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Abstract 

Low Back Pain (LBP) is the second most common cause of disability in the United 

States, and it is associated with abnormal high activity of Erector Spinae (ES) and low activity of 

Lumbar Multifidus (LM) muscles. This abnormal activity of muscles has shown to be associated 

with pain and dysfunction in people with LBP. Lumbar mobilization is a common physical 

therapy intervention for LBP. Yet, there is a lack of knowledge about the effects of lumbar 

mobilization on the activity of back muscles in both healthy subjects and in people with LBP. 

Investigating such effect of mobilization on the activity of back muscles may lead to a better 

understanding of the physiological effects of mobilization, and a better application of 

mobilization to normalize the abnormal activity of back muscles in LBP. This may improve the 

intervention outcomes and decrease the disability in people with LBP.  

Furthermore, there is a need to measure lumbar mobilization in clinical settings due to the 

inconsistency in applying mobilization, which may affect the intervention outcomes. Current 

laboratory methods like Optotrak and force plate to measure mobilization are expensive and not 

portable. Inertial Measurement Unit (IMU) is a potential device to measure the clinician’s hand 

movement during mobilization. IMU is inexpensive and portable. However, the validity and 

reliability of IMU in measuring mobilization need to be determined before its application is 

considered in clinical and research settings. 

In chapters two and three, the effect of mobilization on the activity/contraction of back 

muscle was investigated. Ultrasound imaging and surface electromyogram (EMG) were used to 

measure LM contraction and activity of ES respectively at low isometric contraction (arm lift 

task). 



iv 

 

In chapter two, the effect of lumbar mobilization on both LM and ES muscles in healthy 

subjects was investigated. Healthy subjects received three intervention sessions (no intervention, 

placebo, and grade IV mobilization) on different days. Contraction of LM and the EMG 

amplitude of ES activity were measured at two time points (before and immediately after the 

intervention) in each session. The only significant effect of lumbar mobilization was found on 

LM contraction compared to the placebo effect (the mobilization increased the LM contraction), 

whereas there was no significant effect of mobilization on LM contraction compared to no 

intervention. 

  In chapter three, the effect of lumbar mobilization on both LM and ES muscles in people 

with LBP was investigated. LBP subjects were randomly assigned into two groups (grade III 

mobilization or placebo/light touch group). Subjects received intervention based on their 

assigned group and for two sessions. Contraction of LM, the activity amplitude and the activity 

onset of ES were measured at two time points (before and immediately after the intervention) in 

each session. Compared to the placebo group, there were significant effects of lumbar 

mobilization on the activity amplitude and the activity onset of ES, and on LM contraction. The 

mobilization decreased both activity amplitude and activity onset of ES, and increased the 

contraction of LM. The findings support the use of lumbar mobilization to decrease the 

activation impairment of back muscles and decrease the disability in people with LBP 

In chapter four, the validity and reliability of IMU in measuring clinician’s hand 

displacement during mobilization were investigated. Healthy subjects received four different 

amplitudes of lumbar mobilization by two clinicians in two sessions. The validity of IMU was 

tested by comparing the IMU measurements (displacement) to the measurements of Optotrak 

(displacement), and calculating the correlation between IMU measurements (displacement) and 
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the force plate measurement (force). The reliability of IMU was tested by comparing the IMU 

measurements between two clinicians (inter-rater reliability) and between two sessions (intra-

rater reliability). Our results showed that IMU had high agreement with Optotrak and high 

correlation with force plate. Therefore, IMU was found to be a valid device to measure the 

amplitude of displacement of clinicians’ hand during lumbar mobilization. The reliability of 

IMU was moderate (both inter-reliability and intra-reliability), which can be due to inconsistency 

in applying mobilization between sessions and between clinicians. 

The findings suggest that lumbar mobilization may change the activity/contraction of 

back muscle in people with LBP but not in healthy subjects during the arm lift task used to 

collect outcomes. That might be because healthy subjects do not have impairment in activity/ 

contraction of back muscle to be corrected by mobilization.  Therefore, the findings further 

support the use of mobilization as an integral intervention for people with LBP, and emphasize a 

new therapeutic effect of lumbar mobilization to normalize back muscle impairment in LBP.  

Though IMU was found as a valid device to measure lumbar mobilization, the reliability of IMU 

needs to be tested with more accurate methods of replicating the mobilization between sessions 

and between clinicians. 
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Chapter 1: Introduction 
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1.1 Low back pain prevalence and sources: 

Low back pain (LBP) is a common disorder that affects approximately 80% of the 

population at some point in their lives 1. The recurrences of LBP is also common; about 25% of 

people who recover from an acute episode of LBP experience another episode of LBP within one 

year after recovery 2. LBP is the fifth most common cause for seeking a physician care in the 

United States 3. Therefore, LBP is associated with significant costs and disability. It costs our 

society about $100 billion each year as a result of medical care, absenteeism from work, and 

reduced productivity 4,5.  

LBP is defined as an unpleasant sensation located in the area between the costal margin 

and the inferior gluteal folds 6 from tissue damage or described in terms of such damage 7. LBP 

can be classified according to the source of pain and stages of healing. About 90% of LBP is 

diagnosed as non-specific LBP 8, suggesting no specific source of symptoms can be identified. 

Degenerative changes of spinal discs or facet joints found in spine imaging are common findings 

present in patients even without LBP symptoms 9. In most cases LBP resolves within the first 

three months of onset. However, about 20% of people with back pain develop chronic LBP 10, 

which is defined as pain greater than three months from the initial onset of injury or spontaneous 

episode of pain 11,12. Once in the chronic stage, LBP becomes a complex disorder with many 

associated symptoms besides pain. These symptoms include hyperalgesia 13, dysfunction in trunk 

muscles 14-20, and cognitive and psychological symptoms (fear of movement, distress, anxiety, 

depression, and somatization) 21,22. Thus, investigating various dysfunctions and treatment 

effects of chronic LBP are important.  

The economic burden and disability associated with chronic LBP is even higher. The 

prevalence of chronic LBP was found to be approximately 20% in people between 20 and 59 
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years of age 23. Compared to people with other health conditions, people with chronic LBP have 

2-12 times more comorbidity i.e. anxiety, depression, and sleep disorders, use 2-12 times more 

prescription pain medications, and account for more number of visits to health care professionals 

(i.e. 5 times more visits to physical therapists and 20 times more visits to chiropractors) 24.  

There are two conceptual models regarding the source of LBP and pain in general, the 

end-organ dysfunction and the altered nervous system processing models 25. The dysfunction 

model suggests the source of LBP symptoms are structural abnormalities/ dysfunctions in related 

tissues and structures 25. Local spinal tissues and structures such as intervertebral disc, facet 

joints, muscles, tendons, and ligaments can be a source of LBP 9. Furthermore, internal organ 

dysfunctions or abdominal aortic aneurism can present sources of LBP 9. However, the altered 

nervous system processing model suggests dysfunction in the nervous system either in encoding 

or processing of sensory information within the peripheral and the central nervous systems rather 

than dysfunction in spinal tissues and structures 25. At the peripheral nervous system, a sustained 

injury can cause changes in the excitability of the afferents to external stimuli, which can lead to  

hyperalgesia (increased sensitivity to a painful stimulus). In addition, sustained injury can cause 

changes in the resting membrane properties of the afferents, leading to spontaneous action 

potentials and pain perception in the absence of external stimuli 25. Furthermore, within the 

central nervous system, plasticity and dysfunction of pain processing might occur within the 

dorsal horns of the spinal cord and in various regions within the brain 25, leading to allodynia 

(abnormal sensation of pain with a nonpainful stimulus).  

The economic burden and disability associated with chronic LBP demand for a better 

understanding of current intervention strategies, which may improve outcomes of pain and 

disability and may also be cost saving. This dissertation investigates the effects of a commonly 
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used physical therapy intervention, lumbar mobilization, on the activity of the impaired back 

muscles in people with chronic LBP.  

1.2 Low back pain and lumbar stability: 

LBP can also be due to lack of lumbar stability  26. The stability of lumbar spine, which is 

defined as the ability to control the intervertebral movement, is important for pain free 

performance of activities of daily life. The lumbar stability is achieved through three 

components: passive, active, and neural components 26. The passive component consists of the 

bony and the ligamentous structures that resist the movement at the end range of movement [35]; 

the active component consists of the muscles that provide stability through contractions [35]; the 

neural component consists of the mechanical receptors (muscle spindles and Golgi tendon 

organs) and the nervous system [35] that controls and coordinates muscle activities at different 

levels. For example, at the spinal level, proprioceptive input from the mechanical receptors is 

used to regulate α-motor neurons activity while at the brainstem level, different position inputs 

(vestibular, visual, and proprioception) are coordinated and then used to regulate muscle activity. 

Moreover, the central nervous system uses the stored motor commands to adjust muscle 

contractions as in the anticipatory postural response 27, in which trunk muscles contract before 

the limb movement to stabilize the spine and to compensate for perturbations in posture. 

Dysfunction in any of the three components of spinal stability can lead to abnormally large 

intervertebral movements, which may stress the articular and neural structures that consists 

nociceptors and cause LBP. 

1.3 Role of trunk muscles in lumbar stability: 

All muscles of the lumbar spine contribute to stability and movement of lumbar spine. These 

muscles can be classified into global and local (intrinsic) muscles. The global muscles (e.g. 
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erector spinae) connect the thoracic cage to the pelvis, and are responsible for producing gross 

movements of the spine and providing general stability. The local (intrinsic) muscles (e.g. 

lumbar multifidus) are connected to individual segments of the lumbar spine and thus provide 

segmental stability by controlling intervertebral movement 28. Lumbar Multifidus (LM) muscle 

consists of both superficial and deep fibers. The deep fibers stabilize the lumbar spine by fine- 

adjusting the intervertebral motion, while the superficial fibers primarily extend and rotate the 

lumbar spine 29. Although not directly connected to the vertebrae, transversus abdominis (TA) 

and internal oblique (IO) muscles are attached to the lumbar vertebrae indirectly through the 

thoracolumbar fascia and therefore play a role in stabilizing the lumbar spine. TA increases the 

stiffness and stability of the spine by increasing the intra-abdominal pressure 30. Studies found 

that both TA and deep fibers of LM muscles contract in the anticipatory postural responses to 

stabilize the spine before the arm movement 31. Normal contraction timing and strength of trunk 

muscles is important to maintain stability of the lumbar spine and to avoid LBP. 

1.4 Assessment of back muscle contraction and activity: 

Electromyography (EMG) is the gold standard measurement for measuring skeletal 

muscle activation. The EMG signal can be analyzed three ways (amplitude, timing, and spectral 

analyses). The amplitude of the rectified EMG signal provides information about the strength of 

muscle contraction as the signal amplitude is highly correlated with the muscle force; the higher 

the muscle forces, the higher the EMG signal amplitude 32. The timing analysis of EMG signals 

provides information about the time of muscle activation and order of muscle recruitment (the 

onset and the end of muscle contraction), while the spectral analysis provides information about 

the frequencies of EMG signal in relation to time, and is mostly used to study muscle fatigue 33.  
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EMG is conducted by placing surface electrodes on the skin (surface EMG) or by 

inserting needle/fine-wire electrodes into a deep muscle tissue (intramuscular/needle EMG). In 

contrast to the superficial back muscles, a reliable signal of LM activation can only be detected 

by intramuscular EMG 34. However, intramuscular EMG is an invasive method that is not always 

feasible and desirable; it might cause pain, bleeding, or infection 35.  

Ultrasound (US) imaging of LM is an alternative non-invasive measure to needle EMG 

and has been extensively used to visualize thickness of LM. Muscle thickness measurements 

have been shown to indirectly quantify muscle contraction at low level of contraction. Although 

the conventional US imaging method has the limitation of displaying only two dimensions of 

muscle thickness 36, changes in muscle thickness of LM as measured by US imaging was found 

to be highly correlated with EMG amplitude of LM at low level of contraction (less than 35% of 

maximum voluntary contraction of LM) 37. Thus, US imaging is considered a valid alternative 

method to measure LM muscle contraction strength at low level of muscle activity. In this 

dissertation, we used the amplitude and timing analysis of EMG signals to measure the activity 

and activity onset of a superficial muscle (Erector Spinae; ES), and muscle thickness 

measurements from US imaging to measure the contraction of the deep muscle of LM. 

1.5 Trunk muscle dysfunction in low back pain: 

Imbalance and dysfunction in the activity of ES have been reported in LBP. According to 

a meta-analytic review 38, the following dysfunctions have been reported in ES muscles: delayed 

muscle onset, muscle imbalance between the left and the right sides, faster muscle fatigue, lack 

of flexion relaxation phenomenon (absence of ES muscle relaxation at the end of flexion), and 

abnormal amplitude of EMG signals. The abnormal amplitude of EMG signals was found as 

high EMG activity at low level isometric contractions like standing 39-41, and low EMG activity 
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at moderate and maximum levels of isometric contractions 42-44. Furthermore, higher co-

contraction of superficial trunk muscles (ES and abdominal muscles) was found in people with 

LBP 45. Dysfunctions in the major stabilizing deep muscles of the lumbar spine have been also 

reported in LBP such as less activity, atrophy, and delayed muscle onset of LM. The delayed 

muscle onset of TA 14-20and LM was associated with recurrent LBP 46. Furthermore, the 

improvement in LBP does not necessarily result in returning of normal function of LM 16,46. 

Although the increased muscle activity of ES and the co-contraction of trunk muscles 

increase the stability of the spine, it may mechanically add stresses to the articulating structures, 

resulting in further micro trauma, limiting the patient’s flexibility and function, and leading to 

further pain and disability 45. Therefore, it is important to decrease the activity of ES, while 

attempting to increase the stability of the spine via increasing the activation of deep back 

muscles (e. g. LM). In this dissertation, we investigated whether lumbar mobilization 

intervention can restore the normal activity of LM and ES muscles in people with chronic LBP 

(Chapter three). Restoring the normal muscle activation may prevent further damage and pain 

and increase functional abilities in people with LBP.  

1.6 Possible mechanisms of pain on muscle activity and motor control:  

Vicious cycle model (pain-spasm-pain) and pain adaptation model are the two main 

theories explaining the effects of pain on motor control in LBP 47. The vicious cycle model 

proposes that pain signals at the spinal cord level stimulate alpha motor neurons, which induce 

muscle reflexes in form of hyperactivity (spasm or contraction) around the painful site. The 

hyperactivity of the muscles attempts to protect and support the injured tissue. However, this 

hyperactivity can cause further loading of the facet and intervertebral joints and lead to more 

pain, which stimulates alpha motor neurons again; thus, continuing the cycle of pain–spasm-
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pain. The pain adaptation model 48 suggests that pain decreases the activity of agonist muscles 

(the muscles that contract to create the painful movement) and increases the activity of 

antagonist muscles (the muscles that contract to resist and control the painful movement) in order 

to limit the range and the velocity of the movement, thereby reducing further injury and pain. 

According to the pain adaptation model, pain afferent signals can excite or inhibit the alpha 

motor neuron by excitatory or inhibitory interneurons, and the motor command from the brain 

determines which output (the inhibitory or the excitatory interneurons) dominate.  

However, the changes in the motor control in people with chronic LBP are complex and 

cannot be fully explained by the previous two models alone. Hodges et al. hypothesized that the 

central nervous system may interpret the increased stiffness of the painful spine (via co-

contraction of ES and superficial trunk muscles) as a less need for the deep spinal muscles to 

fine-adjust the intervertebral motion, which in turn leads to decreased activity of LM; he 

suggested multiple mechanisms for pain and motor control. The mechanisms include changes in 

motor neuron activity at the spinal and cortical levels, altered proprioception, and effects of other 

symptoms, such as stress and fear, on motor control49. Therefore, it is important to capture these 

symptoms in LBP studies to be able to interpret and compare results between studies. In this 

dissertation, we used standard questionnaires to capture activity level, fear avoidance, 

depression, and disability of chronic LBP subjects. 

1.7 Role of manual therapy in treating trunk muscle dysfunction in low back pain: 

Physical therapy interventions for LBP include physical modalities, therapeutic exercises, 

patient education and manual therapy. Spinal manipulation and skilled motor training were found 

to restore the normal activation pattern of low back muscles to certain extent 50-52. Skilled motor 

training refers to use of cognitive attention to activate LM muscles with minimal or no activity of 
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ES muscles. Lumbar mobilization is another example of manual therapy treatment that is 

commonly used to decrease pain and stiffness in LBP. However, the effect of lumbar 

mobilization on the activity of back muscles is not known. Investigating the effect of 

mobilization on the activity of back muscles may lead to a better understanding of lumbar 

mobilization and its appropriate application for LBP. Chapter three investigated such effect of 

lumbar mobilization on the activity of back muscles in people with chronic LBP. 

1.8 Mobilization versus manipulation for low back pain: 

Lumbar mobilization and manipulation are common treatments for LBP in physical 

therapy practice to decrease pain and stiffness in back, and both interventions are recommended 

in the clinical guidelines for managing LBP 53. Both interventions have low risks. However, very 

rare complications after manipulation of lumbar spine have been reported 54. 

Several differences exist between the two interventions. First, during lumbar 

mobilization, the clinician’s hands press on the patient’s back, and apply oscillatory (back and 

forth) movements at a specific grade (grade I to grade IV) within the available accessory range of 

motion (AAROM). On the other hand, during manipulation the clinician applies a single quick 

thrust movement beyond the AAROM. Second, during manipulation and in contrast to 

mobilization, patient is unable to control or prevent the movement. Clinicians usually select 

mobilization intervention over manipulation when manipulation is contraindicated or patient 

condition is too irritable 55.  Furthermore, manipulation is more skillful technique and often used 

by experienced clinicians who are trained in manipulation; thus lumbar mobilization is more 

commonly used technique over manipulation among physical therapists 55. 

There are four grades of mobilization (grade I to grade IV) based on the amount of 

oscillatory movement (amplitude) and the portion of the AAROM in which the oscillation is 



10 

 

applied (Figure 1.1). Grade I consists of small amplitude movements near the beginning of the 

AAROM, grade II consists of large amplitude movements through the mid-range of the 

AAROM, grade III consists of large amplitude movements near the end of the AAROM, and 

grade IV consists of small amplitude movements near the end of the AAROM. The amplitude 

represents the oscillatory movements as shown in Figure 1.2.  

The underlying mechanisms for both spinal mobilization and manipulation interventions 

are poorly understood. Bialosky et al. suggested a theoretical model (Figure 1.3) explaining how 

mechanical stimuli from these interventions could lead to neurophysiological effects at the 

peripheral, spinal, and/or brain levels. These neurophysiological effects include changes in 

muscle activity, hypoalgesia, and autonomic responses (e.g. changes in heart rate and skin 

conduction) 56. Regarding changes in muscles activity, both manipulation and higher grades of 

mobilization have shown to change the cervical and lumbar spine muscle activity 50,57-60. Studies 

suggest that mobilization and manipulation stimulate a brain stem region (periaqueductal gray) 

that controls sensory input from the spinal cord and the brain, leading to combined analgesia, 

sympathetic excitation, and motor effects 56. It has also been proposed that these interventions 

can stimulate the mechanoreceptors within the joints and muscles which changes the α-motor 

neurons excitability 61. In cats, manipulation increased the discharge frequency of the 

mechanoreceptors (muscle spindles and Golgi tendon organs) in LM and longissimus (a part of 

ES) muscles 62-66. It is also possible that the effects of mobilization and manipulation on muscle 

activity are mediated by the hypoalgesic effect of these interventions 67. However, several studies 

reported changes in muscle activities in healthy subjects without pain 68-70. Thus, it is probable 

that all of the above mechanisms contribute to change the muscle activity after mobilization.  
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1.9 Effects of mobilization and manipulation on the activity/recruitment of spinal muscles: 

It is unclear if mobilization and manipulation can change the spinal muscle activity in 

absence of pain. Studies in healthy subjects have shown increased trapezius muscle strength after 

both grade IV thoracic mobilization 70 and thoracic manipulation 68, and decreased activity of ES 

muscles after grade IV lumbar mobilization 69. In contrast, one study reported no change in the 

activity of sternocleidomastoid muscle after grade III cervical mobilization in healthy subjects 67.  

In people with neck pain, both mobilization and manipulation were found to change the 

cervical muscle activity. Both cervical manipulation and grade IV mobilization increased the 

contraction of the deep cervical flexors 71. Furthermore, Grade III cervical mobilization has 

shown to increase the contraction of deep cervical flexors and decrease the contraction of 

superficial cervical flexors muscles 72.  

In people with LBP, manipulation has shown to change the activity of ES. However, the 

direction of the change in ES activity depended on the type and intensity of muscle contraction. 

These studies are summarized in Table 1.1. Manipulation decreased the activity of ES muscles at 

static and low isometric contraction conditions 50,51,57, and increased the activity of ES at 

maximum isometric contraction in people with LBP 60. Only one study demonstrated no effect of 

manipulation on ES muscles activity in quite standing 73; although the study had a small sample 

size of 12 subjects, and was not a randomized control trial.  

Manipulation has also shown to increase the activity of LM in people with LBP. In a 

large study (78 LBP subjects), small but significant increase (2%) in the muscle thickness of LM 

was found during an arm lift task (submaximal isometric contraction) 51. However, it is unknown 

if mobilization, has similar effects on back muscles in presence or absence of pain.   
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This dissertation investigated the effect of lumbar mobilization on back muscles (ES and 

LM) activity during a task that requires low isometric contraction in healthy subjects (Chapter 

two) as well as in people with chronic LBP (Chapter three). We hypothesized that lumbar 

mobilization will lead to changes in the activity of back muscles similar to the reported changes 

in the previous manipulation and cervical mobilization studies. Those changes were increase in 

the contraction of the deep muscles and decrease in the contraction of the superficial muscles. 

Both higher grades of mobilization and manipulation have shown to change the cervical and 

thoracic spine muscle activity in healthy subjects and in people with neck pain 68,70-72 as 

discussed earlier. Furthermore, both cervical and lumbar regions have similar anatomy and 

neurophysiology. 

1.10 Quantifying lumbar mobilization: 

The four grades of mobilization are defined by displacement, which represents the 

distance moved during the mobilization as a result of the applied forces, and has two measures, 

the amplitude and the magnitude (Figure 1.2). The amplitude represents the distance moved 

during the oscillatory (back and forth) movements of mobilization. The magnitude represents the 

part of AAROM in which the amplitude/oscillatory movement is applied, or how deep/far the 

clinician pushes into the AAROM before applying the oscillatory movements. Both amplitude 

and magnitude are subjectively assessed by clinicians, and clinicians rely on “sensing” the 

amplitude and magnitude of displacement to apply various grades of mobilization. This has 

resulted in high variability of applying grades of mobilization. Studies have found poor intra- 

and inter-reliability of applying mobilization forces within and across mobilization sessions 74. 

For example, clinicians with more than three years of experience, applied force magnitude that 

ranged from 63 to 347 N during grade IV lumbar mobilization 74. This inconsistency may result 
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in inconsistent patient outcomes. For example, without quantifying mobilization force and 

displacement, the mobilization may be either too small to produce the desired clinical effect or 

too extreme, leading to adverse effects such as increased pain. Thus, measuring force or 

displacement of mobilization may improve reliability and clinical outcomes.  

Current force measure instruments such as force plate or motion capture systems are not 

available during clinical practice. Therefore, there is a need for alternative devices that can 

measure mobilization forces or displacement in clinical settings. There is a linear relationship 

between forces applied at the lumbar spine and displacement, for forces higher than 30 N 75. 

However, the displacement is affected by factors other than the force such as the rate/frequency 

of mobilization, the angle of the clinician’s hand, the point of force application, the patient’s 

body mass index, and most importantly the stiffness of the spine 76. For examples, for the same 

amount of force application, the displacement is greater in a person with a flexible spine than in a 

person with a stiff spine. Spinal stiffness is less at lower mobilization frequency 77; therefore, for 

the same amount of applied force, more displacement is expected when mobilization is applied at 

a frequency of 0.5 Hz than at 2 Hz.  

To date, there has been no described method to measure mobilization displacement in 

clinical setting. The displacement can be measured in clinical setting as the movement of the 

therapist's hand during mobilization. Optortrak motion capture system has high reliability and 

accuracy in measuring small displacement. It has an accuracy of 0.1 mm and resolution of 0.01 

mm 78. However, Optotrak is a large, heavy, and expensive device to be used in clinical settings 

and requires engineering knowledge for its operation. Therefore, there is a need to develop a new 

method/device that can be applied to quantify displacement during mobilization that can 

potentially be used in clinical setting. 
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Inertial Measurement Unit (IMU) is a small size, inexpensive, and portable device that 

has the potential to measure clinician's hand displacement during mobilization. The unit usually 

includes both an accelerometer and gyroscope and sometimes magnetometer (compass). 

Accelerometer measures acceleration while gyroscope measures angular velocity. The 

acceleration and angular velocity of the clinician’s hand movements during mobilization can be 

captured by IMU, and then used to calculate the amplitude of the vertical displacement of the 

clinician’s hand.  

Many factors may affect the accuracy of IMU in measuring the amplitude of vertical 

displacement such as errors of estimating orientation/angles, accelerometer and gyroscope drifts, 

the integration errors, and the speed of the movement. Accelerometer had an error of 

measurement less than 7% when used to measure 1.25 mm displacement of vibrational 

movements at 20 Hz of frequency 79. However, IMU has less accuracy when used to measure 

movements that are both slower and larger than vibrational movements. When used to measure 

vertical toe displacement (around 15 cm) during walking, the error of measurement was found to 

be approximately 20% 80. The mobilization movements are faster than walking but slower than 

the vibrational movements. Mobilization is usually applied at a frequency of 1 Hz, and the 

amplitude of mobilization is few millimeters. Therefore, the validity and reliability of IMU in 

measuring mobilization displacement need to be tested before its application can be considered 

for research or clinical use.  

In this dissertation, we investigated the validity and reliability of IMU in measuring the 

amplitude of clinician’s hand displacement during mobilization (Chapter four). We hypothesized 

that IMU would have shown validity and high reliability in measuring the amplitude of lumbar 

mobilization. 
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1.11 Significance of the study:  

The findings of our studies make significant contribution toward our knowledge about 

lumbar mobilization and its application in clinical practice.  First, the results may lead to a better 

understanding of lumbar mobilization and its underlying mechanism. Lumbar mobilization is a 

commonly used treatment for LBP; approximately 70-90% of physical therapists use lumbar 

mobilization for management of LBP 81,82. Yet the underlying mechanisms of lumbar 

mobilization are poorly understood.  Our study is the first to investigate the effects of lumbar 

mobilization on both deep (LM) and superficial (ES) back muscles in healthy subjects. 

Determining such effects will improve our knowledge if mobilization can change muscle activity 

in absence of pain.  

Secondly, to our knowledge, there are no published studies about the effects of spinal 

mobilization on the activity of the back muscles in people with chronic LBP. The dysfunction of 

ES and LM muscles may add to the disability and recurrent pain experiences in chronic LBP. 

Normalizing the abnormal activity of back muscles may decrease pain and functional disability 

in people with LBP. The findings from a previous study suggested that the improvements in LM 

contraction after manipulation mediated disability level in people with LBP 83. Determining the 

effects of lumbar mobilization on back muscles in people with LBP may support the current use 

of mobilization with the physiological rational of restoring normal muscle activity.  

Thirdly, the findings of this dissertation may lead to a better measuring method of 

mobilization, which may subsequently decrease the variability in application of mobilization in 

clinical practice and in research settings and improve patient outcomes. Current methods to 

quantify mobilization are limited to laboratory settings because they are not feasible to be used in 
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clinical settings. Our study is the first step to develop a friendly used device that can potentially 

be used in clinical and educational settings to measure mobilization. 

1.12. Specific Aims and Statement of Hypotheses: 

LBP is the second most common cause of disability in the United States 84 and is 

associated with increased activity of ES and decreased activity of LM 16,17,85,86. This abnormal 

activity of back muscles may lead to muscular pain and limitations in function 87. Lumbar 

mobilization is a common intervention for LBP to decrease pain and stiffness. However, the 

underlying mechanism of mobilization is still unclear, and there is a lack of understanding about 

the effect of lumbar mobilization on back muscle activity in healthy subjects and in people with 

LBP. Furthermore, there is inconsistency in application of mobilization, and this inconsistency 

may result in inconsistent patient outcomes following mobilization. Therefore, there is a need for 

devices that can be used in clinical settings to measure mobilization and decrease the 

inconsistency in applying mobilization. 

The purpose of this work was to investigate the effects of lumbar mobilization on the 

activities of back muscles in both healthy subjects and people with LBP, and to investigate the 

validity and reliability of an IMU in measuring lumbar mobilization. The findings from previous 

spinal mobilization and manipulation studies guided us to conduct our studies.  

Our rationale for this project was that investigating the effects of lumbar mobilization on 

activity of back muscles may lead to a better understanding of lumbar mobilization in targeting 

muscle dysfunction in people with LBP and may further support the use of mobilization in 

people with LBP. Furthermore, validating IMU is the first step toward its use in clinical settings 

to increase the consistency of mobilization application. The specific aims and hypothesis of this 

study are: 
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Aim 1: To determine the effects of grade IV lumbar mobilization on back muscles in 

healthy subjects.  

We hypothesized that compared to both placebo and no intervention, grade IV mobilization 

would decrease the activity of ES (H1) and increase LM contraction (H2). 

Healthy subjects will receive three intervention sessions (no intervention, placebo, and 

grade IV mobilization) on different days. Contraction of LM and the activity of ES will be 

measured with an arm lift task requiring low isometric contraction of back muscles, at two time 

points (before and immediately after the intervention) in each session. Ultrasound imaging and 

surface electromyogram (EMG) will be used to measure LM contraction and activity of ES 

respectively. 

Aim 2: To determine the effects of grade III lumbar mobilization on back muscles in people 

with chronic LBP.  

We hypothesized that compared to placebo, grade III mobilization will decrease the amount of 

activity (H3a) and activity onset (H3b) of ES, and increase LM contraction (H4). 

LBP subjects will be randomly assigned into two groups (grade III mobilization or 

placebo/light touch group). Subjects will receive intervention based on their assigned group and 

for two sessions. Contraction of LM and the activity of ES will be measured with low isometric 

contraction (arm lift task) at two time points (before and immediately after the intervention) in 

each session. Ultrasound imaging and surface electromyogram (EMG) will be used to measure 

LM contraction and activity of ES respectively.  

Aim 3: To determine the validity and reliability of IMU in measuring the amplitude of 

displacement of the clinician’s hand during lumbar mobilization on healthy subjects.  
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We hypothesized that IMU measurements will have high agreement with Optotrak (H5a) and 

high correlation with force plate (H5b) measurements, and that IMU willhave high inter-rater 

(H6a) and intra-rater (H6b) reliability in measuring the amplitude of displacement. 

 Each healthy subject will receive four different amplitudes of lumbar mobilization – that 

is equivalent to grades III and IV of mobilization – by two clinicians in two sessions. The 

validity of IMU will be tested by comparing the IMU measurements (displacement) to the 

measurements of Optotrak (displacement) and by examining the correlation between IMU 

measurements (displacement) and the force plate measurement (force). The reliability of IMU 

will be tested by comparing the IMU measurements between two clinicians (inter-rater 

reliability) and between two sessions (intra-rater reliability).  

The findings of our studies will add to the current knowledge about the physiological 

effects of lumbar mobilization and may support the use of lumbar mobilization to normalize 

abnormal back muscle activity found in people with LBP. Furthermore, based on our findings we 

conclude that IMU can be used as a valid instrument in measuring the amplitude of clinician’s 

hand displacement during lumbar mobilization. Eventually, the IMU can serve as a user-friendly 

device in clinical settings to increase the consistency of application of mobilization and can be 

used in future mobilization studies. 
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1.13 Tables 

Table 1.1: Previous studies about the effect of manipulation on back muscles 

activity/contraction in people with LBP 

Study Design (number 

of subjects) 

Testing task Results Time of observed 

findings 

Bicalho (2010) 50 Randomized 
controlled trail 
(40) 

From standing, 
dynamic flexion, 
static full flexion 
and then dynamic 
extension 

No changes during 
dynamic flexion 
 
↓ EMG activity of ES 
during both static full 
flexion and dynamic 
extension 
 

Immediately after the 
manipulation 

DeVocht et.al.  (2005) 
57 

Pre and post 
study design 
(16) 
 

Resting in prone 
position 

↓ EMG activity of ES Immediately after the 
manipulation 

Keller et.al.   
(2000) 60 
 

Non-randomized 
control trial 
(40) 
 

Maximum 
voluntary 
contraction from 
prone position 

↑ EMG activity of ES Immediately after the 
manipulation 

Lehman et.al.   (2001) 
73 

Pre and post 
study design 
(14) 

Quite standing , 
dynamic flexion, 
lateral bending and 
axial twist 

No consistent changes 
in EMG activity of ES 
or abdominal muscles 

Immediately after the 
manipulation 

Koppenhaver et.al.   
(2011) 51 

Prospective case 
series 
(81) 

Low isometric 
contraction  
LM: arm lift task. 
Abdominal 
muscles: straight 
leg raise and 
abdominal draw in 
maneuver 

↑ contraction of LM  
 
↓ contraction of 
abdominal muscles 

3-4 days after the 
manipulation 
 
Immediately after the 
manipulation 
 

EMG: Electromyography, ES: Erector Spinae muscle, LM: Lumbar Multifidus muscle 
↑: increased 
↓: decreased 
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1.14. Figures 

 

Figure 1.1: Grades of Mobilization 88. 
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Figure 1.2: Up: Measures of force (A) and displacement (B) 76. Down: blue line represents the 

magnitude; black line represents grade II mobilization amplitude as an example. Red dots on up 

and down figures represent magnitude   
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Figure 1.3: The theoretical model of Bialosky et al. explaining the underlying effects of manual 

therapy including mobilization and manipulation56. 
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Chapter 2: Effect of lumbar mobilization on back muscle in healthy subjects 
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2.1 Abstract: 

Objectives: Lumbar mobilization is a standard assessment and treatment method for the lower 

back. Only few studies have investigated the effect of lumbar mobilization on the activity of 

back muscles in healthy people. This study investigated the effect of grade IV lumbar 

mobilization on erector spinae (ES) and lumbar multifidus (LM) muscles in healthy people. 

Methods: A randomized, repeated measures design was used. Sixteen healthy subjects attended 

three testing sessions with different intervention in each session (no-intervention, grade IV 

central lumbar mobilization at L4, and placebo/light touch). Lying in prone position, subjects 

lifted a light weight with their right arm. During the arm lift task, ultrasound (US) images of LM 

and surface Electromyography (EMG) signals of ES were captured before and immediately after 

the application of the intervention in each session. The contraction of LM was calculated from 

US images, and the Root Mean Square (RMS) was calculated from the EMG signals and used as 

outcome measures.  

Results: A significant difference was found in LM contraction between the placebo and 

mobilization intervention (difference =0.04, p=0.02). There was no significant difference for the 

RMS of EMG signals between the interventions.  

Conclusion: The significant difference in LM contraction was small, and may not have a clinical 

significance. Lumbar mobilization did not change the activity of ES in healthy people. Future 

studies with larger sample size are needed to confirm these findings and to investigate the effect 

of mobilization on the back muscles in people with low back pain. 

2.2 Introduction:  

Lumbar mobilization is a common manual therapy technique used to decrease low back 

pain (LBP) and increase lumbar spine range of motion 88. During mobilization, the clinician’s 
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hands produce oscillatory movements of a specific grade (grade I- IV) to a single vertebra of the 

lumbar spine 88. The underlying mechanisms of joint mobilization are still unclear. Joint 

mobilization may induce several physiological responses including pain reduction, hypoalgesia, 

and change in muscle activity 56. Joint mobilization has been proposed to stimulate 

mechanoreceptors in the joints and muscles, which may alter the muscle activity through 

stimulating α-motor neurons at the spinal level 61 and the neurons of the periaqueductal gray in 

the midbrain 56.  

The effect of joint mobilization on muscle activity in healthy subjects is still 

controversial. a few studies have shown increased strength of hip muscles after grade IV hip 

mobilization 89,90, increased trapezius muscle strength after grade IV thoracic mobilization 70, and 

decreased activity of erector spinae (ES) muscles after grade IV lumbar mobilization 69in healthy 

subjects. In contrast, one study reported no change in the activity of superficial neck flexor 

muscles after grade III cervical mobilization in healthy subjects 67. On the other hand, in people 

with neck pain, grade III cervical mobilization increased the activation of deep cervical muscles 

but decreased the activation of superficial cervical muscles 72, and grade IV cervical mobilization 

increased the motor performance of the deep cervical flexors muscles 71. From the previous 

findings, it is unclear if mobilization can change the muscle activity in absence of pain. 

The purpose of this study is to further investigate the effect of lumbar mobilization on 

back muscle activity in healthy subjects. This study examines the effect of lumbar mobilization 

on both superficial muscles of ES and deep muscles of lumbar multifidus (LM). Studying the 

effect of lumbar mobilization on the activity of back muscles in healthy subjects may lead to a 

better understanding of the underlying mechanism of mobilization. We hypothesized that lumbar 
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mobilization would increase the activity of the LM and decrease the activity of the ES. This 

hypothesis was based on findings from the previous studies in people with neck pain 71,72. 

2.3 Methods: 

Subjects between the age of 18 and 50 years with no history of LBP in the last six months 

were included in the study. Subjects with body mass index larger than 30 kg/m2, any reported 

bony or joint pathology affecting lumbar spine (e.g., osteoporosis), lumbar/sacral deformities 

(e.g., spondylolisthesis), spinal surgery, and pregnancy were excluded. Before initiating the 

study, approval was obtained from the internal review board at University of Kansas Medical 

Center. All subjects consented prior to the testing. The subjects’ physical activity was assessed 

using the long version of the International Physical Activity Questionnaire (IPAQ) 91. 

Each subject attended three sessions, which were 3-4 days apart. During the first session, 

no-intervention was applied, which served as control intervention. During the second and third 

sessions, grade IV central lumbar mobilization and placebo (light touch) interventions were 

applied to lumbar segment 4 (L4) in a random order. In each session, the subject lifted a light 

weight (1.5-2 lb.) with the right arm before and immediately after each intervention (no-

intervention, placebo, or mobilization). Ultrasound (US) images of LM and surface 

Electromyography (EMG) signals of ES were captured during the arm lift task. Muscle 

contraction from US images and Root Mean Square (RMS) of EMG signals were calculated and 

used as the outcome measures.  

The arm lift task: Subjects laid in prone position with lower back exposed and legs 

shoulder-width apart. An inclinometer was used to measure the lumbo-sacral angle. If the angle 

was greater than 10 degrees, one or two pillows were used under the abdomen to flatten the 

lumbar curve to less than 10 degrees. Subjects’ right elbow was flexed to approximately 90 
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degrees and right shoulder was abducted to approximately 120 degrees. A goniometer was used 

to measure the elbow and shoulder angles. Then subjects were asked to lift a specific amount of 

weight (1.5 to 2 Lb.) with their right hand to elicit 30% of the maximal voluntary contraction of 

LM 37. Subjects lifted the weight by raising their arm up until their right elbow touched a 

horizontal head piece of stadiometer (at 5 cm height), and held their arms at that height, to 

induce isometric contraction, for three seconds. Subjects were instructed to keep their elbow and 

wrist at the same horizontal level during the arm lift. The subjects repeated the arm lift task three 

times before and immediately after each intervention. 

The US imaging: A Logiq P5 US (GE Healthcare, Milwaukee, WI) with a 60 mm 

curvilinear array transducer, and a frequency of 5 MHz was used to capture the US images. The 

images of LM were taken from left side of lower back at the L4-L5 level. The spinous process of 

L4 was palpated and marked. The US transducer was placed in sagittal orientation just lateral to 

the spinous process and angled medially to clearly visualize the sacrum and the left L4-L5 facet 

joint in the image. US images were captured immediately before the arm lift task and during the 

isometric contraction of the arm lift task. 

The EMG: Bagnoli™ Desktop EMG System was used. The system collects EMG 

signals at a bandwidth of 20-450 Hz. The EMG electrodes had 10 mm contact spacing and 

100mm² detection area. The EMG procedures were performed by the same experimenter and 

followed SENIAM standards 92. The skin of each subject’s back was cleaned with alcohol and 

allowed to dry before placing the EMG electrodes. These electrodes were placed 3.5 cm lateral 

from the lumbar spine spinous processes 69. Two electrodes were placed at the level of the first 

lumbar vertebra (L1) on each side (ES_L1_Left, ES_L1_Right), and one electrode was placed at 

the level of the fourth lumbar vertebra (L4) at the right side (ES_L4_Right). The reference 
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electrode was placed on the sacrum93. To collect and save the data from the EMG system, a data 

acquisition program was used (Labview 2012®; NI, Austin, USA). The EMG data was collected 

at frequency of 1000 Hz. 

For normalization purpose, EMG signals were collected during a back-lift task that 

induced submaximal contraction of ES. At the beginning of each session, the subjects lifted their 

back from prone position until the spine of their scapulae touched the horizontal piece of the 

stadiometer (approximately 5cm away from their thorax) and held their back at that height for 

three seconds. The EMG signals from both tasks (the back lift and the arm lift tasks) were 

recorded from rest until the end of the contraction.  

The interventions (no-intervention, placebo, and mobilization): All interventions 

were applied for 5 minutes. During the first session (no-intervention), no contact was made with 

the subject’s back. During the second and third sessions, placebo and grade IV lumbar 

mobilization interventions were applied in a random order. The placebo (light touch) was 

performed by placing the therapist’s hand at L4 vertebra. The light touch that we used was an 

appropriate placebo intervention. To our knowledge, there are no previous studies that 

investigated the effect of touch/light pressure placebo on the muscles activity. However, Kinesio 

tape, which is another type of light contact pressure, was found to have no effect on muscle 

strength/activity 94.  

The mobilization included grade IV mobilization using the pisiform grip, and was applied 

four times, each with 60 seconds oscillation and 20 seconds rest in between. A force plate 

(Bertec Force Plate ®, Columbus, OH, USA) was used to standardize the amount of force by 

providing live visual feedback to the therapist about the amount of mobilization force applied. 

The therapist stood on the force plate and applied mobilization oscillating forces from 150 to 180 
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N at a frequency of 1Hz. The mobilization was applied consistently at 1 Hz frequency using a 

metronome. The sampling frequency of the force plate was 100 Hz. The collection, display, and 

storage of the force plate data were implemented by using a second Lab view program (Labview 

2012®; NI, Austin, USA). 

Data analysis: 

LM muscle thickness from the US images was measured with Image J software 95. The 

thickness of LM was measured as the distance between the most posterior portion of the facet 

joint and the fascial plane as visualized by the hyper-echoic line between the muscle and 

subcutaneous tissue 96(Figure 2.1). The contraction (percent thickness change) of LM was 

calculated using the following equation37:  

Contraction of LM  =
LMthicknessactivity-LMthicknessrest

LMthicknessrest
   eq. 2.1 

 

A Matlab program was used to analyze the EMG signals from both the back lift and arm 

lift tasks. First, the EMG signals were filtered using a band pass filter of 30-400 Hz 

(Butterworth, 2nd order). Second, the signals were filtered with a notch filter (Butterworth) at 

frequencies of 60, 120 and 180 Hz to eliminate electrical noise. Third, the signals were smoothed 

using RMS with an RMS window size of 20 ms. Fourth, the contraction onset was identified 

only for ES_L1_Right electrode. The contraction onset was considered as the time point when 

the signal exceeded a threshold of the mean plus two standard deviations away from its baseline 

for more than 25 consecutive samples97. Fifth, the RMS for the EMG signals was selected for the 

middle second of the 3-second isometric contraction (one second after the onset of muscle 

contraction). Finally, the RMS from the arm lift task were normalized to the RMS from the back-

lift task and used for statistical analysis.  
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Statistical analysis: 

The normalized RMS of ES and the contraction of LM were averaged across the three 

trials of the arm lift task in each session. Then, the averaged values for ES at L1 on both sides 

(left and right) were averaged. As a result, three outcomes emerged, the normalized RMS at L1, 

the normalized RMS at L4, and the contraction of LM. The change in the outcomes (the outcome 

at the end of the session – the outcome at the beginning of the session) within the session was 

used in the final analysis. 

SAS statistics software was used for statistical analysis. Wilcoxon signed-rank tests were 

carried out for the three outcomes to test the null hypothesis of zero median difference. Due to 

the pilot nature of the study, no correction was made for conducting Wilcoxon tests several 

times.  

2.4 Results: 

16 subjects (9 males and 7 females, age =26.8±4.8, BMI= 23.4±3.2) participated in the 

study. Most subjects had a high activity level as measured by the IPAQ (12 high, 3 moderate, 

and one low activity level). The EMG system has broken and failed to collect data for one 

subject.  

The mean and standard deviation for each outcome is presented in Table 2.1. Median 

differences between placebo and baseline for ES L1, ES L4, and LM US were 0.029, 0.061, and 

0.041, respectively. In terms of standard deviations (SDs, computed from placebo 

measurements), these median differences represent increases of 0.39, 0.58, and 1.05 SDs. 

Wilcoxon signed-rank tests revealed that effects on the activity of ES at L1 and L4 were not 

statistically significant (p = .45 and .28, respectively), whereas the effect on LM contraction was 
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(p = .02). We also tested differences between the non-intervention and mobilization conditions, 

and none was statistically significant.  

2.5 Discussion: 

The purpose of the study was to investigate the effect of grade IV lumbar mobilization on 

back muscle activity in healthy people. US imaging of LM muscle and EMG of ES muscles were 

used to investigate this effect. A significant difference was found in LM contraction between the 

placebo and the mobilization.  

This is the first study to investigate the effects of lumbar mobilization on both deep (LM) 

and superficial (ES) back muscles in healthy subjects. No significant differences were found in 

the EMG activity between the three interventions in healthy subjects. This finding lines with the 

finding of Soon et al 67, who found no significant changes in EMG activity of cervical muscles 

after grade III cervical mobilization in subjects with no neck pain. However, this result 

contradicts other previous studies reporting effects of hip, thoracic, and lumbar mobilization on 

subjects with no pain 69,70,89,90. These studies suggested that mobilization can alter the firing of 

mechanoreceptors, which can change the muscle activity through arthrokinetic reflex 70,89,90. The 

discrepancy in findings may be explained by the differences in the protocols and the tested joints. 

Most of the previous studies 70,89,90  tested the maximum torque /strength of the muscles, while 

our study tested the activity of the muscles at submaximal contraction. The submaximal 

contraction used in this study might not be challenging enough to the muscles, and therefore no 

change in the muscle activity was observed after mobilization.  

Only one previous study 69 detected significant changes in EMG activity of ES muscle at 

submaximal contraction in healthy subjects after lumbar mobilization. In the study 69, the ES 

muscle activity was tested at quiet standing (standing still with no movement). The discrepancy 
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of the findings between the previous study and our study might come from the different site of 

mobilization application and different testing tasks. The previous study 69 found that the 

mobilization effect on muscle activity is larger at the mobilized segment than other segments of 

lumbar spine. It is possible that changes in EMG at L1 level were not detected in this study 

because L1 is far from the mobilized segment (L4), and it might be that a change could not be 

detected at L4 level due to both small sample size (9 subjects) and the low activity level of the 

task. Furthermore, the testing task in previous study 69 was quiet standing while in our study we 

used the arm lift while the subject was lying prone. The quiet standing task is a slow postural 

task while the arm lift task in our study is a faster active task. The different testing positions and 

tasks might have contributed to the discrepancy in the findings between the two studies. 

A statistically significant difference between placebo and mobilization sessions was 

found in LM contraction. However, the difference was very small; only a 4% median difference 

was found. Such a small difference may not have a clinical significance. Despite the fact that US 

imaging is a reliable method to indirectly measure LM contraction, the relative minimal 

detectable change (MDC) of US imaging for LM muscle contraction has been reported to be 11-

13% 96,98.   

There was no significant difference in the LM contraction between the no-intervention 

and mobilization. This result is consistent with a dissertation project conducted by Lim 99, in 

which neither mobilization nor manipulation changed the LM contraction in healthy subjects. 

Several factors could have contributed to the negative findings. First, the subjects did not have 

LBP, and 15 out of 16 subjects had moderate to high physical activity level. Unlike people with 

LBP, healthy subjects do not have muscle inhibition from pain or weakness in their LM muscle 

14-18. It might be that the effect of mobilization on the activity/contraction of back muscles is not 
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possible when the motor function is intact or in absence of pain. Second, US imaging may not be 

sensitive enough to detect small changes in LM contraction due to the large MDC of US 

imaging. Third, a single session of mobilization may not be enough to elicit changes in the 

activity of back muscles in a healthy population.  

Limitations: 

This study has few limitations. The arm lift task that was used in this study may have not 

sufficiently challenged the subjects’ back muscles. However, the arm lift task is considered the 

standard task and consistently been used in previous US imaging for examination of LM. 

Furthermore, US imaging may not be sensitive enough to detect small changes in LM 

contraction due to relatively large MDC of US imaging for LM.  

Future studies may investigate the effect of lumbar mobilization on back muscles at 

maximal isometric contraction in healthy people, and at either maximal or submaximal 

contraction in people with LBP. Furthermore, future studies may investigate the effect of several 

sessions of mobilizations on the activity of back muscles. Needle EMG has higher sensitivity 

than US imaging and may be used in order to detect the activity of LM muscle. 

2.7 Conclusion: 

This study concludes that lumbar mobilization may not result in clinically significant 

changes in the activity of back muscles at submaximal contractions in healthy people. Future 

studies may consider more sensitive methods to detect the activity of back muscles or exertions 

that require higher submaximal or maximal contractions.  
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2.8 Tables: 

Table 2.1: The differences in the outcomes in each session (Mean ± SD) 

 EMG_L1 

(n=15) 

EMG_L4 

(n=15) 

LM contraction 

(n=16) 

 baseli-

ne 

After 

interv-

ention 

Δ baseli-

ne 

After 

interv-

ention 

Δ baseli-

ne 

After 

interv-

ention 

Δ 

No-

treatment 

(control) 

59% 

 ± 20% 

60% 

 ± 23% 

1%     

± 6% 

58%  

± 26% 

61%  

± 30% 

3%  

± 7% 

17%  

± 6% 

18%  

± 8% 

1%  

± 5% 

 

Placebo 

 

65% 

 ± 38% 

66%  

± 36% 

1%  

± 7% 

63%  

± 49% 

63%  

± 48% 

<1% 

± 11% 

19%  

± 8% 

16%  

± 7% 

-3% 

± 6% 

 

Mobilization 

 

65%  

± 33% 

65% 

 ± 33% 

<1%  

± 18% 

57%  

± 33% 

58%  

± 37% 

61%  

± 16% 

16%  

± 6% 

17% 

 ± 8% 

1%  

± 5% 

 

The EMG outcomes represent the normalized RMS of the EMG signals (normalized to 

submaximal contraction). The LM contraction represents the % change in muscle thickness 

between rest and contraction states. Δ represents the difference in the outcome between baseline 

and after the intervention. 
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2.9 Figures: 

 

 

 

Figure 2.1: Measurement of LM muscle thickness from US images 

The yellow line represents the measurement (LM muscle thickness) from the US image. LM: 

Lumbar multifidus, L4: facet joint of fourth lumbar vertebrae 
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Chapter 3: Effect of lumbar mobilization on back muscle activity in people with low back 

pain 
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3.1 Abstract: 

Background: Lumbar mobilization is a standard treatment method for lower back pain (LBP). 

However, its effect on the activity of back muscles is not well known.  

Objectives: To investigate the effects of grade III lumbar mobilization on the activity/contraction 

of erector spinae (ES) and lumbar multifidus (LM) muscles in people with LBP. 

Design: randomized control study. 

Methods: Twenty-one subjects with LBP received either grade III central lumbar mobilization 

or placebo (light touch) intervention on lumbar segment level 4 (L4). Surface Electromyography 

(EMG) signals of ES and ultrasound (US) images of LM were captured with an arm-lift task in 

prone position before and after the intervention. The contraction of LM was calculated from US 

images at L4 level. The normalized amplitude of EMG signals (nEMG) and activity onset of ES 

were calculated from the EMG signals at both L1 and L4 levels.   

Results: Significant differences were found between the mobilization and placebo group in LM 

contraction (p=0.03), nEMG of ES at levels L1 (p =0.01) and L4 (p= 0.05), and activity onset of 

ES at the level of L1 (p=0.02).  

Conclusion: Lumbar mobilization decreased both the activity amplitude and the activity onset of 

ES in people with LBP. However, the significant difference in LM contraction was small and 

may not have clinical significance. Future studies with larger sample size are needed to confirm 

these findings. 

3.2 Introduction: 

Low back pain (LBP) is the second most common cause of disability in the United States 

84. LBP is associated with increased activity of superficial back muscle erector spinae (ES) and 
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decreased activity of deep back muscle lumbar multifidus (LM) 16,17,85,86. This abnormal activity 

of superficial and deep muscles in LBP may lead to further pain and limitations in function 87.  

Lumbar Mobilization and manipulation are manual therapy interventions that are 

recommended in the clinical guidelines for managing LBP 53. There are few differences between 

lumbar mobilization and manipulation. During mobilization, clinicians target a single lumbar 

spine vertebra using their hands to apply oscillatory movements within the available range of 

movement, and with a predetermined grade (grade I, II, III, or IV).  On the other hand, during 

manipulation, the clinicians apply a single quick thrust movement beyond the available range of 

movement. Further, in contrast to mobilization, during manipulation the patient is unable to 

control or prevent the movement. Both interventions are commonly used for LBP. However, 

therapists most often select lumbar mobilization over manipulation when manipulation is 

contraindicated or patient condition is too irritable 55.  

Manual therapy interventions may reduce pain, lead to hypoalgesia, and change the 

activity of muscles 56. Manipulation studies found that manipulation decreased the activity of ES 

and increased the activity of LM in people with LBP 50,51, and previous mobilization studies 

found that grade III cervical mobilization decreased the activity of superficial neck muscles and 

increased the activity of deep neck muscles in people with neck pain 71,72. Yet, the effect of 

lumbar mobilization on the activity of back muscles in people with LBP is not known.  

To our knowledge, this is the first study to investigate the immediate effects of lumbar 

mobilization on both deep (LM) and superficial (ES) back muscles in people with LBP. 

Investigating this effect may lead to a better understanding of lumbar mobilization and its 

appropriate application for management of LBP, and may lead to use of lumbar mobilization to 

correct muscle dysfunction in LBP.  
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3.3 Methods: 

Subjects between the ages of 18 and 55 years with chronic LBP, defined as pain for more 

than half the days in the past six months 100 were recruited.  Subjects were included if they had: 

1) pain localized between the 12th rib and the inferior gluteal folds, 2) pain greater than 3 out of 

10 on 0-10 numerical rating pain scale where 0=no pain, 10=worse pain imagined, and 3) left 

side or bilateral LBP (since US measurement was conducted on the left side only). Subjects were 

excluded if they had symptoms radiating below the knee, body mass index (BMI) larger than 30 

kg/m2, presence of neuromuscular diseases such as stroke, lumbosacral conditions/pathology 

such as severe osteoporosis, pregnancy, inability to perform the arm lifting or back lifting tasks 

of the study, and inability to tolerate prone position for one hour. Finally, subjects were excluded 

if they had night pain, progressive neurological deficit, unexplained weight loss, or if they were 

involved in LBP intervention program or spinal mobilization/manipulation within the month 

prior to the start of the study.   

Ethical Approval Statement: 

The Human Subjects Committee at University of Kansas Medical Center approved the 

study before subjects were recruited. All subjects consented prior to the testing.  

Following the consent, the pain level of the subjects was assessed using 0-10 numeric 

pain rating scale; the subjects’ activity level was assessed using the long form of the 

International Physical Activity Questionnaire (IPAQ); disability level was measured with the 

modified Oswestry Back Pain Disability Questionnaire (MOSQ); severity of depression was 

tested using the Beck Depression Inventory (BDI-II); and pain avoidance behavior was tested 

using the Fear-Avoidance Beliefs Questionnaire (FABQ). These questionnaires are standard, 
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valid and reliable 101-104. These questionnaires were used to address the multidimensional 

(psychological and physical) aspects of chronic LBP.  

A randomized controlled design was used with a convenience sample of 21 subjects with 

LBP.  Subjects were randomized either to mobilization (10 subjects) or to placebo group (11 

subjects) using a randomized block design to ensure approximately equal percentages of males 

and females in each group. The researcher completed the randomization allocation online using 

Graph Pad for each gender separately 49.  

Each subject attended two sessions 2-4 days apart. At the beginning of each session, 

subjects practiced a back-lift task (a normalization task described below) twice before 

performing it two times for measurement and then practiced an arm-lift task and Pressure Pain 

Threshold (PPT) testing (described below) thrice, before performing it three times for 

measurement. Next the researcher applied the intervention of placebo or mobilization. 

Immediately after the intervention subjects repeated the arm-lift task and PPT testing three times. 

Pressure pain threshold was always tested after the arm lift. The researcher captured ES surface 

EMG signals and ultrasound (US) LM images during the arm-lift task and used these measures 

as outcomes (described below). PPT was tested to understand the relationship between pain 

reduction (as measured by percent changes in PPT) and the outcome measures. 

The Back-lift task: The back-lift task induced submaximal contraction of ES and was 

used to normalize the EMG signals of the arm-lift task. The subjects raised their back from prone 

position until the spine of their scapula touched a horizontal piece of the stadiometer 

(approximately 5 cm up), then held their back at that height (to induce isometric contraction) for 

three seconds 105. EMG data were captured during two repetitions of the back-lift task only at the 

beginning of each session. 
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The arm-lift task: Subjects carried out an arm-lift task from the prone position with their 

legs shoulder-width apart 106. The researcher used an inclinometer to measure the lumbar curve 

and placed 1-2 pillows under the subject’s abdomen, if necessary, to ensure the curve was less 

than 10 degrees 106. The subject’s right arm was placed at approximately 90 degrees of elbow 

flexion and 120 degrees of shoulder abduction using a goniometer. Next, using the right hand the 

subject lifted a weight of 1.5 to 2 lbs. to achieve 30% of maximal voluntary contraction of LM 37, 

keeping the wrist and elbow level. The subject stopped the lifting motion when the elbow 

reached a 5 cm-high horizontal piece of the stadiometer and held the weight for three seconds. 

EMG signals and US images were captured during the three repetitions of the task before and 

immediately after the intervention. 

The ultrasound imaging: US images were captured with a Logiq P5 ultrasound (GE 

Healthcare, Milwaukee, WI) with 60-mm curvilinear array transducer at 5-MHz frequency. After 

palpating and marking the spinous process of L4, the researcher placed the US transducer to the 

left of the L4 spinous process, angling it medially until the sacrum and left L4-L5 facet joint 

were visible 107. The researcher captured the US images both at rest and during activity (the 3-

second isometric arm contraction). 

The EMG: EMG signals were collected at 1000 Hz using the Bagnoli™ Desktop EMG 

System which has an internal band-pass filter bandwidth of 20-450 Hz; electrodes had contact 

spacing and detection area of 10mm and 100mm2, respectively. Skin was cleaned and the 

electrodes were placed at L1 and L4 levels. To determine L1 and L4 levels, two methods were 

used, US imaging of facet joints and sacrum, and palpation of spinous processes of lumbar spine. 

The examiner started US imaging by using the sacrum as a landmark in the US image and then 

moved the US transducer cephalically to clearly visualize the facet joint at the middle of the US 
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image. Palpation of lumbar spine was completed using two landmarks, the iliac crest for 

identification of L4 spinous process, and the 12th rib for identification of L1 spinous process.  

The researcher placed three electrodes 3.5 cm lateral from the lumbar spine spinous 

processes at L1 level (one electrode on each side, L1_Left and L1_Right) 69 and at L4 level (only 

electrode on the right side, L4_Right). One electrode was placed over the posterior deltoid 

muscle of the right arm. The reference electrode was placed over the sacrum 93. Data acquisition 

box (USB-6218 BNC, NI, Austin, USA) and LabVIEW program (2012®; NI, Austin, USA) 

were used for EMG data acquisition. The EMG signals of the back-lift and the arm-lift tasks 

were recorded from rest until the end of the contraction.  

Pressure Pain Threshold (PPT): Algometer PPT is a valid and reliable way to quantify 

pain 108. An algometer with a one centimeter square tip was applied at L2-L3 level between the 

EMG electrodes on the right side (3.5 cm lateral from the lumbar spinous processes). The testing 

point (L2-L3) was marked with a marker to ensure reliable and rapid location during the 

experimental procedure. The pressure from the algometer tip was applied at the rate of one kg 

per second (kg/s) using visual feedback on a computer screen provided by the LabVIEW 

program. Subjects were provided with a computer mouse and instructed to click the mouse 

button once they began to feel a change in the sensation from pressure to mild pain. The readings 

of the algometer were captured when the subject clicked the mouse button. The PPT testing was 

repeated three times with 10 seconds rest between each repetition 109 immediately after the arm-

lift task, before and after the intervention. 

Intervention (Placebo or mobilization): The intervention was applied for five minutes 

as either placebo intervention (light touch) or grade III mobilization. The researcher applied light 

touch with the hand at the L4 vertebra and applied grade III mobilization using the pisiform grip 
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for four bouts of 60 seconds each with rest time of 20 seconds between bouts. To provide live 

visual feedback to the therapist about the applied mobilization forces, a force plate (Bertec Force 

Plate ®, Columbus, OH, USA) was used with a sampling frequency of 100 Hz. The therapist 

stood on the force plate and tested the maximum force that the subject could tolerate without 

having pain. Then the mobilization was applied with oscillating forces from 50% to 100% of the 

maximum force. A metronome was used to apply mobilization at the frequency at 1 Hz. The 

collection, display, and storage of the force plate data were implemented by a LabVIEW 

program (LabVIEW 2012®; NI, Austin, USA). 

Data analysis: 

IPAQ and Beck depression scores were transformed to categorical variables according to 

their corresponding guidelines. Furthermore, pain scores less than five (i.e., 3 or 4) were 

categorized as moderate pain, whereas pain scores of five or more were categorized as severe 

pain 110. 

LM muscle thickness from the US images was measured with Image J software 95. The 

thickness at both rest and activity was measured as the distance between the posterior part of the 

facet joint and the fascial plane (Figure 2.1). The contraction of LM was calculated using the 

following equation 37:  

 LMcontraction = LMthicknessactivity-LMthicknessrest

LMthicknessrest
  eq. 3.1 

To analyze the EMG signals from the back-lift and arm-lift tasks, the MATLAB program 

was used. First, the EMG signals were filtered twice, with a second order Butterworth band pass 

filter (30-400 Hz), and with a Butterworth notch filters (60, 120 and 180 Hz).  These filters were 

performed both forward and reverse to eliminate temporal effects of the filter. The notch filters 

were used to remove electrical noise. Second, the signals were rectified and integrated using 
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root-mean-square (RMS, 20 ms window size). Third, the activity onset was determined for the 

posterior deltoid muscle. The activity onset was defined as the time point when the signal 

exceeded a threshold of the mean plus two standard deviations away from its baseline for more 

than 25 consecutive samples 97. Fourth, the RMS values during the middle second of the 

contraction (second two after the onset) were selected for the three ES electrodes locations 

(L1_Left, L1_Right, and L4_Right). Finally, the normalized amplitudes of EMG (nEMG) were 

calculated by dividing the RMS values from the arm-lift task by the RMS values from the back-

lift task; the nEMG values were used for statistical analysis.  

The activity onsets from the three ES electrodes were calculated the same way as the 

activity onset of the posterior deltoid muscle. Then, the relative activity onsets from the three ES 

electrodes were calculated by subtracting the deltoid activity onset. 

 The contraction of LM, nEMG of ES, and the activity onsets of ES were averaged across 

the three trials of the arm-lift task in each session. The averaged nEMG at L1 on both sides 

(L1_Right and L1_Left) were summed. The change in each outcome (the outcome at the end of 

the session minus the outcome at the beginning of the session) was modeled as the outcome 

variable in the final analysis. As a result, there were six such outcomes: the change in contraction 

of LM, the change in nEMG L1, the change in nEMG L4, and the change in ES activity onset s 

at the three electrodes locations (activity onsets at L1_Left, L1_Right, and L4_Right).  

For PPT, the three values were averaged at each time point (before and after the 

intervention), and the percent (%) change of PPT was calculated using the following equation: 

%change of PPT=
PPTafterintervention�PPTbaseline

PPTbaseline
  eq. 3.2 

Statistical analysis: 

SAS statistical software (SAS 9.4) was used for statistical analysis.  
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Each model included a random subject intercept to adjust for within-subject correlation. The base 

model included only group (placebo or mobilization) and pain category (moderate or severe) as 

predictors. A second model included group, pain category, and session; and a third model 

included group, pain category, and group × pain category interaction. The full model included 

session, group, pain category, and group × pain category interaction. After model selection, we 

re-fitted the final model for each outcome using “sandwich” variance estimators for robustness 

against non-normality. In addition, Spearman correlations were computed to investigate the 

relationship between % change of PPT and any significant changes in the outcomes.  

3.4 Results: 

Table 3.1 describes subject characteristics and clinical outcomes at base line. subjects 

were recruited between November 2015 and June 2016. Two subjects in the placebo group 

withdrew after the first session due to testing time conflict, and one subject in the mobilization 

group did not complete the IPAQ, MOSQ, BDI-II, and FABQ questionnaires. The available data 

from the 21 subjects were analyzed. Most subjects had moderate or high physical activity level 

(n=6 moderate, n=12 high, and n=2 low) and experienced moderate pain intensity (n=13 

moderate and n=8 high). Most subjects had minimum to moderate disability (n=12 minimal 

disability, and n=8 moderate disability) and did not report depression (n=16 had normal score on 

BDI-II, n=3 had mild mood disturbance, and n=1 had borderline depression). The mean and 

standard deviation for the maximum mobilization force that was applied in the mobilization 

group was 108 N ± 35 N. 

For three outcomes (changes in LM contraction, nEMG L1, and nEMG L4) the statistical 

model including group, pain category, and group × pain category interaction was selected as 

best-fitting. The interaction was statistically significant for all three outcomes (p = 0.01, 0.03, 
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and 0.03 respectively). We carried out post hoc tests of group effect by pain category. For the 

changes in LM contraction, the group effect was significant only for subjects with moderate pain 

(P =0.03), suggesting mobilization led to more LM contraction compared to the placebo group in 

subjects with moderate pain. For the changes in nEMG L1 and the changes in nEMG L4, the 

group effect was significant only for subjects with severe pain (p = 0.01 and 0.05 respectively), 

suggesting that mobilization led to less EMG activity compared to the placebo group in subjects 

with severe pain. All three of these effects were large, corresponding to an estimated between-

group difference exceeding 1 SD (see Table 3.2). 

For all three activity onset of ES outcomes, the best-fitting model was the base model 

(with only group and pain category as predictors). There were statistically significant effects of 

group in the onset of ES at L1_Left and L1_Right locations. Under placebo the average onset 

time increased after intervention, whereas the applied mobilization force led to a decrease in the 

average onset time. The estimated between-group differences for L1 Left and Right, 

respectively, were 49 ms (p=0.02) and 86 ms (p=0.05), equivalent to differences of 0.63 and 0.72 

SDs.  

There were no statistically significant effects for the activity onset of ES at L4 location, 

although the effect for group was in the same direction as for the L1 locations (estimated 

between-group difference = 79 ms, equivalent to 0.61 SDs, p=0.08). 

For the relationship between the significant changes in the outcomes and the % change in 

PPT, there were weak to moderate but insignificant correlations (Table 3.3).  

3.5 Discussion: 

The purpose of the study was to investigate the effect of grade III lumbar mobilization on 

back muscle activity in people with chronic LBP. US imaging of LM muscle and EMG of ES 
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muscles were used to investigate this effect. A significant difference was found in the changes of 

LM contraction, nEMG of ES, and activity onset of ES between the placebo and the mobilization 

groups. These results suggest that grade III mobilization can influence muscle activity of deep 

and superficial back muscles, which is reported to be altered in chronic LBP and may be 

beneficial for normalizing muscle activation in managing chronic LBP.    

There was a significant difference in changes of EMG amplitude, nEMG, between the 

mobilization and placebo group. Our findings line with the findings from previous studies in 

people with neck pain. In people with neck pain, grade III cervical mobilization was found to 

immediately decrease the activity of superficial muscles and increase the activity of deep 

muscles 71,72. In the absence of similar mobilization studies on people with LBP, our results can 

be compared with the results from manipulation studies, as both manipulation and high grades of 

mobilization (grades III and IV) apply mechanical force that stretches the joint capsule and the 

surrounding muscles. In addition, both mobilization and manipulation have shown to change the 

cervical and thoracic spine muscle activity 68,70-72. Previous manipulation studies had shown 

contrary findings regarding the direction of change in EMG activity of ES after manipulation in 

people with LBP 50,60. A study by Bicalho et al. found that manipulation immediately decreased 

the EMG activity of ES during dynamic extension in people with chronic LBP 50. Whereas 

Keller et al. found  that manipulation immediately increased the maximum voluntary contraction 

of ES 60. The contrast between these studies might be due to the different level of ES contraction 

tested. Both our study and the study by Bicalho et al. (2010) used a task that required low 

contraction of ES. In our study, we used the arm-lift task in which ES stabilize the spine during 

the task, and Bicalho et al. (2010) used dynamic extension with no resistance. However, the 

study by Keller et al. (2000) used a task that requires maximum contraction of ES. The decreased 
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activity of EMG in our study reflects positive effect of mobilization toward rectifying the muscle 

activity since people with LBP have high EMG activity of ES at low level isometric contractions 

like standing 39-41. 

The significant difference in nEMG of ES in our study was only in people with severe 

pain. No statistically significant changes were found in people with moderate pain. This may be 

because back muscle dysfunction in people with LBP is associated with pain severity 111,112. 

People with moderate back pain in our study may have had too little impairment in muscle 

activity to be rectified by the mobilization.  

There was a significant difference in the ES activity onset between groups. Mobilization 

decreased the time of ES activity onset. These results line with the findings of a previous study 

by Ferreira et al. (2007) in which the activity onset of the Oblique Internus muscle during rapid 

arm-lift task decreased after grade IV unilateral mobilization 113. Both ES muscles in our study 

and the Oblique Internus muscle in the Ferreira et al. (2007) study contracted to stabilize the 

trunk during arm movement. However, the activity of the Oblique Internus muscle was found to 

occur before the activity of the deltoid muscle, while in our study the activity of ES was found to 

occur after the deltoid activity. The different timing of activity (before or after deltoid) is 

probably due to differences in the task between the two studies. The arm-lift task was performed 

in standing position in Ferrera et al. (2007) study, which perturbed balance in antero-posterior 

direction 114, therefore the central nervous system used anticipatory postural adjustments to 

counteract the forthcoming postural perturbation 115. Therefore, the abdominal muscle contracted 

before the deltoid muscle (arm movement) to stabilize the trunk in an anticipatory postural 

adjustments 114,116-118. In our study, the arm-lift task was performed in prone position; hence, 

there was no need for using anticipatory postural adjustments since the balance was not 
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threatened. The ES muscle activity following the deltoid activity in our study was probably a 

consequence of contractions in a group of muscles (muscle chain) that synergically work to 

generate a proper functional movement 119, which was clearing the arm from the bed. The change 

in ES activity onset found in our study might represent better synergic activity of the muscle 

chain involving the ES and posterior deltoid as a result of mobilization. The change in ES 

activity onset found in our study might have clinical significance as a previous study has shown 

that people with LBP have delayed onset of ES activity 120.  

There was small but statistically significant difference in LM contraction between the two 

groups. Our findings line up with the results of Koppenhaver et al. in which manipulation was 

shown to increase (approximately 2%) the muscle thickness of LM during the arm-lift task 

(submaximal isometric contraction) in people with LBP 51. In our study, the changes in LM 

contraction were found only in people with moderate pain but not severe pain. That may be due 

to the individualization of mobilization force according to subjects’ tolerance. It might be that 

people with severe back pain had more stiffness in their back and less tolerance for the 

mobilization forces, thus the individualized mobilization forces might not be sufficient enough to 

stretch the deep LM muscle and the facet joint capsule, therefore causing no detectable change in 

LM in people with severe pain.  

The correlations were insignificant between the % changes in PPT and the changes in 

randomized RMS, ES activity onset, and LM contraction. Although there was insufficient 

evidence to conclude that observed changes in muscle activity are associated with change in the 

pressure pain threshold, the pressure pain threshold was tested after the arm-lift task, and some 

studies reported increased pressure threshold (pain reduction) after isometric contraction 121-123. 

Therefore, it might be that the isometric contraction of the arm-lift task affected the observed 
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PPT values, and therefore we could not find a significant correlation between the calculated % 

changes in PPT and the outcome measures.  

The changes in the back muscles activity/contraction found in this study might result 

from potential mechanical and neurological effects of mobilization. Joint mobilization has been 

proposed to stimulate mechanoreceptors in the joints and muscles, which may alter the muscle 

activity through stimulating α-motor neurons at the spinal level 61 and the periaqueductal gray 

area in the midbrain 56.  

This study has some limitations. First, the minimum detectable change for contraction of 

LM muscles measured by US imaging has been reported to be 11-13% 96,98. Therefore, the small 

change (approximately 3%) in LM contraction that was found in this study may not have clinical 

significance. A more sensitive measure, such as needle EMG, is needed in future studies to 

further investigate the effect of mobilization on deep back muscle activity. Second, the 

mobilization technique applied in this study was applied at a consistent lumbar segment, L4, 

which is unlikely to be the most symptomatic lumbar segment in all individuals. Thus, more 

changes in outcomes might have been induced if mobilization was applied at the most 

symptomatic segment of the lumbar spine or multiple segments. It should also be noted that 

because the sample size provided limited statistical power we did not adjust for multiple testing, 

so the overall false positive rate may exceed 0.05. Study findings should be independently 

validated in future research.    

3.6 Conclusion: 

This study concludes that lumbar mobilization may decrease both the EMG activity 

amplitude and onset of superficial back muscles (ES) while increase the contraction of deep back 

muscles (LM) in people with LBP. The findings contribute to the growing knowledge about 
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underlying physiologic mechanisms of mobilization. Future studies with larger sample size are 

needed to confirm these findings. Future studies may consider more sensitive methods than US 

imaging to measure the activity/contraction of deep back muscles. 
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3.7 Tables: 

Table 3.1: The Characteristics of the two groups 

 Placebo  

(n=11) 
Mobilization  

(n=10) 
P value 

Gender (number of males) 
 

5 4 0.58 

Age (year) 
 

25 (24-42) 24.5 (20-37) 0.25 

BMI 
 

22.5 (19.8-25.5) 25.4 (21.0-26.9) 0.19 

IPAQ physical activity category:  
     mild (n) 
     moderate (n) 
     high (n) 
 

 
 

2 

2 

7 

 
 

0 

4 

5 

0.45 

Pain intensity (0-10) 
 

3 (3-4) 5 (4-5) 0.02* 

MOSQ  
 

14 (10-26) 24 (13-29) 0.20 

FABQ physical subscale 
 

11 (6-12) 16 (12.5-17.5) 0.01* 

FABQ work subscale 
 

9 (6-14) 11 (5-14) 0.65 

BDI-II: 
     Normal (n) 
     Mild mood disturbance (n) 
     Borderline depression (n) 
 

 

10  
1  
0  

 

6 

2 

1 

0.36 

 

BMI: body mass index, IPAQ: the International Physical Activity Questionnaire, MOSQ: 

modified Oswestry Back Pain Disability Questionnaire, FABQ: Fear-Avoidance Beliefs 

Questionnaire, BDI-II: Beck Depression Inventory. 

Values are in median (25th - 75th percentiles) format unless otherwise indicated 

Fisher’s exact test was used to compare the categorical variables, and Mann-Whitney U 

test to compare the continuous variables between the two groups. 

*Significant difference between the two groups (P value<0.05) 
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Table 3.2: The changes in LM contraction and nEMG of ES  

Pain category Outcomes Placebo 

group  
 

Mean (SD) 

Mobilization 

group 
 

Mean (SD) 

Estimated 

difference 

between groups 
(SDs) 

P value 

Moderate 

pain 

nEMGL1 -0.04 (0.16) 0.02 (0.24) 0.39 0.53 

 

 nEMG L4 -0.02 (0.06) 0.01 (0.09) 0.49 0.26 

 

 LM 
contraction  

-0.01 (0.04) 0.03 (0.03) 1.04 0.03* 

 

Severe pain nEMG  L1 0.20 (0.16) -0.04 (0.08) -1.39 < 0.01* 

 

 nEMG  L4 0.08 (0.10) -0.04 (0.05) -1.76 0.05* 

 

 LM 
contraction  

0.02 (0.02) <0.01 (0.03) -0.53 0.20 

 

 

LM: Lumbar multifidus muscle; nEMG: normalized EMG amplitude; ES: Erector spinae muscle; 

L: erector spinae muscle at the specified level (L1 or L4). 

A positive mean value indicates increased activity/contraction after the intervention, while 

negative values indicate decreased activity/contraction.  
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Table 3.3: The correlation between % changes in PPT and the outcomes. 

 nEMGL1 nEMG L4 LM 

contraction  

Activity onset 

of ES L1_left 

Activity onset 

of ES 

L1_Right 

Correlation 

coefficient 

0.42 0.28 0.10 0.21 0.35 

P value  0.06 0.24 

 

0.68 0.39 0.13 

 

PPT: Pressure pain threshold; LM: Lumbar multifidus muscle; nEMG: normalized EMG 

amplitude; ES: Erector spinae muscle; L: lumbar vertebrae level; L: erector spinae muscle at the 

specified level (L1 or L4). 
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Chapter 4: The validity and reliability of IMU in measuring mobilization 
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4.1 Abstract: 

Background: Lumbar mobilization is a standard intervention for management of low back pain, 

yet ways to quantify lumbar mobilization are limited. Inertial Measurement Unit (IMU) is a 

small, inexpensive device that can be used to measure the amplitude of displacement (oscillation) 

of clinician’s hand during mobilization as an indirect way of quantifying lumbar mobilization.  

Objectives: To determine the validity and reliability of an IMU in measuring amplitude of 

displacement of clinician’s hand movement during oscillatory lumbar mobilization.  

Design: Agreement and Reliability study.  

Methods: To determine validity and reliability of IMU, an IMU unit was secured on the right 

hand of the clinician during mobilization force application at L4 segment of 16 healthy subjects. 

The amplitude of the clinician’s hand displacement was calculated from the IMU’s acceleration 

and angular velocity using integration methods and geometric equations. The validity of the IMU 

was tested against common laboratory methods of measurements (forceplate and Optotrak). The 

reliability of the IMU measurements was determined between two clinicians (inter-rater) and 

between two sessions (intra-rater).   

Results: The IMU had high correlation with forceplate (rs = 0.94) and good agreement with 

Optotrak, having small percent measurement error and narrow limits of agreement. Inter-rater 

and intra-rater reliability of IMU measurements was moderate.  

Conclusion: IMU was found as a valid device to measure the amplitude of clinician’s hand 

movement as an indirect measure of lumbar mobilization. The moderate reliability found in this 

study does not reflect poor reliability of the IMU but suggests inconsistency in re-application of 

lumbar mobilization. 
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4.2 Introduction: 

Lumbar mobilization is a common manual therapy treatment used to decrease pain and 

stiffness in people with low back pain (LBP). During mobilization, clinicians use their hands to 

apply forces, and to induce oscillatory movements on the patients’ back. The mobilization 

movements have both amplitude (oscillation) and magnitude (depth) of displacement (FIGUR 

4.1). There are four grades of mobilization that differ in the amplitude and the magnitude. For 

example, grade IV is defined as mobilization with small amplitude and large magnitude of 

displacement within the available range of motion. 

Clinicians rely on “sensing” the amount of mobilization movements (amplitude and 

magnitude of displacement) to apply various grades of mobilization. This has resulted in high 

variability of applying grades of mobilization. Studies have found poor intra- and inter-reliability 

of mobilization forces within and across mobilization sessions 74 by clinicians. This 

inconsistency may result in inconsistent patient outcomes. Thus, measuring forces of 

mobilization or displacement of mobilization movements may improve reliability and clinical 

outcomes.  

 Methods to measure mobilization in clinic settings are lacking. Studies have used force 

measuring devices like force plates to measure the forces 74,124-128 applied during mobilization, 

and to our knowledge, only one study 129 has used motion capture system to measure the 

displacement of the clinician’s thumbs during lumbar mobilization. The force plate and motion 

capture system are limited to research laboratory settings and are expensive.  A practical, 

inexpensive, and indirect method of measuring mobilization in clinical practice is to measure the 

clinician’s hand motion during mobilization. Inertial Measurement Unit (IMU) is an inexpensive, 

small, portable device that consists of a triaxial Accelerometer and triaxial Gyroscope and can 
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measure acceleration and angular velocity. By placing the IMU on the clinician’s hand, the 

amplitude of vertical displacement of the clinician’s hand can be measured during various grades 

of mobilization. Current applications of IMU in rehabilitation include measurements of physical 

activity 130 (e.g. Fitbit®) and postural sway/balance 131. Furthermore, previous studies have used 

IMUs in measuring the displacement of the center of mass 132, and vertical toe displacement 

during walking 80. However, no study to our knowledge has used IMU device to measure 

displacement of lumbar mobilization movements. 

The purpose of this study was to investigate the validity and reliability of IMU in 

measuring the amplitude of vertical displacement of the clinician’s hand during mobilization. In 

particular, we determined the validity of the IMU against the current laboratory measures of both 

an Optotrak motion capture system and a floor mounted force plate. We also measured the 

reliability between two clinicians (inter-rater reliability) and between two sessions (intra-rater 

reliability) of IMU. Validating the use of IMU to measure lumbar mobilization is the first step 

toward its clinical application in improving patients’ outcomes. 

4.3 Methods: 

Participants: 

 A convenience sample of faculty and students were recruited from University of Kansas 

Medical Center. Subjects were 18-55 years old without history of LBP within the past six 

months. Exclusion criteria were any reported bony or joint pathology (e.g., osteoporosis, 

rheumatoid arthritis), lumbar/sacral deformities (e.g., spondylolisthesis, spina bifida), spinal 

surgery, and pregnancy.  

Ethical Approval Statement: 
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 The study was approved by the Institutional Review Board at University of Kansas 

Medical Center, and all participants singed informed consent prior to testing. The rights of the 

subjects were protected. 

Application of lumbar mobilization:   

 The participants attended two sessions of lumbar mobilization that were 2-3 days apart. 

In each session, two clinicians (physical therapists) used pisiform grip to apply central lumbar 

mobilization to the fourth lumbar vertebrae (L4) while the participants were lying prone. One 

clinician had two years of clinical experience whereas the second clinician had eight years of 

experience.   

The clinicians applied the mobilization forces while standing on a force plate (AMTI ® 

model MSA-6; AMTI, Watertown, USA). In previous research, the force plate was found to have 

a measurement error of 3% in measuring the mobilization forces 127. A data acquisition program 

(LabView 2012®; NI, Austin, USA) was used to provide live feedback on a computer screen 

about the amount of forces being delivered by the clinician. The data from the force plate were 

collected at a frequency of 120 Hz. To represent grade III and IV mobilization, we selected four 

ranges of forces as follows: 170-200 N, 140-200 N, 110-200 N and 80-200 N. These forces 

represent the magnitude of 200 N and four amplitudes of forces: 30, 60, 90, and 120 N (Figure 

4.2). Each of the force amplitudes was applied three times with each trial lasting 80 seconds. A 

three-minute rest break was provided after each amplitude of force application. The clinician 

used a pisiform grip and maintained hand contact on the subject’s back during the first and the 

last 20 seconds, and applied the oscillatory movements of mobilization in the middle 40 seconds 

of each 80 second trial. Furthermore, the clinicians applied the mobilization using metronome 

beats at a frequency of 1HZ. 
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After the first clinician completed application of all four amplitudes of forces (12 trials), 

the participant walked on a treadmill for 10 minutes, to eliminate the effect of mobilization, 

before the second clinician applied the mobilization in the same order. The sequence of the 

clinicians in each session was the same for each subject but randomized between subjects.  

Measurement of the amplitude of displacement:  

 The clinician’s hand movement during the mobilization was recorded using both the IMU 

(PhidgetSpatial Precision 3/3/3 2g®; Phidgets company, Calgary, Canada) and an Optical 

motion capture system (Optotrak Cyrtus position sensor®; NDI company, Waterloo, Canada). 

The IMU has a tri-axial accelerometer with acceleration measurement resolution of 76 μg and a 

gyroscope with angular velocity resolution of 0.02°/s. The Optotrak Cyrtus has an accuracy of 

0.1 mm and resolution of 0.01mm 78. 

 The IMU data were collected at a frequency of 120Hz and the Optotrak data were 

collected at a frequency of 100 Hz. The IMU was secured over the dorsal aspect of the 

clinician’s hand over an elastic band that was wrapped around the hand and wrist. Specifically 

the IMU was placed at the base of the third metacarpal (Figure 4.3).  A self-adherent wrap was 

used to further secure the IMU, and one Optotrak marker was fixed over the IMU. The data from 

the IMU and force plate were synchronized using a DAQ board (NI USB-6210®; NI Company, 

Austin, USA). The pisiform carpal bone remained uncovered for skin contact with the subject. 

Data analysis: 

Matlab software program was used to analyze the data from the IMU, force plate, and 

Optotrak. The IMU data was filtered several times with band pass and high pass filters. The force 

plate and Optotrak data were filtered only once with band pass filters. All filters used were fourth 
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order filters. The lower cut off point of the filters was 0.5 Hz and the higher cut off point was 

30Hz.  

First, the tilting angles of the IMU relative to the ground (Figure 4.4) at 20 seconds into 

the trial (the end of the baseline) were calculated from the acceleration signals using the 

following equations 133: 

Tan θy at base line =  baseline mean of ax 
baseline mean of az

  eq.4.1 

Tan θx at base line =  baseline mean of ay 
baseline mean of az

  eq.4.2 

Where ax, ay, and az represent the mean of IMU acceleration signals in x, y, z directions at 20 

seconds into the trial.  

Second, the gyroscope data for angular velocity were integrated and filtered (band pass 

filter) to determine the changes in the baseline angles (Δ θy and Δ θx) for the remainder of the 

trial period. Then the tilting angles (θy and θx) for the remaining of the trial period were 

calculated using the following equations:  

θy = θy at base line + Δ θy   eq.4.3 

θx =θx at base line + Δ θx   eq.4.4 

Third, the vertical acceleration relative to the ground (Az) was calculated using Euler 

transformation matrix using the tilting angles and acceleration in the X, Y and Z directions from 

the accelerometer according to the following equation80: 

Az = axsinθycosθx + aysinθx + azcosθycosθx – g  eq.4.5 

Fourth, the vertical acceleration was double integrated (trapezoidal integration) and 

filtered to calculate the vertical displacement79 (Figure 4.5). 
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Finally, the amplitudes of vertical displacement and forces from the IMU, Optotrak, and 

force plate were calculated. Only the last 30 seconds of the oscillatory movement data were used 

for the final results, as the two clinicians required an initial period to reach the desired magnitude 

of force. For each force amplitude (30, 60, 90, and 120N), the average displacement from the 

three trails was used for final statistical analysis.  

Statistical analysis: 

 IBM SPSS statistics version 22 was used for statistical analysis. Spearman correlation 

coefficient (rs) was used to measure the association between the amplitude of the displacement 

measured by the IMU and the amplitude of the applied forces. Furthermore, repeated measure 

ANOVA was used to determine if the IMU measurements during the four amplitudes of forces 

were statistically different. For post hoc analysis, Bonferroni adjustment was used for pairwise 

comparisons between the amplitudes of displacement. The significance threshold used in this 

study was 0.05.  

Bland-Altman plots were used to display the differences in displacement measurements 

between the Optotrak and the IMU, and the differences in IMU displacement measurement 

between the two clinicians and between the sessions. We used averaged data for each of the 

comparisons (between devices, between clinicians, and between sessions). Because the 

differences in the measurements were proportional to the mean, the percent error of the 

measurement (%e) was plotted, and the mean and 95% Limits of Agreement (LOA) for %e were 

calculated  134,135.   

The %e was calculated using the following equations:  

%e between the Optotrak and the IMU measurements= � Opt

IMU
-1� × 100  eq.4.6 

%e between the IMU measurements of the clinicians=  �Clinician1

Clinician2 
-1�  × 100  eq.4.7 
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%e between the IMU measurements of the sessions= �Session1

Session2 
-1�   × 100   eq.4.8 

In order to understand the sources of error that affected the reliability of IMU 

measurements, we performed similar steps to calculate %e from the Optotrak measurements 

between the two clinicians and between the two sessions. 

Because we used average scores to assess agreement between methods, between 

clinicians, and between sessions and because data were clustered (four intensities/amplitudes per 

subject), the usual limits of agreement for the Bland-Altman plots would be anticonservative. 

However, in clinical setting, there is usually one clinician and one intensity (amplitude) in a 

given session, and our interest is in the range of Optotrak-IMU differences we would expect to 

see in most cases. Similarly, we would like a sense of the expected variability in between-

clinician IMU measurements for a single session, and in between-session IMU measurements for 

a single clinician.  

To reflect real-life practice conditions more closely and to circumvent the clustering 

(non-independence) problem, we computed Bland-Altman limits of agreement using a non-

parametric bootstrap estimate of the standard deviation (SD) of the difference of interest. In each 

of 20,000 iterations of the bootstrap we randomly selected 16 patients (sampled with 

replacement); one of the four intensities (amplitudes); one clinician-session combination (for 

comparing Optotrak with IMU measurements); one session (for comparing IMU measurements 

between clinicians and comparing Optotrak measurements between clinicians); and one clinician 

(for comparing IMU measurements between sessions and comparing Optotrak measurements 

between sessions). In each bootstrap sample the three differences of interest (between-measure, 

between-clinician, and between-session) were computed along with the SD of each. For each 
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difference of interest, the mean of its SDs across the 20,000 bootstrap samples was taken as its 

SD estimate for use in the limits of agreement formula.  

Agreement was interpreted good when the mean %e was less than 10% (small mean) and 

the absolute values for LOA were less than 20% (narrow LOA) and moderate when mean %e 

was 10- 20% and the absolute values for LOA were 20-40% (wide LOA).   

4.4 Results: 

Sixteen healthy subjects (10 males, mean age = 32±5 years, body mass index =25 ±4) 

completed the study. The mean and the standard deviation for the force amplitudes applied 

during mobilization sessions are presented in table 4.1. Minor differences in force application 

were noted between the two clinicians (mean difference in force =1.5 ±1.7 N) and between the 

two sessions (mean difference in force =0.2 ± 2.2 N).   

The correlation between the amplitude of displacement measured by the IMU and the 

amplitude of forces was found to be high (rs= 0.94) (Figure 4.6). Furthermore, the repeated 

measure ANOVA and the post hoc tests revealed that the IMU measurements were statistically 

different between the four amplitudes of force (P<0.01; mean amplitude of displacement = 

1.7±0.2, 3.3±0.5, 5.5±0.9, and 7.7±1.2 mm for the 30, 60, 90, and 120 N amplitudes of force 

respectively). 

Bland-Altman plots showed small %e in the amplitude measurements between the IMU 

and the Optotrak (Figure 4.7 A), between the clinicians (Figure 4.7 B), and between the sessions 

(Figure 4.7 C). Table 4.2 indicates the mean %e for the measurements between the IMU and 

Optotrak, between clinicians, and between sessions; the mean was found to be 4%, 6%, and 1% 

respectively. However, the LOA for the differences in the IMU measurements between clinicians 

and between sessions were wide.  
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The mean %e in the Optotrak measurements between the two clinicians and between the 

two sessions was small (8% and 1% respectively). 

4.5 Discussion: 

The purpose of this study was to investigate validity and reliability of the IMU in 

measuring the amplitude of mobilization displacement. The results show that IMU is a valid 

device in measuring the amplitude of mobilization displacement as indicated by 1) high 

correlation between the amplitude of the displacement from the IMU and amplitude of 

mobilization forces, 2) ability of the IMU to differentiate between four different forces applied, 

and 3) good agreement criteria between the IMU and Optotrak measurement (%e had small 

mean, and narrow LOA).  However, the IMU showed moderate inter-rater and intra-rater 

reliability as shown by wide LOA.  

This is the first study investigating the validity of the IMU in measuring mobilization 

movements. We investigated the validity of IMU against two common laboratory measures, 

force plate and Optotrak to verify its application. Force plate is the most widely used device to 

measure mobilization, and optical motion capture systems such as Optotrak are the standard 

measure of displacement.  Previous studies have investigated the validity of the IMU against 

optical motion capture systems in measuring other applications in human kinematics. Esser et al. 

132 used IMU to measure the displacement of the center of mass during walking, and the 

measurement error was found to be less than 2%. Charry et al. 80 used IMU to measure vertical 

toe displacement during walking, and the measurement error was found to be approximately 3 

cm (approximately 20%). The difference in the measurement error between the previous two 

studies may have resulted from the differences in the tested movements as well as differences in 

the sensitivity of the IMU components used. In the study by Esser et al. 132, the IMU was placed 
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on the trunk, and the tilt angles of the IMU were relatively steady during walking. In the study by 

Charry et al. 80, the IMU was placed on the distal end of the shoe, and the tilting angles were 

changing as the distal end of the shoe was moving during walking, resulting in large changes in 

the angles of the IMU. Errors in the IMU angles estimation may have increased the error of the 

measurements in the second study 80. In our study, the clinicians attempted to avoid large 

changes in the angles of the IMU during the mobilization, which might have decreased the error 

in the estimation of IMU angles.  

The moderate between-clinician and between-session reliability (wide LOA) found in this 

study may be partly attributed to factors unrelated to the reliability of the IMU. The wide LOA 

can be explained in part by the variability in forces applied by clinicians and in reapplying the 

mobilization between sessions. Secondly, the force plate used to provide biofeedback to the 

clinician has a measurement error of 3% in measuring the mobilization forces 127, which may 

have contributed to some degree of variability in the displacement between clinicians and 

between sessions. Finally, small differences in the position of both the IMU and Optotrak marker 

on the clinician’s hand might have affected the displacement measurements. Collectively these 

issues reduced reliability for IMU even when the actual differences in force applications were 

small. These issues also affected the reliability of Optotrak measurements between clinicians and 

between sessions as indicated by the LOA of Optotrak measurements.   

The findings of our study can be generalized to grade III- IV mobilization but not to 

grades I-II. The ranges of forces used in our study were 170-200 N, 140-200 N, 110-200 N and 

80-200 N. These forces represent the amplitude and magnitude of grades III- IV. Grades III- IV 

mobilization were reported to have mean force magnitudes of 90-240 N124-126,128 and mean force 

amplitudes of 102 N and 33 N124 respectively. In addition, grades III- IV of mobilization are 
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usually applied using the pisiform grip used in our study, but grades I-II are applied using the 

thumbs. The location and the size of the IMU will need to be considered if it is targeted to 

measure grades I and II mobilizations.  

The study has several limitations. The findings cannot be generalized to clinicians with 

various levels of experience, different patient populations, different hand positions for lumbar 

mobilization other than pisiform grip, or other ranges of forces and amplitudes. Future studies 

need to test the validity of the IMU in various patient populations, to establish reliability between 

clinicians with different levels of experience, and to use more precise methods of applying the 

mobilization forces.  

Nevertheless, establishing the validity and reliability of IMU is the first step toward 

potential use of IMU to measure/quantify lumbar mobilization in clinical settings. Quantifying 

mobilization may decrease the inconsistency in applying mobilization and therefore may 

improve clinical outcomes. In addition, the clinician’s hand displacement may be used with the 

force measures to calculate the stiffness of the spine. The stiffness is an objective measure and an 

outcome of clinical interest in people with LBP. Finally, future studies should validate the use of 

IMU in people with LBP (the population of the clinical interest), investigate the reliability of the 

clinicians mobilization application with IMU while receiving live visual feedback about their 

mobilization, investigate the potential use of IMU in measuring mobilization of other areas/joints 

and its broader application. Development of a user-friendly software for IMU application for 

clinicians with minimum technical knowledge/support would be an important contribution.  

4.6 Conclusion: 

The IMU can be a valid and inexpensive device to measure the lumbar mobilization 

displacement in healthy subjects for the following ranges of forces: 170-200 N, 140-200 N, 110-
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200 N and 80-200 N, representing grade III-IV mobilization. Future studies with more precise 

methods of applying mobilization forces could further characterize the reliability of IMU in 

measuring lumbar mobilization displacement. The findings of our study are initial steps toward 

developing a user friendly application of IMU to measure mobilization in research and clinical 

settings.   
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4.7 Tables: 

Table 4.1: Mean and standard deviation for the amplitudes of forces applied during mobilization 

trials. 

 Session 1 Session 2 

Predetermined 

amplitudes 

Clinician 1  

(N) 

Clinician 2  

(N) 

Clinician 1  

(N) 

Clinician 2  

(N) 

30 N    33.5 ± 1.5   31.7 ± 1.4   33.3 ± 1.4   31.6 ± 1.2 

60 N    62.2 ± 2.4   61.0 ± 1.2   62.9 ± 2.5   61.5 ± 2.4 

90 N    92.0 ± 2.1   90.6 ± 1.6   92.0 ± 2.8   90.5 ± 1.6 

120 N  120.9 ± 3.1 118.8 ± 2.4 119.8 ± 3.4 118.6 ± 1.7 
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TABLE 4.2: The percent of error for the measurement comparisons. 

 Mean Limits of agreement 

(Lower LOA -Upper LOA) 

%e for the measurements between the IMU 

and Optotrak  

%e=(IMU/Opt  -1) X100 

 

4% -11% - 20% 

%e for the IMU measurements 

Measurements between clinicians 

%e =(clinician1/clinician2 - 1) X100 

 

6% -25% - 37% 

 Measurements between sessions 

%e =(session1/session2 - 1) X100 

-1% -29% - 27% 

%e for the Optotrak measurements 

 Measurements between clinicians 

%e = (clinician1/clinician2 - 1) X100 

 

-8% -25% -  9% 

Measurements between sessions 

%e =(session1/session2 - 1) X100 

 

-1% -18% - 17% 

 

Abbreviations: %e: percent of error, LOA: limit of agreement. 
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4.8 Figures: 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.1: Mobilization recorded by Optical motion capture system, 

displaying the magnitude and amplitude of mobilization with red arrows. 
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Figure 4.2: Study design showing 3 trials of four mobilization amplitudes by each clinician.  
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30N Amplitude, 3 trials 
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60N Amplitude, 3 trials 

of mobilization                    

90N Amplitude, 3 trials 

of mobilization                    

120N Amplitude, 3 trials 

of mobilization                    

10 Minutes 
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Figure 4.3: The placement of IMU and 

Optotrak marker and position of the 

clinician’s hand during lumbar 

mobilization.  
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Figure 4.4: The IMU tilting angles relative to the ground (modified from 

Charry et.al80). 
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Figure 4.5: Double integration of vertical acceleration.  

Abbreviations: Az, vertical acceleration; Vz, vertical velocity; Dz: vertical displacement. 
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FIGURE 4.6: The correlation between amplitude of displacement measured by IMU, and the 

amplitude of force measured by force plate.  
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FIGURE 4.7: The Bland-Altman plots for the agreement of measurements: 

 between the IMU and Optotrak measurements. 

 between the two clinicians (IMU measurements). 

 between the two sessions (IMU measurements).  

Abbreviations: %e, percent of error; Opt, Optotrak; C, clinician; S: session.  
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Chapter 5: Conclusion  
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 5.1 Overview:  

We determined the effects of lumbar mobilization, a standard intervention used by 

physical therapists and chiropractors, on Lumbar Multifidus (LM) and Erector Spinae (ES) 

muscles in both healthy subjects and in people with low back pain (LBP). Furthermore, we 

investigated validity and reliability of an Inertial Measurement Unit (IMU) in measuring 

clinician’s hand displacement during lumbar mobilization representing grades III and IV of 

mobilization.  

LBP is the second most common cause of disability in the United States 84, it affect 

approximately 80% of the population at some point in their lives 1. LBP is associated with 

abnormal high activity of ES and low activity of LM muscles 16,17,85,86, which has shown to be 

associated with pain and dysfunction in people with LBP. Lumbar mobilization a common 

treatment used by 70-90% of physical therapists in managing LBP 81,82. Never the less, the 

underlying mechanism of lumbar mobilization is not well understood, and there is a lack of 

understanding about the effect of lumbar mobilization in normalizing the activity of muscle 

dysfunction seen in people with LBP. Previous studies suggested that mobilization can stimulate 

mechanoreceptors within the joints and muscles, which changes the α-motor neurons excitability 

61. Investigating such effect of mobilization on back muscle activity in both healthy subjects and 

people with LBP may lead to a better understanding of the physiological effects of mobilization, 

and a better application of mobilization to normalize the abnormal activity of back muscles in 

LBP; this in turn may improve the intervention outcomes and decrease the disability in people 

with LBP. To our knowledge, our studies were the first to investigate the effect of lumbar 

mobilization on both LM and ES muscles in healthy subjects and in people with LBP.   
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Despite the common use of mobilization for managing LBP, methods to quantify lumbar 

mobilization in clinical settings are lacking,; there is inconsistency in applying mobilization 74 

which may affect the intervention outcomes. Current laboratory methods like Optotrak and force 

plate to measure mobilization displacement and forces are expensive and limited to laboratory 

settings. IMU is a potential device that can be used to measure the clinician’s hand movement 

during mobilization. IMU is an inexpensive and portable device and thus, its use in clinical 

settings is feasible. However, the validity and reliability of IMU in measuring mobilization must 

be determined before its application can be considered in clinical and research settings. Our 

study was the first step to develop a friendly IMU-based method that can provide visual feedback 

to clinicians during mobilization; the live visual feedback could decrease the inconsistency in 

applying mobilization and therefore improve clinical outcomes. 

The studies conducted are within the objectives of our Clinical Orthopedic and 

Rehabilitation Research (CORR) Laboratory at KUMC. The laboratory objectives are to 

understand the mechanisms of LBP and to determine the efficacy of physical therapy 

interventions to manage LBP and its associated symptoms.  

 5.2 Summery of findings: 

Aim 1: To determine the effects of grade IV lumbar mobilization on back muscles in 

healthy subjects.  

Healthy subjects received three intervention sessions (no intervention, placebo, and grade 

IV mobilization) on different days. Contraction of LM and the activity of ES were measured at 

low isometric contraction (arm lift task) at two time points (before and immediately after the 

intervention) in each session. Ultrasound imaging and surface electromyogram (EMG) were used 

to measure LM contraction and activity of ES respectively. 
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We hypothesized that compared to both placebo and no intervention, grade IV mobilization 

would decrease the activity of ES (H1) and increase contraction of LM (H2). 

The only significant effect of lumbar mobilization was found on LM contraction 

compared to the placebo effect; the mobilization increased the LM contraction. There was no 

significant effect of mobilization on LM contraction compared to no intervention. 

Aim 2: To determine the effects of grade III lumbar mobilization on back muscles in people 

with chronic LBP.  

LBP subjects were randomly assigned into two groups (grade III mobilization or 

placebo/light touch group). Subjects received intervention based on their assigned group and for 

two sessions. Contraction of LM and the activity of ES were measured at low isometric 

contraction (arm lift task) at two time points (before and immediately after the intervention) in 

each session. Ultrasound imaging and surface electromyogram (EMG) were used to measure LM 

contraction and activity of ES respectively.  

We hypothesized that compared to placebo, grade III mobilization would decrease the amplitude 

(H3a) and onset (H3b) of ES muscle activity, and increase LM contraction (H4). 

Compared to placebo group, there were significant effects of lumbar mobilization on the 

amplitude and onset of ES muscle activity and on LM contraction. The mobilization decreased 

both activity amplitude and activity onset of ES, and increased contraction of LM. Furthermore, 

the observed changes in ES and LM were not associated with the changes in pressure pain 

threshold (PPT), suggesting the underlying physiological effect of mobilization on ES and LM 

was independent of perceived pain threshold. 

Aim 3: To determine the validity and reliability of IMU in measuring the amplitude of 

displacement of the clinician’s hand during lumbar mobilization on healthy subjects.  
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Each healthy subject received four different amplitudes of lumbar mobilization by two 

clinicians in two sessions. The validity of IMU was tested by comparing the IMU measurements 

(displacement) to the measurements of Optotrak (displacement), and by calculating the 

correlation between IMU measurements (displacement) and the force plate measurement (force). 

The reliability of IMU was tested by comparing the IMU measurements between two clinicians 

(inter-rater reliability) and between two sessions (intra-rater reliability).  

We hypothesized that IMU measurements would have high agreement with Optotrak (H5a) and 

high correlation with force plate (H5b) measurements, and that IMU would have high inter-rater 

(H6a) and intra-rater (H6b) reliability in measuring the amplitude of displacement. 

Our results showed that IMU had high agreement with Optotrak and high correlation with 

force plate.  Therefore, IMU was found to be a valid device to measure the amplitude of 

displacement of clinicians’ hand during lumbar mobilization. The reliability of IMU was 

moderate with both inter-and intra-reliability, which can be due to inconsistency in applying 

mobilization between sessions and between clinicians. 

5.3 Clinical implications: 

People with LBP have high activity amplitude and activity onset of ES during low load 

muscle activities, and atrophy in LM muscle 16,17,85,86. The impairment in activity/contraction of 

ES and LM may lead to further pain and functional limitations in people with LBP. Clinicians 

should try to assess and address the back muscles impairments associated with LBP. Clinical 

guidelines for LBP published by the American Physical Therapy Association - Orthopedic 

Section recommend addressing the trunk muscle coordination and weakness impairments in LBP 

136.  
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There is a gap in our knowledge about the effects of lumbar mobilization on back 

muscles in both healthy subjects and people with LBP. Our study findings contribute to fill in 

this gap in our knowledge. The findings from this dissertation suggest that lumbar mobilization 

may correct the abnormal activity in back muscles in LBP by decreasing the activity amplitude 

and onset of ES and by increasing the contraction of LM. Therefore, the findings emphasize a 

new therapeutic effect of lumbar mobilization and normalization of impairment of back muscles 

in LBP, and further support the use of mobilization as an integral intervention for people with 

LBP. 

Establishing the validity and reliability of IMU is the first step toward using IMU to 

measure/quantify the clinicians’ hand displacement during lumbar mobilization in clinical 

settings. There is an inconsistency in applying mobilization; studies have found poor intra- and 

inter-reliability of applying mobilization forces within and across mobilization sessions 74. For 

example, physical clinicians with more than three years of experience, applied force magnitude 

that ranged from 63 to 347 N during grade IV lumbar mobilization 74. This inconsistency may 

result in inconsistent patient outcomes. For example, without quantifying mobilization force and 

displacement, the mobilization may be either too small to produce the desired therapeutic effect 

or too extreme that could lead to adverse effects such as increased pain. Thus, measuring force or 

displacement of mobilization may improve reliability and clinical outcomes.  

In addition, the clinician’s hand displacement measured by IMU may be used with the 

force measures to calculate the stiffness of the spine. The stiffness is an objective measure and an 

outcome of clinical interest in people with LBP. 
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5.4 Limitations: 

Effect of lumbar mobilization on back muscles activity in healthy subjects and in people 

with LBP: 

The ultrasound imaging is a reliable method to measure LM muscle contraction during 

the arm lift task used in this study. However, the minimum detectable change of LM contraction 

measured by ultrasound is relatively high and the smaller detected changes in LM contraction in 

our study may not have clinical significant. Thus, the results should be used with caution.  

The arm lift task in prone position used in these studies was selected because it is 

considered the standard task for ultrasound imaging of LM. However, the arm lift task in prone 

position is not a common functional task, and the findings cannot be generalized to other tasks 

that require different level of muscle demand or different muscle contraction patterns of back 

muscles. 

We could not measure the activity onset of ES muscle in healthy subjects due to EMG 

device malfunction. Many channels of the EMG device at the time of data collection had 

malfunctioned, and we had to scarify the channel that tested deltoid muscle activity. Thus, there 

might have been an effect of lumbar mobilization on the activity onset of ES muscle in healthy 

subjects that was not captured in the current study. 

PPT and the back-muscle activity could not be tested at the same time. The PPT was 

tested after the isometric contraction of the arm lift task, which might have affected the PPT 

values. Therefore, it is still possible that the observed changes in back muscles 

activity/contraction resulted from the hypoalgesic effect of mobilization even though we showed 

negative effects of mobilization on PPT. 



85 

 

The lumbar mobilization was applied consistently at L4 level, which is unlikely to be the 

most symptomatic lumbar segment in all subjects with LBP. Thus, more changes in outcomes in 

people with LBP might have been induced if mobilization was applied at the most symptomatic 

segment or multiple segments of the lumbar spine.  

Our study only tested the immediate effect of lumbar mobilization on back muscles. This 

study would have been better if a follow up for the subjects was done to test short-term and long-

term effects of mobilization. The short- and long-term follow up of our subjects would have 

provided us with better understanding for the lasting effects of mobilization; this additional 

information might have helped clinicians in determining the frequency (sessions per week) of 

mobilization needed to maintain such effects. 

The findings cannot be generalized to other mobilization techniques, or other areas of the 

spine (cervical or thoracic). Other mobilization techniques may lead to less or more effects of 

mobilization on back muscle activity. Although, the cervical and thoracic spine have common 

anatomy and physiology with lumbar spine, the small anatomical and physiological differences 

in these areas may lead to different effects of mobilization. 

The sample size used for the studies was small, which could increase a probability of type 

two error (false negative). In addition, the small sample size did not allow us to correct the 

significant level for multiple comparisons, which may have increased the probability of type one 

error (false positive). Therefore, the studies are considered preliminary and further investigation 

with a larger sample size is needed.   

Measuring lumbar mobilization: 

The findings cannot be generalized to clinicians with various levels of experience or in 

people with LBP. Clinicians with different level of experience might have higher or lower 
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reliability of IMU measurements. In addition, the study only investigated the reliability of IMU 

in healthy subjects. People with LBP might have changing pain level and stiffness between 

sessions, which might lead to different amplitude of displacement and therefore affect the 

reliability of IMU. 

The study used a pisiform grip for applying the specific mobilization forces. Lumbar 

mobilization can be applied using the thumbs but that would have required different placement 

of the IMU on the clinicians’ hand, which may affect the reliability of IMU. Furthermore, 

applying the mobilization with ranges of forces other than what used in the study might affect the 

reliability of IMU. 

5.5 Future directions: 

Future studies with larger sample size are needed to confirm the findings related to 

effects of mobilization on back muscles. Future studies should examine the effect of different 

grades (I, II, III, and IV), methods (unilateral V.S. central), and dosage of mobilization on the 

activity of back muscles, and should use more precise methods of measuring muscle activity 

(e.g. needle EMG) for deep back muscles (LM). Moreover, future studies should investigate the 

factors that might change the effect of mobilization on back muscles in people with LBP. Such 

factors might be related to the subjects (i.e. gender, symptoms, and duration of LBP) or to the 

lumbar mobilization itself (i.e. lumbar mobilization grade, dose, and frequency). 

In our study, we analyzed the IMU data offline. Future studies could develop a software 

that can analyze the IMU data immediately and provide visual feedback to clinician about the 

displacement of their hands during mobilization. Furthermore, future studies need to test the 

validity of the IMU in people with LBP, to establish reliability between clinicians with different 

levels of experience, use more precise methods of applying the mobilization forces, and 
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investigate the reliability of the mobilization when clinicians receive live visual feedback from 

the IMU while applying mobilization.  

Further, future studies may investigate the potential use of IMU in measuring 

mobilization of other areas/joints and its broader application. Development of a user-friendly 

software for IMU application for clinicians with minimum technical knowledge/support would 

be an important contribution to the field of manual and alternative therapies  

Finally, the stiffness of the lumbar spine can be measured by dividing the amplitude of 

force during mobilization (as measured by force plate or other force measuring devices) by the 

amplitude of therapist hand displacement (measured by force plate).  The stiffness of lumbar 

spine is an important clinical outcome measure that can be used in future studies.  

5.6 Conclusions: 

The findings show that lumbar mobilization decreased the abnormal high amplitude and 

onset of ES activity, and increased the LM contraction in people with LBP. These results add to 

the current literature about the physiological effects of lumbar mobilization on back muscles, and 

support the use of lumbar mobilization to decrease the dysfunction of back muscles in people 

with LBP.   

IMU was found as a valid device to measure lumbar mobilization in the selected applied 

forces that represent grades III-IV of mobilization. The findings support the use of IMU to 

measure the amplitude of lumbar mobilization, which may lead to more consistent application of 

lumbar mobilization in clinical setting. Future studies should develop a user friendly IMU that 

can provide live visual feedback to the clinician during mobilization. 
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Appendixes: 

Appendix 1: Fear Avoidance Beliefs Questionnaire   

FEAR AVOIDA NCE BELIEFS QUESTIONNAIRE (FABQ)
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Appendix 2: Modified Oswestry Low Back Pain Questionnaire 

 



97 

 

 

 

 



98 

 

Appendix 3: International Physical Activity Questionnaire 
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Appendix 4: Beck Depression Inventory  
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