
Redacted Signature

Redacted Signature

Redacted Signature

Redacted Signature

~SUMPTION MODELS :

A DENOTATIONAL SEMANTICS FOR CONCURRENCY AND SYNCHRONIZATION

by

Robert L. 1reece
B.S., University of Kansas, 1983

Submitted to the Department of
Computer Science and the Faculty
of the Graduate School of the
University of Kansas in partial
fulfillment of the requirements for
the degree of Master of Science.

Professor in Cb.a+ge

I -- -

For""the DepJriment ' n ,, vs.c ,_ ,---1 '=""' , :--.

Date thesis Accepted

ABSTRACT

This thesis describes a technique for the study of the semantics of

concurrent programming languages. A denotational semantics is developed

using resumption models, an adaptation of Milner's processes. In such a

model, the meaning of a language construct is a resumption, a function

from initial state to a set of all possible paths of execution. Thus

the semantics, though denotational, has an operational flavor as com-

putation history is included in the meaning of a program.

A general language allowing parallel execution of processes is

given using shared memory and critical region mutual exclustion. The

semantics of this language is provided as a framework for studying the

semantics of other multiprogramming languages. Hoare's Communicating

Sequential Processes is discussed as an example of a distributed

language utilizing interprocess communication. The semantics of CSP

could be adapted to other distributed languages.

ACKNOWLEDGEMENTS

I must certainly express my gratitude to my adviser, Professor

Adrian Tang. He has provided much information and invaluable inspira-

tion.
'

Thanks also to Drs. Appie van de Liefvoort and Tsutomu Kamimura

for their guidance and for serving on my thesis committee. And to Dr.

William Bulgren for his support during my graduate work.

I: Introduction.

Introduction.

Thesis Outline

II: Resumptions .•.

TABLE OF CONTENTS

Domain Operators.

Resumption Combinators •.

III: Parallel Programming Language and Semantics.

Parallel Programming Language

Sequential Programming Language and Semantics.

Semantics of PPL.

PPL Example One ..

PPL Example Two ..

• 5

• 5

• 8

• 9

. 10

. 13

. 15

. 15

• 17

. 18

. 22

. 23

IV: Communicating Sequential Processes and Semantics. . 26

Communicating Sequential Processes.

Semantics of CSP.

CSP Example.

. 27

. 30

. 37

V: Conclusion . 40

Appendix. • 42

Bibliography. • . . . • 45

I. Introduction

Introduction

This thesis describes a technique for the study of the denotational

semantics of concurrent programming languages.

In a denotational semantics, programming language constructs are

modelled by implementation independent entities. The meaning of a con-

struct is given by a function which maps syntactic constructs into

semantic domains. This is in contrast to an operational semantics in

which the behavior is studied via an abstract machine.

A program is a group of statements and therefore a program's

meaning is derived from the statements comprising it. Each constituent

statement is viewed as a function which transforms the machine state.

The meaning of the program is then the composition of the constituent

functions, providing again a function from state to state.

Many constructs have recursively defined meanings, the meaning of

the whole relying on the semantic definitions of its constituents. For

instance, the assignment A:=A+6 is described in terms of the denotations

for the expression A+6. The value of A+6 depends on the current state

of the machine; in par.ticular, on the interpretation of the value in the

memory location refered to as A.

When describing sequential programs using denotational methods, it

is sufficient to consider the statements of a program, and the entire

program itself, as indivisible. The execution of a sequential program

is continuous; the state of the program will not be altered by another

process. Therefore, programs (A:=O; A:=A+6) and (A:=6) will have the

- 5 -

same meaning. Even if nondeterminancy is allowed by a restricted

pseudo-concurrency in which no program interrupts another, a program's

meaning can be given in terms of the sequential behaviors of its parts.

The meaning of ((A:=0; A:=A+6)//(A:=6)) in such a case would be the

union of the meanings of the two possibilities {(A:=O; A:=A+6); (A:=6))

and ((A:=6); (A:=O; A:=A+6)). In each case, (A=6) is true after execu-

tion.

When actual concurrency or pseudo-concurrency with interruptions is

allowed, · a command which began in an initial state may not complete ex-

ecution before being interrupted. It may be suspended in an inter-

mediate state with some computation to finish when tesumed. While

suspended, another process may alter the machine state. The command may

also complete execution without interruption, terminating in some final

state. The meaning of a statement must contain all such possibilities.

Making_ such considerations, the meaning of ((A:=O; A:=A+6)//(A:=6)) now

yields as postcondition (A=6 V A=12).

The meaning of a,nondeterministic program can be viewed as a tree

structure. Each node represents a control point or interruption point.

Branches from a node are the possible next atomic actions. The leaves

are the possible final states. Of course, the actual execution of such

a program will follow .only one path from root to leaf though the chosen

path may differ for different executions.

The typical denotational model must be altered to include the no-

tion of interuption. The meaning of a command is no longer a mapping

from initial machine state to final machine state, but to a set of

possible final states. By dividing a program's processes into in-

- 6 -

divisible parts, the possible statement interleavings may be seen. Each

interleaving may produce a different final state.

To distinguish easily between the various.possible executions, we

will consider labelled statements. Each atomic action will be given a

name. Then the execution of a program, given by the order of execution

of its atomic components, can be seen as a string of labels. Therefore,

at any point in a computatio~, the execution path which brought the

program to that point can be seen as well as the possible executions to

come.

To accomodate the many possible executions of a given concurrent

program, we will use resumption models which are variations of Milner's

Processes [Mil73]. The meaning of the segment of a program remaining to

be executed is called the resumption of the program. Of course ini-

tially the meaning of the entire program is itself a resumption.

Because a resumption includes all interuption points, the various

possible paths of execution are contained in the meaning of a program.

This gives the semantics an operational flavor.

Other approaches to the semantics of concurrency can be found in

[Sou84] and [DeB82]. In the former, the paths of execution are not in-

cluded in the meaning of a program. The set of final results is the

main concern. Therefore, where the current state determines the meaning

of a construct in our semantics, the state is instead not consulted. In

this respect, our semantics is perhaps more operational. The semantics

of CSP found in [DeB82] is more closely based on Milner's Processes than

the resumptions used here. The domains used are more complex than ours.

- 7 -

Thesis Outline

The notion of a resumption is ellaborated in section II and

provides a mathematical basis for the rest of the paper. Notations are

given for resumption combinators necessary to the later discussions.

Some domain theory is also discussed.

A general Parallel Programming Language is given in section III and

the semantics using resumptions is derived. Some simple examples are

given, illustrating the use of the semantic definitions. In presenting

the semantics for a general parallel language, we provide the necessary

framework for using resumptions to describe the semantics of a group of

languages.

In section IV, Hoare's Communicating Sequential Processes (CSP)

[Hoa78] is introduced, then given a semantics applicable to other

distributed languages utilizing interprocess communication.

are also derived for example CSP programs.

Meanings

Section V concludes the paper by briefly suggesting implementation

possibilities.

- 8 -

II . Resumptions

In this thesis, we will refer to the meaning of a program as a

resumption. We will also call the .meaning of a program segment a

resumption and describe ways to combine the resumptions of program parts

to obtain the meaning of the entire program.

As discussed earlier, a sequential program can be viewed as a func-

tion which transforms the machine state. A statement takes an initial

state and produces a final state. Thus the meaning of a statement is a

function f:S-->S where Sis the domain of machine states.

Since there are no other processes manipulating the state of a se-

quential program, the meaning of a group of statements is the composi-

tion of the meaning functions of the statements comprising the group.

The final state of one statement becomes the initial state for the fol-

lowing statement. Therefore, the meaning of a program is also a func-

tion g:S-->S.

Things are not so simple once concurrency is introduced. In paral-

lel programs, nondeterminancy exists since there are often several ac-

tions which could be completed next at a given point in a program. In

this case, the initial state of a statement in one process may not be

the same as the final state produced by the previous statement. Another

process may have altered the state in between.

Since a parallel program is, like a sequential program, a group of

statements, we would like to be able to describe the semantics of the

whole in terms of that of its parts. A parallel program is made up of

indivisible, atomic actions seperated by possible interruption points.

Some statements are themselves atomic, and their meanings may be viewed

- 9 -

in parallel programs in the same way they are in sequential programs: as

functions from state to state. For instance, the skip statement could

be atomic and is then viewed as the identity function in sequential and

concurrent semantics. Other types of statements have possible interrup-

tions. This type of statement is itself a sequence of atomic actions.

An example of a statement of this type is the if-then-else-fi statement

in which an interruption point follows evaluation of the boolean condi-

tion. Then the meaning is a pair consisting of the intermediate inter-

ruption state and the resumption of the unexecuted remainder of.the com-

mand. As you can see, resumption is used to refer to the meaning of a

portion of a single statement as well as a portion of a program.

Because a given concurrent program may have several possible execu-

tions, we must consider not a single result, but a set of possible

results. Thus we will model concurrent behaviors by the domain R (for

resumptions) satisfying the recursive domain equation:

R = 5-'-->.1.P[S,1,.+ (S.,_6' ~] (*)

in which the meaning of a program, a resumption, is a function which

maps initial states to sets. The sets contain elem·ents which are either

final states or state-resumption pairs. This recursive domain equation

is guaranteed a solution by Plotkin's SFP objects [Plo76].

Domain Operators

We will not discuss domains in detail here. An introduction can be

found in [Gor79] with a much more extensive treatment in [Sto81]. The

key notion is that a domain is a group of objects with an ordering.

These objects are used to give meaning to syntactic constructs. And

- 10 -

each domain contains a least element J. refered to as "bottomtt or "un-

defined."

The operators used in the above domain equation: --:::i., P, +, and G')

represent, respectively, strict functions, powerdomain, coalesced sum,

and strict product. Stoy's text [Sto81] also provides rigorous defini-

tions of these constructions excluding P which is treated in [Plo76].

The notion of a function space D-->E is common. When using domains

as models for programming language semantics, a restricted space [D-->E]

of only those functions which preserve the structure of D are con-

sidered. These are the continuous functions.

The strict function space [D-->iE] is a further restriction of

(D-->E] and contains only strict functions. The strict functions are

those functions in [D~->E] which mapJ.6 to .Ls. The motivation for this

restriction involves functions with call-by-value arguments. If the ar-

gument e of a function.£ cannot be evaluated, or the evaluation does not

terminate, then f(e) cannot be evaluated.

The notion of the powerdomain of a domain is analogous to that of a

powerset of a set. Each element of the powerdomain is a set of elements

from the domain. For our purposes, a member of the powerdomain

represents the set of all possible executions of a particular statement.

Members of the coalesced sum of two domains A + B are members

either of A or of B. When an element c is in both A and B, it is

possible to distinguish between c in A and c in B, except J.A and .L6 are

now the same object.

The cartesian product of two domains AX B is the set of pairs

(a,b) such that a is in A and bis in B. The strict product ACS)B

.. .11 -

eliminates all pairs of the form (a,1- or (~,b) except ~,.la}· The

reasoning again is derived from call-by-value functions. If an n-ary

function f has arguments (el,e2, ... ,eN) and one of the eI's cannot be

evaluated, then neither can f(el,e2, ... ,eN) and the result would be the

same as if each el were undefined.

The domain D.£. is refered to as the lift of D.

elements of D and includes a new least element.

D.L contains all the

The function up:D-->D~

maps elements of D to their corresponding element in the lift of D and

is essentially an identity mapping. For any function f:D-->E, lift(£):

D-'->E is the function such that for each din D, lift(f)(up(d))=f(d).

The lift of a domain is used to ~stablish an accurate model of com-

putation. In general, a lifted domain is used when combining domains

using 0 or +. By adding a new least element to each domain, we avoid

amalgamation of the bottom elements when combining domains (see diagram

below.) In the domain S 0 R, you may not have a pair of the form (s, J.R.)

unless s=.Ls S here is a flat domain with a least element; R also has

a least element. By lifting R, in the product S 0 R.1. you may now have

pairs (s,.LA) in which s is not1s. Such pairs would be used when a

program may make some finite progress but has an undefined resumption.

The intermediate state information should still be given.

(S QR)

- 12 -

Resumption Combinators

In order to describe the semantics of the following sections cer-

tain combinators must be defined for use with re~umptions. In these

definitions assumes is some element in S~and rl and r2 are in R.

For composition of resumptions we define *:R2 -->R such that:

rl*r2(s) = ~ rl(s)

if s ' . { s ' C8) up (r2) }

if (s',rl').{s' 0up(rl'*r2)}

The cases notation is read, if ·rt(s) is a single state s' ' then the

result is {s' (X)up(r2)}, otherwise if rl(s) is an interruption state-

resumption pair (s', rl'), then the result is {s' ® up(rl '*r2)}. This

composition is very intuitive. If the meaning of the first statement,

rl, is a single state, then r1*r2 is simply a pair consisting of the

final state of rl(s) and the resumption r2. The up{r2) must be used

because r2 is in Rand the earlier domain equation(*) specifies a pair

to include a member of ·R.L. If rl(s) is a pair, then the composition is

defined recursively.

The parallelism operator If :R~-->R is defined:

rll lr2(s) = ~ ~l(s)

ifs' .{s' G)up{r2)}

if (s' , rl'). {s' 0 up (rl' 1 l r2)}

U cases r2(s)

if s ' . { s ' ~ up (r 1) }

if (s', r2'). {s' 0 up(rl I I r2') l

Note that this operator is for parallelism in which rll lr2 terminates

when both rl and r2 have terminated. Here we have the union of pos-

- 13 -

sibilities. The first atomic part of rl or of r2 could be done first.

Nondeterminancy between resumptions is accomodated by the operator

?:~-->R such that:

rl?r2(s) = ~ rl(s)

if s'.{s'}

if (s' ,rl').{s' ~ up(rl')}

U ~ r2(s)

if s'.{s'}

if (s',r2').{s' CX)up(r2')}

Only one of the pair of resumptions is executed and the meaning of such

a combination includes all possibilities from execution of either

resumption but includes no interleavings.

When using these combinators to derive the semantics of a program,

several of each combinator may appear in a given expression, therefore

the precedence of evaluation is defined:*, ?,

thesis may alter the order of evaluation.

I I
I I • Of course paren-

Different resumption models will be used in the following semantic

definitions, though the underlying· notions remain consistent.

- 14 -

III. Parallel Programming Language and Semantics

An excellent overview of concurrent programming language constructs

can be found in [And83].

Parallel Programming Language

To begin with, we will describe a simple Parallel Programming

Language (PPL) allowing concurrency based on a common store. Mutual ex-

clusion in the language is provided by a critical region construct.

The programming language consists of the following statements:

skip, assignment, alternation, iteration, compound, parallel execution

and critical region. We will be using a labelled langauge in which

atomic actions are given names. The atomic constructs in PPL are

boolean expressions, skip, assignment and critical region. Thus a par-

tial grammar would be:

C ::= ~:skip I L:I := E

while L:B·do Cod --- --

if L:B then C else C £i

C;C

cobegin C{//CJ* coend IL:< C' >

where the.descriptions for I (identifiers), E (expressions), L (labels)

and B (boolean expressions) are as commonly described and it is assumed

that all variables are globally defined. A restricted PPL with grammar

start symbol C' is described shortly.

The interesting construct in this language is the parallel execu-

tion of processes. When processes are executing concurrently and

sharing memory, the possibility for one process to interfere with or

change the execution of one of its coprocesses exists. For instance,

consider the following program segment containing a pair of coprocesses:

- 15 -

cobegin x := y + y // y := x + x coend

and assume that x = 1 and y = 3 is true·as a precondition of the state-

ment. Also assume for the time being, that no other processes exist in

the same environment. If no interruptions are allowed in the execution

of either parallel statement, i.e. each assignment is atomic, then the

resulting value for (x,y) will be (6,12) or (4,2), depending on which of

the two statements is executed first. If interruption is allowed

between evaluation of the expressions and assignment, then the possible

values will be (6,12), (4,2) and (6,2). More interruption points could

exist, depending upon the implementation of the language. If interrup-

tion could occur within evaluation of the expression, then possible

values would be (6,12), (4,2), (6,2), (5,2) and (6,7). If there were

other processes running concurrently with this one and sharing the same

memory, then the set of possible values for (x,y) would be infinite as

the effects of those processes on x and y are unknown.

When processes run concurrently they must often compete for shared

resources. As was illustrated above, a memory location could be a

shared resource; others could be hardware devices or library routines.

In general, access to one of these shared resources by more than

one process at one time can provide undesired results. Consider two

processes using a line printer simultaneously in which the output from

the two processes is interleaved. Use of such a resource must be

restricted so that only one process may use it at a time; the resource

must· be dedicated to the process until the process has finished using

it.

- 16 -

The code in which a process uses a shared resource is called a

critical region. Thus, of a pair of processes having critical regions

referencing the same shared resource, only one may be executing its

critical region at one time. Execution of critical regions should be

mutually exclusive in time. This mutual exclusion can be supplied by

the critical region construct which serves to make a sequence of other-

wise interruptable statements atomic.

Sequential Programming Language and Semantics

The meaning of a statement within a critical region is the same as

it would be in a non-concurrent program. So, we will first define the

sequential semantics of those statements of PPL which may appear within

a critical region. A grammar for this Sequential Programming Language

(SPL) is:

C' ::= ~:skip I L:V := E I if L:B then C' else C' fi

while B do C' od I C';C'

The semantics is given by the mapping 3:SPL-->S-->S where SPL is

the domain of all valid SPL programs and S the domain of machine states.

Here, the domain of states consists of the partial functions from iden-

tifiers to values: S = [I-->V]. V will contain integers and truth

values and a bottom element. Though the commands are labelled, the

labels will be ignored for the time being.

The sementic mappings are defined:

S [L: skip] = As. s

The meaning of skip is the identity function.

- 17 -

l[L:v:=e] = ls.s[£(e)(s)/v]

An assignment replaces the current value of the variable on the left

hand side with the evaluation of the expression on the right hand side.

The functionE:E-->[S-->V] evaluates expressions. The state s[x/y] is

the state derived from s by placing x in location y.

S [if L:b then Cl else C2] = ~s. if'S(b)(s)

then $ [C 1] (s)

else $[C2] (s)

The meaning of an if statement depends on the evaluation of the boolean

condition in the current state. 8:B-->[S-->T] is a semantic function

used to evaluate boolean expressions. Tis the domain of truth values.

err while L:b do Cod]= As.if~(b)(s)

then$[C; while L:b do Cod](s)

else s

The meaning of a while loop also depends on the boolean expression.

8(Cl;C2] = As.$[C2] ($[Cl] (s))

Statement sequencing is modelled by functional composition. The meaning

of C2 is applied to the state resulting fro~ applying Cl to the initial

state.

We may now define the semantics of the PPL.

Semantics of PPL ---
PPL is the domain of all valid programs in the PPL. We will define

a semantic mapping 'ln:PPL-->R which maps a program to its meaning. The

domain of resumptions which we will use will be similar to that seen in

equation (*). Because we are using labelled atomic commands, we would

- 18 -

like to include these labels in the program's resumption. Thus we will

use a modification of(*):

R = SJ.-->J..PlC\~ ~ + c1 m s..,0~1 (7-*)

Each element in the set of possible results of statement execution

now includes a label. This label identifies the atomic action just per-

formed. The notion of a state here is the same as that of the SPL: S =

[I-->V]. In this shared memory language, all processes use a global

state. By lifting elements of R to RL on the right-hand-side of the

domain equation, it is possible to represent more information. A member

of the powerdomain which is a triple can have an undefined resumption

while still containing label and state information. Without lifting, an

undefined resumption would cause the label and state to be ignored.

The seven statements in the PPL, being skip, assignment, alterna-

tion, iteration, compound, parallelism and critical region imply that

our semantics will contain ~even mappings, one for each type of state-

ment. In the definitions of these functions, we will use the mappings

seen earlier, namely [:E-->[S-->V] and 21:E-->[S-->T] where E is the

domain of expressions, V the domain of values and T the domain of truth

values. Eis an evaluation mapping providing the value associated with an

expression. ~evaluates boolean expressions. Each of the domains con-

tains an undefined element so that undefined express.ions will have

denotations and non-boolean expressions will still have meaning in T.

These two mappings are necessary for the formalism and are rather self

explanitory though they are explained well in [Gor8_1] .

The skip statement does nothing and does not change the machine

state. Therefore:

- 19 -

111 [L: skip] = Af. {L ® s}

The meaning of skip is a function which takes a machine state and

produces the same state. It doesn't change the state though it does in-

troduce another interruption point. The label 1 identifies the state-

ment.

The assignment L:v := e evaluates e in the current state and places

the value in the location associated with v.

'lll[L:v:=e] = AJ.s. {L 4) s [£(e) (.s)/v]}

Notice that this assignment is indivisible; there are no possible inter-

ruptions between the initial state and the state in which vis updated.

Also note that the expression e must be evaluated in the current state

using £ before assignment is made. Assignment is considered atomic and

thus has a label which is included in the meanging.

In alternation, a choice is made between two statements based on a

boolean condition.

fn[if L:b then Cl else C2 fi] =A.L5.if~(b)(s)

then {L €> s ® up ('.tj Cl])}

else {L ® s © up (ffl[C2]) }

No interruption is allowed d~ring evaluation of the boolean condition.

The first interruption point of the statement is prior to execution of

the chosen statement. And though an interruption may occur there, the

choice between Cl and C2 has been made based on the condition. The

evaluation of b does not change the machine state. Because evalation of

the condition is atomic, its label is used to mark the result. The

resumption in each triple here must be lifted from R to RJ. using the

function up. This satisfies domain equation(**).

- 20 -

The syntax presented for PPL does not allow an if statement without

an else clause, though this may be simulated by having skip in place of

C2. The semantics of the if b then C else skip fi st.atement would

differ from that of if b then C fi by having an extra atomic action

(skip) and interruption point when the condition is false.

Iteration is execution of a statement as long as a condition is

true.

'711[while L:b do Cod] = ,_s. if ~(b) (s) --- -- --
then {L (8) s ~ up (111(C; while b do C od]) } ---
else {L ~ s}

As in the alternate statement, no interruption is allowed when

evaluating the boolean expression. Note that though the condition is

evaluated to false, there is still a possible interruption point before

execution of the statement is complete and control passes to the next

statement or the program terminates. The function up is again used to

lift the resumption i~to RJ..

The mappings for compound statements or parallel statements are

easily defined due to the combinators which were given in section II:

111[Cl; C2] = "11[Cl]*11{ C2]

"'1[cobegin Cl//C2 coend] = 'ln[Cl] I lf11CC2]

Both mappings rely on those combinators for their descr~ptions.

The critical region construct makes a group of statements atomic by

eliminating all interruption points from the enclosed statements. This

transforms the meaning of a given statement to its meaning as used in a

sequential language.

- 21 -

1n[L:< c >] =A_c;.{L ct,S[c](s)}

Since this is an atomic action, its result is a label-state pair, the

state given by the sequential meaning of the enclosed statements using

the semantics of SPL.

The use of this semantics will be shown in the following examples:

PPL Example One

Program! :: cobegin Ll: A:= 6

II L2: A:= O; L3: A:= A+ 6

coend

'1J1[Programl] ="1>[Ll :A:=6]: :'h1[L2:A:=O;L3:A:=A+6]

Using the rule for compound statements:

= "1J[Ll :A:=6]: :-M[L2 :A:=O]*41(L3 :A:=A+6]

Expanding the last two statements:

=4't(Ll:A;=6] I:

~.{(L2,s[2.(0)(s)/A])})*(Af.{(L3,s[i(A+6)(s)/A])})

Evaluating* be£ore II as defined by the precedence of combinators:

= 4"[Ll :A:=6]: I

(~s.{(L2,s[£(0)(s)/~],(A_f~{(L3,s[£(A+6)(s)/A])}))})

The result using* was obtained by seeing that'll[L2:A:=O] applied to a

state yielded a label-state pair rather than a label~state-resumption

triple. Continuing:

= Af! . { (L 1 , s [€(6) (s) /A]) } I :

().£. { (L2, s (£(0) (s) / A] , (}.J:. { (13, s [£(A+6) (s) /A])}))})

Now, using the I: combinator:

- 22 -

= A~ . { (L 1 , s [£(6) (s) /A] ,

<J..f. { (L2,s [f!(O) (s)/A],

<.lf.{(L3,s[£(A+6)(s)/A])}))}))}

U { Qf. { (L2, s [£(O)(s)/A],

CUJ.{(Ll,s[£(6)(s)/A])})II

~.{(L3,s[f..(A+.6)(s)/A])])))J

And finally II once more yields the fiµal result:

=~J.s. { (Ll,s[f(6) (s)/A],

<,_e.{L2,s[~(O)(s)/A],

~.{(L3,s[£(A+6)(s)/A])}))}))}

U {(~.{(12,s[i(O)(s)/A],

~.{(Ll,s[~(6)(s)/A],Af·{(L3,s[i(A+6)(s)/A])})}

U {(L3,s[f(A+6)(s)/A],A_e.{(Ll,s[£(6)(s)/A])})}))}

A tree structure exhibiting the program's possible behaviors can be

found in the Appendix.

PPL Example Two

Program2 :: cobegin ·Ll: x := O;

coend

L2: < if Bl:y=O then L3: x := 1

else L4: skip

fi>

II LS: y :=O;

if B2:x=O then 16: y := 1

else L7: skip

fi

- 23 -

For this PPL program, I will derive the set of possible first branches.

The remainder of the derivation will be left to the reader.

"1J[Program2] = IJJ1[Ll: x:=O;

12: < if Bl:y=O then L3:

else L4:

fi >]

: : '11f[1S: y := O;

if B2:x=O then 16: y := 1

else L7: skip

fi 1

=111(11: X :=O]

*tl(12:< if Bl:y=O then 13: x := 1

else L4: skip

fi >

; :""£ LS : y : = 0]

*tfif B2:x=O then 16: y := 1

else 17: skip

fi]

= (t\t.{(Ll,s[f(O)(s)/x])J)

i~[12]

: I '4.a.s. {(LS, s [f(O) (s)/yl) J)

X ·- 1 .-
skip

* ~. if f3(x=O) (s)then { (B2,s, ~. { (16 ,s [£(1) (s)/y]) J)) J

else {(B2,s,(Af.{(L7,s)}))})

- 24 -

·- Oaf. {(LI, s [£(0) (s)/x] ,9t[L2])})

I I <Af • { (LS , s [£(0) (s) / y] , ('I([if . . .])) })

=A£. { (LI ,s [£(0) (s)/x] ,t\[L2) I:

A,i_s.{(LS,s[£(0)(s)/y],flt[if ...])}}

U {(LS,s[!(O)(s)/y],(1"[if ...]f f

U.r:3.{(Ll,s[f(O)(s)/x],'Jlr[L2])})))}

This gives the first two branches of the execution tree of

Program2. The possible actions from the initial state are Ll and LS

with interruption states s[t(O)(s)/x] and s[f(O)(s)/y] respectively.

The subtrees are then given by the resumption in each initial triple.

The complete derivation, expressed as a tree, is given in the Appendix.

- 25 -

IV. Communicating Sequential Processes and Semantics

It is certainly true that processes using a common data item com-

municate. One process may make changes to a shared memory location

which another process detects. The changes made to a shared object·

reflect the state of the process making the changes. Unfortunately,

this description of process state may not be valid by the time another

process inspects the shared object and receives the communication. The

communication is.asynchronous as the message is not sent and received

simultaneously.

A semaphore [Dij68] can facilitate synchronous communication when a

process, waiting for a resource after performing P, is granted the

resource by a fellow process executing the corresponding V. The

semaphore could transmit data as well as perform synchronization and

thus provide synchronous communication.

Synchronous communication can also be accomplished by message

passing in which the sending process specifies the destination process

for output and the receiver specifies the source process of input. This

provides synchronization as well as communication because the data

transfer only occurs when a matched pair of input and output statements

are reached at the same time. Obviously, a message may not be received

until it has been sent, but also the sending process .may not proceed un-

til its message has been received.

Hoare's Communicating Sequential Processes (CSP) [Hoa78] provides

our framework for the study of synchronous communication.

- 26 -

Communicating Sequential Processes

A Communicating Sequential Processes program consists of a group of

parallel processes. The execution of each process begins when the ex-

ecution of the program starts; execution of the program is completed

when every process has terminated. Each of the processes has its own

store assuming that no nesting of processes is allowed.

Because no memory is shared, interprocess communication occurs only

through input and output commands of the form:

[{IN} ProcessA :: ... ProcessBlmessage

II

{IN} ProcessB ·• ... ProcessA?target ...]

in which each such command staticly specifies the process with which it

intends to communicate. The primitive used is similar to a

send(ProcessB,message) and ? to receive(ProcessA,target). The com-

munication is carried out when· a process's input statement matches the

output statement of another process. A pair of input and output state-

ments match when the source process of the input statement contains an

output command naming the first process as destination, and the message

type matches the target type. An I/0 command is said to fail when the

named process has terminated. Obviously, a message may not be received

until it is sent. Also, a sending process must wait for its output com-

mand to be matched before proceeding. Therefore mess·age passing occurs

synchronously.

When a process desires to perform communication, some information

must be available about the state of its potential communication partner

[Kie79]. When a process is running but is performing non-I/0 state-

- 27 -

ments, it is said to be active. A process may also be ready when

waiting for a matching I/0 command. Whether a given I/0 statement is

performed or not depends on its partner's readiness and also with whom

the partner intends to communicate and with what type of message. A

process may also be in a terminated state which would cause failure of

an I/0 statement naming the terminated process as partner. We will

return to the topic of process I/0 states when discussing the semantics

of the I/0 statements.

Other language constructs in CSP are repetition and alternation

based on Dijkstra's guarded command [Dij75]. An alternate command is

formed by a list of guarded commands. The guards are evaluated and a

selection is made from those guards which are ready. A guard may con-

tain boolean expressions and variable declarations. I/0 commands may

also appear in guards and are ready when a match occurs. Allowing out-

put commands in guards is a reasonable extension of Hoare's original CSP

[Buc83]. Message exchange in an I/0 guard occurs only when that guard

is ready and selected. A guard is ready when the boolean condition is

true and the I/0 command, if present, is ready. A guard fails when the

condition is false or the co~unication partner has terminated. Other-

wise the guard is neither ready nor failed, but will not be selected if

another guard is ready. In this case, a guard will not ,be chosen unless

it becomes ready before other such guards. Repetition is also performed

on a group of guarded commands in which a choice is made of ready guards

repeatedly until all guards fail at which time the looping terminates.

CSP also includes skip and assignment statements and parallel ex-

ecution similar to cobegin.

- 28 -

A simple CSP program to compute a given term in the fibonacci se-

quence would consist of two concurrent process: a User process and

process Fib which calculates the term. Process Fib is as folLows :

Fib:: {declarations}
current, lastone,
onebeforethat, term,
desiredterm: integer;
{initializations}
Il:current := O;
I2:lastone := 1;
I3:onebeforethat := -1;
I4:term := O;

{main loop}
*[Cl:User?desiredterm -->

{calculate term}
*[B2:term <= desiredterm -->

]

Al:current := lastone + onebeforethat;
A2:onebeforethat := lastone;
A3:lastone := current;
A4:term :=term+ 1

#Bl:term > desiredterm -->

]

{report result and reinitialize}
C2:User!current;
AS:current := O;
A6:lastone := 1;
A7:onebeforethat .- -1;
A8:term := 0

El:end

The repetition command forms the bulk of the process. On the first ex-

ecution of the main loop,_ the second guard fails and the command will

wait for input from User. Once received, the inner loop is performed,

calculating the appropriate term. When this terminates, the choice

again is at the outside loop. The second guard would be chosen here and

the result returned to User. Fib would then wait for more input, ter-

minating only when User had also terminated.

Another interesting example using this language is a semaphore in

which synchronization is performed via a-shared process rather than

- 29 -

shared data. The semaphore, accessed by an array User of processes is

done

Sem ·• val : integer;
{init} Il:val := NumResources;
*[(i:1 .. UserLimit)Cl:User{i)?V()--> Al:val:=val+l
ll(i: l.. UserLimit)Bl :val>O ;C2:User(i)?P()--> A2:val :=val-1
]
El :end

Note that P() and V() are value-less structured messages and the process

Sem stops when all user processes have terminated. A process requesting

access by performing Sem!P() is automatically suspended because its ex-

ecution will not proceed until the output command is matched.

Semantics of CSP ---
We will define a mapping;f:CSP-->R which provides the resumption of

a CSP construct. CSP here is a domain,of all CSP programs. R will be

the domain of resumptions seen in equation (~k) of section III:

(**)

The notion of a state Swill be different here though:

S = M X G X TEX TI where

M = [I-->V] X ... X [I-->V],

G = [P-->N],

TE = [P-->N],

TI= [PX N -->{true,false} X N].

Pis the domain of process names, I the domain of identifiers, V the

domain of values and T the domain of truth values. I, V and Tare as

seen previously. The state consists of four parts. Mis the domain of

memories and is the only component of S which ·may be altered directly by

- 30 ~

a process. M can be viewed as a vector whose projections are memories

[I-->V] for individuar processes. We assume a finite number of

processes. G, TE and TI facilitate maintenance of global information.

G provides an integer for each process. This integer represents

the I/0 commands for which a process is waiting. This may be a list of

commands, one or no commands. To obtain an integer from an I/0 command,

we will use an encoding function K: CSP+ {NIL}-->N. The necessary in-

formation when encoding is the process name, type of communication

desired and the parameter type. The encoding of NIL represents an empty

list. Mapping W: PX N-->[P-->N]-->T is used to inspect part G of the

state. Given a process name, an I/0 command coded as an integer and a

global state sG, W indicates whether or not the given process is waiting

for the given I/0 coounand in the given state. To add or delete commands

from the list, we will use A: N X N-->N and M: PX N-->N. A takes an

encoded list and the code for a new command to be added to the list and

produces the new encoding. M takes a process name and an encoded list

and deletes from the list all I/0 commands which refer to the given

process, providing a new encoded list.

TE contains information about which processes have terminated.

This information is necessary when evaluating I/0 commands for failure.

Mapping D: P-->[P-->T]-->T inspects the TE portion of a state and in-

dicates whether or not.a given process has terminated. We assume that

each computation begins in a state in which each process's entry in sTE

is false.

TI contains information about the number of times a particular I/0

command in a process has been t~ied. The use of this domain will be

- 31 -

seen in the semantics of I/0 commands. Function SUCC: N-->N will be

used to increment an entry in this portion of the state.

For simplicity, we will assume that process names are of the form

P# where # is an integer. This will facilitate ease in notation but

doesn't restrict the semantics. In the semantic mappings which follow,

it will often be necessary to refer to only a portion of a states. sN

will be the own memory of process Pn, sG will be the G component of s,

sTE the TE portion and sTI the TI part. Other notations used: s[x/Ny]

will place the value x in location y of the memory of process Pn;

s[x/Gn] will place x in the location for process Pn in sG; s[x/TEn]

places x in Pn's location in sTE; s[x/Tin(y)] places x in the yth posi-

tion of Pn's location in TI.

As in PPL, we will be using labels for atomic actions. This is not

usually a part of CSP though the language is easily adapted. The atomic

actions are boolean evaluation, assignment, skip, input, output and ter-

mination. Termination is indicated by an end statement. This construct

also is not normally a part of CSP.

In the following definitions we will assume the given statements

are found in process Pn and ~ill therefore often refer to the memory sN.

The mappings for skip and assignment are the same as those found in

the semantics of PPL:

7([L: skip] =A.1.s.{(l,s)}

~[L: v:=e] = }.J..s. { (L,s [f(e)(sN)/Nv])}

Notice that we are using the evaluation mapping E as seen in the

previous section. The meaning of~ is the same here. We will also be

using an identical lJ mapping for evaluating boolean expressions.

- 32 -

We will assume that the end statement is the last construct in each

process: ·

~[L: end] =~s.{(L,s[~(true)(sN)/TEn][M(Pn,sG(Pl))/Gl] ...

[M(Pn,sG(Pz))/Gz])J

The termination of a process must be reflected in the global state sTE

so that I/0 commands referencing the terminated process may fail. A

process may already be waiting to communicate with the terminated

process and therefore each such command ~ust be removed from the other

process's waiting lists. This is done using M.

there are Z process in the program.

For an input command found in process Pn:

,t[L: Pj?v] =ALs.if D(Pj)(sTE)

then {(L,s[l3(true)(sN)/TEn])}

else if W(Pj,K(Pn!v))(sG) and

not W(Pn,K(Pj?v))(sG)

We assume here that

then {(L,s[f(e)(sJ)/Nv][K(Pj?v)/Gn]

[f(O)(sN)/Tin(K(Pj?v))])}

else if W(Pj,K(Pn!v))(sG)

then {(L,s[K(NIL)/Gn][K(NIL)/Gj])J

else {(L,s[K(Pj?v)/Gn]

[SUCC(sTI(Pn,K(Pj?v)))/Tin(K(Pj?v))],

up~[L: Pj?v])) J

There are four possible results here. The first is given when the com-

munication partner has terminated. If the named process has not ter-

minated, then the other results may be reached. The second result oc-

curs when the potential partner is already waiting for the current I/0

- 33 -

command but the current command has not yet been tried; the third when

the partner is ready with respect to the current command and this com-

mand has been tried once already. Finally, the fourth choice occurs

when the statement is neither ready nor fails.

When a process reaches an I/0 statement which names a terminated

process, the current process also terminates as it can make no further

progress. In this case, sTE is inspected using the mapping D which

yields true when the named process has terminated.

Wis used to report whether the potential partner is waiting to

communicate with this I/0 command. In the second result, the communica-

tion is performed, altering the own memory of the receiving process.

Pn's entry in sG is altered to indicate its readiness to communicate

with Pj. sTI is also used here, reinitialized to zero once the com-

munication has been performed. sTI is used to count the number of times

an I/0 command is tried. This will provide information about potential

deadlocks. The limit of incrementing an element of sTI using SUCC would

indicate that a deadlock has occurred.

When the partner process is ready for communication with this com-

mand and this command has been tried at least once before, the transfer

has already taken place, performed when the other process became ready.

In states where this is the case, the waiting lists for Pn and Pj in sG

are reinitialized to empty using K(NIL).

In the final case, when the guard is not ready and does not fail,

it must be tried again later. -The corresponding entry in sTI is in-

cremented to indicate the current try, and Pn's waiting list is set to

indicate its readiness to communicate.

- 34 -

Output is similar to input:

~[L: Pjle] =AJ.s.if D(Pj)(sTE)

then {(L,s[:S(true)(sN)/TEn])}

else if W(Pj,K(Pn?e))(sG) and

not W(Pn,K(Pj!e))(sG)

then {(L,s[€(e)(sN)/Jv](K(Pj!e)/Gn]

[2.(0)(sN)/Tin(K(Pj!e))])}

else if W(Pj,K(Pn?e))(sG)

then {(L,s[K(NIL)/Gn][K(NIL)/Gj])J

else {(L,s[K(Pjle)/Gn]

[SUCC(sTI(Pn,K(Pj!e)))/Tin(K(Pj!e))],

up~[L: P j I e])) }

The remaining two maps, for alternate and repetition commands will

use this notation:

Let Ga= [Ba:ba;La:Pia.ka-->Ca] where a is an integer and let:

Gl .. GZ = [Gl#G2# .•. #GZ].

In the I/0 command listed in Ga, . could be or?, while ' is the com-

pliment. Therefore:

~[Gl .. GZ] =Ais.if ((B(not bl)(sN) or D(Pil)(sTE)) and ... and

(~(not bZ)(sN) or D(PiZ)(sTE)))

then {($,sP3(true)(sN)/TEn])}

else U for j:1 .. Z of

if~(bj)(sN) and W(Pij,K(Pn.'kj))(sG)

then { (Bj , s [K (NIL)/ Gij] [K (Pij . kj) / Gn] ,

up ([Lj : Pij . kj ; Cj])) }

- 35 -

else if .S(bj) (sN) and not D(Pij) (sTE)

then {(Bj,s[A(sG(Pn),K(Pij.kj))/Gn]

[SUCC(sTI(Pn,K(Pij.kj)))

/T!n(K(Pij.kj))])J

else <f;

First of all, if the alternate command fails because all of its guards

fail, then the process terminates. A reserved label$ is used to mark

the evaluation of the failed guards. Otherwise the command has a set of

possible results, . one each for each guarded command comprising the al-

ternate command. For each guard which is ready, i.e. the condition is

true and the I/0 command ready, the I/0 command and subsequent command

Ca may be performed. For each guard which is not ready but does not

fail, there is a choice of trying the I/0 command. This result must

also include all the other possible choices which could occur here since

the I/0 coinmand may fail at a later time if the named partner ter-

minates. These other choices are given by including the meaning of the

entire alternate command as the resumption in the triple. sTI must also

be altered to indicate the new try of ~he I/0 command. Finally, for

those guards which fail, there is no corresponding choice.

This semantics for alternate commands will be used in the mapping

for the repetition command:

~[*[Gl .. GZ]] =Jis.if (~not bl)(sN) or D(Pil)(sTE)) and ... and

((B(not bZ)(sN) or D(PiZ)(sTE)))

then {($,s)}

else 1f[[Gl. .GZ] ;-A-[Gl. .GZ] J (s)

- 36 -

In the repetition conunand, if all guards fail then the looping stops

rather than the process terminating as in the alternate. Otherwise the

statement is executed just as an alternate command followed by pther

possible iterations of the repetition statement. This definition is

similar to that for while found in the semantics of PPL. The reserved

label $ is used to mark the evaluation of the failed guards, as in the

alternate.

Compound statements and parallel processes are defined as in the

previous section using the combinators of section II:

~[Cl ;C2] =~[Cl]~[C2]

~[Cl//C2] =~[Cl] 1 l'ff C2]

The following example shows sample derivations using the semantics:

CSP Example

In this example, we will ignore changes made to sTI.

CSPexample :: [Pl:: Ll:P2!3; El:end

//P2:: L2:Pl?w; E2:end]

1([CSPexample] =~[Pl] I l~{P2]

= ~ [Ll] * ~[El] 11 ~ [L2] *~ [E2]

= ~- {(Ll,s[K(P2!3)/Gl},~Ll]

* CAr. {(El, s [&:true)(s 1)/TEll[M(Pl, sG(P2))/G2])}))})

11 ~.{(L2,s[K(Pl?w)/G2] ~{L2]

* (Ai..5.{(E2,s~(true)(s2)/TE2][M(P2,sG(Pl))/Gl])}))})

=.,\J.s. {(Ll,s[K(P2!3)/Gl] ~[L2]~[E2] I l~[Ll]*i([El])}

U {(L2,s[K(Pl?w)/G2] ,~[Ll]~[El] I ~[L2]~{E2])}

=

- 37 -

=Als.{(Ll,s[K(P2!3)/Gl],

~s. {(Ll,s[K(P2!3)/Gl] ,~[L2]~[E2] l l~[Ll]*~[El])}

U {(L2,s[E(3)(sl)/2w][K(Pl?w)/G2],

A.Ls. { (E2, s ~(true)(s2) /TE2],

"f. {(Ll, s [K(NIL) /Gl] [K(NIL) /G2] ,

A~. { (El ,s [B(true) (sl)/TEl])})})}

U {(Ll,s[K(NIL)/Gl][K(NIL)/G2],

A,.S. { (E2, s [,g(true) (s2) /TE2] ,

Af . { (E 1 , s ~true) (s 2) /TE 1]) }) }

U {(El,s[l!Ctrue)(sl)/TEl],

Ae. { (E2 ,s [S(true) (s2)/TE2])})})})}

U {(L2,s[K(Pl?w)/G2],

-\J.s. {(L2,s[K(Pl?w)/G2] ,'11f,[Ll]~[El] I :"'[L2]-l~(E2])}

U {(Ll,s[£(3)(sl)/2w][K(Pl?w)/G2],

= {etc ... }

¥. { (El ,s [S(true) (sl)/TEl],

A£· {(L2,s[K(NIL)/G2] [K(NIL)/Gl],

Al,. { (E2, s [a(true) (s2) /TE2])})})}

U {(L2,s[K(NIL)/G2][K(NIL)/Gl],

A.i_s.{(El,s~(true)(sl)/TEl],

~.{(E2,s[8(true)(s2)/TE2])})}

U { (E2, s [?S(true)(s2) /TE2],

.A.z:.{(El,st8(true)(sl)/TE1])})})})}

The notion of trying an I/0 command is shown here. It would be possible

for an implementation to repeatedly try an I/0 command unsuccessfully,

making no practical progress. The tree illustrating the execution of

- 38 -

this program is located in the Appendix.

- 39 -

V. Conclusion

In the preceeding pages, I have presented a general technique for

evaluating the meaning of a concurrent program. With the two sets of

definitions provided - that for the Parallel Programming Language and

that for Communicating Sequential Processes one could study the

meanings of multiprogramming languages or of distributed languages.

Given the semantic functions for the program constructs and the

resumption combinators discussed, deriving the meaning of a program is

very algorithmic. It is readily discovered though, upon attempting to

derive the meaning of even a relatively small program, that though

straightforward, the method is rather tedious. Since this method is

deterministic, it seems natural to consider possibilities for implemen-

tation.

The first stage of such an implementation would be a parser. This

could be made part of a compiler and could therefore use the parsing

generated there. In fact, it would be easier to consider generating

meanings for only syntacticly correct programs.

The next part of the · meaning generator would be to fill some

suitable data structure representing the structure of the program. This

would be similar to evaluating an expression, making use of the semantic

mappings and resumption combinators. This data structure could be some

kind of tree in which each node is an interruption state, having

possible actions as subtrees. From this structure, the final semantic

function derived for the program could be shown. A tree structure

similar to those found in the Appendix could also be given.

- 40 -

Though I haven't looked into it much, I think it would be possible

to determine when cetain concurrent programs were in some senses equiva-

lent. One could compare the set of final configurations for two

programs and also check various inter-execution states. Or isolate cer-

tain pertinent variables and compare the effects of programs on these

variables.

A program generating an execution description tree structure could

certainly be useful as a debugging tool for semantic errors. Since er-

rors produced by fairly complicated concurrent programs are not always

easily reproduced, it would be helpful to be able to see the chain of

atomic actions made in reaching a certain state. For this purpose, in-

cluding such a semantic generator in a compiler seems logical.

Complexity issues must certainly be considered before embarking on

such an implementation.

- 41 -

AP~ENDIX

The following figures represent the possible executions of a given

concurrent program. An interruption point is labelled by its inter-

mediate state, a leaf by its corresponding final state. Branches,

representing actions, are labeled by the corresponding atomic action.

Values of pertinent variables are listed below each final state.

s[f(O)(s)/A] .
[£(A+6)(s)/A]

Ll

s[E(O)(s)/A]
[!(A+6)(s)/ A]
[£(6)(s)/A]

(A=6)

s [l!(O)(s) / A]
[f(6)(s)/ A]

13

s[£(O)(s)/A]
[£(6)(s)/A]
(1:(A+6)(s)/A]

(A=12)

PPL EXAMPLE ONE

- 42 -

s [£(6) (s)/A]

12

s [£(6) (s)/A]
[!(O)(s)/A]

13

s c ec 6.) cs) 1 A 1
[f(O)(s) / A]
[~(A+6)(s)/A]
. (A=6)

L6 L7 L2 L6 L2 . L6 17 L2 17 12

(x,y)= (0,1) (1,0) (0,1) (1,1) (0,1) (1,1) (1,0) (1,0) (1,0) (1,0)

PPL EXAMPLE TWO

- 43 -

The dashed arrows used here indicate that the subtrees for paths

Ll;Ll and L2;L2 are the same as for Ll and 12 respectively. In each

final state of this example, (w=3) in s2.

e

Ll

i

El

0

where

h

12

El E2 El

p q r

a= s[K(P1?w)/G2] = a' b = s[K(P2!3)/Gl] = b'
c = s[K(Pl?w)/G2][1(3)(sl)/2w][K(P2!3)/Gl]

E2

s t

d = s[K(P2!3)/Gl][t(3)(sl)/2w][K(Pl?w)/G2] (note: c=d)
e = c[~(true)(s2)/TE2] h = dr.8(true)(sl)/TE1]
f = c[K(NIL)/Gl][K(NIL)/G2] g = d[K(NIL)/G2][K(NIL)/Gl]
i = e[K(NIL)/Gl][K(NIL)/G2] n = h[K(NIL)/G2][K(NIL)/Gl]
o = s[K(Pl?w)/G2][£(3)(sl)/2w][K(P2!3)/Gl]

n

E2

[1J(true)(s2)/TE2][K(NIL)/Gl][K(NIL)/G2][l3(true)(sl)/TE1]
p = o = q = r = s = t

CSP EXAMPLE

- 44 -

BIBLIOGRAPHY

[And83] Andrews, G.R. and F.B. Schneider. Concepts and Notations for.
Concurrent Programming. ACM Computing Surveys 15:1, pp. 3-43, 1983.

[Bro85] Brookes, S.D. On The Axiomatic Treatment Of Concurrency. To
appear: Proceedings 1984 NSF-SERC Seminar On Concurrency Springer LNCS,
1985.

[Buc83] Buckley, G.N. and A. Silberschatz. An Effective Implementa-
tion for the Generalized Input-Output Construct of CSP. ACM Transac-
tions£!! Programming Languages and Systems 5:2, pp. 223-235, 1983.

[DeB82] De
Denotational
70-120, 1982.

Bakker, J.W. and J.I.
Semantics of Concurrency.

Zucker. Processes and the
Information and Control 54, pp.

[Dij68] Dijkstra, E.W. Cooperating Sequential Processes. In F. Genuys
(Ed.) Programming Languages Academic Press, pp. 43-112, 1968.

[Dij75] Dijkstra, E.W.
Derivation of Programs.

Guarded Commands, Nondeterminacy
CACM 18:8, pp. 453-457, 1975.

and Formal

[Gor79] Gordon, M.J .. C. The Denotational Description of Programming
Languages. Springer-Verlag, 1979.

[Hoa72] Hoare, .C.A.R. Towards a Theory of Parallel Programming. In
C.A.R. Hoare and R.H. Perrott (Eds.) Operating Systems Techniques, pp.
61-71, Academic Press, 1972.

[Hoa78] Hoare, C.A.R. Communicating Sequential Processes. CACM 21:8,
pp. 666-677, 1978.

[Kie79] Kieburtz, R.B. and A. Silberschatz. Comments on "Com-
municating Sequential Processes". ACM Transactions on Programming
Languages and Systems 1:2, pp. 218-225, 1979.

[Mil73] Milner, R. Processes: A Mathematical Model of Computing
Agents. In Rose and Shepherdson (Eds.), Proceedngs, Logic Colloquim
1973, pp. 157-173. North-Holland, 1973.

[Owi80] Owicki, S.S. Axiomatic Proof Techniques
Programs. Garland Publishing, 1980.

[Plo76] Plotkin, G.D. A Powerdomain Construction.
Computing 5:3, pp. 452-487, 1976.

for Parallel

SIAM Journal of

[Sil79] Silberschatz, A.
Distributed Systems. IEEE
pp. 542-546, 1979.

Communication and Synchronization in
Transactions on Software Engineering, 5:6,

- 45 -

[Sou84] Soundararajan, N. Denotational Semantics of CSP. Theoreti~al
Computer Science 33, pp. 279-304, 1984.

[Sto81] Stoy, J.E. Denotational Semantics: The Scott-Strachey ~-
proach to Programming Language Theory MIT Press, 1981.

- 46 -

