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Abstract  

Ice basal reflectivity is much needed for the determination of ice basal conditions and for the 

accurate modeling of ice sheets to estimate future global mean sea level rise.  Reflectivity values can be 

determined from the received radio echo sounding data if the power loss caused by different components 

along the two-way transmission of electromagnetic waves is accurately compensated.  

For the large volume of received radio echo sounding data collected over Byrd glacier in 2011-

2012 with a multichannel radar system, the spherical spreading loss caused due to two-way propagation, 

power reduction due to roughness and relative englacial attenuation is compensated to estimate the relative 

reflectivity values of the Byrd glacier ice base. 

In order to estimate the scattered incoherent power component due to roughness, the distributions 

of echo amplitudes returned from the air-firn interface and from the ice – bed interface are modeled to 

estimate RMS height variations. The englacial attenuation rate for two-way propagation along the ice depth 

is modeled using the collected radar data. The estimated air-firn interface roughness parameters are 

relatively cross verified using Neal’s method and with correlations to the Landsat image mosaic of 

Antarctica. Estimated relative basal reflectivity values are validated using cross-over analysis and 

abruptness index measurements. From the Byrd relative reflectivity map, the corresponding echograms at 

the locations of potential subglacial water systems are checked for observable lake features.  

The results are checked for correlations with previously predicted lake locations and subglacial 

flow paths. While the results do not exactly match with the previously identified locations with elevation 

changes, high relative reflectivity values are observed close to those locations, aligning exactly or close to 

previously predicted flow paths providing a new window into the subglacial hydrological network. Relative 

reflectivity values are clustered to indicate the different potential basal conditions beneath the Byrd glacier. 
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Chapter 1 Introduction 

1.1 Background and motivations 

The climate-related changes, such as rising temperatures, rapidly retreating glaciers, thawing 

permafrost, rising sea level, increase in downpours, extended growing seasons, lengthening ice-free seasons 

in oceans, rivers and lakes, alterations in river flows and earlier snowmelt, are being observed globally [1]. 

Out of all these indicators, global mean sea level value can be used as an indicator of climate change, 

because the density of sea water depends on the temperature, and the global sea level represents many 

aspects of hydrological cycles. The global sea level parameter is also used as a key observational constraint 

on climate models [2].  

The current (Feb 2017) rate of change of global mean sea level is ↑3.4 (+ 0.4) mm/yr [3] and 

according to fifth assessment report of the IPCC (Intergovernmental Panel on Climate Change) the 

estimated sea level rise by the year 2100 will likely be about 52-98 cm for RCP8.5 (medium confidence) 

[4]. A 1- meter rise of sea level could affect the lives of more than 100 million people [2]. The major sources 

of this sea level rise are – expansion of sea water as it warms and added water from melting land ice [3].  

The two major ice sheets are Greenland and Antarctica. The ice sheet of Greenland extends almost 

1.7 million square kilometers and could potentially contribute to a sea level rise of 7.3 m and the ice sheet 

of Antarctica extends almost 14 million square kilometers and could potentially contribute to a sea level 

rise of 57 m [5], [6].  In order to better understand the sea level pattern, the glaciers of Greenland and 

Antarctica are being studied to model the ice sheets because of their potential effects on sea-level change 

[7], [5]. The mass loss of an ice sheet directly contributes to sea level rise and the changes in the mass 

balance of Greenland and Antarctica are ↓ 281 (+ 29) Gt/yr, and ↓ 118 (+ 79) Gt/yr respectively [3].  

 The East Antarctic ice sheet (EAIS) alone extends about 10.2 million square kilometers [5] and 

could potentially contribute to a sea level rise of 52 m [6]. The subglacial lakes beneath the East Antarctica 
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ice sheet have been first reported in the early 1960s and 1970s [8]. An accelerated ice velocity is observed 

on Byrd glacier, East Antarctica, between December 2005 and February 2007 [9].  

The catchment basin of Byrd Glacier (80.5° S, 160° E) is 1,070,400 𝑘𝑚2 and is the largest 

catchment basin in Antarctica and it funnels 20.6 + 1.6 Gt 𝑦𝑟−1[10] of ice to the Ross Ice Shelf through a 

~ 75km long, ~20km wide fjord [9]. There are over 300 subglacial lakes beneath Antarctica [11], and these 

subglacial lakes form an important component of the basal hydrological system which affects the dynamics 

of the Antarctic ice sheet [12]. Ice sheet surface elevation changes are used to infer the movement of 

subglacial water between subglacial lakes and along ice steams [13]. Seventeen sites of rapid ice-elevation 

changes have been identified within the Byrd Glacier catchment, potentially making the Byrd Glacier bed 

the most hydrologically active location in East Antarctica [14]. The time-lapse of Byrd Glacier’s ice sheet 

flow can be observed here (web link: https://earthengine.google.com/timelapse/#v=-

80.86076,154.56803,7.425,latLng&t=1.80) using Google’s Earth Engine. The location of the Byrd glacier 

is shown in Figure 1.1.  

The stability of grounding zones of an ice sheet depends on bed topography [15] [16] [17] and basal 

conditions [18]. Ice basal conditions are also much needed for the reliable and accurate modeling of ice 

sheets for the better understanding of ice flow dynamics to improve the prediction of future sea level rise. 

In the fifth assessment report of the IPCC, it is stated that the collapse of marine-based sectors of the 

Antarctic ice sheet, if initiated, could cause the stated likely range of sea level rise for the 21st century to 

rise substantially. It is also stated that significant uncertainties remain, particularly related to the magnitude 

and rate of the ice-sheet contribution for the 21st century and beyond [4].  

The basal materials from ice core drilling provides us direct evidence of ice basal conditions, but 

drilling a bore hole into ice is expensive, spatially limited and could also potentially contaminate the 

ecosystems beneath the ice sheets. Other methods like seismic sounding have deeper penetration into ice 

bed materials than radio echo sounding but require more effort to setup, are more expensive and have 

smaller spatial coverage compared to radar. Radar is much more feasible than the methods involving 

https://earthengine.google.com/timelapse/#v=-80.86076,154.56803,7.425,latLng&t=1.80
https://earthengine.google.com/timelapse/#v=-80.86076,154.56803,7.425,latLng&t=1.80
https://earthengine.google.com/timelapse/#v=-80.86076,154.56803,7.425,latLng&t=1.80
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seismic experiments or drilling of boreholes to study complete glaciers due to its efficient large spatial 

coverage and cost effectiveness [19] [20]. InSAR can also be used to map the velocity of the glaciers [21].  

All the information presented by these different methods can be used complementary to obtain better 

results.  

 

Figure 1.1 Map of Antarctica (on left side) and Byrd Glacier with radar flight paths (on right side) 

 

The purpose of this work is to estimate the relative reflectivity values of the Byrd glacier and to 

better understand the subglacial hydrological system beneath Byrd glacier. The estimated relative 

reflectivity values can be used to better understand the ice flow dynamics and to better model the ice sheets. 

In this work, the relative reflectivity values are estimated, from data collected over Byrd glacier in 2011-

2012 with multichannel radar, by compensating the power loss in the received echo returns caused by 

roughness, spherical spreading loss, and englacial attenuation.  
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1.2 Thesis organization  

In Chapter 2, the ice sheet structure is discussed and the radio echo sounding method for estimating 

the basal reflectivity values is introduced, including radar equations. The challenges in estimating the 

reflectivity values from the radar data are also discussed.  

In Chapter 3, the roughness values of air- firn interface and ice – bed interface are estimated using 

received data statistics. The estimated air-firn interface roughness values are relatively validated using the 

Neal’s method and correlations from the LIMA (Landsat Image Mosaic of Antarctica). The estimated 

roughness maps of air – firn interface and ice – bed interface are also provided.  

In Chapter 4, the methods to estimate englacial attenuation are discussed and the need for a new 

modeled attenuation rate is explained. The englacial attenuation rate is estimated from the received data by 

assuming a localized attenuation rate and by using a modeled attenuation rate constant and the estimated 

englacial attenuation map is provided.  

In Chapter 5, the relative reflectivity values are estimated and a relative reflectivity map is 

generated for the Byrd Glacial catchment area. Cross-over analysis is done to validate the method used to 

estimate the relative reflectivity values. The corresponding echograms at the locations of potential 

subglacial water systems are checked for the observable lake features. The estimated relative reflectivity 

map is also validated using the abruptness index measurements. The locations with higher relative 

reflectivity values are checked with the previously predicted lake locations and subglacial flow paths to 

find correlations.  

In Chapter 6, summary and conclusions of this work are presented and additional steps that can be 

taken to improve the accuracy of the estimated relative reflectivity values are also discussed. 
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Chapter 2 Radio echo sounding of ice sheets  

2.1 Radar equations  

An ice sheet is formed by the accumulation of snow. The elevation of Greenland and east Antarctica 

ice sheets are 3 km to 4 km high at their summits [22]. The internal layers of the ice sheet contain 

accumulation information of snowfall in each year. The basal condition is the state of the ice – bed interface, 

such as if it is melting, frozen or thawed etc. As we move from the top of the ice sheet towards its base, the 

temperature profile of the ice sheet increases due to geothermal heat.  

Ice sounding radar operates by transmitting signals and receiving the backscattered echoes at a 

VHF band so that the attenuation of the EM wave in the ice is low enough to penetrate the ice sheet. The 

required along-track resolution is achieved by SAR processing. The reflected radar-sounding echoes are 

directly related to the dielectric contrast of two media, so radar echo sounding (RES) data has been used to 

interpret the basal conditions from the estimated reflectivity values [23].  

The signal power received (𝑃𝑟) by the radar from an ice sheet with small scale roughness, is given 

by [24] [25] 

𝑃𝑟 = 𝑃𝑡 (
𝜆

4𝜋
)
2 𝐺𝑡𝐺𝑟

[2(ℎ+
𝑧

𝑛𝑖
)]
2

𝐿𝑖
2

 𝜌|〈𝑅𝑏〉|
2         (2.1) 

where 𝜆 is the wavelength in air, 𝐺𝑡  and 𝐺𝑟 are the gains of transmit and receive antennas, 𝜌 accounts for 

small roughness scattering effects, 𝑃𝑡 is the transmitted power, ℎ is the height of aircraft above ice, 𝑧 is ice 

thickness, 𝑛𝑖  is the index of refraction for ice,  𝐿𝑖 is englacial attenuation for one-way transmission, and 

〈Rb〉 is the averaged basal reflection coefficient over the imaged resolution cell, given by  

𝑅𝑏 =
√𝜀1−√𝜀2

√𝜀1+√𝜀2
                                       (2.2) 

where 𝜀1 and 𝜀2 are the complex dielectric permittivity of two media interface expressed as 𝜀 = 𝜀𝑟(1 −

𝑗 𝑡𝑎𝑛𝛿), 𝜀𝑟 is the relative permittivity and 𝑡𝑎𝑛𝛿 is the loss tangent.  
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The ice sheet surface undulations in the radar illuminating area will result in the reduction of power 

reflected by a factor of 𝜌 due to the phase variations 𝜙  caused by vertical root mean square variations of 

the air – firn interface [23]. Similar is the case for the ice – bed interface. The power reduction factor 𝜌 

caused by roughness can be calculated by [23] 

𝜌 = 𝑒−∅
2
𝐼𝜊
2 (

𝜙2

2
)                 (2.3)  

where 𝐼0 is the zeroth-order modified Bessel function of the first kind and ∅ is the phase shift which is given 

by  

 𝜙 = 
4𝜋𝜎

𝜆𝑠
                         (2.4) 

where 𝜎 is the vertical root mean square (RMS) displacement of the surface from its mean plane and 𝜆𝑠 is 

the wavelength at the reflecting surface. The phase shift in the returned echoes from the ice – bed interface 

due to the RMS displacement of air – firn interface and the RMS displacement of  ice – bed interface are 

calculated using the equations 3.12 and 3.13 respectively from Chapter 3  

The radar equation can be written in dB as  

[𝑃]𝑑𝐵 = [𝑆]𝑑𝐵 − [𝐺]𝑑𝐵 + [𝑅]𝑑𝐵 − [𝐿]𝑑𝐵          (2.5) 

where P is the received power (after correcting for roughness), S is the system parameters including transmit 

power 𝑃𝑡, transmit gain 𝐺𝑡, receive gain 𝐺𝑟 and processing gain. G is the geometric spreading loss, R is the 

ice – bed interface reflectivity, and L is the englacial attenuation 

The total geometric spreading loss is calculated by  

[𝐺]𝑑𝐵 = 2[2𝜋 (ℎ +
𝑧

𝑛𝑖
)]𝑑𝐵                      (2.6) 

Geometrically corrected bed-echo power  𝑃𝑐 is given by  

             [𝑃]𝑑𝐵  +  [𝐺]𝑑𝐵  = [𝑃
𝑐]𝑑𝐵 = [𝑆]𝑑𝐵 + [𝑅]𝑑𝐵 − [𝐿]𝑑𝐵         (2.7) 
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Rearranging the above equation gives 

[𝑅]𝑑𝐵 =   [𝑃
𝑐]𝑑𝐵 +  [𝐿]𝑑𝐵 − [𝑆]𝑑𝐵          (2.8) 

2.2 Challenges in estimation of ice basal reflectivity  

Assuming the system is well calibrated, data is noise free, and the effects of ice bed geometry on 

received power are negligible, the major challenges in constraining the reflectivity values R from the 

received RES data are accurate estimation of the englacial attenuation rate and losses due to air – firn 

interface roughness and ice – bed interface roughness [26]. The englacial attenuation depends on the 

dielectric permittivity of ice, which varies with depth and location, as different locations could have 

different impurity concentrations, density profiles and temperature profiles of the ice column [27]. The 

accurate estimation of englacial attenuation requires accurate estimation of the dielectric permittivity. In 

addition to the basal conditions, the returned echoes from ice – bed interface are affected by the roughness 

of the interface, topography of the interface, and roll effects of the aircraft. As mentioned, the estimation of 

losses due to roughness depends on the RMS height, and methods to estimate the RMS height are provided 

in Chapter 3 and the methods to estimate the englacial attenuation rate are given in Chapter 4. 
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Chapter 3 Estimation of roughness 

The interface roughness is characterized by the RMS height variations of the interface. Whenever 

the transmitted pulse spreads across an interface, an echo is generated from the integration of currents 

induced on that interface [28], and the phase of this induced currents is affected by the interface RMS height 

and thus the integrated echoed power is affected by the RMS height. To estimate the roughness, the pulse 

compressed data without incoherent averaging and decimation are used to meet the high spatial sampling 

requirement. 

3.1 Methods to estimate RMS height 𝝈  

The RMS height variations of an interface can be estimated from data statistics or modeled using 

various models with constraints on the scale of roughness.  

3.1.1 Method using power statistics 

When an aircraft moves at a constant distance over the air – firn interface, if the air – firn interface 

is rough, the echo amplitude variations are caused by variations in phase – resulting in a phenomenon called 

fading [29]. In case of a smooth, uniform interface a single scattering center is located at normal incidence 

and the echo amplitudes will not fade, but, in the case of a rough or non-uniform interface, there could be 

more than one independent scattering centers in the illuminated area causing amplitude fading due to 

interference between individual echo returns [23].   

In Neal’s method [30], the RMS height is obtained by using statistics of power variance 𝜎𝑝 and 

fading length 𝑥𝑓. The power variance is given by  

𝜎𝑝 =  
〈P(x)P(x)〉

〈P(x)〉2
− 1         (3.1) 

where x represents the along track position.  
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 The fading length is defined as the distance over which the auto correlation function, 𝜌𝑝(𝜇), drop 

to the value of 1/e  

𝑥𝑓 =  𝜇|𝜌𝑝(𝜇)=1/𝑒 
                                         (3.2) 

The autocorrelation function, 𝜌𝑝(𝜇),   is given as  

 𝜌𝑝(𝜇) =  
〈P(x)P(x+μ)〉− 〈P(x)〉2

〈𝑃(𝑥)𝑃(𝑥)〉−〈P(x)〉2
                                         (3.3) 

The correlation length 𝑙 is the distance at which the autocovariance function drops to1/𝑒 of its 

initial value and it is the length beyond which the surface undulations become statistically independent.  

Now using these calculated values, the phase shift ∅ and correlation length 𝑙 are estimated using 

the theoretical model given by the two equations below:  

             𝜎𝑝 = 2𝜙
2(

1

1+2Γ
−

1

1+𝑅𝐹
2)                                 (3.4) 

𝜌𝑝(𝜇) =
{
 
 

 
 

𝑒

−(
𝜇
𝑙
)
2
[1−

2

2+
1
Γ

]

−
1+2Γ

1+𝑅𝐹
2𝑒

−(
𝜇
𝑙
)
2
(

1

1+𝑅𝐹
2)

[cos
𝜇2𝑅𝐹

𝑙2(1+𝑅𝐹
2)
+𝑅𝐹 sin

𝜇2𝑅𝐹

𝑙2(1+𝑅𝐹
2)
]

}
 
 

 
 

(1−
1+2Γ

1+𝑅𝐹
2)

                    (3.5) 

where 𝑅𝐹 is the Fraunhofer region of the sounding geometry given by 𝑅𝐹 =  𝜆(ℎ +
𝑧

𝑛
)/(𝜋𝑙2)  and 

Γ =  𝜆2 (ℎ +
𝑧

𝑛
) /(4𝜋2𝑙2𝜏)  in which  𝜆 is the wavelength, 𝑧 is the depth, ℎ is the terrain clearance, 𝑛 is the 

refractive index of ice and 𝜏 is the pulse length in terms of distance in air.  

The best values of RMS height and correlation length are selected based on the minimum mean 

square error between the theoretically estimated values and those calculated from the data; the theoretical 

estimates of power variance and fading length are obtained by iteratively substituting phase variation values 

associated with the possible RMS values and the possible correlation length values in the theoretical model 

equations.  
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Figure 3.1 Estimated RMS height and correlation length for a smooth air – firn interface (20111213_05_009) 

 

 

Figure 3.2 Echogram of a smooth air – firn interface (20111213_05_009) Bottom right image shows the 

corresponding flight line of the echogram 
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The results of this method, for a smooth air – firn interface of Byrd glacier data (20111213_05_009) 

[31] is shown in Figure 3.1. 

The corresponding echogram with the flight path of the data frame 20111213_05_009 is shown in 

Figure 3.2. The echogram is the image obtained after the SAR processing of the data. The vertical axis of 

an echogram represents two-way propagation time of the wave and the horizontal axis represents the along 

track or azimuth direction. The color levels in the echogram represent the power received at the receiver.  

According to Figure 3.1, most of the estimated RMS height values of air – firn interface for the 

data frame 20111213_05_009 are less than 6 cm. To get a sense of roughness, a relative roughness measure 

is calculated as the ratio of normalized RMS height to the normalized correlation length. This parameter 

will be high if the correlation length is small and RMS variation is high, i.e. the area is relatively more 

rough if the RMS height varies largely in short correlation lengths and vice-versa.   

This model is valid only for  𝜙2 < 0.3 but this is not always the case for air – firn interface 

roughness of the ice sheets  

For a relatively rough air – firn interface of Byrd glacier data (20111212_01_002) [31], the 

estimated roughness parameters are shown in Figure 3.3.  

For this data frame 20111212_01_002, the estimated RMS height variations are more than 10cm and at 

most of the locations this method could not estimate the RMS height because it exceeds the limit beyond 

which this method is no longer valid. The echogram with the corresponding flight path for this data frame 

is shown in Figure 3.4 

The correlation between the locations with high estimated roughness values and the locations with 

ice surface scattering in the echogram of Figure 3.4, shown in dark gray color, can also be observed from 

the results.   
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Figure 3.3 Estimated RMS height and correlation length of a relatively rough air – firn interface  

 

 

Figure 3.4 Echogram and flight path of a relatively rough air – firn interface (20111212_01_002) Bottom-

right image shows the corresponding flight line of the echogram 
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3.1.2 Method using waveforms  

The received echo signal can be modeled [32] as the multiple convolution of radar point 

target 𝑃𝑃𝑇𝑅(𝑡), flat surface impulse response 𝑃𝐹𝑆𝐼𝑅(𝑡) and surface height density function 𝑃𝑝𝑑𝑓(𝑡), 

mathematically given as 

𝑃 (𝑡) =  𝑃𝑃𝑇𝑅(𝑡) ∗  𝑃𝐹𝑆𝐼𝑅(𝑡) ∗  𝑃𝑝𝑑𝑓           (3.6) 

In this model, PPTR (t) is approximated by the natural specular reflections in the data. The specular 

reflections for the ice – bed interface of Byrd glacier are calculated using abruptness index and are shown 

in Figure 3.5.  Abruptness index [33] is given as  

𝐼𝑎𝑏𝑟(𝑥) =  
𝑃𝑝𝑒𝑎𝑘(𝑥)

𝑃𝑎𝑔(𝑥)
                    (3.7)  

where 𝑃𝑝𝑒𝑎𝑘(𝑥) is the peak power of the received signal echo and 𝑃𝑎𝑔(𝑥) is the aggregate power of the 

received bed echo over the depth interval. For all the abruptness calculated locations SNR of  𝑃𝑝𝑒𝑎𝑘(𝑥) is 

greater than 5dB.  

We can choose a Gaussian function as the probability density function 𝑃𝑝𝑑𝑓 (𝑡) or other function 

based on knowledge about the surface, if available for those locations. PFSIR (t) is the average backscattered 

power from a mean flat rough surface with the same backscattering cross section per unit scattering area as 

the true surface: 

𝑃𝐹𝑆𝐼𝑅(𝑡)  =
𝑃𝑡 𝜆

2 

(4𝜋)3
∫

𝛿(𝑡−𝑡𝑑)𝐺𝑡(𝜃,𝜓)𝐺𝑟(𝜃,𝜓)𝜎𝜊(𝜃,𝜓)

𝑟4
𝑑𝐴

 

𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎
     (3.8) 

where r is the distance from the antenna to the elemental scatter at elevation and azimuth angles 𝜃 and 𝜓, 

𝛿 is the Dirac delta function, td is the two-way propagation time, 𝐺𝑡(𝜃, 𝜓) and 𝐺𝑡(𝜃, 𝜓) are the transmit and 

receive antenna gains and  𝜎𝜊(𝜃, 𝜓) is the unit backscattering cross section. 
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Figure 3.5 Specular reflections of Byrd Glacier ice – bed interface  

 

An example of smooth and relatively rough bed echoes from the flight line 20111212_01_017 is 

shown in Figure 3.6.  

In the case of specular reflections, leading and trailing edges of the echoes can be differentiated by 

using the only peak of the reflected echo. But in the case of rough echoes, there could be multiple peaks 

and the first peak might not the highest of the peaks. In these cases, the way the trailing edge and leading 

edge are defined, will affect the roughness estimation.  

In general, the magnitude of the echoes at the ice – bed interface are proportional to the dielectric 

contrast at the interface and the width of the peak in the echoes are proportional to the roughness at the 

interface. But the same echo shapes can be obtained for various bed and ice conditions [34]. For example, 

the geometry of the bed could also affect the magnitude of the peak.  
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Figure 3.6 Bed echoes of smooth and relatively rough interfaces. 

 

3.1.3 Method using amplitude distribution model  

Following the method given in [35], the receive signal at the antenna is the summation of 

backscattered radiation consisting of coherent (or deterministic) component and diffused (or random) 

component. If the surface interface is specular the backscattered radiation is dominated by the coherent 

component with a negligible incoherent component. In case of rough surfaces, the received backscattered 

radiation is dominated by incoherent component. This is shown in Figure 3.7 and in Figure 3.8 using the 

distribution of received amplitude values for about 200m of along track bin from a smooth and relatively 

rough surface locations 

The amplitude variations across the radar resolution cells can be caused due to a change in the 

subglacial materials with high to low reflection coefficient values or due to multiple interfering scattering 

centers within each cell [23]. The echograms at these locations can be observed to reduce the ambiguity.  
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Figure 3.7 Distribution of the returned echoes amplitude values from a smooth air – firn interface location 

 

Figure 3.8 Distribution of amplitude values of returned echoes from a rough air – firn interface location 
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The amplitude distribution of received echoes with both reflected and scattering components can 

be approximated by a rice distribution to estimate the coherent and incoherent components of the received 

power. As the coherent component decreases, the rice distribution approaches to Rayleigh distribution [23]; 

this can also be observed from above histograms.  

The echo returns from the air – firn interface for the complete Byrd glacier is grouped into chunks 

of about 200 m each, over along-track distance, and a rice distribution is fitted to the amplitude values of 

each chunk of echo returns. Using the parameters obtained by fitting the distribution, coherent and 

incoherent components of the air – firn interface are estimated for the 200-m along-track distance.  

Theoretically, the Coherent power component is given by 

𝑃𝑐 = 𝑅𝑠
2 exp(−(2𝑘𝜎ℎ)

2)         (3.9) 

where 𝑅𝑠 is the Fresnel coefficient of air-firn interface, 𝑘 is the wavenumber given as 𝑘 =
2𝜋

𝜆
  and 𝜎ℎ  is the 

RMS vertical height. The Incoherent component is given by 

 𝑃𝑛 = 4𝑘
2𝑅𝑠

2
𝜎ℎ
2 erf (

𝜋𝑙𝑥

2𝐿𝑠
) erf (𝑘𝑙𝑦√

𝑐

ℎ𝛥𝑓
)       (3.10) 

where 𝑙𝑥 and 𝑙𝑦 are correlation lengths in 𝑥 and y directions, 𝐿𝑠 is the synthetic aperture length, ℎ is the 

range to the ice sheet surface, 𝛥𝑓 is the signal bandwidth. For a given footprint dimension, a threshold 

exists beyond which correlation length can be neglected and for the correlation length greater than 

threshold erf(𝑥) ≈ 1.  The RMS height value can be estimated by fitting a value to the ratio of the obtained 

coherent and incoherent components, by minimizing the mean square error, using the below equation 

 
𝑃𝑐

𝑃𝑛
= exp(−(2𝑘𝜎ℎ)

2) [4𝑘2
 
𝜎ℎ
2 ]−1                                              (3.11)            
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The RMS height of air – firn interface calculated using this method for the flight paths 

20111213_05_009 and 20111212_01_002 are shown below in Figure 3.9 and Figure 3.10.  

 

Figure 3.9 RMS height of smooth air – firn interface (20111213_05_009) 

 

 

Figure 3.10 RMS height of relatively rough air – firn interface (20111212_01_002) 
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Comparing these results with those obtained using Neal’s method, we see that both methods agree 

on the relative roughness of the data sets. The comparisons between the results using these two methods 

are shown below in Figure 3.11 and Figure 3.12. 

 

Figure 3.11 Roughness estimates for data frame 20111213_05_009, top plot represents estimated 

roughness using amplitude distribution method  and bottom plot represents estimated roughness using 

Neal’s method 

 

Figure 3.12 Roughness estimates for data frame 20111212_02_005 – top plot represents estimated 

roughness using amplitude distribution model method – bottom plot represents estimated roughness using 

Neal’s method 
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On comparison, the roughness estimates from the Neal’s method seem to be at a higher scale than 

the estimated roughness values from the amplitude distribution model, at the relatively rough locations. At 

relatively smooth locations, the roughness estimates from both methods agree closely and the locations with 

high estimated roughness values correlate with high surface scattering locations in echograms.  

The map of air – firn interface roughness obtained using the amplitude distribution model method, 

for the complete Byrd glacier is shown below in Figure 3.13.    

 

Figure 3.13 Air – firn interface roughness map 

 

In the map above, the scale of roughness is color coded. It is observed the relatively high roughness 

occur at the trunk of the glacier where the glacier converges into the trunk and crevasses present.  The 
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locations with relatively high roughness values correlate with the speckle pattern in the background 

LANDSAT LIMA image. This is shown in the Figure 3.14.   

 

Figure 3.14 Scaled images of estimated air – firn interface roughness map 

 

Assuming the phase difference in the echoes returned from the ice – bed interface is caused only 

by the RMS variations of air – firn interface, the phase variation in the reflected echo from the ice – bed 

interface is calculated by  

𝜙 = 
4𝜋𝜎

𝜆
(√𝜀 − 1)                                                   (3.12) 
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where 𝜎 is the RMS variations of air – firn interface [36]. The dielectric constant values in the above 

equation are estimated from the equation (3.9) of the coherent component using the estimated RMS height. 

The power reduction caused by this phase variation is calculated and compensated using the equation 2.3.   

Similarly the rice distribution is fitted for the echoes from the ice – bed interface, for about every 

200m along track distance and the roughness of the ice – bed interface is estimated. The corresponding ice 

– bed interface roughness map is shown below Figure 3.15.  

 

Figure 3.15 Ice – bed interface roughness 

 

From the map above, the ice – bed interface roughness is relatively more than the estimated 

roughness at air – firn interface.  
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The phase variations in ice – bed interface returns due to the RMS height variations of the ice – bed 

interface are calculated by [36] 

𝜙 = 
4𝜋𝜎

𝜆
√𝜀                                                    (3.13) 

In this case, the dielectric constant of ice is assumed as 3.15 and the corresponding power reduction 

caused by this phase variation is calculated and compensated using the equation 2.3. 

The following Figure 3.16 shows the InSAR-based velocity map of Antarctica in the Byrd Glacier 

region [37]   

 

Figure 3.16 InSAR-based velocity map of Antarctica colorbar represents the velocity magnitude in km/yr 

 

From the Figure 3.16 and Figure 3.13, higher velocity magnitudes can be observed at the trunk of 

the Byrd Glacier and the high estimated air-firn interface roughness values at these locations could be a 

result of different ice velocity rates near the trunk of the glacier.  

From Figure 3.16 and Figure 3.15, lower estimated ice-bed interface roughness values can be 

observed in the areas of high velocity rates.   
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Chapter 4 Estimation of Ice attenuation 

Once the power reduction due to roughness has been accounted, the reflectivity values can be 

estimated from the received power if the englacial attenuation is known. Englacial attenuation is given by 

[𝐿]𝑑𝐵 = 2𝑁𝑎𝑧           (4.1) 

where 𝑧 is the ice depth and 𝑁𝑎  is the englacial attenuation rate dB/km. 

4.1 Previous methods  

The englacial attenuation rate can be determined by the ice core data or by growing pure ice in a 

lab for different impurity concentrations, pressure and temperature profiles, but it cannot be applied over 

complete glacier due to spatial variability.  

 

Figure 4.1 Echogram of Greenland 20110502_02_002 data frame  
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The power reflected at the internal layers of the ice sheet could be used for estimation of englacial 

attenuation, but the picking of internal layers for the Byrd glacier is much time taking. As the internal layers 

of Byrd glacier are not very distinct and separated as those of Greenland. An example of internal layers of 

Greenland and Antarctica is shown in Figure 4.1 and Figure 4.2.  

 

 

Figure 4.2 Echogram of 20111213_05_009 data frame, Byrd Glacier 

 



26 
 

If this method is chosen, it cannot be applied over the complete glacier because, in few areas of the 

ice sheet, the internal layers might just be very low in number or even be none as shown below in Figure 

4.3.  

 

Figure 4.3 Echogram of 20111212_01_002 data frame of Byrd Glacier 

 

The other methods to estimate englacial attenuation include a method assuming a constant englacial 

attenuation rate for the complete dataset to infer basal conditions from the radar data [38].  

From the chapter 2, the geometrically corrected bed-echo power  𝑃𝑐 is given by  

[𝑃𝑐]𝑑𝐵 = [𝑆]𝑑𝐵 +  [𝑅]𝑑𝐵 −  [𝐿]𝑑𝐵       (4.2) 
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Assuming [𝑆]𝑑𝐵 is constant along a flight line, the relative geometrically corrected bed-echo power  𝑃𝑟
𝑐 and 

relative englacial attenuation [𝐿 −  𝐿̅]
𝑑𝐵

 are given by 

[𝑃𝑟
𝑐]𝑑𝐵 =  [𝑃𝑐 −  𝑃𝑐̅̅ ̅]𝑑𝐵 =   [𝑅 −  𝑅̅]𝑑𝐵 −  [𝐿 −  𝐿̅]

𝑑𝐵
      (4.3) 

 [𝐿 −  𝐿̅]
𝑑𝐵
= 2 𝑁𝑎(𝑧 − 𝑧̅)         (4.4) 

where 𝑧̅ is the average ice depth.  

Assuming a constant attenuation rate 𝑁𝑎, enables to estimate the value of [𝐿 −  𝐿̅]
𝑑𝐵

 which in turns 

enables to estimate the relative reflectivity [𝑅 −  𝑅̅]𝑑𝐵. These relative reflectivity values can then be used 

to estimate the basal conditions.  

But different values of  𝑁𝑎 gives different sets of relative reflectivity values Figure 4.4 shows the 

relative reflectivity maps for  𝑁𝑎 values of 5, 10, 15 and 25 along with the previously suspected subglacial 

lake locations based on elevation changes [14]. 
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Figure 4.4 Relative reflectivity map for 𝑁𝑎  = 5 dB/km (top left), 𝑁𝑎  = 10 dB/km (top right), 𝑁𝑎  = 15 

dB/km (bottom left) and 𝑁𝑎  = 20 dB/km (bottom right) 

 

The color bar of the above figures is scaled from -15 to 15dB, but the obtained range of relative 

reflectivity values is physically unrealistic. This suggests for a better method to calculate englacial 

attenuation. This assumption of constant englacial attenuation for a complete dataset does not consider the 

spatial variations in attenuation rate, as discussed before the englacial attenuation varies spatially.  

The relative englacial attenuation map for complete glacier using a constant englacial attenuation 

rate is shown below in Figure 4.5.  
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Figure 4.5 Relative englacial attenuation (dB) using a 10 dB/km englacial attenuation rate 

In the case of regions where ice transitions from grounded ice sheet to freely floating ice shelf, and 

in regions with high air-firn interface roughness values, the assumption of a constant englacial attenuation 

can produce unrealistic basal reflectivity values [23]. In the case of the complete Byrd Glacier data set, the 

relationship between power (after correcting the geometric spreading loss) and depth is clearly not linear 

for all depths, as shown in Figure 4.6 below.  
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Figure 4.6 Need for spatially variable attenuation rate 

 

From the above figure, the power seems to be much attenuated at a higher rate for the depths near 

the ice sheet surface than for those depths near the ice – bed interface.  To infer basal conditions in these 

regions the englacial attenuation rate is modified [36]. 

 

 

4.2 Modified englacial attenuation  

To account for spatially variable englacial attenuation rate, the modified attenuation rate is given 

as  

𝑁𝑎 = 𝑁𝑎̅̅̅̅ +  
𝜕𝑁𝑎

𝜕𝑥
 (𝑥 −  𝑥̅)           (4.5) 
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where 𝑁𝑎̅̅̅̅  is the average attenuation rate, 𝑥 is the along track position, 𝑥̅ is the mean position, and 
𝜕𝑁𝑎

𝜕𝑥
 is the 

along track derivative of the attenuation rate [36]. 

In equation 4.3, if the reflectivity values are considered as a constant, then [-[𝑃𝑟
𝑐]𝑑𝐵] is the required 

apparent attenuation (caused due to two-way propagation of EM wave through the ice-column) to produce 

observed geometrically corrected relative bed-echo power signal. 𝑁𝑎̅̅̅̅   is estimated for the complete data 

set, by assuming the bed reflectivity as a constant, smoothing the small-scale variations in [𝑅]𝑑𝐵 while 

retaining along track variations in 𝑁𝑎 and 
𝜕𝑁𝑎

𝜕𝑥
 is estimated for each flight line. 

The improved relative reflectivity is given by,   

[𝑅𝑟]𝑑𝐵 = [𝑃𝑟
𝑐]𝑑𝐵 + 2(

𝜕𝑁𝑎

𝜕𝑥
) (𝑥 − 𝑥̅){𝑧 − 𝑧̅}𝑙2 + 2𝑁𝑎̅̅̅̅ {𝑧 − 𝑧 ̅} 𝑙2    (4.6) 

In the above equation, 𝑙2 = 100 𝑚 is the filter length used to reduce the variations.  

The estimated relative englacial attenuation using this modified method for the complete Byrd 

Glacier is shown below in Figure 4.7. 
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Figure 4.7 Estimated Relative englacial attenuation in dB using modified attenuation rate 

 

Considering average power values for every 200m and after correcting for roughness using the 

method described in section 3.3 of Chapter 3, The complete map of relative reflectivity values estimated 

using the modified attenuation rate is shown in Figure 4.8. The areas with high relative reflectivity values 

might represent unfrozen subglacial materials or potentially a subglacial lake 
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Figure 4.8 Relative reflectivity values estimated using the modified attenuation rate 

 

The histograms of estimated basal conditions using a constant attenuation rate and this modified 

attenuation rate are shown below in Figure 4.9.  

From the Figure 4.9, the range of reflectivity values estimated using modeled attenuation are more 

realistic than those estimated by considering a constant attenuation. This addresses the observed non-linear 

relationship between the apparent attenuation and depth.  
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Figure 4.9 Histograms of estimated relative reflectivity values using modeled attenuation rate (on left) 

and constant attenuation rate (on right) 

 

4.3 Localized englacial attenuation  

Another way to address this non-linearity is to assume 𝑁𝑎 as a constant for a short interval of depth. 

As shown in the Figure 4.10, 𝑁𝑎is assumed to be a constant over a range of depth intervals, i.e. 𝑁𝑎 value is 

piece-wise linear.  

Figure 4.11 shows the estimated 𝑁𝑎 values in the along track dimension in red color and the 

apparent attenuation in blue 

If this 𝑁𝑎 value vector, as a function of depth, is used to generate the relative reflectivity values, 

the obtained range of reflectivity value is again physically unrealistic – maybe because the along track 

variations are not considered i.e., different locations at the same depths are treated as similar.  
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Figure 4.10 Variation of assumed 𝑁𝑎 for different depth values 

 

 

Figure 4.11 𝑁𝑎 values (shown in red color) in along track dimension and the apparent attenuation (shown 

in blue) 
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To constrain variations in both location and depth, a short interval of along track distance is 

considered such that the area considered is localized and the depth variation in the localized area is 

minimized.  For each localized along track interval, a unique 𝑁𝑎 value is estimated. Figure 4.12 shows the 

estimated 𝑁𝑎 for short intervals in the along track direction:  

 

 

Figure 4.12 Estimated 𝑁𝑎 for short intervals in the along track direction 
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This estimated englacial attenuation seems to have a better match with the apparent attenuation. 

The differences in the estimated relative englacial attenuation and the apparent attenuation are due to 

relative reflectivity values. 

The estimated relative englacial attenuation map using the modeled 𝑁𝑎 value for every 1 km of 

along track length is shown in Figure 4.13  

 

Figure 4.13 Estimated relative englacial attenuation in dB assuming a localized attenuation rate (shown 

on the left side) and the depth at the corresponding locations (shown on the right side)  

  

From the above estimated englacial attenuation map, different englacial attenuation values for 

different locations – even if they have a relatively close range of depth values, can be observed.  
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Chapter 5 Results and validation 

5.1 Estimated relative reflectivity values  

The complete data are divided according to flight lines. For roughness estimation each flight line 

is again divided into chunks of about 200m in the along track dimension and roughness parameters are 

calculated for each chunk. The englacial attenuation is modeled for data chunks of every 1km of along track 

length. The estimated relative reflectivity values using the estimated 𝑁𝑎 in the direction of along track are 

shown below in Figure 5.1 along with the previously identified locations with elevation changes [14]: 

 

Figure 5.1 Relative reflectivity values using unique 𝑁𝑎 for each 1km along track interval 
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5.2 Validation using cross-over analysis:   

As shown in the above Figure 5.1, the relative high reflectivity values are evident in a few localized 

areas from different flight paths. Changing the englacial estimation window in the along-track dimension 

changes the estimated relative reflectivity values at few other location points – if the window length is 

increased to 10km in this case. A minimum window length is chosen to ensure the variations in the location 

and depth are minimized. There is no much difference in the estimated relative reflectivity values if the 

window length is further decreased below 1km.   

At the same locations, the method should give similar relative reflectivity values. The cross over 

locations of the flight line are shown in the Figure 5.2.  

 

Figure 5.2 Relative reflectivity map with cross over locations 
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At the cross over locations of the flight paths, the difference in the estimated relative reflectivity 

values are shown in the Figure 5.3. The histogram of the difference in relative reflectivity values is shown 

in Figure 5.4 and the histogram of difference in depth at these locations is shown in Figure 5.5. 

 

Figure 5.3 Difference in estimated relative reflectivity values at cross over locations 

 

From the above figure, at most of the cross over locations, the differences in the estimated relative 

reflectivity values are less than 3dB.  



41 
 

 

Figure 5.4 Histogram of estimated relative reflectivity value differences at cross over locations 

 

Figure 5.5 Difference in depth values of ice sheet at cross over locations 
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In the estimated relative reflectivity value difference map, the locations with differences greater 

than 5dB are shown in Figure 5.6 along with the plots of differences in relative reflectivity value and depth 

differences at those corresponding locations.  

 

Figure 5.6 Differences in estimated relative reflectivity values and depth at the corresponding locations; 

these corresponding locations on the map are shown in top-right figure 

 

The highest difference with a 7.5 dB value is caused by the roll effect of the flight, i.e. for one of 

the flight paths, power returned is reduced due to the roll of the aircraft which in turn caused the highest 



43 
 

difference in the estimated relative reflectivity values. The corresponding locations along with the received 

power and the roll angle of the aircraft at the crossover are shown in the Figure 5.7 below  

 

Figure 5.7 Plots of received power from ice-bed interface along with the roll of aircraft from 

corresponding flight path locations 20111212_01_018 (on left side) and 20111228_02_001 (on right side)  

 

For other two locations with differences in relative reflectivity values around 5dB (shown in Figure 

5.6), one of the flight line location resides on the boundary of the estimated high reflectivity area.  
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5.3 Validation using Geo-physical Features  

In order for a subglacial water body to exist, it should have these following features [24],   

i) The thickness of the ice sheet should be large enough to insulate the heat. There should be a 

sufficient geothermal flux of earth. From the echograms in Figure 5.8, the large depths, about 

2000 to 2500 m, at the ice – bed interface can be verified. 

 

Figure 5.8 Examples for high thickness of the ice sheet with corresponding flight path locations and 

estimated relative reflectivity map shown inside the echogram 
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ii) For the water to stay in a particular location, the ice – bed interface configuration should be 

such that the water can accumulate. This feature can be verified from the echograms of the 

Figure 5.9 along with the elevations at those locations.  

 

Figure 5.9 Examples for ice-bed interface configurations (highlighted with a black color rectangle) with 

corresponding flight path locations and estimated relative reflectivity map shown inside the echogram 
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iii) When illuminating with electromagnetic energy, if there is a presence of water, then there 

would be a high dielectric contrast at the bed interface and this high dielectric contrast will 

give a bright ice- bed reflection in echograms. This feature can be observed in Figure 5.10.  

 

Figure 5.10 Examples for high dielectric contrast at the ice – bed interface (highlighted with a black color 

rectangle) with corresponding flight paths locations and estimated relative reflectivity map shown inside 

the echogram 
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iv) If there is water present at the ice – bed interface, there will also be an absence of basal shear 

stress, which will give rise to a flat overlying ice sheet surface and water support the 

overburden pressure giving a flat ice – bed interface reflections than the surroundings. The 

correlations between the flat ice sheet surface and high relative reflectivity values can be 

observed from the air – firn interface roughness map and the relative reflectivity map from 

the Figure 3.13 and Figure 5.1. Echograms of two such locations are shown in Figure 5.11.  

 

Figure 5.11 Examples for a flat air-firn interface and flat ice – bed interface (highlighted with white and 

black color rectangles, respectively) with corresponding flight path locations and estimated relative 

reflectivity map shown inside the echogram 
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v) Due to the presence of water, the angle of internal reflectors dipping would greater than the 

bed topography. This feature can be verified using the echograms in the Figure 5.12.  

 

Figure 5.12 Examples for angle of internal reflectors dipping greater than bed topography (highlighted 

with a black color rectangle) with corresponding flight path locations and estimated relative reflectivity 

map shown inside the echogram 
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5.4 Validation using abruptness index:  

The potential presence of water can also be validated using the reflection abruptness index [33]. 

The calculated reflection abruptness index values for the two locations with high estimated relative 

reflectivity values are shown in Figure 5.14 and Figure 5.15 along with flight path, corresponding echogram 

and plot of estimated relative reflectivity values. At these locations, previously discussed geo-physical 

features – high ice sheet thickens, high dielectric contrast, disturbances in the internal layers, ice-bed 

interface configuration suitable to accumulate subglacial water and flat air-firn interface can also be 

observed in the corresponding echograms.   

The correlations between the calculated abruptness index and the estimated relative reflectivity 

values can be observed over the complete Byrd Glacier data in the Figure 5.13 below: 

 

Figure 5.13 Abruptness index and estimated relative reflectivity maps 

 

In the above figure, for most locations, there is a good match between the locations with high 

abruptness index values and high relative reflectivity values. 
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Figure 5.14 Abruptness values, relative reflectivity values and echogram with flight path locations for 

data frame 20111201_04_002 
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Figure 5.15 Abruptness values, relative reflectivity values and echogram with flight path locations for 

data frame 20111213_05_008 
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5.5 Correlation with predicted subglacial lakes and flow paths      

Out of the seventeen sites of rapid ice-elevation changes identified within the Byrd Glacier 

catchment [14], twelve sites are close to the available data spatial extent. The rapid ice-elevation changes 

are calculated from the ICESat data collected during 2003 – 2008. The volume history of all the seventeen 

sites [21] are shown in the Figure 5.16 during 2003 – 2008.   

 

Figure 5.16 Volume change history of seventeen sites 

 

In the above figure, the two sites with the highest changes are the two lakes with greater area shown 

in the relative reflectivity map. The locations with the estimated high reflectivity values do not exactly 

overlap with the previously identified locations with rapid ice elevation changes, but they are close to those 

locations. This could be due to the time difference of the data. This data is collected in 2011 over the Byrd 

glacier and the ICESat data is from 2003 – 2008. So the potential subglacial water could have moved 

beneath the ice sheet.  



53 
 

The potential subglacial water if exists and if it could have moved beneath the ice sheet, it will take 

the flow paths which are perpendicular to the contours of the hydraulic potential of the ice sheet. The 

hydraulic potential 𝜑  of an ice sheet is given by 

𝜑 = 𝜌𝑤𝑔𝑧𝑏 + 𝜌𝑖𝑔(𝑧𝑠 − 𝑧𝑏)         (5.1) 

where 𝑔 is the acceleration due to gravity (9.8 𝑚𝑠−2), 𝑧𝑏 is the elevation of the ice – bed interface 

and 𝑧𝑠 is the elevation of the air – firn interface, 𝜌𝑤 and 𝜌𝑖 are the bulk densities of water (1000 𝑘𝑔 𝑚−3) 

and ice (910 𝑘𝑔 𝑚−3)  respectively[39] [40].  

The hydraulic potential map of Byrd Glacier in dB is shown in Figure 5.17 below   

 

Figure 5.17 Hydraulic potential map of Byrd glacier in dB 

 

The 2D interpolated relative hydraulic potential is shown in the Figure 5.18 below and the contours 

of equipotential of 𝜑 are shown in Figure 5.19  
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Figure 5.18 2D interpolated hydraulic potential map in dB 

 

 

Figure 5.19 Equipotential contours of 𝜑  
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As discussed, the flow paths would be perpendicular to the above shown contours of hydraulic 

potential. The estimated relative reflectivity map after overlapping the flow paths from [14] in the Byrd 

region, is shown in Figure 5.20.  

 

Figure 5.20 Estimated relative reflectivity map with flow paths 

 

From the above Figure 5.20, the locations with high estimated relative reflectivity values exactly 

match with the predicted flow path locations, an example echogram from such location is shown in Figure 

5.21 along with the corresponding flight line and estimated relative reflectivity values map.  
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In few locations there is an offset between the predicted flow lines and estimated potential areas 

with subglacial water, and this can be observed from the Figure 5.20. The estimated relative reflectivity 

map also discovered few new potential subglacial water flow paths. The echogram and relative reflectivity 

map from two such new potential flow path locations are shown in the Figure 5.22. 

There is no exact match between the high relative reflective values and previously suspected lake 

locations based on elevation changes. Assuming there are subglacial lakes previously at the locations of the 

elevation changes, those lakes might have drained and the bed at those locations could have frozen by the 

time this data was collected (2011). This map could also be used to better understand the hydrological 

connectivity beneath the glacier.  

 

Figure 5.21 Areas with predicted flow path (highlighted in black colored rectangle) in echogram and in 

corresponding 20111219_04_004 flight path  
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Figure 5.22 Echograms of flight path 20111214_04_012 and 20111219_04_003 (shown inside 

echograms) from estimated new potential subglacial water flow path locations (shown in black colored 

rectangles) 

 

5.6 Clustering of estimated basal conditions 

The estimated relative reflectivity values can be used to infer the subglacial materials [23] – like 

seawater, ground water, fresh water, frozen till, unfrozen till, frozen bedrock and unfrozen bedrock. To find 

the locations associated with the different subglacial materials, clustering of the estimated relative 

reflectivity values is done. To cluster the basal conditions, unsupervised learning algorithms like 

hierarchical clustering, k-Means clustering, and Gaussian Mixer Models (GMM) can be used.  
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K-means algorithm is selected for its fast computation speed over a large data set. K-means 

algorithm divides the data into clusters such that the data points in each cluster are as close to each other 

and data points from different clusters are as far from each other. Figure 5.23 and Figure 5.24 shows the 

sum of with-in cluster sums of absolute and squared point-to-centroid distances for each number of clusters 

assumed.  

From the above figures, for the number of clusters greater than three, the sum is not decreasing 

significantly. So, the number of clusters present in the data is chosen as three.  

Clustering is performed using the K-means algorithm is to obtain the clusters shown in Figure 5.25   

According to estimated reflectivity values of subglacial materials [23], in the Figure 5.25, locations 

with blue-green [0 1 1] color could be the locations with unfrozen bedrock or unfrozen till (relative 

reflectivity values with around and greater than 10dB) and the locations with blue [0 0 1] color could be 

the locations with frozen bedrock (relative reflectivity values around 0 dB) and locations with blue-black 

[0 0 0.5] could represent the locations with frozen till (relative reflectivity values around -3 dB).  

 

 

Figure 5.23 Sum of with-in cluster sums of point-to-centroid L1 distances 



59 
 

 

Figure 5.24 Sum of with-in cluster sums of point-to-centroid L2 distances 

 

 

Figure 5.25 Estimated clusters of basal conditions  
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Chapter 6 Summary and Conclusions  

6.1 Summary  

In this work, the basal conditions of the Byrd Glacier are estimated using RES data by 

compensating the power loss due to the roughness of the air-firn and ice-bed interfaces, spherical spreading 

and englacial attenuation of the wave. For the received echoes, the power lost due to the roughness of the 

air-firn interface and the ice-bed interface are estimated using the amplitude distribution of received echoes 

in the along track direction. The englacial attenuation of the wave is assumed to be localized and a unique 

value of englacial attenuation is estimated from the received data for every 1km of along track distance. 

Hydraulic potential values and equipotential contours of hydraulic potential for the surveyed Byrd Glacier 

data are calculated. Previous methods used to find the roughness of an interface and englacial attenuation 

are also discussed along with their limitations and applicability to the Byrd Glacier RES data.  

To validate, the estimated air-firn interface roughness parameters are compared with those 

estimated with the Neal’s methods and Landsat Image Mosaic of Antarctica (LIMA). The relative 

reflectivity values estimated using the previous methods to find englacial attenuation and the method used 

in this work by assuming a localized constant englacial attenuation rate are compared. Abruptness index 

values are used to validate the estimated relative reflectivity values. Crossover analysis is done to validate 

the methods used. Locations with estimated high reflectivity values are compared with the previously 

identified locations with rapid elevation changes and previous flow paths to find correlations. The 

geophysical lake features are also observed in the echograms at the estimated high relative basal reflectivity 

locations.  

The number of clusters present in the estimated relative reflectivity values is estimated as three 

based on the sum of with-in cluster sums of absolute and squared point-to-centroid distances, for each 

number of clusters assumed. The relative reflectivity values are clustered using k-means algorithm to 
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categorize the Byrd Glacier surveyed area into locations with unfrozen bed rock, frozen bedrock and frozen 

till.  

6.2 Conclusions and future work  

Using this work new potential locations with subglacial water are identified beneath the Byrd 

Glacier; these potential locations align exactly with a few previously predicted flow paths. The locations 

with high estimated relative reflectivity values could be a part of subglacial hydrological connectivity. The 

results from this work along with the previous discoveries, can be used to better understand the ice flow 

dynamics and subglacial hydrological connectivity underneath the Byrd Glacier.  

These results can be improved by compensating the power loss caused due to roll of the aircraft at 

the turnings of flight paths. A detailed error analysis can be performed after every step to know the 

uncertainty range in the estimated relative reflectivity values. The received bed returns are also affected by 

the geometry of the ice – bed interface which is not compensated. By compensating these effects and by 

accurately calculating the englacial attenuation, the absolute reflectivity values can be obtained from the 

radiometrically calibrated ice bed power values.  
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