
RESEARCH ARTICLE

Neural Processing of Emotional Musical and
Nonmusical Stimuli in Depression
Rebecca J. Lepping1*, Ruth Ann Atchley2, Evangelia Chrysikou2, Laura E. Martin1,3, Alicia
A. Clair4, Rick E. Ingram2, W. Kyle Simmons5,6, Cary R. Savage7,8

1 Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, United States
of America, 2 Department of Psychology, University of Kansas, Lawrence, Kansas, United States of
America, 3 Department of Preventive Medicine, University of Kansas Medical Center, Kansas City, Kansas,
United States of America, 4 Department of Music Education and Music Therapy, University of Kansas,
Lawrence, Kansas, United States of America, 5 Laureate Institute for Brain Research, Tulsa, Oklahoma,
United States of America, 6 Faculty of Community Medicine, University of Tulsa, Tulsa, Oklahoma, United
States of America, 7 Center for Health Behavior Neuroscience, University of Kansas Medical Center, Kansas
City, Kansas, United States of America, 8 Department of Psychiatry, University of Kansas Medical Center,
Kansas City, Kansas, United States of America

* rlepping@kumc.edu

Abstract

Background

Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry impli-

cated in major depressive disorder (MDD). Music is often used for emotion regulation, and

pleasurable music listening activates the dopaminergic system in the brain, including the

ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musi-

cal stimuli paradigm to examine how neural processing of emotionally provocative auditory

stimuli is altered within the ACC and striatum in depression.

Method

Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized

positive and negative emotional musical and nonmusical stimuli during fMRI scanning and

gave subjective ratings of valence and arousal following scanning.

Results

ND participants exhibited greater activation to positive versus negative stimuli in ventral

ACC. When compared with ND participants, MDD participants showed a different pattern of

activation in ACC. In the rostral part of the ACC, ND participants showed greater activation

for positive information, while MDD participants showed greater activation to negative infor-

mation. In dorsal ACC, the pattern of activation distinguished between the types of stimuli,

with ND participants showing greater activation to music compared to nonmusical stimuli,

while MDD participants showed greater activation to nonmusical stimuli, with the greatest

response to negative nonmusical stimuli. No group differences were found in striatum.
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Conclusions

These results suggest that people with depression may process emotional auditory stimuli

differently based on both the type of stimulation and the emotional content of that stimula-

tion. This raises the possibility that music may be useful in retraining ACC function, poten-

tially leading to more effective and targeted treatments.

Introduction
Emotion regulation is a critical skill for emotional health and well-being [1]. Music is a power-
ful inducer of emotion, and people often report using music as a tool for regulating their emo-
tional state [2–4]. Music is used for mood manipulations in clinical and laboratory settings [5–
10]. Music is also used for mood change in the population generally, and as a coping strategy
specifically in depression. College students diagnosed with depression report using music to
reduce stress and anxiety [3]. Additionally, a European survey of public advice for the best
self-help measures for dealing with depression placed listening to music near the top of the
list, with 69% of respondents agreeing that they would recommend this as a useful self-help
method. In this survey, 82% of respondents with depression who were already in treatment
agreed that music was helpful in this regard [4]. Studies examining pleasurable musical experi-
ences have associated enjoyment of music and activation in ventral striatal and ventral tegmen-
tal brain areas, specifically the nucleus accumbens (NAc) [11, 12]. Music listening may be
rewarding, Menon and Levitin argue, because it mediates dopamine release, a neurotransmitter
of reward, via the ventral tegmental-NAc network. Direct evidence of dopamine release to
music has recently been found using positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) [13].

Emotion regulation capabilities are determined in part by emotional biases in cognition.
Individuals who have never had depression typically show a positivity bias in their cognitive
processes [14]; they allocate greater attentional resources and show greater memory for positive
versus negative information. While positive bias is typical, individuals with depression show an
overall bias toward negative information. Depression is characterized by difficulties with emo-
tion regulation [1], leading to prolonged negative affect and reduced responsiveness to previ-
ously enjoyed activities [15]. Negative affect may be the result of an increased susceptibility to
negative emotional bias, including increased negative cognitions (attentional biases [16], out-
look [17], rumination [15], and negative self-talk [18]), stemming from disordered brain activ-
ity [19]. Emotional responsiveness in depression is often altered for both positive and negative
information. Individuals with MDD show reduced brain responses compared to control partic-
ipants to emotionally positive words in reward centers of the brain, including ventral striatal
and dorsomedial prefrontal regions [20]. Overall negativity biases in depression may comprise
both negative hypersensitivity and positive hyposensitivity. Negative words are more readily
processed by individuals with depression, as evidenced by shorter reaction times and larger
evoked brain potentials, and responses to positive words are muted compared to control partic-
ipants [21–23]. The negativity bias seen for emotional words may also occur in response to
non-linguistic auditory information, such as music. If individuals with depression show a bias
for negative musical stimuli—that is, increased brain responses or more negative ratings com-
pared to control participants—it would be evidence that depression involves general hypersen-
sitivity to negative information not limited to verbal rumination. Imaging studies have
extended this negativity bias to music. Participants with MDD show reduced responses
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compared to control participants in ventromedial PFC (vmPFC) to their favorite music, despite
similar enjoyment ratings between groups [24].While this dysregulation has been shown as
an anhedonic response to favorite music [24], it has yet to be confirmed for potentially unfa-
miliar, emotionally evocative musical stimuli. By using standardized stimuli, familiarity effects
and potential effects of participants’ self-awareness of loss of pleasure for familiar music are
minimized.

The current research probes neural responsiveness to musical and nonmusical emotional
stimuli that individuals are likely to encounter in their everyday lives. Emotional responses to
music and other nonmusical stimuli have been studied separately in control participants, but
though the patterns of responsiveness seem similar, the magnitude of these responses has not
been directly compared for musical and nonmusical stimulus types. Individuals use music for
emotion regulation [2]. Additionally, according to Thaut’s Rational Scientific Mediating Model
of Music Therapy [25], the nonmusical goals of music therapy are achieved through the action
of music on brain regions associated with nonmusical domains of functioning. Therefore, it is
important to understand how underlying neural mechanisms may differ for these two stimulus
types.

A large body of research has identified the anterior cingulate cortex (ACC) as a primary
region implicated in major depressive disorder (MDD) [26]. [27]. The ACC is involved in both
positive and negative emotional systems. The ACC receives projections from dopaminergic
neurons in the ventral tegmental area and from top-down cognitive input in the prefrontal cor-
tex [28]. It serves as a mediator between sensory inputs via the thalamus and appraisal via
the prefrontal cortex, and is involved in monitoring for highly salient information [29–32].
Because of this, the ACC serves a critical function in task-switching, cognitive control, and
emotional amplification and suppression [33]. While there is some disagreement on the num-
ber of discrete functional regions of the ACC, as well as the labeling of those regions [34–37],
the ACC is often divided into two main areas: ventral (vACC) and dorsal (dACC). The vACC
encompasses the perigenual, or rostral (rACC), and subgenual (sgACC) portions of the ACC.
It is often described as the emotional ACC, because activation in this region is typically found
to emotional stimuli [34]. Additionally, projections from the dopaminergic system reach this
area of the ACC first. The dACC is defined posterior to the crossing of the corpus callosum to
the motor cortex. It is described as the cognitive ACC, because it is more often activated in cog-
nitive tasks that probe executive function and control, such as the Stroop task, which requires
inhibition of prepotent responses [34, 35]. Volumetric studies repeatedly show decreased ACC
size in participants with depression compared to control participants [38], including sufficient
sensitivity and specificity to provide secondary means of diagnosis [39]. Unlike studies showing
ongoing atrophy of affected brain regions with psychiatric disorders—for example, reduced
hippocampal volume following PTSD [40]—the ACC in depression does not change size dur-
ing the course of the disorder, nor with treatment [39]. This suggests that ACC volume may be
a marker of depression vulnerability, in addition to its value in diagnosis. Functional respon-
siveness of the ACC has been linked to treatment success [27, 41]. Different treatment regi-
mens target different subregions of the ACC; successful cognitive therapies are associated with
increased activation in dorsal ACC, whereas medication based therapies often target ventral
and rostral portions of the ACC [42]. Glutamate cycling, indicating general neural activity, has
also been shown to be reduced in the vACC in depression [36], which suggests that tonic levels
of activity in the vACC are lower in depression. For these reasons, we have focused on the ACC
as the main region of interest in this study.

The current study uses fMRI and musical and nonmusical auditory-processing probes to
determine whether activation within the ACC and striatum elicited by emotionally evocative
auditory stimuli differ between the two stimulus types in never-depressed (ND) control
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participants. Further, this study measures differences in ACC and striatal activation to positive
and negative emotional probes between participants with MDD and ND control participants,
to confirm whether participants with depression also show negative bias for emotionally evoca-
tive non-linguistic auditory stimuli. We hypothesize that individuals with depression will show
greater responsiveness to negative stimuli and reduced responsiveness to positive stimuli in
ACC and striatum when compared with ND control participants.

Methods and Materials

Participants
ND participant population. This study was approved by the Human Subjects Committee

of the University of Kansas Medical Center. Participants were recruited through email and
flyer advertisements requesting volunteers with or without depression. All participants gave
written consent prior to participation, according to the principles expressed in the Declaration
of Helsinki. ND control participants (n = 22; 9 males;MAGE = 28.50; SDAGE = 11.14; RangeAGE
= 18–59) were recruited with no history of depression or other psychiatric disorder, deter-
mined by administration of the Structured Clinical Interview for DSM Disorders, non-patient
version (SCID-I/NP) [43]. Depression was assessed on the day of testing with the Beck Depres-
sion Inventory—Second Edition (BDI-II) [44], with a score greater than 18 indicative of high
levels of depression. Based on this criterion, two participants scored greater than 18 on this
measure on the day of testing and were excluded from further analyses (final group: n = 20).

MDD participant population. Twenty individuals with MDD (n = 20; 9 males;MAGE =
34.15; SDAGE = 13.64; RangeAGE = 18–56) were enrolled. Participants were all experiencing a
current depressive episode at the time of scanning, determined by screening for research pur-
poses using the SCID-I/NP [43]. Participants had no current or past manic episodes, no
comorbid anxiety disorders, and no current alcohol abuse or dependence. One participant was
taking medication for depression (Sertraline) at the time of the study, and was excluded from
analyses; the final 19 participants were unmedicated. Five participants were currently undergo-
ing counseling for depression, and 13 participants had received treatment in the past (Counsel-
ing: n = 7, Medication: n = 6). Behavioral treatments for depression, including counseling, have
been shown to impact brain functioning [45, 46]; however, participants in this study were all
experiencing a current depressive episode at the time of testing. Therefore, we believe measure-
ments taken from this sample to be representative of the experience of clinically significant
depressive symptoms that have not been ameliorated by the participants’ current or previous
treatment. Four participants had a history of alcohol or drug dependence, fully remitted a min-
imum of one year prior to participation. One participant had a history of post-traumatic stress
disorder (PTSD) in full remission. BDI-II scores were collected, but not used as criteria for
inclusion/exclusion for the MDD group.

Participants in both groups were right-handed, had no contraindications for MRI (metal
implanted in body, pregnancy), conditions and medications affecting blood flow (hyperten-
sion, diabetes), brain function (other psychiatric illness or medications), or neurological condi-
tions (e.g., head injury, stroke). All participants had at least a high school education (MED =
15.22 years; SDED = 2.74 years), and were within normal or above average range of IQ (MIQ =

118.95; SDIQ = 11.65) as assessed by the Vocabulary and Matrix Reasoning subtests of the
Wechsler Abbreviated Scale of Intelligence (WASI) [47]. The final groups (ND: n = 20, MDD:
n = 19) did not significantly differ on age (t(37) = -1.02, p = .32,MDIFF = -4.08, SEMDIFF = 4.01),
sex (χ2(1) = 0.03, p = .86), years of education (t(37) = 1.51, p = .14,MDIFF = 1.32, SEMDIFF =

0.87), IQ (t(37) = 1.16, p = .25,MDIFF = 4.37, SEMDIFF = 3.76), or years of musical training
(χ2(4) = 1.80, p = .77).
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Materials
Stimuli. Emotionally evocative positive and negative musical examples fromWestern art

music, and positive and negative nonmusical stimuli selected from the International Affective
Digital Sound set (IADS) [48] were identified and validated through a separate rating study
[49]. More than 400 10-second-duration audio clips from 12 pieces of Western art music were
rated for emotional valence (positive-negative) and arousal (high-low) using the circumplex
model of affect [50–52]. A final set of 36 musical (18 positive, 18 negative), 24 nonmusical (12
positive, 12 negative), and 9 neutral (pure tone) stimuli were used in this imaging study. These
stimuli are fully described in a separate publication [49], and are available from the corre-
sponding author (RL). In the previous rating study, positive and negative stimuli were rated
significantly differently on valence. Additionally, musical and nonmusical stimuli were given
comparable emotional valence and arousal ratings. Emotionally neutral pure tones were also
identified and validated as intermediate between positive and negative stimuli. The three cate-
gories did not differ on arousal rating.

Questionnaires. Anxiety was assessed with the Beck Anxiety Inventory (BAI) [53]. This
twenty-one item questionnaire assesses severity of anxiety symptoms over the previous week.
The Affect Intensity Measure (AIM), a brief, 40-item validated self-report tool for measuring
strength of positive and negative emotions, was collected to assess affect intensity [54]. Each
item is rated on a six-point scale (Never—Almost Always). The AIM returns a total score from
all items (Range = 40–240) and three subscale scores: Positive Affectivity (AIMPA; 15 items),
Negative Intensity (AIMNI; 6 items), and Negative Reactivity (AIMNR; 6 items) [54, 55]. All
participants underwent both SCID administration and BDI-II testing as part of this study. The
SCID was used prior to enrolment to determine eligibility. The BDI-II, BAI, and AIM were col-
lected on the day of fMRI testing as a measure of current mood and depressive symptoms, and
those ND participants who scored high on the BDI-II were excluded as noted above.

Procedures
fMRI methods. Participants underwent a single fMRI scanning session with anatomical

scanning and five functional scanning runs. Scanning was conducted on a 3 Tesla Siemens
Skyra scanner (Siemens, Erlangen, Germany). Participants’ heads were immobilized with cush-
ions. Following automated scout image acquisition and shimming procedures to optimize field
homogeneity, a structural scan was completed. High-resolution T1-weighted anatomic images
were acquired with a 3DMPRAGE sequence (TR/TE = 2300/2.01 msec, flip angle = 9°,
FOV = 256 mm, matrix = 256x192, slice thickness = 1 mm), used for slice localization for the
functional scans, Talairach transformation, and coregistration with fMRI data. Participants
were given the option to have their de-identified structural images included in a database acces-
sible to researchers at the institution, reducing the cost of future studies. Following structural
scans, five gradient echo blood oxygen level dependent (BOLD) sequences were acquired in 50
interleaved oblique axial slices at a 40° angle (repetition time/echo time [TR/TE] = 3000/25
msec, flip angle = 90°, field of view [FOV] = 220 mm, matrix = 64x64, slice thickness = 3 mm,
0 mm skip, in-plane resolution = 2.9x2.9 mm, 105 data points, 5 min: 24 sec).

To minimize susceptibility artifact and optimize signal in ventromedial prefrontal regions,
participants were positioned in the scanner with the angle of the AC-PC plane between 17°
and 22° in scanner coordinate space, verified with a localization scan. This careful positioning
ensured that the 40° slice acquisition angle was applied the same way for all subjects. Head
positioning and slice orientation parameters were verified in pilot tests and are now applied
routinely at the imaging center in all fMRI studies targeting ventromedial regions of the brain.
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During the functional runs, auditory stimuli were presented in blocks of three clips from
the same experimental condition (Fig 1) using E-Prime 2.0 software (Psychology Software
Tools, Inc., Sharpsburg, PA), with six stimuli from each experimental condition presented
during each run. To ensure that participants were attending to the emotional content of the
stimuli, they were instructed to think about whether each clip was emotionally positive or
negative while listening, and after each block of clips, were asked to rate whether the preced-
ing block as a whole consisted of positive or negative stimuli. During three functional runs,
participants listened to alternating groups of positive music, negative music, and pure tones.
During the remaining two functional runs, participants listened to alternating groups of posi-
tive and negative nonmusical stimuli (IADS) [48] and pure tones. Pure tones were used as the
baseline to control for general auditory stimulation and pitch, while neither being musical
nor nonmusical. This stimulus condition was validated as emotionally neutral compared to
the musical and nonmusical stimuli in the previously published rating study [49]. Stimuli
were presented through MR compatible earbuds (Sensimetrics Corporation, Malden, MA) at
70dB, or as loud as comfortably possible to ensure the stimuli were heard over the noise of the
scanner. Volume levels were adjusted for each subject with an audio test in the scanner prior
to the task. Participants heard music not included in the task [56] concurrent with the noise
of a functional BOLD sequence and provided visual feedback (thumbs up or down) to indi-
cate whether the volume should be raised or lowered. In addition, noise-canceling head-
phones were placed over the earbuds to block scanner noise. This system was designed to
present audio stimuli against the noise of the MR environment and has been used successfully
during fMRI scanning.

Emotion rating methods. Using methods developed in our previous ratings studies [49],
participants gave valence and arousal ratings for the stimuli following fMRI scanning. Ratings
were collected after scanning to ensure that the stimuli were novel during scanning. Auditory
stimuli were presented through computer speakers, using E-Prime 2.0 software running on a
PC computer outside the scanning environment. Participants were allowed to adjust the vol-
ume to a comfortable level during a practice session. After each stimulus, participants were pre-
sented with a biaxial diagram, with valence rating coded on the x axis, and arousal coded on
the y axis [49]. To encourage participants to rate their experience of emotion, rather than emo-
tions that they simply recognized, participants were explicitly instructed to rate how each stim-
ulus made them feel. Responses were collected via mouse click, and the mouse position in
pixels was recorded for both x and y (Origin (x = 314, y = 240); RangeX = 76 (left)–542 (right);
RangeY = 16 (upper)–464 (lower), resulting in a single valence and arousal rating per 10-sec-
ond stimulus per subject.). The procedure lasted approximately twenty minutes. Following the
rating procedure, participants completed questionnaires and were debriefed.

Analysis
Questionnaires. Group differences (MDD, ND) on each of the self-report measures were

assessed using two-sample t-tests.
Emotion ratings. Average valence and arousal ratings for each condition (Valence—Posi-

tive, Negative: Type—Musical, Nonmusical) given by participants in the two diagnosis Groups
(MDD, ND), were compared using separate 2x2x2 mixed model analysis of covariance
(ANCOVA) tests to determine whether the groups were responding to the two stimulus types
differently. Gender, age, and years of musical training were included as covariates in each anal-
ysis. Planned analyses using one-tailed t-tests directly tested whether MDD participants rated
the negative stimuli as more negative and the positive stimuli as less positive compared to ND
participants by comparing average ratings of valence across the diagnostic groups.
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Demographics, summary questionnaire scores, and emotion ratings for each participant are
provided in Supporting Information S1 File.

fMRI preprocessing. fMRI data were analyzed using the Analysis of Functional NeuroI-
mages (AFNI) statistical package [57]. Preprocessing steps included trilinear 3D motion cor-
rection, 3D spatial smoothing to 4 mm with a Gaussian filter, and high pass filter temporal
smoothing. Images were resampled to a voxel-wise resolution of 2.5 mm3. Each participant’s
structural image was realigned to the first functional image obtained within the participant’s
scanning session, and normalized to the space defined by Talairach and Tournoux’s stereotaxic
atlas [58] with the AFNI<@auto-tlrc> algorithm. Normalization to atlas space was confirmed
by visual inspection for all participants. Anatomic data from one participant (MDD group)
could not be successfully normalized using the<@auto-tlrc> algorithm, and was transformed
manually in AFNI by defining key anatomic points (anterior commissure, posterior commis-
sure, anterior point, posterior point, superior point, inferior point, right point, left point, and
two points on the mid-sagittal plane). Volumes with excessive signal artifact (>50% voxels
considered outliers were censored from each dataset prior to statistical analyses. Additionally,
motion of greater than 1 mm between successive TRs resulted in the censoring of that TR and
the two adjacent TRs. No functional runs were discarded for excessive motion (i.e.>30%).

fMRI statistical analyses. Activation maps were analyzed using statistical parametric meth-
ods [59] contained within the AFNI software [57]. Statistical contrasts were conducted using
multiple regression analysis with the general linear model (GLM). Regressors representing the
experimental conditions of interest were modeled with a hemodynamic response filter and
entered into multiple regression analysis using a two-stage mixed-effects model. Motion esti-
mates were also entered into the model as nuisance regressors. Contrasts between conditions of
interest were assessed with t statistics using the<3dttest++> command. We conducted whole
brain exploratory analyses and a region of interest (ROI) analysis focused on regions implicated
in emotion processing in depression, including ACC (Brodmann areas (BA) 32 and 33, sgACC
(BA25), and striatum (amygdala, caudate, nucleus accumbens, and putamen), defined anatomi-
cally from Talairach template masks within AFNI and combined into a single ACC/striatum
mask (Fig 2A). Main effects of Valence (Positive, Negative) and Stimulus Type (Musical, Non-
musical), and the interaction of Valence and Stimulus Type were assessed over the whole brain
in the ND group, and also in the ACC/striatum ROI mask to confirm activation to the task
within the ACC and striatum.Whole brain and ROI comparisons were also conducted between
ND andMDD groups to determine whether depression status interacted with Valence or Stimu-
lus Type within these critical regions. Statistical parametric maps were overlaid on three-

Fig 1. fMRI Paradigm. An example functional run from the blocked emotional stimulus paradigm.

doi:10.1371/journal.pone.0156859.g001
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dimensional renderings of the Talairach template brain (TT_N27). Activations were considered
significant if they survived a statistical threshold of pcorrected<.01 in the whole brain analyses, or
pcorrected<.05 within the ACC/striatum ROI mask (small volume corrected for multiple com-
parisons determined by Monte Carlo simulations using AFNI’s<3dClustSim> command).

Results and Discussion

Questionnaires
Descriptive statistics and results of the two-sample t-tests are provided in Table 1. Participants
with depression reported higher total BDI-II scores and total BAI scores, confirming that this

Fig 2. Region of Interest and fMRI Results—ND Participants. 2a. Anterior cingulate cortex and striatum
region of interest (ACC/striatum ROI). 2b. Among ND participants, Ventral and Subgenual regions of the ACC
exhibited significantly greater activation to positive versus negative stimuli. 2c. Among ND participants, Rostral
ACC showed significantly greater activation to musical versus nonmusical stimuli, while right Caudate showed
significantly greater activation to nonmusical versus musical stimuli.

doi:10.1371/journal.pone.0156859.g002

Table 1. Comparisons of Questionnaire Scores between MDD* and ND† participants.

Score t Df p M(SD) MDD M(SD) ND MDIFF SEMDIFF

BDI-II‡ -10.78** 37 <.001 30.16 (10.63) 3.00 (3.67) -27.16 2.52

BAI§ -7.46** 37 <.001 10.09 (10.09) 2.65 (3.36) -17.77 2.38

AIM¶ Total -1.35 37 .19 143.11 (23.08) 134.25 (17.73) -8.86 6.57

AIM Positive Affectivity 0.43 37 .67 52.00 (13.76) 53.55 (8.48) 1.55 3.64

AIM Negative Intensity -4.25** 37 <.001 22.63 (6.12) 15.50 (4.24) -7.13 1.68

AIM Negative Reactivity -1.65 37 .11 24.47 (4.10) 22.45 (3.56) -2.02 1.23

*Major depressive disorder,
†Never depressed,
‡Beck Depression Inventory, 2nd Edition,

** significant a p <.01,
§Beck Anxiety Inventory,
¶Affect Intensity Measure.

doi:10.1371/journal.pone.0156859.t001
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group was experiencing greater depressive symptoms at the time of testing, as well as higher
anxiety. Participants with depression also had significantly higher scores on the negative inten-
sity (AIMNI) subscale of the AIM, as well as somewhat higher scores, though not significant,
on the negative reactivity (AIMNR) subscale, indicating that they generally experience negative
situations with greater intensity, and may have greater reactivity to negative situations, than do
ND participants.

Emotion ratings
The results of the ANCOVA for Valence rating revealed a significant main effect for Valence
(F(1, 34) = 9.45, p = .004, η2 = .22), with positive stimuli being rated as more positive than neg-
ative stimuli (MPOS = 357.96, SEMPOS = 3.87;MNEG = 269.51, SEMNEG = 4.49). No other effects
or interactions passed significance criteria.

There was a trend toward a significant interaction of Valence by Type (F(1, 34) = 3.10, p =
.09, η2 = .08), with positive music being rated somewhat more positive than positive nonmusi-
cal stimuli (MDIFF = -42.81,MPOS_MUS = 379.36, SEMPOS_MUS = 4.84;MPOS_NONMUS = 336.55,
SEMPOS_NONMUS = 6.38), and negative music being significantly more positive as negative non-
musical stimuli but with a smaller mean difference (MDIFF = -20.79,MNEG_MUS = 279.91, SEM-

NEG_MUS = 6.62;MNEG_NONMUS = 259.12, SEMNEG_NONMUS = 5.93). Finally, there was a trend
toward a significant interaction of Valence by Type by Age (F(1, 34) = 3.21, p = .08, η2 = .09).
Though not significant, this three-way interaction was characterized by older participants (> =
27 years) rating negative nonmusical stimuli as marginally more negative than did younger
participants (t(37) = -1.87, p = .07,MDIFF = -21.19, SEMDIFF = 11.36), but no difference was
found for positive nonmusical stimuli (t(37) = -1.40, p = .17,MDIFF = -18.12, SEMDIFF =
12.91), positive music (t(37) = 1.05, p = .30,MDIFF = 10.54, SEMDIFF = 10.02) or negative music
(t(37) = -0.50, p = .62,MDIFF = -6.64, SEMDIFF = 13.18).

There was not a significant interaction of Valence by Group (F(1, 34) = 0.80, p = .38, η2 =
.02), which means that diagnostic group was not a factor in how the participants were rating
the valence of these stimuli. The planned t-tests comparing Valence ratings of positive (t(37) =
0.32, p = .75,MDIFF = 2.46, SEMDIFF = 7.79) and negative stimuli (t(37) = 1.16, p = .25,MDIFF =
10.50, SEMDIFF = 9.03) between the two groups were non-significant, confirming this result.
All other effects and interaction terms in the ANCOVA were non-significant (All F’s< 2.5).

The results of the ANCOVA for Arousal rating revealed no significant effects. However,
there was a trend toward a significant interaction of Valence by Group (F(1, 34) = 3.51, p =
.07, η2 = .09), with ND participants rating positive stimuli as slightly more arousing than
MDD participants (MDIFF = 17.21, SEMDIFF = 10.60,MND_POS = 224.67, SEMND_POS = 8.12,
MMDD_POS = 207.46, SEMMDD_POS = 6.72), and no difference for negative stimuli (MDIFF =
-3.35, SEMDIFF = 9.77,MND_NEG = 223.70, SEMND_NEG = 7.44,MMDD_NEG = 227.05,
SEMMDD_NEG = 6.26). There was also a trend toward a significant interaction of Type by Age
(F(1, 34) = 3.57, p = .07, η2 = .10), with younger participants (< 27 years) rating nonmusical
stimuli as more arousing than did older participants (t(37) = -2.66, p = .01,MDIFF = -31.45,
SEMDIFF = 11.83), but no difference was found for musical stimuli (t(37) = -0.29, p = .77,
MDIFF = -3.42, SEMDIFF = 11.75). There was also a trend for the main effect of Age (F(1, 34) =
3.00, p = .09, η2 = .08). Though not significant, the pattern of arousal ratings indicated that
younger participants rated all stimuli as slightly more arousing than did older participants
(M<27 = 230.20, SEM<27 = 6.36;M> = 27 = 212.76, SEM> = 27 = 5.48). All other effects and
interaction terms were non-significant (All F’s< 2.5).

As there were no significant main effects or interactions of diagnostic group for valence or
arousal rating, these null findings suggest the two groups did not differ in their subjective
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responses to the stimuli. Therefore, differences in subjective labeling of the stimuli cannot be
the explanation for the fMRI results that follow.

ND Participants: whole brain fMRI results
Main effect of Valence. When all positive stimuli were compared to all negative stimuli,

the right auditory cortex showed significantly greater activation to positive stimuli, while
bilateral occipital gyri showed significantly greater activation to negative stimuli. There was sig-
nificantly greater activation to positive stimuli in ventral anterior cingulate and right hippo-
campus. Activation focused in the hippocampus also spread into the right dorsal amygdala
(Table 2).

Main effect of Stimulus Type. In stark contrast to the focal Valence results, the main
effect of stimulus type revealed broad differences in activation across the brain. Activation foci
are listed in Table 3; however, clusters were large and encompassed several regions. Activation
to musical stimuli was stronger in bilateral middle frontal gyrus, anterior and dorsal cingulate
gyrus, bilateral precuneus, bilateral inferior parietal lobule, bilateral occipital gyrus, and bilat-
eral fusiform gyrus. Activation to nonmusical stimuli was greater in thalamus, striatum,
dorsomedial prefrontal cortex (DMPFC), bilateral dorsolateral prefrontal cortex (DLPFC),
bilateral ventrolateral PFC (VLPFC), auditory cortex bilaterally (middle temporal gyrus, supe-
rior temporal gyrus), and bilateral cerebellum.

Interaction of Valence by Stimulus Type. In the interaction of Valence by Stimulus Type,
bilateral auditory cortex and bilateral precentral gyrus showed significant activation character-
ized by greater activation to positive music versus negative music, with no difference in activa-
tion to positive versus negative nonmusical stimuli. Right inferior frontal cortex had greater
activation to negative versus positive music, with no difference for positive versus negative
nonmusical stimuli. Right parietal cortex had significantly greater activation for negative versus
positive music, and greater activation for positive versus negative nonmusical stimuli (Table 4).

ND ACC ROI fMRI results
Within the ACC/striatum mask, there was a significant main effect of Valence, with greater
activation to positive versus negative stimuli in vACC (pcorrected <.01), and sgACC (pcorrected
<.04) (Fig 2B). There was also a main effect of Stimulus Type in rACC, with greater activation
for musical compared to nonmusical stimuli (pcorrected <.001), and in right caudate with greater
activation for nonmusical stimuli compared to music (pcorrected <.02; Fig 2C; Table 5).

Comparison of MDD and ND groups: whole brain fMRI results
No areas of the cortex were significantly activated in the Group by Valence interaction (all
pcorrected > .05).

Comparing group responses to musical versus nonmusical stimuli (Interaction of Group by
Stimulus Type), significant activations were found in the anterior cingulate and the dorsolateral
prefrontal cortex (Table 6).

No areas of the cortex were significantly activated in the three-way Group by Valence by
Stimulus Type interaction (all pcorrected > .05). One small cluster in the left caudate tail showed
a trend toward a significant interaction (pcorrected > .06; [TAL XYZ = -26–46 4] 906 mm3). In
this region, ND participants showed greater activation for all positive versus all negative sti-
muli, whereas MDD participants showed greater activation for positive versus negative music,
and greater activation for negative versus positive nonmusical stimuli.
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Table 2. Whole-brain activations to the emotional auditory functional MRI task, Main effect of Valence—ND Participants.

Contrast and Region X Y Z Peak t statistic Cluster size (mm3)

ND‡: Main effect of Valence; Positive > Negative
Right Auditory cortex 54 -4 1 6.20 2891

vACC§ -4 36 -9 5.10 2172

Right Hippocampus/Amygdala 26 -11 -9 4.69 1641

Right Superior Temporal cortex 59 -19 9 4.38 1313

ND: Main effect of Valence; Negative > Positive

Right Occipital cortex 24 -86 9 -4.88 2766

Left Occipital cortex -31 -81 6 -5.36 1797

Coordinates for the maximally activated voxel are provided in Talairach space. Correction for multiple comparisons, whole-brain corrected p < .01;

t > 2.09, cluster >1125 mm3).
‡Never depressed,
§Ventral anterior cingulate cortex.

doi:10.1371/journal.pone.0156859.t002

Table 3. Whole-brain activations to the emotional auditory functional MRI task, Main effect of Stimulus Type—ND participants.

Contrast and Region X Y Z Peak t statistic Cluster size (mm3)

Main effect of Stimulus Type; Musical > Nonmusical
Left (and Right) Precuneus/Parietal/dACC§ -26 -56 51 6.27 63266

Right Inferior Temporal/Occipital/Fusiform Gyri 49 -64 -1 6.09 13641

Left Middle Occipital/Fusiform Gyri -49 -76 6 5.27 9766

Right Middle Frontal Gyrus 26 26 34 4.39 1609

Left Middle Frontal Gyrus -21 34 34 5.73 1516

Left Insula -39 9 9 5.15 1469

Right Cerebellum 19 -49 -51 5.32 1234

Main effect of Sound Type; Nonmusical > Musical
Right (and Left) Cerebellum 21 -64 -29 -8.55 23344

Right Auditory cortex 46 -16 6 -7.23 18328

Left Auditory cortex -56 -46 16 -6.93 14500

Left DLPFC¶/VLPFC** -39 14 29 -6.76 14156

Right DLPFC/VLPFC 36 24 21 -6.12 13797

Left (and Right) Thalamus/Striatum -6 -11 11 -6.23 7813

Right DMPFC†† 1 11 59 -6.74 4859

Left Striatum -21 -11 -4 -6.43 4594

Right Parahippocampus/Amygdala 26 -6 -9 -6.01 2734

Right Cerebellum 9 -46 -29 -5.25 2438

Left DMPFC -4 41 36 -4.17 1438

Coordinates for the maximally activated voxel are provided in Talairach space. Correction for multiple comparisons, whole-brain corrected p < .01;

t > 2.09, cluster >1125 mm3).
§Dorsal anterior cingulate cortex,
¶Dorsolateral prefrontal cortex,

**Ventrolateral prefrontal cortex,
††Dorsomedial prefrontal cortex.

doi:10.1371/journal.pone.0156859.t003
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Comparison of MDD and ND groups: ACC ROI fMRI results
Interaction of Group by Valence. Comparing all positive to all negative stimuli, signifi-

cant differences were found between MDD and ND groups in rACC (pcorrected <.01), with ND
participants increasing activation from baseline to positive stimuli and decreasing activation
from baseline to negative stimuli, whereas participants with depression showed no difference
from baseline to negative stimuli and a significant decrease to positive stimuli (Fig 3; Table 7).
There was also a significant group difference in sgACC (pcorrected <.03), with ND participants
increasing activation from baseline for positive stimuli with no difference from baseline to neg-
ative stimuli, whereas participants with depression exhibited the opposite pattern. No signifi-
cant group differences were found in striatum.

Table 4. Whole-brain activations to the emotional auditory functional MRI task, Interaction of Valence by Stimulus Type—ND Participants.

Contrast and Region X Y Z Peak t statistic Cluster size (mm3)

ND‡: Positive > Negative; Musical > Nonmusical
Left Auditory cortex -59 -16 11 7.48 13172

Right Auditory cortex 49 -6 4 5.65 12891

Left Precentral Gyrus -49 -11 41 4.39 1406

Right Precentral Gyrus 44 -9 44 4.53 1344

ND: Negative > Positive; Musical > Nonmusical

Right Parietal cortex 36 -59 41 -3.61 1734

Right Inferior Frontal Gyrus 51 19 14 -4.04 1391

Coordinates for the maximally activated voxel are provided in Talairach space. Correction for multiple comparisons, whole-brain corrected p < .01;

t > 2.09, cluster >1125 mm3).
‡Never depressed.

doi:10.1371/journal.pone.0156859.t004

Table 5. Significant activations within the ACC*/StriatumROI† –ND participants.

Contrast and Region X Y Z Peak t statistic Cluster size (mm3)

ND‡: Main effect of Valence; Positive > Negative
vACC§ -4 36 -9 5.10 1391

sgACC¶ 1 6 -6 5.41 656

ND: Main effect of Valence; Negative > Positive

NS**

ND: Main effect of Sound Type; Musical > Nonmusical

rACC†† -1 34 19 5.44 3641

ND: Main effect of Sound Type; Nonmusical > Musical

Right Caudate 11 11 6 -4.41 500

Coordinates for the maximally activated voxel are provided in Talairach space. Correction for multiple comparisons, small volume corrected p < .05;

t > 2.09, cluster > 375 mm3).

*Anterior cingulate cortex,
†Region of Interest,
‡Never depressed,
§Ventral anterior cingulate cortex,
¶Subgenual anterior cingulate cortex,

**No significant clusters,
††Rostral anterior cingulate cortex.

doi:10.1371/journal.pone.0156859.t005
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Interaction of Group by Stimulus Type. Comparing group responses to musical versus
nonmusical stimuli, only one region survived thresholding (pcorrected <.01). ND participants
had greater activation in dACC to musical versus nonmusical stimuli, whereas participants
with depression had greater activation to nonmusical stimuli compared to music, with

Table 6. Activations to the emotional auditory functional MRI task, Group Interactions.

Contrast and Region X Y Z Peak t statistic Cluster size (mm3)

Group by Valence Interaction; ND‡ > MDD‡‡: Positive > Negative
NS**

Group by Valence Interaction; MDD > ND: Positive > Negative
NS**

Group by Stimulus Type Interaction; ND > MDD: Musical > Nonmusical
dACC§§ -1 31 14 4.22 1672

Left DLPFC¶ -21 46 26 3.92 1531

Group by Stimulus Type Interaction; MDD > ND: Musical > Nonmusical
NS

Group by Valence by Stimulus Type Interaction
NS

Coordinates for the maximally activated voxel are provided in Talairach space. Correction for multiple comparisons, whole-brain corrected p < .01;

t > 2.03, cluster > 1125 mm3)
‡Never depressed,
‡‡Major depressive disorder,

*No significant clusters,
§§Dorsal anterior cingulate cortex,
¶Dorsolateral prefrontal cortex.

doi:10.1371/journal.pone.0156859.t006

Fig 3. fMRI Results—Group by Valence.Rostral and Subgenual ACC showed differential task activation between
ND and MDD groups to positive versus negative stimuli. Graphs showmean activation over the entire cluster. Error
bars denote standard error.

doi:10.1371/journal.pone.0156859.g003
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relatively greater activation to negative nonmusical stimuli, less activation to positive nonmusi-
cal stimuli, then positive music, and finally, negative music (Fig 4; Table 7). The area of activa-
tion covers both vACC and dACC; however, the maximally activated voxel was in dACC.

Three-way interaction. There was a trend toward a significant cluster in vACC in the
Group by Valence by Stimulus Type interaction (pcorrected <.09; Table 7). In this region, both
ND and MDD participants had greater activation to positive versus negative music; however,

Table 7. Significant activations within the ACC*/StriatumROI† –Group comparison.

Contrast and Region X Y Z Peak t statistic Cluster size (mm3)

Group by Valence Interaction; ND‡ > MDD‡‡: Positive > Negative
rACC†† -1 34 1 3.92 625

sgACC¶ 1 11 -1 4.00 484

Group by Valence Interaction; MDD > ND: Positive > Negative

NS**

Group by Stimulus Type Interaction; ND > MDD: Musical > Nonmusical

dACC§§ -1 31 14 4.22 656

Group by Stimulus Type Interaction; MDD > ND: Musical > Nonmusical
NS

Group by Valence by Stimulus Type Interaction
vACC§ (p <.09) -9 36 -6 -4.64 359

Coordinates for the maximally activated voxel are provided in Talairach space. Correction for multiple comparisons, small volume corrected p < .05;

t > 2.03, cluster > 375 mm3).

*Anterior cingulate cortex,
†Region of Interest,
‡Never depressed,
‡‡Major depressive disorder,
††Rostral anterior cingulate cortex,
¶Subgenual anterior cingulate cortex,

**No significant clusters,
§§Dorsal anterior cingulate cortex,
§Ventral anterior cingulate cortex.

doi:10.1371/journal.pone.0156859.t007

Fig 4. fMRI Results—Group by Stimulus Type. Dorsal ACC showed differential task activation between
ND and MDD groups to musical versus nonmusical stimuli. Graphs showmean activation over the entire
cluster. Error bars denote standard error.

doi:10.1371/journal.pone.0156859.g004
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ND participants had greater activation to positive versus negative nonmusical stimuli, whereas
MDD participants had greater activation to negative versus positive nonmusical stimuli.

Discussion
This experiment was designed as a probe for investigating neural circuitry of emotion and
reward in depression. First, the paradigm was tested in ND control participants to determine
whether musical and nonmusical stimuli activated these circuits. After confirming the para-
digm activated a priori defined ACC and striatal regions, activation was directly compared
within the anatomic mask with an unmedicated group of participants experiencing a current
depressive episode. Both groups reported similar emotional experiences from the stimuli;
however, the ACC showed differences in activation. No group differences were observed in
striatum.

ND control participants
Positive versus Negative stimuli. Positive stimuli activated vACC to a greater extent than

negative stimuli for both groups. Activation in this region was characterized by a pure valence
effect—no differences were seen based on stimulus type. The vACC receives dopamine projec-
tions from the ventral tegmental area, and sends projections dorsally and laterally to executive
control areas of the cortex [28]. Blunted activation in this region has been associated both with
transient sadness [35] and with depression [26], suggesting that this region is critical for the
experience of positive emotions. These findings corroborate previous research [11, 13] and sug-
gest that the dopaminergic system is active during music listening. While familiarity has been
shown to impact both liking [60] as well as neural responsiveness for music [61], we have no
reason to believe that familiarity would differ for the positive and negative stimuli presented in
this study. We chose to use Western art music examples, rather than popular or film music, to
minimize familiarity effects. The dopaminergic system was also activated by nonmusical sti-
muli in this study, as evidenced by greater activation in caudate to nonmusical stimuli versus
music. The musical and nonmusical stimuli used in this study were equally emotional [49].
However, the nonmusical stimuli were concrete, nameable items or experiences, whereas the
music was abstract. It is possible that another feature, such as self-referential memory, may
have driven activation in the caudate, but this is speculative. Further work is needed to eluci-
date the differential roles of ACC and striatum in processing emotional stimuli of various
types.

Musical versus Nonmusical stimuli. The responses to musical versus nonmusical stimuli
were described by very different patterns of activation. Greater activation to nonmusical com-
pared to musical stimuli in thalamus, amygdala, cerebellum and auditory cortex—regions asso-
ciated with early emotion processing—suggests that nonmusical stimuli activate primary
emotion networks more than music. However, greater activation to nonmusical stimuli was
also found in lateral and dorsomedial prefrontal cortex, areas associated with top-down execu-
tive control, object recognition, language processing, and reappraisal. Music, on the other
hand, activated rostral anterior cingulate cortex, precuneus, and bilateral parietal and occipital
cortices more than nonmusical stimuli. These regions, collectively, are associated with the
default mode network (DMN), a network of regions that tend to be more active when a person
is focused more on their own internal state, rather than engaged in an external task [62, 63].
These two systems have been described in models of voluntary and automatic reappraisal strat-
egies [64]. The DMN has been implicated in autobiographical processing [65, 66]. The fact that
music activates the DMN, while nonmusical stimuli show greater activation in the network
generally associated with tasks of executive function, is neural evidence that supports Myer’s
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[67] theory that the ambiguity in music is what allows it to be what he called a “metaphorizing
medium,” a scaffold that provides structure, but not content, that allows individual listeners
the freedom to impose personal meaning onto this structure.

These stimuli were matched for valence and arousal [49]; therefore, the differences seen
here cannot be attributed to differences in the emotional qualities of the stimuli, and must,
therefore, be interpreted in terms of cognitive identification and appraisal strategies. Together,
these findings show that even when carefully matched for emotional content, separable brain
networks process music compared with other emotional sounds. Emotional nonmusical sti-
muli activate early emotion monitoring systems (thalamus, amygdala, and cerebellum). Execu-
tive control areas, such as DLPFC, VLPFC, and DMPFC are activated as well, suggesting that
object identification and voluntary reappraisal may be taking place. Music activates DMN
and reward processing areas, such as ACC, suggesting that emotional processing in music
relies more on autobiographical memory, idiosyncratic meaning assignment, and automatic
appraisal, than does emotional processing in everyday sounds, which are more concrete and
activate linguistic processing areas to a greater degree.

Comparison of MDD and ND groups
Positive versus Negative stimuli. When all stimuli were compared based on emotional

valence, vACC (rACC and sgACC) showed relatively more activation to positive stimuli in ND
participants. In rACC, this relative difference was driven by ND participants showing increased
activation to positive stimuli, with a significant decrease from baseline to negative stimuli. Par-
ticipants with depression showed the opposite pattern: no difference from baseline for negative
stimuli, but a significant decrease from baseline to positive stimuli. In sgACC, ND participants
had increased activation for positive stimuli and no difference from baseline to negative sti-
muli, whereas participants with depression had increased activation for negative stimuli and
no difference from baseline to positive stimuli. This represents both a hypoactivation to posi-
tive and a hyperactivation to negative stimuli among depressed participants. The sgACC has
been shown to be the most effective stimulation site for deep brain stimulation in treatment-
resistant depression [68]. Although the activation found in this study extends beyond the
sgACC, the entire ACC receives projections from the midbrain dopaminergic neurons (ventral
tegmental areas) and is implicated in emotional functioning in depression [69–71]. Again,
familiarity could have an impact on these results [61]; however, while we did not measure
familiarity directly in this study, we did measure musical training—which did not differ
between groups. For these reasons, we feel confident that our results reflect differential emo-
tional processing between the groups, rather than familiarity.

The current findings using standardized emotional auditory stimuli replicate those found
by Osuch and colleagues [24], who showed that participants with depression had reduced acti-
vation to their favorite music in this region. Here, we show that decreased reactivity to positive
stimuli in depression can generalize to evocative emotional stimuli, including music and posi-
tive nonmusical stimuli, and that this effect extends to other subregions of ACC. The vACC
inhibits amygdala response [33], and has been shown to deactivate during cognitive tasks [34].
Activation patterns observed in this region could indicate monitoring for a change from one’s
current mood state, as ND participants showed a change in activation only to negative stimuli
and participants with depression showed a change only to positive stimuli.

Musical versus Nonmusical stimuli. By matching for arousal, we were also able to directly
compare responses to music and nonmusical stimuli, further extending the work from Osuch
and colleagues [24]. Comparing musical to nonmusical stimuli between the groups, activation
was found in perigenual and dorsal ACC. In this region, ND participants showed greater
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activation to all music compared to all nonmusical stimuli. Participants with depression
showed greater activation to nonmusical stimuli in this region, with the biggest response for
negative nonmusical stimuli, smaller response for positive music, then positive nonmusical sti-
muli, and negative music showing the smallest response. Even sad music can be enjoyable and
aid in emotion regulation [72–77]. When emotional content is mild—as in this study—and sti-
muli are not dissonant or designed to be unpleasant yet evoke negative emotions—as in the
negative music condition—emotional classification for the music requires a decision between
competing streams of information.

Emotion ratings. Self-reported emotion ratings for Valence and Arousal indicate that
depression status did not systematically influence how participants rated the stimuli. In the
current study, enjoyment and pleasure were not directly measured, however, the lack of group
differences in subjective experience is comparable to the findings of Osuch and colleagues [24].
In that study, participants gave equivalent enjoyment ratings for their favorite music, yet
showed reduced activation in reward centers of the brain, suggesting a potential neural marker
of anhedonia.

Implications
The current study sought to determine whether emotional musical and nonmusical stimuli
were processed similarly by healthy participants. Specifically, we had hypothesized that nega-
tive music and nonmusical stimuli might be processed differently, given the growing body of
literature focused on the enjoyment of sad music [75–77]. In addition, the study compared the
evoked brain responses to those stimuli in people with and without MDD to determine if the
pattern of response was affected by MDD. By comparing musical and nonmusical stimuli, the
current study provides a broader understanding of how individuals with MDD process differ-
ent types of auditory stimuli. Music is currently used for mood manipulations in clinical and
laboratory settings [5–10]; therefore, the results may ultimately have significant clinical impli-
cations for treating depression, or for the use of music as an affective probe for determining
risk of developing the disorder. Additionally, music therapists have been using music to impact
mood and depression in terminal illness [78] and Alzheimer’s disease [79], and are now
extending this to mood disorders that are not related to a physical illness, with promising
results [80–83]. The transitory nature of music might make it a useful tool for mood modifica-
tion; however, the mechanisms by which this may occur are not fully defined. Koelsch and col-
leagues [81] argue that music therapy may be useful in treating depression, PTSD, and other
mood disorders by acting on both the NAc-VTA reward processing loop, and by potentially
reactivating the anterior hippocampal formation, which has been shown to have a reduced vol-
ume in these disorders [84]. The current results suggest that, similar to other forms of treat-
ment, the mechanisms by which music and other forms of emotional auditory stimulation may
function in depression could be by reactivating the ACC. As the link between ACC and emo-
tion regulation has also been established in other psychiatric conditions such as borderline
personality disorder [85–87], the present results may also have implications for psychiatric
conditions beyond depression.

Limitations
Although the stimuli used in this study were carefully matched for both valence and arousal,
the measure used to assess emotional ratings was based on self-report. While participants were
explicitly instructed to rate how the stimuli made them feel, this self-report style measure did
not allow for examination of whether the emotion was truly experienced by participants or
simply recognized. Also, the fMRI employed a block-design, which did not allow us to probe
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responses to individual stimuli, or exclude trials to which participants may have been respond-
ing differently than expected. Future studies should include psychophysiological measure-
ments, such as heart rate variability, respiration, and skin conductance, and further fMRI
studies could use event-related designs that would allow individual variability in response to be
measured. Additionally, a limited number of examples fromWestern art music are used in the
current study. An increase in the number and variety of musical examples would be beneficial.
Though these examples were selected empirically to control for familiarity and linguistic con-
founds, other genres of music, such as popular songs or opera, might elicit stronger emotions.
Additionally, although there is evidence to suggest that many of the emotional cues in music,
such as harmonic expectancies, are learned through enculturation rather than explicit musical
training [88], and that emotional responses to music are influenced by familiarity [61], there is
a possibility that brain responses could differ based on musical preference or training. While
the lack of a familiarity measure is a limitation of this study, we did measure musical training.
In this sample of participants musical training ranged from none (n = 8) to more than ten
years (n = 7); however, the two groups were matched for years of musical training, thereby lim-
iting the confounding effect of training across group.

Conclusions
In conclusion, the present project revealed that in healthy participants, positive auditory sti-
muli activated reward-processing areas of the brain that are implicated in depression. This
set of studies focused on the ACC, which showed differential responsiveness to these mild
emotional stimuli in participants with depression, and striatum. By using fMRI and a stan-
dardized set of musical and nonmusical emotion-processing probes, the current study
provides insight into finer distinctions of stimulus type and may have implications for thera-
peutic interventions or risk assessment. The pattern of responsiveness in the ACC among
participants with depression in this study raises the question of whether music, and specifi-
cally positive music, may be useful in retraining the ACC and improving functioning. A lon-
gitudinal study with a music-listening intervention would be critical to determine whether
activation in ACC is malleable in this population. It is also possible that both the initial emo-
tional response to a stimulus and the inability to sustain activation of positive emotional neu-
ral circuitry may lead to persistent depression, as reported by Heller and colleagues [89].
Results from this and other studies of affective responsivity in MDD may lead to more effec-
tive and targeted treatments.

Supporting Information
S1 File. Demographics, summary questionnaire scores, and emotion ratings by participant.
Key: study_id = unique subject identifier; male (1 = male, 0 = female); age (years), ed = educa-
tion in years; mus_train (1 = None, 2 = 1–3 years, 3 = 4–6 years, 4 = 7–10 years, 5 = more than
10 years); MDD =Major Depressive Disorder classification (1 = MDD group, 0 = Never
Depressed group); AIMtot = Affect Intensity Measure total score; AIM_PA = AIM positive
affectivity subscore; AIM_NI = AIM negative intensity subsore; AIM_NR = AIM negative reac-
tivity subscore; BDI_Tot = Beck Depression Inventory total score; BAI_Tot = Beck Anxiety
Inventory total score; WASI_iq = estimated IQ from two subtests of Wechsler Abbreviated
Scale of Intelligence; NegNonMus_X = average valence rating for negative nonmusical stimuli;
NegNonMus_Y = average arousal rating for negative nonmusical stimuli; NegMus_X = aver-
age valence rating for negative musical stimuli; NegMus_Y = average arousal rating for nega-
tive musical stimuli; PosNonMus_X = average valence rating for positive nonmusical stimuli;
PosNonMus_Y = average arousal rating for positive nonmusical stimuli; PosMus_X = average
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valence rating for positive musical stimuli; PosMus_Y = average arousal rating for positive
musical stimuli.
(CSV)
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