
burden.

Table 9 also shows the control profile of model (32)
without age structure; as expected, the inclusion of age
structure does not change the overall total number of
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Table 9: Comparison of the cumulative number of new cases at 𝑡 = 150 days for the high-effectiveness levels of the three control strategies
for the age-structured chikungunya model (10) and the control profile of model (32) without age structure.

Human
Age groups Mosquito-reduction strategy Personal-protection strategy Universal strategy

Juveniles 16.6460 48.7211 4.4823
Adults 32.3984 95.3561 8.7228
Seniors 4.4462 13.3071 1.1966
Without age structure 51.9926 91.4392 14.1767

0 50 100 150
Time (days)

Low universal strategy
Moderate universal strategy
High universal strategy

0

20

40

60

80

100

120

140

160

180

Cu
m

ul
at

iv
e n

um
be

r o
f j

uv
en

ile
s' 

ne
w

 ca
se

s

(a)

Low universal strategy
Moderate universal strategy
High universal strategy

0

50

100

150

200

250

300

350

Cu
m

ul
at

iv
e n

um
be

r o
f a

du
lts

' n
ew

 ca
se

s

50 100 1500
Time (days)

(b)

Low universal strategy
Moderate universal strategy
High universal strategy

0

5

10

15

20

25

30

35

40

45

Cu
m

ul
at

iv
e n

um
be

r o
f s

en
io

rs
' n

ew
 ca

se
s

50 100 1500
Time (days)

(c)

Figure 9: Simulation of age-structured chikungunya model (10) for various effectiveness levels of the universal strategy. (a) The cumulative
number of juveniles’ new cases. (b)The cumulative number of adults’ new cases. (c)The cumulative number of seniors’ new cases. Parameter
values used are as given in Table 3.

individuals following the implementation of each control
strategy. However, the exclusion fails to show the detailed
age distribution that will be required for an effective
age based control strategy which in turn will be cost
effective.

6. Discussion and Conclusion

In this paper, a new deterministic model is designed and
used to study the transmission dynamics of an age-structured
chikungunya model. The model stratified the population
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by age into juveniles, adults, and seniors and incorporates
notable features such as the inclusion of asymptomatic and
symptomatic individuals. In order to reduce the number of
chikungunya cases, three different control strategies (involv-
ing mosquito-reduction strategy, personal-protection strat-
egy, and universal strategy) with three different effectiveness
levels (low, moderate, and high) were implemented.

The study shows that the disease-free equilibrium of the
model is locally and globally asymptotically stable whenever
the associated reproduction number (R

0
, an epidemiological

threshold quantity that measures the spreading capacity of
the disease) is less than unity and unstable otherwise. The
model is shown from this study to exhibit in the presence
of disease induced mortality the phenomenon of backward
bifurcation, where the stable disease-free equilibrium coex-
ists with a stable endemic equilibrium, when the associated
reproduction number is less than unity. Furthermore, the
study shows that the inclusion of age structure to the chikun-
gunya virus transmission model does not alter its qualitative
dynamics with respect to the local and global stability of the
disease-free equilibrium (DFE), as well as with respect to its
backward bifurcation property.

This study identifies (via sensitivity analysis) the dom-
inant parameters using as model outcome the basic repro-
duction number. The parameters with the largest impact are
the mosquito biting rate, the transmission probability per
contact in mosquitoes and in humans, mosquito recruitment
rate, and the death rate of the mosquitoes. The study further
shows that the inclusion of age structure does not alter the
sensitivity and dominance of the dominant parameters of the
chikungunya virus transmission model. The identification of
these key parameters is vital to the formulation of effective
control strategies for combating the spread of the disease. In
other words, the results of this sensitivity analysis suggest that
a strategy that reduces the mosquito biting rate, the mosquito
recruitment rate, and the transmission probability per contact
in mosquitoes and in humans and increases the death rate
of the mosquito will be effective in curtailing the spread of
chikungunya virus in the community.

Thus, this study shows that even though age distribution
is observed in the various epidemics in India [19, 20], Thai-
land [21], and Reunion Islands [5, 22] and across Europe [23],
the inclusion of age does not alter the qualitative dynamics of
the chikungunya virus transmission model. This implies that
the transmission dynamics can be adequately studiedwithout
including age structure as observed in the epidemic areas.
However, the exclusion of the age structure fails to show the
age distribution necessary for adequate and effective control,
as shown in Tables 6, 7, 8, and 9. In other words, the model
with the exclusion of age structurewill lead to a one size fits all
blanket control for the entire population.

In order to reduce the number of infected cases, different
parameters values were adjusted using the results from the
sensitivity analysis. The control strategies were implemented
for several cases (mosquito-reduction strategy, personal-
protection strategy, and universal strategy) with three dif-
ferent effectiveness levels (low, moderate, and high) using

as output measure the cumulative number of new cases of
infections in juveniles, adults, and seniors. The results show
that the cumulative number of new cases of infections in juve-
niles, adults, and seniors decreases with increasing effective-
ness level, with the high-effectiveness level producing a con-
siderable reduction in the number of new cases. Further com-
parison of the three control strategies (mosquito reduction,
personal-protection, and universal strategies) shows that the
universal strategy is more effective in reducing the number
of new cases than the other two strategies implemented
separately. This is followed by mosquito-reduction strategy
which is more effective than the personal-protection strategy
in reducing chikungunya disease burden in the community.
However, to determine the best and most cost effective strat-
egy, a cost-effectiveness analysis will need to be carried out
[64]; this is a future work that is been considered in another
paper.

Hence, in this paper, we formulated and analyzed a system
of ordinary differential equations for an age-structure trans-
mission dynamics of chikungunya virus. Some of theoretical
and epidemiological findings of this study are summarized
below:

(i) The age-structured chikungunya model (10) is locally
and globally asymptotically stable (LAS) whenR

0
<

1 and unstable whenR
0
> 1.

(ii) Themodel exhibits in the presence of disease induced
mortality the phenomenon of backward bifurcation,
where the stable disease-free equilibrium coexists
with a stable endemic equilibrium, when the associ-
ated reproduction number is less than unity.

(iii) The inclusion of age structure to the chikungunya
transmission model (10) does not alter its qualitative
dynamics with respect to the local and global stability
of the DFE, as well as with respect to its backward
bifurcation property.

(iv) The sensitivity analysis of the model shows that
the dominant parameters are the mosquito biting
rate (𝑏

𝑀
), the transmission probability per contact

in mosquitoes (𝛽
𝑀
) and in humans (𝛽

𝑆
), mosquito

recruitment rate (𝜋
𝑀
), and the death rate of the

mosquitoes (𝜇
𝑀
).

(v) The inclusion of age structure does not alter the sensi-
tivity and dominance of the dominant parameters of
the age-structured chikungunya model (10).

(vi) Thenumerical simulations reveal that the exclusion of
age structure fails to show the age distribution needed
for an age based effective control strategy, leading to a
one size fits all blanket control for the entire popula-
tion.

(vii) Numerical simulations indicate thatmosquito-reduc-
tion strategy is more effective than personal-protec-
tion strategy, while the universal strategy is the most
effective strategy in reducing chikungunya disease
burden in the community.
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Appendices

A. Derivation of (1)

Humans (susceptible and infected) are bitten by mosquitoes;
thus, the average number of mosquito bites humans receive
(denoted by 𝑏

𝑀
) depends on the humans in the community

and the total size of the populations of mosquitoes [65].Thus,
it is reasonable to assume that the biting rate 𝑏

𝑀
is constant

as female mosquitoes have certain number of blood meals
over their lifetime [66]. Let 𝑏

𝐻
be the rate at which bites are

received by a single host per unit time. Thus, for the number
of bites to be conserved, the following conservation law must
hold (i.e., the total number of bites by mosquitoes equals the
total number of bites received by humans):

𝑏
𝑀
𝑁
𝑀
= 𝑏
𝐻
(𝑁
𝐻
, 𝑁
𝑀
)𝑁
𝐻
, (A.1)

so that

𝑁
𝑀
=
𝑏
𝐻
(𝑁
𝐻
, 𝑁
𝑀
)𝑁
𝐻

𝑏
𝑀

. (A.2)

Let 𝛽
𝐽
𝑏
𝐻
be the effective contact rate between a susceptible

juvenile and infectious mosquitoes, where 𝛽
𝐽
is the transmis-

sion probability per contact from an infectious mosquito to a
susceptible juvenile. Similarly, let 𝛽

𝑀
𝑏
𝑀
be the effective con-

tact rate between a susceptible mosquito and infectious juve-
niles, where 𝛽

𝑀
is the transmission probability per contact

from an infectious juvenile to a susceptible mosquito. Thus,
susceptible juveniles acquire infection, following effective
contact with an infectious vector, at a rate 𝜆

𝐽
, given by

𝜆
𝐽
=

𝛽
𝐽
𝑏
𝐻
(𝑁
𝐻
, 𝑁
𝑀
) 𝐼
𝑀

𝑁
𝑀

. (A.3)

Using (A.1) in (A.3) gives

𝜆
𝐽
=

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀

𝑁
𝐻

. (A.4)

B. Proof of Lemma 1

Proof. Let 𝑡
1
= sup{𝑡 > 0 : 𝐹(𝑡) > 0 ∈ [0, 𝑡]}. Thus, 𝑡

1
> 0. It

follows from the first equation of system (10) that
𝑑𝑆
𝐽

𝑑𝑡
= 𝜋
𝐽
−

𝛽
𝐽
𝑏
𝑀
𝑆
𝐽
𝐼
𝑀

𝑁
𝐻

− 𝛼𝑆
𝐽
− 𝜇
𝐽
𝑆
𝐽
, (B.1)

which can be rewritten as
𝑑

𝑑𝑡
{𝑆
𝐽 (𝑡) exp[(∫

𝑡1

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑡)]}

= 𝜋
𝐽
exp[(∫

𝑡1

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑡)] ,

(B.2)

where 𝑘
1
= 𝛼 + 𝜇

𝐽
. Hence,

𝑆
𝐽
(𝑡
1
) exp[(∫

𝑡1

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑡
1
)] − 𝑆

𝐽 (0)

= ∫

𝑡1

0

𝜋
𝐽
exp[(∫

𝑝

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑝)]𝑑𝑝

(B.3)

so that

𝑆
𝐽
(𝑡
1
) = 𝑆
𝐽 (0) exp[−(∫

𝑡1

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑡
1
)]

+ exp[−(∫
𝑡1

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑡
1
)]

⋅ ∫

𝑡1

0

𝜋
𝐽
exp[(∫

𝑝

0

𝛽
𝐽
𝑏
𝑀
𝐼
𝑀 (𝜁)

𝑁
𝐻 (𝜁)

𝑑𝜁 + 𝑘
1
𝑝)]𝑑𝑝

> 0.

(B.4)

Similarly, it can be shown that 𝐹 > 0 for all 𝑡 > 0.
For the second part of the proof, note that 0 < 𝐸

𝐽
(𝑡) ≤

𝑁
𝐻
(𝑡), 0 < 𝐼

𝑆𝐽
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝐼

𝐴𝐽
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝑅

𝐽
(𝑡) ≤

𝑁
𝐻
(𝑡), 0 < 𝑆

𝐴
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝐸

𝐴
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝐼

𝐴𝐴
(𝑡) ≤

𝑁
𝐻
(𝑡), 0 < 𝐼

𝑆𝐴
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝑅

𝐴
(𝑡) < 𝑁

𝐻
(𝑡), 0 < 𝑆

𝑆
(𝑡) ≤

𝑁
𝐻
(𝑡), 0 < 𝐸

𝑆
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝐼

𝐴𝑆
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝐼

𝑆𝑆
(𝑡) ≤

𝑁
𝐻
(𝑡), 0 < 𝑅

𝑆
(𝑡) ≤ 𝑁

𝐻
(𝑡), 0 < 𝑆

𝑀
(𝑡) ≤ 𝑁

𝑀
(𝑡), 0 < 𝐸

𝑀
(𝑡) ≤

𝑁
𝑀
(𝑡), 0 < 𝐼

𝑀
(𝑡) ≤ 𝑁

𝑀
(𝑡).

Adding the human and mosquito component of the age-
structured chikungunya model (10) gives

𝑑𝑁
𝐻 (𝑡)

𝑑𝑡
= 𝜋
𝐽
− 𝜇
𝐽
𝑁
𝐻 (𝑡) ,

𝑑𝑁
𝑀 (𝑡)

𝑑𝑡
= 𝜋
𝑀
− 𝜇
𝑀
𝑁
𝑀 (𝑡) ,

(B.5)

where 𝜇
𝐻
= min{𝜇

𝐽
, 𝜇
𝐴
, 𝜇
𝑆
}.

Hence,
𝜋
𝐽

𝜇
𝐻

≤ lim inf
𝑡→∞

𝑁
𝐻 (𝑡) ≤ lim sup

𝑡→∞

𝑁
𝐻 (𝑡) =

𝜋
𝐽

𝜇
𝐻

,

𝜋
𝑀

𝜇
𝑀

≤ lim inf
𝑡→∞

𝑁
𝑀 (𝑡) = lim sup

𝑡→∞

𝑁
𝑀 (𝑡) =

𝜋
𝑀

𝜇
𝑀

(B.6)

as required.

C. Proof of Lemma 2

Proof. The following steps are followed to establish the
positive invariance ofΩ (i.e., solutions inΩ remain inΩ for all
𝑡 > 0). The rate of change of the total population is obtained
by adding the human and mosquito component of the age-
structured chikungunya model (10) to give

𝑑𝑁
𝐻 (𝑡)

𝑑𝑡
= 𝜋
𝐽
− 𝜇
𝐻
𝑁
𝐻 (𝑡) ,

𝑑𝑁
𝑀 (𝑡)

𝑑𝑡
= 𝜋
𝑀
− 𝜇
𝑀
𝑁
𝑀 (𝑡) ,

(C.1)

where 𝜇
𝐻
= min{𝜇

𝐽
, 𝜇
𝐴
, 𝜇
𝑆
}.

A standard comparison theorem [67] can then be used
to show that 𝑁

𝐻
(𝑡) ≤ 𝑁

𝐻
(0)𝑒
−𝜇𝐻𝑡 + (𝜋

𝐽
/𝜇
𝐻
)(1 − 𝑒

−𝜇𝐻𝑡) and
𝑁
𝑀
(𝑡) ≤ 𝑁

𝑀
(0)𝑒
−𝜇𝑀𝑡 + (𝜋

𝑀
/𝜇
𝑀
)(1 − 𝑒

−𝜇𝑀𝑡). In particular,
𝑁
𝐻
(𝑡) ≤ 𝜋

𝐽
/𝜇
𝐻
, if 𝑁
𝐻
(0) ≤ 𝜋

𝐽
/𝜇
𝐻
and 𝑁

𝑀
(𝑡) ≤ 𝜋

𝑀
/𝜇
𝑀
, if

𝑁
𝑀
(0) ≤ 𝜋

𝑀
/𝜇
𝑀
. Thus, the region Ω is positively invariant.
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Hence, it is sufficient to consider the dynamics of the flow
generated by (10) in Ω. In this region, the model is epidemi-
ologically and mathematically well posed [45]. Thus, every
solution of the age-structured chikungunya model (10) with
initial conditions in Ω remains in Ω for all 𝑡 > 0. Therefore,
the 𝜔-limit sets of the system (10) are contained in Ω. This
result is summarized below.

D. Proof of Lemma 4

Proof. It follows from the first equation of age-structured
chikungunya model (10) (where 𝑆∗

𝐽
= 𝜋
𝐽
/(𝛼 + 𝜇

𝐽
)) that

𝑑𝑆
𝐽 (𝑡)

𝑑𝑡
= 𝜋
𝐽
−

𝛽
𝐽
𝑏
𝑀
𝑆
𝐽
𝐼
𝑀

𝑁
𝐻

− (𝛼 + 𝜇
𝐽
) 𝑆
𝐽 (𝑡)

≤ 𝜋
𝐽
− (𝛼 + 𝜇

𝐽
) 𝑆
𝐽 (𝑡)

≤ (𝛼 + 𝜇
𝐽
) [

𝜋
𝐽

(𝛼 + 𝜇
𝐻
)
− 𝑆
𝐽 (𝑡)]

= (𝛼 + 𝜇
𝐽
) [𝑆
∗

𝐽
− 𝑆
𝐽 (𝑡)] .

(D.1)

Hence,

𝑆
𝐽 (𝑡) ≤ 𝑆

∗

𝐽
− [𝑆
∗

𝐽
− 𝑆
𝐽 (0)] 𝑒

−(𝛼+𝜇𝐽)𝑡
. (D.2)

Thus, if 𝑁∗
𝐻
= Π
𝐽
/𝜇
𝐻
and 𝑆

𝐽
(0) ≤ 𝑆

∗

𝐽
for all 𝑡 ≥ 0, then

𝑆
𝐽
(𝑡) ≤ 𝑆

∗

𝐽
for all 𝑡 ≥ 0.

Similarly, it follows from the sixth equation of age-
structured chikungunya model (10) (where 𝑆∗

𝐴
= (𝜋
𝐽
/(𝛼 +

𝜇
𝐽
))(𝛼/(𝜉 + 𝜇

𝐴
)) that

𝑑𝑆
𝐴 (𝑡)

𝑑𝑡
= 𝛼𝑆
𝐽 (𝑡) −

𝛽
𝐴
𝑏
𝑀
𝑆
𝐴
𝐼
𝑀

𝑁
𝐻

− (𝜉 + 𝜇
𝐴
) 𝑆
𝐴 (𝑡)

≤ 𝛼𝑆
𝐽 (𝑡) − (𝜉 + 𝜇𝐴) 𝑆𝐴 (𝑡)

≤ 𝛼𝑆
∗

𝐽
− (𝜉 + 𝜇

𝐴
) 𝑆
𝐴 (𝑡) , since 𝑆

𝐽
< 𝑆
∗

𝐽

≤ 𝛼

𝜋
𝐽

(𝛼 + 𝜇
𝐽
)
− (𝜉 + 𝜇

𝐴
) 𝑆
𝐴 (𝑡)

≤ (𝜉 + 𝜇
𝐻
) [

𝜋
𝐽

(𝛼 + 𝜇
𝐽
)

𝛼

(𝜉 + 𝜇
𝐴
)
− 𝑆
𝐴 (𝑡)]

= (𝜉 + 𝜇
𝐴
) [𝑆
∗

𝐴
− 𝑆
𝐴 (𝑡)] .

(D.3)

Thus,

𝑆
𝐴 (𝑡) ≤ 𝑆

∗

𝐴
− [𝑆
∗

𝐴
− 𝑆
𝐴 (0)] 𝑒

−(𝜉+𝜇𝐴)𝑡
. (D.4)

Thus, if 𝑆
𝐴
(0) ≤ 𝑆

∗

𝐴
for all 𝑡 ≥ 0, then 𝑆

𝐴
(𝑡) ≤ 𝑆

∗

𝐴
for all 𝑡 ≥ 0.

Furthermore, it follows from the eleventh equation of age-
structured chikungunyamodel (10) (where 𝑆∗

𝑆
= 𝜉𝜋
𝐽
𝛼/𝜇
𝑆
(𝛼+

𝜇
𝐽
)(𝜉 + 𝜇

𝐴
)) that

𝑑𝑆
𝑆 (𝑡)

𝑑𝑡
= 𝜉𝑆
𝐴 (𝑡) −

𝛽
𝑆
𝑏
𝑀
𝑆
𝑆
𝐼
𝑀

𝑁
𝐻

− 𝜇
𝑆
𝑆
𝑆 (𝑡)

≤ 𝜉𝑆
𝐴 (𝑡) − 𝜇𝑆𝑆𝑆 (𝑡) ≤ 𝜉𝑆

∗

𝐴
(𝑡) − 𝜇𝑆𝑆𝑆 (𝑡) ,

since 𝑆
𝐴
< 𝑆
∗

𝐴

≤ 𝜉

𝜋
𝐽
𝛼

(𝛼 + 𝜇
𝐽
) (𝜉 + 𝜇

𝐴
)
− 𝜇
𝑆
𝑆
𝑆 (𝑡)

≤ 𝜇
𝑆
[

𝜉𝜋
𝐽
𝛼

𝜇
𝑆
(𝛼 + 𝜇

𝐽
) (𝜉 + 𝜇

𝐴
)
− 𝑆
𝑆 (𝑡)]

= 𝜇
𝑆
[𝑆
∗

𝑆
− 𝑆
𝑆 (𝑡)] .

(D.5)

Thus,

𝑆
𝑆 (𝑡) ≤ 𝑆

∗

𝑆
− [𝑆
∗

𝑆
− 𝑆
𝑆 (0)] 𝑒

−𝜇𝑆𝑡
. (D.6)

Hence, if 𝑆
𝑆
(0) ≤ 𝑆

∗

𝑆
for all 𝑡 ≥ 0, then 𝑆

𝑆
(𝑡) ≤ 𝑆

∗

𝑆
for all 𝑡 ≥ 0.

Finally, it follows from the fifteenth equation of age-
structured chikungunya model (10) that

𝑑𝑆
𝑀 (𝑡)

𝑑𝑡

= 𝜋
𝑀

− 𝛽
𝑀
𝑏
𝑀
[

𝐼
𝐴𝐽
+ 𝐼
𝑆𝐽
+ 𝐼
𝐴𝐴

+ 𝐼
𝑆𝐴
+ 𝐼
𝐴𝑆
+ 𝐼
𝑆𝑆

𝑁
𝐻

] 𝑆
𝑀

− 𝜇
𝑀
𝑆
𝑀 (𝑡) ≤ 𝜋𝑀 − 𝜇𝑀𝑆𝑀 (𝑡)

≤ 𝜇
𝑀
[
𝜋
𝑀

𝜇
𝑀

− 𝑆
𝑀 (𝑡)] = 𝜇𝑀 [𝑆

∗

𝑀
− 𝑆
𝑀 (𝑡)] .

(D.7)

Thus,

𝑆
𝑀 (𝑡) ≤ 𝑆

∗

𝑀
− [𝑆
∗

𝑀
− 𝑆
𝑀 (0)] 𝑒

−𝜇𝑀𝑡
. (D.8)

Hence, if 𝑁∗
𝑀
= 𝜋
𝑀
/𝜇
𝑀

and 𝑆
𝑀
(0) ≤ 𝑆

∗

𝑀
for all 𝑡 ≥ 0, then

𝑆
𝑀
(𝑡) ≤ 𝑆

∗

𝑀
for all 𝑡 ≥ 0.

Thus, in summary, it has been shown that the region Ω
1

is positively invariant and attracts all solutions in R18
+
for the

age-structured model (10).

E. Proof of Theorem 5

Proof. To prove the global stability of the DFE, we will follow
the approach in [68].

Let 𝑋 = (𝑆
𝐽
, 𝑅
𝐽
, 𝑆
𝐴
, 𝑅
𝐴
, 𝑆
𝑆
, 𝑅
𝑆
, 𝑆
𝑀
) and 𝑍 = (𝐸

𝐽
, 𝐼
𝐴𝐽
, 𝐼
𝑆𝐽
,

𝐸
𝐴
, 𝐼
𝐴𝐴
, 𝐼
𝑆𝐴
, 𝐸
𝑆
, 𝐼
𝐴𝑆
, 𝐼
𝑆𝑆
, 𝐸
𝑀
, 𝐼
𝑀
) and group system (10) into

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 0) ,

𝑑𝑍

𝑑𝑡
= 𝐺 (𝑋, 𝑍) ,

(E.1)
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where 𝐹(𝑋, 0) is the right hand side of ̇𝑆
𝐽
, ̇𝑅
𝐽
, ̇𝑆
𝐴
, ̇𝑅
𝐴
, ̇𝑆
𝑆
, ̇𝑅
𝑆
,

and ̇𝑆
𝑀
with 𝐸

𝐽
= 𝐼
𝐴𝐽
= 𝐼
𝑆𝐽
= 𝐸
𝐴
= 𝐼
𝐴𝐴

= 𝐼
𝑆𝐴
= 𝐸
𝑆
= 𝐼
𝐴𝑆

=

𝐼
𝑆𝑆
= 𝐸
𝑀
= 𝐼
𝑀
= 0 and 𝐺(𝑋,𝑍) is the right hand side of ̇𝐸

𝐽
,

̇𝐼
𝐴𝐽
, ̇𝐼
𝑆𝐽
, ̇𝐸
𝐴
, ̇𝐼
𝐴𝐴

, ̇𝐼
𝑆𝐴
, ̇𝐸
𝑆
, ̇𝐼
𝐴𝑆
, ̇𝐼
𝑆𝑆
, ̇𝐸
𝑀
, and ̇𝐼

𝑀
.

Next, consider the reduced system 𝑑𝑋/𝑑𝑡 = 𝐹(𝑋, 0) given
as follows:

𝑑𝑆
𝐽

𝑑𝑡
= 𝜋
𝐽
− (𝛼 + 𝜇

𝐽
) 𝑆
𝐽
,

𝑑𝑅
𝐽

𝑑𝑡
= − (𝛼 + 𝜇

𝐽
) 𝑅
𝐽
,

𝑑𝑆
𝐴

𝑑𝑡
= 𝛼𝑆
𝐽
− (𝜉 + 𝜇

𝐴
) 𝑆
𝐴
,

𝑑𝑅
𝐴

𝑑𝑡
= 𝛼𝑅
𝐽
− (𝜉 + 𝜇

𝐴
) 𝑅
𝐴
,

(E.2)

𝑑𝑆
𝑆

𝑑𝑡
= 𝜉𝑆
𝐴
− 𝜇
𝑆
𝑆
𝑆
,

𝑑𝑅
𝑆

𝑑𝑡
= 𝜉𝑅
𝐴
− 𝜇
𝑆
𝑅
𝑆
,

𝑑𝑆
𝑀

𝑑𝑡
= 𝜋
𝑀
− 𝜇
𝑀
𝑆
𝑀
.

(E.3)

Let

𝑋
∗
= (𝑆
∗

𝐽
, 𝑅
∗

𝐽
, 𝑆
∗

𝐴
, 𝑅
∗

𝐴
, 𝑆
∗

𝑆
, 𝑅
∗

𝑆
, 𝑆
∗

𝑀
)

= (

𝜋
𝐽

𝛼 + 𝜇
𝐽

, 0,

𝛼𝑆
∗

𝐽

(𝜉 + 𝜇
𝐴
)
, 0,

𝜉𝑆
∗

𝐴

𝜇
𝑆

, 0,
𝜋
𝑀

𝜇
𝑀

)

(E.4)

be an equilibrium of the reduced system (E.2) and (E.3); we
show that𝑋∗ is a globally stable equilibrium inΩ

1
.

To do this, solve the first and second equation of (E.2)
and (E.3); this gives 𝑆

𝐽
(𝑡) = 𝜋

𝐽
/𝑙
1
+ 𝑒
−𝑙1𝑡[𝑆
𝐽
(0) − 𝜋

𝐽
/𝑙
1
],

𝑅
𝐽
(𝑡) = 𝑅

𝐽
(0)𝑒
−𝑙1𝑡 (where 𝑙

1
= 𝛼 + 𝜇

𝐽
), which approaches

𝜋
𝐽
/𝑙
1
and zero, respectively, as 𝑡 → ∞. Next, solving for

𝑆
𝐴
(𝑡) and 𝑅

𝐴
(𝑡) and using 𝑆

𝐽
(𝑡) and 𝑅

𝐽
(𝑡) in (E.2) and (E.3)

give 𝑆
𝐴
(𝑡) = [∫

𝑡

0
𝛼𝑆
𝐽
(𝑧)𝑒
𝑙2𝑧𝑑𝑧 + 𝑆

𝐴
(0)]𝑒
−𝑙2𝑡 and 𝑅

𝐴
(𝑡) =

[∫
𝑡

0
𝛼𝑅
𝐽
(𝑧)𝑒
𝑙2𝑧𝑑𝑧 + 𝑅

𝐴
(0)]𝑒
−𝑙2𝑡 (where 𝑙

2
= 𝜉 + 𝜇

𝐴
), which

converges, respectively, to 𝜋
𝐽
𝛼/𝑙
1
𝑙
2
and zero as 𝑡 → ∞.

Similarly, solving for 𝑆
𝑆
(𝑡) and 𝑅

𝑆
(𝑡) and using 𝑆

𝐴
(𝑡) and

𝑅
𝐴
(𝑡) in (E.2) give 𝑆

𝑆
(𝑡) = [∫

𝑡

0
𝜉𝑆
𝐴
(𝑧)𝑒
𝜇𝑆𝑧𝑑𝑧 + 𝑆

𝑆
(0)]𝑒
−𝜇𝑆𝑡 and

𝑅
𝑆
(𝑡) = [∫

𝑡

0
𝛼𝑅
𝐴
(𝑧)𝑒
𝜇𝑆𝑧𝑑𝑧 + 𝑅

𝑆
(0)]𝑒
−𝜇𝑆𝑡 which converges to

𝜋
𝐽
𝛼𝜉/𝑙
1
𝑙
2
𝜇
𝑆
and zero as 𝑡 → ∞. Lastly solving for 𝑆

𝑀
(𝑡) in

(E.2) gives 𝑆
𝑀
(𝑡) = 𝜋

𝑀
/𝜇
𝑀
+ 𝑒
−𝜇𝑀𝑡[𝑆

𝑀
(0) − 𝜋

𝑀
/𝜇
𝑀
] which

converges to 𝜋
𝑀
/𝜇
𝑀
, as 𝑡 → ∞.

These asymptotic dynamics are independent of initial
conditions inΩ. Hence, the convergence of solutions of (E.2)
and (E.3) is global in Ω

1
. Next, we require 𝐺(𝑋,𝑍) to satisfy

the following two conditions given in [69, page 246], namely,

(i) 𝐺(𝑋, 0) = 0;
(ii) 𝐺(𝑋,𝑍) = 𝐷

𝑍
𝐺(𝑋
∗
, 0)𝑍 − �̂�(𝑋, 𝑍), �̂�(𝑋, 𝑍) ≥ 0,

where (𝑋∗, 0) = (𝜋
𝐽
/(𝛼 + 𝜇

𝐽
), 0, 𝛼𝑆

∗

𝐽
/(𝜉 + 𝜇

𝐴
), 0, 𝜉𝑆

∗

𝐴
/𝜇
𝑆
, 0,

𝜋
𝑀
/𝜇
𝑀
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and𝐷

𝑍
𝐺(𝑋
∗
, 0) is the Jaco-

bian of 𝐺(𝑋,𝑍) taken with respect to (𝐸
𝐽
, 𝐼
𝐴𝐽
, 𝐼
𝑆𝐽
, 𝐸
𝐴
,

𝐼
𝐴𝐴
, 𝐼
𝑆𝐴
, 𝐸
𝑆
, 𝐼
𝐴𝑆
, 𝐼
𝑆𝑆
, 𝐸
𝑀
, 𝐼
𝑀
) and evaluated at (𝑋∗, 0), which

is an𝑀-matrix (the off diagonal elements are nonnegative).
Thus,

𝐷
𝑍
𝐺 (𝑋
∗
, 0) =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑘
2

0 0 0 0 0 0 0 0 0 Ψ
𝐽

𝜀
𝐽
𝜎
𝐽

−𝑘
3

0 0 0 0 0 0 0 0 0

(1 − 𝜀
𝐽
) 𝜎
𝐽

0 −𝑘
4

0 0 0 0 0 0 0 0

𝛼 0 0 −𝑘
7

0 0 0 0 0 0 Ψ
𝐴

0 𝛼 0 𝜀
𝐴
𝜎
𝐴

−𝑘
8

0 0 0 0 0 0

0 0 𝛼 (1 − 𝜀
𝐴
) 𝜎
𝐴

0 −𝑘
9

0 0 0 0 0

0 0 0 𝜉 0 0 −𝑘
11

0 0 0 Ψ
𝑆

0 0 0 0 𝜉 0 𝜀
𝑆
𝜎
𝑆

−𝑘
12

0 0 0

0 0 0 0 0 𝜉 (1 − 𝜀
𝑆
) 𝜎
𝑆

0 −𝑘
13

0 0

0 Ψ
𝑀

Ψ
𝑀

0 Ψ
𝑀

Ψ
𝑀

0 Ψ
𝑀

Ψ
𝑀

−𝑘
14

0

0 0 0 0 0 0 0 0 0 𝜎
𝑀

−𝜇
𝑀

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (E.5)
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where Ψ
𝐽
= 𝛽
𝐽
𝑏
𝑀
𝑆
∗

𝐽
/𝑁
∗

𝐻
, Ψ
𝐴
= 𝛽
𝐴
𝑏
𝑀
𝑆
∗

𝐴
/𝑁
∗

𝐻
, Ψ
𝑆
= 𝛽
𝑆
𝑏
𝑀
𝑆
∗

𝑆
/

𝑁
∗

𝐻
, Ψ
𝑀
= 𝑏
𝑀
𝛽
𝑀
𝑆
∗

𝑀
/𝑁
∗

𝐻
, and

�̂� (𝑋, 𝑍) =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 0 0 0 0 0 0 0 0 Φ
𝐽
𝐼
𝑀

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Φ
𝐴
𝐼
𝑀

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Φ
𝑆
𝐼
𝑀

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 Φ
𝑀
𝐼
𝐴𝐽

Φ
𝑀
𝐼
𝑆𝐽

0 Φ
𝑀
𝐼
𝐴𝐴

Φ
𝑀
𝐼
𝑆𝐴

0 Φ
𝑀
𝐼
𝐴𝑆

Φ
𝑀
𝐼
𝑆𝑆

0 0

0 0 0 0 0 0 0 0 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (E.6)

where Φ
𝐽
= 𝛽
𝐽
𝑏
𝑀
(𝑆
∗

𝐽
/𝑁
∗

𝐻
)((1 − (𝑁

∗

𝐻
/𝑆
∗

𝐽
)(𝑆
𝐽
/𝑁
𝐻
)), Φ
𝐴
=

𝛽
𝐴
𝑏
𝑀
(𝑆
∗

𝐴
/𝑁
∗

𝐻
)(1 − (𝑁

∗

𝐻
/𝑆
∗

𝐴
)(𝑆
𝐴
/𝑁
𝐻
)), Φ
𝑆

= 𝛽
𝑆
𝑏
𝑀
(𝑆
∗

𝑆
/

𝑁
∗

𝐻
)(1 − (𝑁

∗

𝐻
/𝑆
∗

𝑆
)(𝑆
𝑆
/𝑁
𝐻
)), and Φ

𝑀
= 𝑏
𝑀
𝛽
𝑀
(𝑆
∗

𝑀
/𝑁
∗

𝐻
)(1 −

(𝑁
∗

𝐻
𝑆
𝑀
/𝑆
∗

𝑀
𝑁
𝐻
)). Furthermore, 𝑆∗

𝐽
= (𝜋
𝐽
/𝑘
1
), 𝑆∗
𝐴
= (𝜋
𝐽
𝛼/

𝑘
1
𝑘
6
), 𝑆∗
𝑆
= (𝜋
𝐽
𝛼𝜉/𝑘
1
𝑘
6
𝜇
𝐻
), 𝑁∗
𝐻

= (𝜋
𝐻
/𝜇
𝐻
), and 𝑆

∗

𝑀
=

(𝜋
𝑀
/𝜇
𝑀
). We have in Ω

1
that, 𝑆

𝐽
≤ 𝑆
∗

𝐽
, 𝑆
𝐴
≤ 𝑆
∗

𝐴
, 𝑆
𝑆
≤ 𝑆
∗

𝑆
,

and also 𝑆
𝑀

≤ 𝑆
∗

𝑀
. Thus, if the human population is at

equilibrium level, it follows that (1 − (𝑁∗
𝐻
/𝑆
∗

𝐽
)(𝑆
𝐽
/𝑁
𝐻
)) > 0,

(1 − (𝑁
∗

𝐻
/𝑆
∗

𝐴
)(𝑆
𝐴
/𝑁
𝐻
)) > 0, (1 − (𝑁∗

𝐻
/𝑆
∗

𝑆
)(𝑆
𝑆
/𝑁
𝐻
)) > 0, and

(1 − (𝑆
𝑀
𝑁
∗

𝐻
/𝑁
𝐻
𝑆
∗

𝑀
)) > 0; hence �̂�

2
(𝑋, 𝑍) ≥ 0. Therefore, by

the theorem in [69, page 246], the disease-free equilibrium is
globally asymptotically stable since in the absence of disease
induced mortality the human population is constant.

F. Components of the Equilibrium
E
1

of Model (29)

Consider

𝑆
∗∗

𝐽
=

𝜋
2

𝐽

(𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝑘
1
𝜋
𝐽
)
,

𝐸
∗∗

𝐽
=

𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝜋
𝐽

𝑘
2
(𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝑘
1
𝜋
𝐽
)
,

𝐼
∗∗

𝐴𝐽
=

𝜀
𝐽
𝜎
𝐽
𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝜋
𝐽

𝑘
3
𝑘
2
(𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝑘
1
𝜋
𝐽
)
,

𝐼
∗∗

𝑆𝐽
=

(1 − 𝜀
𝐽
) 𝜎
𝐽
𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝜋
𝐽

𝑘
4
𝑘
2
(𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝑘
1
𝜋
𝐽
)
,

𝑅
∗∗

𝐽
=

𝜎
𝐽
𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝜋
𝐽
[𝛾
𝐴𝐽
𝑘
4
𝜀
𝐽
+ 𝛾
𝑆𝐽
(1 − 𝜀

𝐽
) 𝑘
3
]

𝑘
5
𝑘
4
𝑘
3
𝑘
2
(𝛽
𝐽
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝑘
1
𝜋
𝐽
)

,

𝑆
∗∗

𝐴
=

𝛼𝑆
∗∗

𝐽
𝜋
𝐽

(𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝑘
6
)
,

𝐸
∗∗

𝐴
=

𝛼 (𝐸
∗∗

𝐽
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝐸
∗∗

𝐽
𝜋
𝐽
𝑘
6
+ 𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐽
)

𝑘
7
(𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝑘
6
)

,

𝐼
∗∗

𝐴𝐴
=

𝛼 [𝐼
∗∗

𝐴𝐽
𝑘
7
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝐼
∗∗

𝐴𝐽
𝑘
7
𝜋
𝐽
𝑘
6
+ 𝜀
𝐴
𝜎
𝐴
𝐸
∗∗

𝐽
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜀
𝐴
𝜎
𝐴
𝐸
∗∗

𝐽
𝜋
𝐽
𝑘
6
+ 𝜀
𝐴
𝜎
𝐴
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐽
]

[𝑘
8
𝑘
7
(𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝑘
6
)]

,
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𝐼
∗∗

𝑆𝐴

=

𝛼 [𝐼
∗∗

𝑆𝐽
𝑘
7
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝐼
∗∗

𝑆𝐽
𝑘
7
𝜋
𝐽
𝑘
6
+ (1 − 𝜀

𝐽
) 𝜎
𝐴
𝐸
∗∗

𝐽
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ (1 − 𝜀

𝐽
) 𝜎
𝐴
𝐸
∗∗

𝐽
𝜋
𝐽
𝑘
6
+ (1 − 𝜀

𝐽
) 𝜎
𝐴
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐽
]

[𝑘
9
𝑘
7
(𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝑘
6
)]

,

𝑅
∗∗

𝐴
= 𝛼 [𝛾

𝐴𝐴
𝑘
9
𝐼
∗∗

𝐴𝐽
𝑘
7
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝛾
𝐴𝐴
𝑘
9
𝐼
∗∗

𝐴𝐽
𝑘
7
𝜋
𝐽
𝑘
6
+ 𝛾
𝐴𝐴
𝑘
9
𝜀
𝐴
𝜎
𝐴
𝐸
∗∗

𝐽
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝛾
𝐴𝐴
𝑘
9
𝜀
𝐴
𝜎
𝐴
𝐸
∗∗

𝐽
𝜋
𝐽
𝑘
6

+ 𝛾
𝐴𝐴
𝑘
9
𝜀
𝐴
𝜎
𝐴
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐽
+ 𝛾
𝑆𝐴
𝐼
∗∗

𝑆𝐽
𝑘
7
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑘
8
+ 𝛾
𝑆𝐴
𝐼
∗∗

𝑆𝐽
𝑘
7
𝜋
𝐽
𝑘
6
𝑘
8
+ 𝛾
𝑆𝐴
(1 − 𝜀

𝐽
) 𝜎
𝐴
𝐸
∗∗

𝐽
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑘
8

+ 𝛾
𝑆𝐴
(1 − 𝜀

𝐽
) 𝜎
𝐴
𝐸
∗∗

𝐽
𝜋
𝐽
𝑘
6
𝑘
8
+ 𝛾
𝑆𝐴
(1 − 𝜀

𝐽
) 𝜎
𝐴
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐽
𝑘
8
+ 𝑅
∗∗

𝐽
𝑘
9
𝑘
7
𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑘
8
+ 𝑅
∗∗

𝐽
𝑘
9
𝑘
7
𝜋
𝐽
𝑘
6
𝑘
8
]

⋅ [𝑘
10
𝑘
9
𝑘
7
𝑘
8
(𝛽
𝐴
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝑘
6
)]
−1
,

𝑆
∗∗

𝑆
=

𝜉𝜋
𝐽
𝑆
∗∗

𝐴

(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
)
,

𝐸
∗∗

𝑆
=

𝜉 [𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐴
+ (𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
) 𝐸
∗∗

𝐴
]

𝑘
11
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
)

,

𝐼
∗∗

𝐴𝑆
=

𝜉 [𝜀
𝑆
𝜎
𝑆
𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝑆
𝑆
∗∗

𝐴
+ (𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
) (𝜀
𝑆
𝜎
𝑆
𝐸
∗∗

𝐴
+ 𝐼
∗∗

𝐴𝐴
𝑘
11
)]

𝑘
12
𝑘
11
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
)

,

𝐼
∗∗

𝑆𝑆
=

𝜉 {(1 − 𝜀
𝑆
) 𝜎
𝑆
𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐴
+ (𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
) [(1 − 𝜀

𝑆
) 𝜎
𝑆
𝐸
∗∗

𝐴
+ 𝐼
∗∗

𝑆𝐴
𝑘
11
]}

[𝑘
13
𝑘
11
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
)]

,

𝑅
∗∗

𝑆
= 𝜉 {𝛾

𝐴𝑆
(1 − 𝜀

𝑆
) 𝜎
𝑆
𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐴
+ 𝛾
𝐴𝑆
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
) [(1 − 𝜀

𝑆
) 𝜎
𝑆
𝐸
∗∗

𝐴
+ 𝐼
∗∗

𝑆𝐴
𝑘
11
]

+ 𝛾
𝑆𝑆
(1 − 𝜀

𝑆
) 𝜎
𝑆
𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
𝑆
∗∗

𝐴
+ 𝛾
𝑆𝑆
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
) [(1 − 𝜀

𝑆
) 𝜎
𝑆
𝐸
∗∗

𝐴
+ 𝐼
∗∗

𝑆𝐴
𝑘
11
]

+ 𝑅
∗∗

𝐴
𝑘
11
𝑘
13
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
)} [𝜇
𝑆
𝑘
13
𝑘
11
(𝛽
𝑆
𝑏
𝑀
𝐼
∗∗

𝑀
𝜇
𝐻
+ 𝜋
𝐽
𝜇
𝑆
)]
−1
,

𝑆
∗∗

𝑀
=

𝜋
𝑀

(𝜆
∗∗

𝑀
+ 𝜇
𝑀
)
,

𝐸
∗∗

𝑀
=

𝜆
∗∗

𝑀
𝜋
𝑀

𝑘
14
(𝜆
∗∗

𝑀
+ 𝜇
𝑀
)
,

𝐼
∗∗

𝑀
=

𝜎
𝑀
𝜆
∗∗

𝑀
𝜋
𝑀

𝑘
14
𝜇
𝑀
(𝜆
∗∗

𝑀
+ 𝜇
𝑀
)
.

(F.1)

G. Proof of Theorem 7

Proof. Theproof is based on using the centremanifold theory
[51], as described in [58]. It is convenient to make the
following simplification and change of variables.

Let 𝑆
𝐽
= 𝑥
1
, 𝐸
𝐽
= 𝑥
2
, 𝐼
𝐴𝐽
= 𝑥
3
, 𝐼
𝑆𝐽
= 𝑥
4
, 𝑅
𝐽
= 𝑥
5
, 𝑆
𝐴
= 𝑥
6
,

𝐸
𝐴
= 𝑥
7
, 𝐼
𝐴𝐴

= 𝑥
8
, 𝐼
𝑆𝐴

= 𝑥
9
, 𝑅
𝐴
= 𝑥
10
, 𝑆
𝑆
= 𝑥
11
, 𝐸
𝑆
= 𝑥
12
,

𝐼
𝐴𝑆

= 𝑥
13
, 𝐼
𝑆𝑆
= 𝑥
14
, 𝑅
𝑆
= 𝑥
15
, 𝑆
𝑀

= 𝑥
16
, 𝐸
𝑀

= 𝑥
17
, and

𝐼
𝑀
= 𝑥
18
so that𝑁

𝑋
= 𝑥
1
+𝑥
2
+𝑥
3
+𝑥
4
+𝑥
5
+𝑥
6
+𝑥
7
+𝑥
8
+𝑥
9
+

𝑥
10
+𝑥
11
+𝑥
12
+𝑥
13
+𝑥
14
+𝑥
15
. Using the vector notation x =

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
, 𝑥
11
, 𝑥
12
, 𝑥
13
, 𝑥
14
, 𝑥
15
, 𝑥
16
,

𝑥
17
, 𝑥
18
)
𝑇, model (29) can be written in the form 𝑑x/𝑑𝑡 =

m(x), where m = (𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
, 𝑚
5
, 𝑚
6
, 𝑚
7
, 𝑚
8
, 𝑚
9
, 𝑚
10
,

𝑚
11
, 𝑚
12
, 𝑚
13
, 𝑚
14
, 𝑚
15
, 𝑚
16
, 𝑚
17
, 𝑚
18
)
𝑇, as follows:

𝑑𝑥
1

𝑑𝑡
= 𝑚
1
= 𝜋
𝐽
−

𝛽
𝐽
𝑏
𝑀
𝑥
18
𝑥
1

𝑁
𝑋

− 𝑘
1
𝑥
1
,

𝑑𝑥
2

𝑑𝑡
= 𝑚
2
=

𝛽
𝐽
𝑏
𝑀
𝑥
18
𝑥
1

𝑁
𝑋

− 𝑘
2
𝑥
2
,

𝑑𝑥
3

𝑑𝑡
= 𝑚
3
= 𝜀
𝐽
𝜎
𝐽
𝑥
2
− 𝑘
3
𝑥
4
,
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𝑑𝑥
4

𝑑𝑡
= 𝑚
4
= (1 − 𝜀

𝐽
) 𝜎
𝐽
𝑥
2
− 𝑘
4
𝑥
3
,

𝑑𝑥
5

𝑑𝑡
= 𝑚
5
= 𝛾
𝐴𝐽
𝑥
4
+ 𝛾
𝑆𝐽
𝑥
3
− 𝑘
5
𝑥
5
,

𝑑𝑥
6

𝑑𝑡
= 𝑚
6
=
𝛽
𝐴
𝑏
𝑀
𝑥
18
𝑥
6

𝑁
𝑋

− 𝑘
6
𝑥
6
,

𝑑𝑥
7

𝑑𝑡
= 𝑚
7
=
𝛽
𝐴
𝑏
𝑀
𝑥
18
𝑥
6

𝑁
𝑋

− 𝑘
7
𝑥
7
,

𝑑𝑥
8

𝑑𝑡
= 𝑚
8
= 𝛼𝑥
3
+ 𝜀
𝐴
𝜎
𝐴
𝑥
7
− 𝑘
8
𝑥
8
,

𝑑𝑥
9

𝑑𝑡
= 𝑚
9
= 𝛼𝑥
4
+ (1 − 𝜀

𝐴
) 𝜎
𝐴
𝑥
7
− 𝑘
9
𝑥
9
,

𝑑𝑥
10

𝑑𝑡
= 𝑚
10
= 𝛼𝑥
5
+ 𝛾
𝐴𝐴
𝑥
8
+ 𝛾
𝑆𝐴
𝑥
9
− 𝑘
10
𝑥
10
,

𝑑𝑥
11

𝑑𝑡
= 𝑚
11
= 𝜉𝑥
6
−
𝛽
𝑆
𝑏
𝑀
𝑥
18
𝑥
11

𝑁
𝑋

− 𝜇
𝐻
𝑥
11
,

𝑑𝑥
12

𝑑𝑡
= 𝑚
12
= 𝜉𝑥
7
+
𝛽
𝑆
𝑏
𝑀
𝑥
18
𝑥
11

𝑁
𝑋

− 𝑘
11
𝑥
12
,

𝑑𝑥
13

𝑑𝑡
= 𝑚
13
= 𝜉𝑥
8
+ 𝜀
𝑆
𝜎
𝑆
𝑥
12
− 𝑘
12
𝑥
13
,

𝑑𝑥
14

𝑑𝑡
= 𝑚
14
= 𝜉𝑥
9
+ (1 − 𝜀

𝑆
) 𝜎
𝑆
𝑥
12
− 𝑘
13
𝑥
14
,

𝑑𝑥
15

𝑑𝑡
= 𝑚
15
= 𝜉𝑥
10
+ 𝛾
𝐴𝑆
𝑥
14
+ 𝛾
𝑆𝑆
𝑥
14
− 𝜇
𝑆
𝑥
15
,

𝑑𝑥
16

𝑑𝑡
= 𝑚
16

= 𝜋
𝑀

−
𝛽
𝑀
𝑏
𝑀
(𝑥
3
+ 𝑥
4
+ 𝑥
8
+ 𝑥
9
+ 𝑥
13
+ 𝑥
14
) 𝑥
16

𝑁
𝑋

− 𝜇
𝑀
𝑥
16
,

𝑑𝑥
17

𝑑𝑡
= 𝑚
17

=
𝛽
𝑀
𝑏
𝑀
(𝑥
3
+ 𝑥
4
+ 𝑥
8
+ 𝑥
9
+ 𝑥
13
+ 𝑥
14
) 𝑥
16

𝑁
𝑋

− 𝑘
14
𝑥
17
,

𝑑𝑥
18

𝑑𝑡
= 𝑚
18
= 𝜎
𝑀
𝑥
17
− 𝜇
𝑀
𝑥
18
.

(G.1)

The Jacobian of the transformed system (G.1) at the disease-
free equilibriumE

1
, is given by

𝐽 (E
1
) = (𝐽

1
| 𝐽
2
) , (G.2)

where

𝐽
1
=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑘
1

0 0 0 0 0 0 0 0

0 −𝑘
2

0 0 0 0 0 0 0

0 𝜀
𝐽
𝜎
𝐽

−𝑘
3

0 0 0 0 0 0

0 (1 − 𝜀
𝐽
) 𝜎
𝐽

0 −𝑘
4

0 0 0 0 0

0 0 𝛾
𝐴𝐽

𝛾
𝑆𝐽

−𝑘
5

0 0 0 0

𝛼 0 0 0 0 −𝑘
6

0 0 0

0 𝛼 0 0 0 0 −𝑘
7

0 0

0 0 𝛼 0 0 0 𝜀
𝐴
𝜎
𝐴

−𝑘
8

0

0 0 0 𝛼 0 0 (1 − 𝜀
𝐴
) 𝜎
𝐴

0 −𝑘
9

0 0 0 0 𝛼 0 0 𝛾
𝐴𝐴

𝛾
𝑆𝐴

0 0 0 0 0 𝜉 0 0 0

0 0 0 0 0 0 𝜉 0 0

0 0 0 0 0 0 0 𝜉 0

0 0 0 0 0 0 0 0 𝜉

0 0 0 0 0 0 0 0 0

0 0
−𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

−𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0
−𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

−𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0
𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0
𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0 0 0 0 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,
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𝐽
2
=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 0 0 0 0 0 0

−𝛽
𝐽
𝑏
𝑀
𝑥
1

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0 0 0 0 0 0

𝛽
𝐽
𝑏
𝑀
𝑥
1

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−𝛽
𝐴
𝑏
𝑀
𝑥
6

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0 0 0 0 0 0
𝛽
𝐴
𝑏
𝑀
𝑥
6

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−𝑘
10

0 0 0 0 0 0 0 0

0 −𝜇
𝐻

0 0 0 0 0 0
−𝛽
𝑆
𝑏
𝑀
𝑥
11

(𝑥
1
+ 𝑥
6
+ 𝑥
11
)

0 0 −𝑘
11

0 0 0 0 0
𝛽
𝑆
𝑏
𝑀
𝑥
11

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 𝜀
𝑆
𝜎
𝑆

−𝑘
12

0 0 0 0 0

0 0 (1 − 𝜀
𝑆
) 𝜎
𝑆

0 −𝑘
13

0 0 0 0

𝜉 0 0 0 𝛾
𝐴𝑆
+ 𝛾
𝑆𝑆

−𝜇
𝑆

0 0 0

0 0 0
−𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

−𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 −𝜇
𝑀

0 0

0 0 0
𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

𝛽
𝑀
𝑏
𝑀
𝑥
16

𝑥
1
+ 𝑥
6
+ 𝑥
11

0 0 −𝑘
14

0

0 0 0 0 0 0 0 𝜎
𝑀

−𝜇
𝑀

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(G.3)

Consider the case whenR
0
= 1. Suppose, further, that 𝛽

𝑀
is

chosen as a bifurcation parameter. Solving (29) for 𝛽
𝑀

from
R
0
= 1 gives 𝛽

𝑀
= 𝛽
∗

𝑀
. The transformed system (G.1) at

the DFE evaluated at 𝛽
𝑀
= 𝛽
∗

𝑀
has a simple zero eigenvalue

(and all other eigenvalues having negative real parts). Hence,
the centre manifold theory [51] can be used to analyze the
dynamics of (G.1) near 𝛽

𝑀
= 𝛽
∗

𝑀
. In particular, the theorem

in [58] (see also [42, 51, 52]) is used. To apply the theorem, the
following computations are necessary (it should be noted that
we are using 𝛽

𝑀
instead of 𝜙 for the bifurcation parameter).

Eigenvectors of 𝐽(E
1
)|
𝛽𝑀=𝛽

∗

𝑀

. The Jacobian of (G.1) at 𝛽
𝑀

=

𝛽
∗

𝑀
, denoted by 𝐽(E

1
)|
𝛽𝑀=𝛽

∗

𝑀

, has a right eigenvector (associ-
ated with the zero eigenvalue) given by

w = (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, 𝑤
5
, 𝑤
6
, 𝑤
7
, 𝑤
8
, 𝑤
9
, 𝑤
10
, 𝑤
11
, 𝑤
12
,

𝑤
13
, 𝑤
14
, 𝑤
15
, 𝑤
16
, 𝑤
17
, 𝑤
18
)
𝑇
,

(G.4)

where

𝑤
1
=

−𝛽
𝐽
𝑏
𝑀
𝑤
18
𝑥
1

𝑘
1
(𝑥
1
+ 𝑥
6
+ 𝑥
11
)
,

𝑤
2
=

𝛽
𝐽
𝑏
𝑀
𝑤
18
𝑥
1

𝑘
2
(𝑥
1
+ 𝑥
6
+ 𝑥
11
)
,

𝑤
3
=

𝜀
𝐽
𝜎
𝐽
𝑤
2

𝑘
3

,

𝑤
4
=

(1 − 𝜀
𝐽
) 𝜎
𝐽
𝑤
2

𝑘
4

,

𝑤
5
=

(𝛾
𝐴𝐽
𝑤
3
+ 𝛾
𝑆𝐽
𝑤
4
)

𝑘
5

,

𝑤
6
=
1

𝑘
6

(𝛼𝑤
1
−

𝑏
𝑀
𝛽
𝐴
𝑤
18
𝑥
6

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

𝑤
7
=
1

𝑘
7

(𝛼𝑤
2
+

𝑏
𝑀
𝛽
𝐴
𝑤
18
𝑥
6

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

𝑤
8
=
𝛼𝑤
3
+ 𝜀
𝐴
𝜎
𝐴
𝑤
7

𝑘
8

,

𝑤
9
=
𝛼𝑤
4
+ (1 − 𝜀

𝐴
) 𝜎
𝐴
𝑤
7

𝑘
9

,
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𝑤
10
=
𝛼𝑤
5
+ 𝛾
𝐴𝐴
𝑤
8
+ 𝛾
𝑆𝐴
𝑤
9

𝑘
10

,

𝑤
11
=
1

𝜇
𝑆

(𝜉𝑤
6
−
𝑏
𝑀
𝛽
𝑆
𝑤
18
𝑥
11

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

𝑤
12
=

1

𝑘
11

(𝜉𝑤
7
+
𝑏
𝑀
𝛽
𝑆
𝑤
18
𝑥
11

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

𝑤
13
=
𝜉𝑤
8
+ 𝜀
𝑆
𝜎
𝑆
𝑤
12

𝑘
12

,

𝑤
14
=
𝜉𝑤
9
+ (1 − 𝜀

𝑆
) 𝜎
𝑆
𝑤
12

𝑘
13

,

𝑤
15
=
𝜉𝑤
10
+ (𝛾
𝐴𝐴

+ 𝛾
𝑆𝐴
) 𝑤
14

𝜇
𝑆

,

𝑤
16

=
−𝑏
𝑀
𝛽
𝑀
𝑥
16

𝜇
𝑀

(
𝑤
3
+ 𝑤
4
+ 𝑤
8
+ 𝑤
9
+ 𝑤
13
+ 𝑤
14

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

𝑤
17

=
𝑥
11
𝑏
𝑀
𝛽
𝑀

𝑘
9

(
𝑤
3
+ 𝑤
4
+ 𝑤
8
+ 𝑤
9
+ 𝑤
13
+ 𝑤
14

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

𝑤
18
=
𝜎
𝑀

𝜇
𝑀

.

(G.5)

Also, 𝐽(E
1
)|
𝛽𝑀=𝛽

∗

𝑀

has a left eigenvector v = (V
1
, V
2
, V
3
, V
4
,

V
5
, V
6
, V
7
, V
8
, V
9
, V
10
, V
11
, V
12
, V
13
, V
14
, V
15
, V
16
, V
17
, V
18
) (associ-

ated with the zero eigenvalue), where

V
1
= 0,

V
2
=

𝜀
𝐽
𝜎
𝐽
V
3
+ (1 − 𝜀

𝐽
) 𝜎
𝐽
V
4
+ 𝛼V
7

𝑘
2

,

V
3
=
1

𝑘
3

(𝛼V
8
+
𝑥
11
𝑏
𝑀
𝛽
𝑀
V
17

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

V
4
=
1

𝑘
4

(𝛼V
9
+
𝑥
11
𝑏
𝑀
𝛽
𝑀
V
17

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

V
5
= 0,

V
6
= 0,

V
7
=
𝜀
𝐴
𝜎
𝐴
V
8
+ (1 − 𝜀

𝐴
) 𝜎
𝐴
V
9
+ 𝜉V
12

𝑘
7

,

V
8
=
1

𝑘
8

(𝜉V
13
+
𝑥
11
𝑏
𝑀
𝛽
𝑀
V
17

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

V
9
=
1

𝑘
9

(𝜉V
14
+
𝑥
11
𝑏
𝑀
𝛽
𝑀
V
17

𝑥
1
+ 𝑥
6
+ 𝑥
11

) ,

V
10
= 0,

V
11
= 0,

V
15
= 0,

V
16
= 0,

V
12
=
𝜀
𝑆
𝜎
𝑆
V
13
+ (1 − 𝜀

𝑆
) 𝜎
𝑆
V
14

𝑘
11

,

V
13
=

𝑥
11
𝑏
𝑀
𝛽
𝑀
V
17

𝑘
11
(𝑥
1
+ 𝑥
6
+ 𝑥
11
)
,

V
14
=

𝑥
11
𝑏
𝑀
𝛽
𝑀
V
17

𝑘
13
(𝑥
1
+ 𝑥
6
+ 𝑥
11
)
,

V
17
=
𝜎
𝑀
V
18

𝑘
14

,

V
18
> 0.

(G.6)

Computations of Bifurcation Coefficients 𝑎 and 𝑏. The appli-
cation of the theorem in [58] entails the computation of two
bifurcation coefficients 𝑎 and 𝑏. It can be shown, after some
algebraic manipulations, that

𝑎 = V
2

18

∑

𝑖,𝑗=1

𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+ V
7

18

∑

𝑖,𝑗=1

𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
7

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+ V
12

18

∑

𝑖,𝑗=1

𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
12

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+ V
17

18

∑

𝑖,𝑗=1

𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
17

𝜕𝑥
𝑖
𝜕𝑥
𝑗

=
2𝑏
𝑀

(𝑥
1
+ 𝑥
6
+ 𝑥
11
)
2
[𝑤
18
((𝑥
6
+ 𝑥
11
) V
2
𝑤
1
𝛽
𝐽

+ (𝑥
1
+ 𝑥
11
) V
7
𝑤
6
𝛽
𝐴
+ (𝑥
1
+ 𝑥
6
) V
12
𝑤
11
𝛽
𝑆
)

+ V
17
𝑤
16
𝛽
𝑀
(𝑤
3
+ 𝑤
8
+ 𝑤
9
+ 𝑤
13
+ 𝑤
14
) (𝑥
1
+ 𝑥
6

+ 𝑥
11
) − 𝑤
18
[(𝑤
6
+ 𝑤
11
) V
2
𝑥
1
𝛽
𝐽

+ (𝑤
1
+ 𝑤
11
) V
7
𝑥
6
𝛽
𝐴
+ (𝑤
1
+ 𝑤
6
) V
12
𝑥
11
𝛽
𝑆
]

− 𝑤
18
(𝑤
2
+ 𝑤
3
+ 𝑤
5
+ 𝑤
7
+ 𝑤
8
+ 𝑤
9
+ 𝑤
10

+ 𝑤
12
+ 𝑤
13
+ 𝑤
14
+ 𝑤
15
) (V
2
𝑥
1
𝛽
𝐽
+ V
7
𝑥
6
𝛽
𝐴

+ V
12
𝑥
11
𝛽
𝑆
) − V
17
𝑥
16
𝛽
𝑀
(𝑤
3
+ 𝑤
8
+ 𝑤
9
+ 𝑤
13

+ 𝑤
14
) (𝑤
1
+ 𝑤
2
+ 𝑤
3
+ 𝑤
5
+ 𝑤
6
+ 𝑤
7
+ 𝑤
8
+ 𝑤
9

+ 𝑤
10
+ 𝑤
11
+ 𝑤
12
+ 𝑤
13
+ 𝑤
14
+ 𝑤
15
)] .

(G.7)

Furthermore,

𝑏 = V
17

18

∑

𝑖=1

𝑤
𝑖

𝜕
2
𝑓
17

𝜕𝑥
𝑖
𝜕𝛽
∗

𝑝

=
V
17
𝑥
16
𝑏
𝑀
(𝑤
3
+ 𝑤
8
+ 𝑤
9
+ 𝑤
13
+ 𝑤
14
)

(𝑥
1
+ 𝑥
6
+ 𝑥
11
)

> 0.

(G.8)
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Hence, it follows from Theorem 4.1 of [58] that the trans-
formed model (G.1) (or, equivalently, (10)) undergoes back-
ward bifurcation atR

0
= 1whenever the following inequality

holds:

𝑎 > 0. (G.9)
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