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Abstract

Trypanosomal S-adenoyl-L-homocysteine hydrolase (Tc-SAHH), considered as a target for

treatment of Chagas disease, has the same catalytic mechanism as human SAHH (Hs-SAHH) and

both enzymes have very similar X-ray structures. Efforts toward the design of selective inhibitors

against Tc-SAHH targeting the substrate binding site have not to date shown any significant

promise. Systematic kinetic and thermodynamic studies on association and dissociation of

cofactor NAD/H for Tc-SAHH and Hs-SAHH provide a rationale for the design of anti-parasitic

drugs directed toward cofactor-binding sites. Analogues of NAD and their reduced forms show

significant selective inactivation of Tc-SAHH, confirming that this design approach is rational.

1. Introduction

Professor Morris J. Robins has made many meritorious contributions to the field of modified

nucleosides and we wish in this review to discuss work carried out under his intellectual

influence.

S-Adenosyl-L-homocysteine (AdoHcy) hydrolase (SAHH; EC 3.3.1.1.) is the only known

enzyme responsible for the reversible conversion of AdoHcy to adenosine (Ado) and

homocysteine (Hcy) (Scheme 1.1.). SAHH occurs downstream of the S-adenosylmethionine

(AdoMet)-dependent transmethylation enzymes,1, 2 which are involved in a wide variety of

important biological functions. The methyl acceptors in this pathway include

macromolecules such as proteins, nucleic acids, and polysaccharides, and small molecules

such as histamines and phospholipids3. AdoHcy is a powerful product inhibitor which

regulates the AdoMet-dependent methyl transfers, so that SAHH plays a crucial role in the

AdoMet-dependent transmethylation pathway through controlling the intracellular levels of
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AdoHcy1. The catabolic reaction of AdoHcy favors the hydrolytic direction under

physiological conditions1. Thus, inhibition of SAHH in mammalian cells will result in

increased cellular levels of AdoHcy and further blocking of the methyl cycle.

SAHH has been considered an antiviral target in chemotherapy for decades, the 5'-terminus

of viral mRNA being an AdoMet-dependent transmethylase substrate4, 5. Moreover, an

overactive malfunction of SAHH will result in abnormally high blood levels of Hcy, which

increases the risk of cardiovascular disease6–8 and possibly amyloid diseases9, and so SAHH

has been considered as a target for treatment of these diseases as well. Recently, a new

pharmacological interest has developed in inhibitors of SAHH as anti-parasitic agents10.

2. The importance of selective inhibitors against Tc-SAHH as therapeutics

in Chagas disease

Besides mammalian organisms, parasites such as Trypanosoma cruzi11, Plasmodium

falciparum12 and Leishmania donovani10, 13 also encode their own SAHHs (Tc-SAHH, Pf-

SAHH and Ld-SAHH, respectively) as well as AdoMet-dependent methyltransferases14. As

in mammalian organisms, parasitic AdoMet-dependent methyltransferases serve to

methylate the 5'-terminus of mRNAs, which is important for growth14. Thus, inactivation of

parasitic SAHHs will result in the blocking of methyl transfer and will suppress the growth

of parasites. Earlier studies10, 11 have shown that there are differences in some kinetic and

thermodynamic parameters between human and parasite enzymes. Parasite enzymes have

weaker binding affinities for NAD+ and/or lower catalytic activities than those of the human

enzyme10, 11. These differences provide the possibility of designing selective inhibitors of

parasite SAHHs that will not inhibit human SAHH (Hs-SAHH).

In this review we are specifically interested in Trypanosoma cruzi. There currently are 8–11

million people infected with Chagas disease (also known as American trypanosomiasis) by

the protozoan parasite Trypanosoma cruzi (Center for Disease Control and Prevention,

Chagas Disease Detailed Fact Sheet, March 2009). This disease is transmitted by triatomine

insects when they feed on the blood of human hosts15. Chagas disease mainly resides in

rural areas of Mexico, Central America and South America and seriously threatens the

public health there15. Because of increased population movement, it has been reported that

there are rare cases in southern parts of the USA (Center for Disease Control and

Prevention, Chagas Disease Detailed Fact Sheet, March 2009). A study of the distinguishing

structural and enzymological features between Hs-SAHH and Tc-SAHH could lead to

development of compounds with clinical potential as anti-parasitic agents and eventually to

improved treatments of Chagas disease.

3. Structural similarities between Hs-SAHH and Tc-SAHH

So far there are fifteen available X-ray structures of SAHH from different sources (Protein

Data Bank files: 1A7A, 1KY4, 1KY5, 1LI4, 1D4F, 1XWF, 1K0U, 2H5L, 1XBE, 1V8B,

2ZIZ, 2ZJ0, 2ZJ1, 3CE6, 3DHY) including wild-type enzymes from human placenta, rat

liver, Plasmodium falciparum, Trypanosoma cruzi (unpublished data), and Mycobacterium
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tuberculosis as well as various mutated forms. The alignment of SAHH amino acid

sequences from different sources shows the primary structure is highly conserved1.

3.1. The structure of Hs-SAHH

Hs-SAHH is a homotetramer (Figure 1) composed of four ~ 47.5 kDa monomers1, 16. Each

monomer has 432 residues and can be divided into three parts: one substrate-binding

domain, one cofactor-binding domain (complexed to a molecule of NAD+/NADH) and a

small C-terminal extension or “tail”1, 16. Both structure and normal mode analysis identify a

hinge region [residues 182–196 (hinge region 1) and 352–356 (hinge region 2)] which

connects the substrate-binding domain (SBD, residues 5–180 and 357–374) with the

cofactor-binding domain (CBD, residues 191–356)1, 17, 18. This hinge regulates a ~ 19°

reorientation of the SBD relative to the CBD in the direction of the open-to-closed transition

and enables a conformational change in SAHH, which plays an important role in substrate

capture and in the subsequent series of catalytic reactions16, 17.

Between the SBD and the CBD there is a deep cleft which works as a channel for substrates

entering the active site and also for products being released into solution1. In terms of

quaternary structure, the tetramer is composed of two dimers, formed by monomers A and

B, and monomers C and D, respectively. The two dimers bind each other tightly and build a

“dimer of dimers”1. The short tail (residues 380–432) of monomer A extends into monomer

B and helps to form the cofactor-binding site of monomer B, and vice versa1. This dual

interpenetration also occurs between monomers C and D1. Moreover, the four cofactor-

binding domains from the four monomers bind each other tightly to form a central core with

the four substrate-binding domains facing outside1.

The available X-ray structures show that there are two different conformations of SAHH:

the open form and the closed form. Since rat SAHH shares 97% sequence identity with the

human enzyme, the entire protein structure of rat SAHH is assumed to be very similar to that

of the human enzyme19. The open conformation comes from the structure of the rat enzyme

(PDB code: 1KY4)20 while the closed conformation is from the structure of the human

placental enzyme [PDB code: 1A7A1 or 1LI416]. It is worth emphasizing that the X-ray

structure (PDB:1A7A) of SAHH which contains the inhibitor DHCeA shows a twisted-

closed conformation: a 14° reorientation of two halves of the homotetramer seem to seal the

enzyme core1. Comparison of the open and closed conformations, Figure 2, shows a 19°

rotation of the substrate binding domain toward the cofactor binding domain, which leads

from the open to the closed conformation. The open-to-closed conformational transition is

related to the catalytic reactions involving the substrate and cofactor NAD(H) in the active

site. The open conformation of SAHH enables substrate binding and the closed

conformation provides a closer contact between substrate and cofactor in the active site, as is

needed for catalysis. The enzyme converts back to the open conformation upon product

release21.

Besides the X-ray structures, there is other evidence for SAHH domain motions.

Computationally, normal mode analysis of low-frequency collective motions of SAHH

reveals the different mechanical properties of the open and closed forms of SAHH. The

hinge-bending motion in the direction of the open-to-closed conformational transition is
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unique to the open form of SAHH and occurs independently of other protein vibrations17. In

the closed form, normal mode calculations show the amplitude of the hinge-bending motion

in each subunit of SAHH is smaller than that in the open form, and the hinge bending

motions of individual subunits are strongly coupled to each other and other low frequency

vibrations, including subunit reorientations17. This mechanical coupling, a characteristic of

the closed form, may transmit the information of any structural changes related to the

catalytic reactions in one of the four active sites to the other active sites. Normal mode

analysis also suggested that the 20-ps hinge-bending vibrations of subunits reach an

amplitude of motion of ~ 1° which is much smaller than the amplitude of 19° in the global

structural transition, so the 19° SBD vs. CBD reorientation cannot be described as a simple

elastic deformation17.

Experimentally, time-resolved fluorescence anisotropy measurements were carried out on

native SAHH and three catalytically active mutants, M351P, H353A and P354A, all labeled

with the fluorescent probe PMal at residues C113 and C42118. Data analysis was focused on

the time constants for reorientation motions. The data for wild type SAHH with/without

ligand provides important information on the effect of ligand binding and oxidation on

hinge-bending motions. Wild type SAHH without substrate exhibits three rotational

correlation times: a time constant of 0.5 ns reflecting local chromophore reorientations and

protein vibrations; one of 14 ns involving domain reorientation; and a third of 82 ns

manifesting the overall protein tumbling in solution18. Wild type SAHH bound with 3'-

deoxyAdo/NAD+ or 3'-keto-Ado/NADH (Ado/NAD+) shows a similar three-component

anisotropy decay, but for wild type SAHH bound with 3'-keto-NepA/NADH, the 10-20 ns

domain reorientation is not detected18. These results indicate that there is an equilibrium

between open and closed structures of SAHH. This equilibrium is shifted toward a more

mobile open form in the substrate-free enzyme (E-NAD+), as well as in complexes with

intermediates formed early in the catalytic cycle after substrate binding or formed late prior

to product release (E-NAD+/ligand). This equilibrium is shifted toward the more rigid closed

form in SAHH complexes of analogues of the central catalytic intermediate (E-NADH/

ligand)18. In addition, fluorescence anisotropy decay studies of three mutant enzymes with/

without ligand illuminated the roles of the mutated residues in the hinge region 2 (residues

352–356) in hinge bending motions. Mutants M351P and P354A show a similar pattern of

behavior to wild type SAHH, which indicates that residues M351 and P354 have no

significant effects on domain motion18. For the H353A mutant, the 10-20 ns domain motion

was not detected either with or without ligand, and the longest component was shortened to

55–71 ns for all four ligation states of mutant H353A. This indicates mutant H353A changes

its domain motion dynamics independent of the presence of ligand or oxidation state of

cofactor18. Since the H353A mutant remains catalytically active, this mutant may slow

down its hinge bending motions to a longer time scale similar to that of overall protein

tumbling or longer, or exhibit a modified shape of the protein18. If the hinge bending

motions slow down to the time scale of enzyme turnover (the order of a second), this would

be out of the detectable range for fluorescence anisotropy decay (0.1 – 200 ns)18. Overall,

hinge region 2 makes no direct contribution to catalytic activity. In contrast, hinge region 1

contains residues N181, K186, N190, N191 which are in the active site, which are involved

in binding the substrate and thus are directly able to affect the activity18.
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To get a direct and clear picture of the domain motions of SAHH, a 15 ns dynamics

simulation of the open form of SAHH with explicit solvent was performed using Amber7

software. Very similar to the X-ray structure, the trajectories show that at the tetramer level

the four cofactor binding domains form a central core which remains relatively rigid, and

that the four substrate binding domains, located at the protein exterior, exhibit flexible

reorientations of large amplitude. Interestingly, the fluctuations of domains between open

and closed conformations within each subunit constitute only ~ 20% of the trajectory

domain motions. At the tetramer level, the remaining ~ 80% of the domain motions are

perpendicular to the direction of the open-to-closed structural transition, and may be

described as a “breathing-type” motion with substrate-binding domains moving to and from

the tetrameric core of SAHH. Furthermore, the domain reorientations in solution can be

represented as a combination of a faster process with 20–50 ps rotational correlation times

and 3–4° amplitude, and a slower process with 8–23 ns correlation times and 14–22°

amplitude. The time scale of the faster process is very close to that of the hinge-bending

vibrations which were found in the normal mode analysis while the slow process well

matches the fluorescence anisotropy decay measurements, which detected the 10-20 ns

domain motion with ca. amplitude of 26° in SAHH without substrate. Therefore, the slow

process is assigned to the rotational diffusion of the domains within a cone with 10-20° half-

angle. Overall, the results of the simulation agree with the previous data and help us to better

understand SAHH domain motions in solution22.

3.2. The structure of Tc-SAHH

The SAHH of Trypanosoma cruzi (437 aa and ~ 48 kDa per subunit) was cloned and

purified in this laboratory11. The sequence of Tc-SAHH shares 74% identity with Hs-

SAHH11. The X-ray structure of Tc-SAHH treated with the inhibitor Neplanocin A has been

recently determined (unpublished data of Drs. Q.-S. Li and W. Huang). Comparison of the

X-ray structures of Hs-SAHH and Tc-SAHH shows that there is no significant difference

between them at the structural levels of the tetramer, subunit, CBD, SBD and C-terminal

extension. The residues directly interacting with the substrate and the residues directly

interacting with NAD+ are all conserved. However it was reported that parasitic enzymes

such as Tc-SAHH11, Ld-SAHH10 and Pf-SAHH (unpublished data, S. Cai) bound cofactor

NAD+ less tightly than Hs-SAHH, which suggests that there ought to be some structural or

dynamic factors causing the differences in properties between Hs-SAHH and parasite

enzymes.

4. The catalytic mechanism of SAHH

SAHH is a hydrolase for which the catalytic mechanism was the topic of intense earlier

studies. Briefly, the catalytic reaction of SAHH for human and parasite is the reversible

hydrolysis and synthesis of AdoHcy to/from Ado and Hcy.
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This equilibrium favors the hydrolytic direction in vivo because of rapid removal of products

- Ado catalyzed by Ado deaminase and Hcy by the transsulfuration pathway. In contrast,

thermodynamic equilibrium favors the synthetic direction in the biochemical assays in

vitro1.

The total catalytic process can be divided into two parts: a reduction/oxidization portion and

an elimination/addition part, which is shown as a cycle in Scheme 1.2.16, 23, 24. The redox

part utilizes a tightly bound NAD+/NADH as a cofactor for hydrogen transfer. In the

hydrolysis direction, the 3'-CH center of substrate AdoHcy transfers a hydride equivalent to

NAD+, forming 3'-keto-AdoHcy and NADH. In the 3'-keto-AdoHcy, the 4'-CH bond

susceptible to deprotonation and thus activates elimination of Hcy across the 4'–5' bond. The

elimination is followed by Michael addition of water to form 3'-keto-Ado. Tightly bound

NADH now returns a hydride equivalent to 3'-keto-Ado and the catalytic process is

completed with release of Ado from SAHH, which contains the cofactor again in the NAD+

state.

The catalytic cycle involves two enzyme conformational states (Protein Data Bank code:

1KY420 and 1A7A1, 21): an open-closed interconversion of each monomer, which regulates

substrate binding and product release, and a ~14° rotation of one dimer relative to the

second dimer, which leads to a reduction in the volume of the tetramer and may serve to

“seal” the closed form. The “sealed” active sites help to prevent contact with the

environment of intermediates among a series of transition states21, 25.

The kinetics of individual steps in the SAHH catalytic cycle have been measured and a

model suggested that integrates the kinetics, the structural and dynamic results, and the

findings from site-directed mutagenesis16. The model emphasizes the roles of avoidance of

abortive reactions and stabilization of transition states in achieving efficient levels of

catalysis16, 26–28. There are three 3'-keto intermediates in the catalytic cycle and none of

them could survive exposure to the aqueous buffer environment16.

Any release and/or exposure of intermediates will result in abortive products and an

uncompleted catalytic cycle. This is hindered by a tight closure of the active site, which

builds a barrier of 110 kJ/mol for abortive release of intermediates. This barrier is ~ 50

kJ/mol higher than a diffusional barrier and decreases the rate of abortive release by 108–109

fold16. In addition, the central intermediate 4', 5'-didehydro-5'-deoxy-3'-keto-adenosine also

needs to be protected from the nearby cofactor NADH to avoid premature reduction of the

3'-keto group of the intermediate16. The 3'-keto structure of the central intermediate is

crucial for activation of the next step of Michael addition of water/Hcy to the 4', 5'-double

bond. To achieve the necessary protection, residue His 301 shifts its position so that its side

chain buttresses the cofactor NADH at a greater separation from the intermediate. The result

is an apparent increase in distance of about 0.4 Å between C-4' of the cofactor NADH and

C-3' of the substrate16. The barrier for the abortive reduction of the central intermediate is

86–89 kJ/mol, which is 22–24 kJ/mol higher than the barrier for productive reduction (65–

67 kJ/mol). This difference in barrier heights results in a rate of productive reduction that is

faster by 103–104 fold than the rate of abortive reduction16. The catalysis of most steps in

the reaction depends on acid-base catalysis for transition-state stabilization, so that the
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potentially needed exchange of protons with the medium would seem to be difficult in the

closed conformation. However, SAHH appears to depend on a chain of water molecules to

deliver protons between the active site and the buffer environment to maintain the suitable

protonation states of functional residues during the catalytic cycle16.

Many attempts have been made to design mechanism-based inhibitors for Hs-SAHH

targeting the substrate binding site and utilizing its catalytic potentialities, and some

progress has been achieved1, 2, 29. The partial “oxidative” reaction (reduction/oxidation) and

partial “hydrolytic” (elimination/addition) reaction provide two design targets29. Type I

inactivators, which are oxidized to the 3'-keto form with SAHH catalysis and conversion of

NAD+ to NADH, target the oxidative partial reaction30. Neplanocin A (NepA) with a Ki of

8.4 nM is an example of type I inactivators and its catalytic reaction stops after oxidation at

the 3' position produces a material that is structurally an analogue of the central intermediate

4', 5'-didehydro-5'-deoxy-3'-keto-adenosine1, 31. On the other hand, type II inactivators are

not only oxidized in the 3'-position by SAHH but also form covalent bonds with enzyme

following reactions analogous to the elimination/addition partial reaction30. For example,

(E)-5', 6'-didehydro-6'-deoxy-6'fluorohomoadenosine (EDDFHA) is a type II inactivator by

generating electrophiles at the active site and forming a covalent bond to irreversibly

inactivate the enzyme32. Figure 3 shows the structures of the above two types of inhibitors

and their inactivation mechanisms.

5. Substrate binding site is not a suitable target for designing anti-parasitic

drugs

A good antiparasitic drug needs to show selective inhibition of parasitic SAHHs (such as

Tc-SAHH) without significant inactivation of Hs-SAHH. The available inhibitors against

Hs-SAHH such as NepA or DHceA are all substrate (Ado or AdoHcy) analogues. So the

substrate binding site was firstly considered as the target for designing anti-parasitic

selective inhibitors. But Type I and Type II inhibitors of Hs-SAHH are obviously unsuitable

as antiparasitic agents. Furthermore, Drs. Morris Robins and Stanislaw Wnuk kindly

provided a total of 122 substrate analogs (unpublished work) for a screen against both Hs-

SAHH and Tc-SAHH. There are only 12 compounds showing some weak selective

inhibition of Tc-SAHH while most of the remainder, 89 compounds, show no inhibition of

either enzyme. Only 10 compounds show roughly equivalent inhibition of both enzymes,

while 11 compounds show stronger inhibition of Hs-SAHH. In addition, ribavirin (1, 2, 4-

triazole-3-carboxamide riboside) was reported to show some time-dependent selective

inactivation of Tc-SAHH over Hs-SAHH38. But the KI values of ribavirin for Hs-SAHH

(266uM) and Tc-SAHH (194uM) are similar and the weak selectivity results from the

differential slow inactivation rate where ribavirin reacts with Tc-SAHH five times faster

than with Hs-SAHH.

Overall, we concluded that it was very unlikely that selective inhibitors targeted toward the

substrate binding site of Tc-SAHH would be identified.
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6. The cofactor binding site is a promising target for designing selective

inhibitors against Tc-SAHH

As mentioned in section 3.2, Tc-SAHH and other parasitic SAHHs show a weaker affinity

for the cofactor NAD+ than does Hs-SAHH. Such enzymological differences between Hs-

SAHH and parasitic SAHHs may provide a clue or rationale for designing selective

inhibitors against parasitic SAHHs. Therefore, the comparative kinetics of cofactor

association and dissociation for Hs-SAHH and Tc-SAHH have been studied

systemically33, 34.

6.1. The basic features of the cofactor association and dissociation process33

The equilibrium and kinetic properties of the association and dissociation of the cofactor

NAD+ from Hs-SAHH and Tc-SAHH form a very complex picture. In a word, those

properties of Hs-SAHH and Tc-SAHH are qualitatively similar but quantitatively distinct.

All data suggest that the four cofactor binding sites of the homotetrameric apoenzyme fall

into two numerically equal classes, one class denoted fast-binding sites and the other class

denoted slow-binding sites. Fast-binding sites possess a weak cofactor binding affinity but

occupation by cofactor generates enzymatic activity rapidly (< 1 min). Slow-binding sites

possess a relatively strong cofactor binding affinity but occupation by cofactor generates no

catalytic activity initially. Instead, it initiates a process in which the site is slowly (> 30

mins) transformed from a non-catalytic status to a catalytic-active status. This

transformation of the slow-binding site may involve a series of conformational changes

induced by cofactor binding, resulting in a delay of generation of catalytic activity. In

addition, the transformation of slow-binding sites must affect the fast-binding sites: the

cofactor binding affinity and catalytic activity of all four sites of the holoenzyme are same.

Thereafter, Tc-SAHH persistently exhibits a cofactor binding affinity at micromolar levels.

The slow-binding phase of Hs-SAHH terminates with a cofactor binding affinity also in the

micromolar range. Yet over a period of some 30 mins, Hs-SAHH develops a nanomolar

level of affinity for NAD+, due entirely to a decreased dissociation rate constant. The

structural reason for this increased cofactor affinity of Hs-SAHH is still unknown.

The kinetics of cofactor association with both human and trypanosomal apoenzymes create

saturation and exponential curves as a function of cofactor concentration. But the maximum

cofactor-binding rate constant of Hs-SAHH is ten times larger than that of Tc-SAHH.

Furthermore, the cofactor-association rate constant exhibits a complex temperature-

dependence such that NAD+ binds faster to Hs-SAHH than to Tc-SAHH above ~16 °C.

Compared to the cofactor-association process, the cofactor-dissociation process is relatively

simple. Cofactor NAD+ dissociates from all four binding sites in a single first-order reaction

for both Hs-SAHH and Tc-SAHH. However, cofactor always dissociates from Tc-SAHH

much more rapidly than from Hs-SAHH. For example, the cofactor-dissociation rate

constant of Tc-SAHH is 80-fold larger than that of Hs-SAHH at 37 °C. The differential

cofactor-dissociation rate constants provide a potential opportunity for inhibitors to bind

selectively to Tc-SAHH, which supports the idea that it is feasible to design selective
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inhibitors targeted toward the cofactor binding site and not toward the substrate-binding site,

as with previous efforts.

6.2. Structure elements responsible for differential cofactor binding properties (34 and
unpublished data)

Hs-SAHH and Tc-SAHH thus exhibit distinct kinetic and thermodynamic properties of

cofactor association and dissociation, which should be based on a structural distinction.

Although the X-ray structures show no significant differences between two enzymes, some

local elements near the cofactor-binding site may be important to NAD+ binding. The C-

terminal extension of SAHH is a flexible structure. The extension includes a short helix-18,

located 8 residues ahead of Lys, a final residue for Hs-SAHH and for three parasitic SAHHs

(Tc-SAHH, Ld-SAHH and Pf-SAHH). The residues Lys426 and Tyr430 in the C-terminal

loop of Hs-SAHH are found near NAD+ in X-ray structures, and may form hydrogen bonds

with NAD+. A stable helix-18 may help to locate residues Lys426 and Tyr430 at suitable

positions in the NAD+ binding pocket. Therefore, the relative stability of helix-18 should be

important for determining the differences in cofactor-association-dissociation and affinity

between human and parasitic enzymes. Each residue has its helix-propensity value, so the

helix-propensity value of helix-18 can be easily calculated according to its seven-residue

sequence. A high propensity value means a more stable helix structure. The hypothesis is

that the SAHH with a more stable helix-18 will bind the cofactor NAD+ more strongly. The

calculated helix-propensity values of helix-18 fall in a decreasing order Hs-SAHH (8.96) >

Tc-SAHH (8.35) > Ld-SAHH (7.73) > Pf-SAHH (7.31), consistent with the order of their

cofactor binding affinities as previously observed.

A mutagenesis approach was taken to create a “parasitized” human enzyme mutant, with

helix-18 of Hs-SAHH replaced by the less stable helix-18 of Pf-SAHH (Hs-18Pf-SAHH). A

“humanized” trypanosomal mutant was also constructed, with helix-18 of Tc-SAHH

replaced by the more stable helix-18 from Hs-SAHH (Tc-18Hs-SAHH). Both mutants

exhibit biphasic association kinetics (fast and slow binding) similar to that of wild type Hs-

SAHH and Tc-SAHH. The temperature dependence of the rate constant for NAD+

association shows a thermal transition for all SAHHs. The thermal-transition temperatures

follow the order Hs-SAHH (35 °C) > Hs-18Pf-SAHH (33 °C) > Tc-18Hs-SAHH (30 °C) >

Tc-SAHH (15 °C). These transitions are considered to arise from local structure changes

because the global unfolding temperatures of all four apo-SAHHs are greater than 40 °C.

The thermal-transition order for the four enzymes clearly indicates the influence of helix-18,

but doubtless reflects other properties of the “host enzyme” as well. The NAD+ dissociation

rate constants of all four enzymes also exhibit thermal transitions. The thermal-transition

temperatures decrease in the order Hs-SAHH (41 °C) > Hs-18Pf-SAHH (38 °C) > Tc-18Hs-

SAHH (36 °C) > Tc-SAHH (29 °C). This order matches the expected stability order for

helix-18. Here too it may reflect the contribution of other properties of the “host enzyme”.

Circular dichroism and differential scanning calorimetry provided the global unfolding

temperatures of all fully reconstituted holoenzymes which are around 63 °C and much

higher than the thermal-transition temperatures seen in the temperature dependence of the

NAD+ dissociation rate constants. This fact indicates that local structural alterations are the

origin of the thermal transitions.
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Besides the structure element helix-18 of the C-terminal extension, the β sheet of Rossmann

motif has also been identified as playing a role in NAD+ binding (unpublished data). The

Rossmann motif can be found in most classical NAD+ binding proteins35. Its βαβαβ unit

often associated with an additional β strand, forms a “core”, the minimum secondary

structure necessary for binding the cofactor36. In addition, the first 30–35 amino acids of the

“core” are a fingerprint region for the identification of dinucleotide binding. There are

several conserved characteristics within this fingerprint sequence: 1) a six-residue glycine-

rich sequence (GXGXXG) involved in phosphate binding; 2) six conserved positions

containing only hydrophobic amino acids; 3) a conserved, negatively charged residue and 4)

a conserved, positively charged residue35. Specifically, the six conserved hydrophobic

residues are located on the first β-sheet, the first α-helix and the second β-sheet, which form

a hydrophobic core and are crucial to pack the β-sheets against the α-helix in crucial

secondary-structure interactions36. Moreover, a second repeated βαβαβ unit, related to the

first one by a two-fold rotation, can usually be found in NAD(P)+ binding proteins36.

There are two classical Rossmann motifs seen in each subunit of SAHH: one in the

substrate-binding domain and the other in the cofactor-binding domain. The Rossmann

motif in the NAD+ binding domain has a second repeated βαβαβ unit. Alignment of the

fingerprint sequences (first 30–35 amino acids) of the Rossmann motif in the NAD+-binding

domain of human and parasitic SAHHs reveals that the two small conserved hydrophobic

residues on the first β-sheet of the Rossmann motif are conserved in Hs-SAHH and Pf-

SAHH, but replaced by two hydrophilic residues in Tc-SAHH and Ld-SAHH. The

replacement of the hydrophobic residues by two hydrophilic residues could weaken

hydrophobic interactions and increase the flexibility of the hydrophobic core formed by the

six hydrophobic residues and other residues. Such difference could influence NAD+

association, dissociation, and affinity.

The principle of our study of the first β sheet of the Rossmann motif is similar to that of our

study of the helix-18. The β-sheet propensity estimates of the first β sheet of the Rossmann

motif predict a greater stability of this sheet in Hs-SAHH than in parasitic SAHHs. The

enzymes with more stable β-sheets are expected to bind NAD+ more tightly. Parasitized Hs-

SAHH and humanized Tc-SAHH were created by mutations in the first β-sheet of the

Rossmann motif. Systematic kinetic and thermodynamic studies were performed on these

mutants. As expected, parasitized Hs-SAHH shows weaker cofactor binding affinity than

Hs-SAHH while humanized Tc-SAHH shows stronger cofactor binding affinity than Tc-

SAHH. The affinity changes indicate the role of this β-sheet in differential properties of the

human and parasitic enzymes.

These results confirm that structural distinctions between Hs-SAHH and Tc-SAHH cause

the observed differential kinetic properties and thermodynamic properties. Thus it seems a

promising avenue for anti-parasitic therapy to design inhibitors targeted on the cofactor

binding site of SAHH.
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6.3. Applications of NAD(/H) analogues as selective inhibitors of Hs-SAHH and Tc-SAHH
(See article by Li et al in this issue)

Analogues of NAD+ and its reduced form NADH can be divided into two categories: (a)

modifications in the nicotinamide part; (b) modifications in the adenine part. S-NAD and S-

NADH are the thione analogues of natural cofactors, modified in the nicotinamide part.

These two analogues have been reported to exhibit time-dependent inactivation of both Tc-

SAHH and Hs-SAHH but they show significant inactivation on Tc-SAHH during time

periods where they reduce the activity of Hs-SAHH very little. Under the competition of

natural cofactor NAD+ (50 μM) at 37 °C, S-NADH reaches an apparently complete

inactivation of Tc-SAHH within 20 mins. In contrast, S-NAD+ reaches and maintains an

apparent equilibrium of inactivation at 50% activity of Tc-SAHH. Under the same

conditions, Hs-SAHH loses only 10% of its activity in the presence of S-NAD or S-NADH

within 20 mins and reaches an apparent equilibrium inhibition only after twelve hours of

incubation.

So far seven analogues of NAD and their reduced forms have been tested on Tc-SAHH and

Hs-SAHH using the same approach (competition against 50 μM NAD+). H-NAD/H, C-

NAD/H, O-NAD are NAD/H analogues modified in the nicotinamide part. NGD, NHD/H

and ethno-NAD are NAD/H analogues modified in the adenine part. All structures are given

in Table 1. Investigations of these analogues of Hs-SAHH and Tc-SAHH were carried out at

37 °C in the presence of 50 μM NAD+ to simulate in vivo concentrations. None of these

analogues, either in oxidized form or reduced form, can inactivate Hs-SAHH by more than

4% within 6 mins. However, because cofactor NAD+ dissociates 90-fold faster from Tc-

SAHH than from Hs-SAHH, the analogues enjoy a greater probability of entrance to a

vacant cofactor binding site with Tc-SAHH, thus resulting in significant selective

inactivation. S-NADH and H-NADH are the best of the seven analogues, leading to more

than 90% inactivation of Tc-SAHH.

In summary, several analogues of NAD and NADH achieve selective inhibition under

conditions of competition with NAD+. NADH analogues are better candidates for selective

inhibition of Tc-SAHH because SAHH binds NADH more strongly than NAD+. Analogues

with modifications in the nicotinamide group do not exhibit cofactor function but, except for

O-NAD, they are strong competitive inhibitors. Analogues with modifications in the adenine

part show partial cofactor function, but are more weakly bound than NAD+ to Hs-SAHH by

four orders of magnitude. They are more weakly bound than NAD+ to Tc-SAHH by two

orders of magnitude. These observations suggest that the adenine group of NAD plays a

negligible role in cofactor function but makes a contribution to the cofactor-binding

interaction.

The successful in-vitro inhibition by NAD/H analogues of Tc-SAHH, but not Hs-SAHH,

support the design of selective inhibitors targeted on the cofactor binding site of SAHH.

Rational modifications of the structures of NAD and NADH may be capable of generating

candidate anti-parasitic drugs, especially for the treatment of Chagas disease.
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Scheme 1.1.
The role of SAHH in methyl transfer and metabolic pathways. Abbreviations: ADA,

adenosine deaminase; AK, adenosine kinase.
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Scheme 1.2.
Catalytic cycle of SAHH in both hydrolytic and synthetic directions with redox partial

reactions and elimination/addition partial reactions. B represents the enzymic residue that

accepts and returns the proton at the 4' position. SAHH with bound NAD+ exists in an open

conformation while SAHH with bound NADH exists in a closed conformation for a series of

catalytic reactions.
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Figure 1.
The tetrameric structure of SAHH containing cofactor NAD+ (light ball-and-stick) (pdb

code: 1KY4). Four cofactor-binding domains (central dark regions) form the core at the

center and four substrate-binding domains (corners of the figure) are located outside.
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Figure 2.
Open conformation (pdb: 1KY4, rat source) and closed conformation (pdb: 1LI4, human

source) of the SAHH monomer (created by Molecular Operation Environment). The top

domain is the cofactor-binding domain; the bottom domain is the substrate-binding domain;

the loop at the right is the C-terminal extension. SAHH in the open conformation contains

cofactor NAD+ (ball-and-stick) and SAHH in closed conformation contains cofactor NADH

(ball-and-stick) and oxidized inhibitor-NepA (ball-and-stick). From the open conformation,

the substrate-binding domain rotates ~ 19° toward to the cofactor binding domain to form an

active site for catalysis in the closed conformation.
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Figure 3.
Type I inhibitor (NepA) and Type II inhibitor (EDDFHA) structure and their inactivation

mechanisms (adopted from Elrod, et al. 200237).
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Table 1

NAD+ and its analogues
a
.

Name Structure

left:
Thionicotinamide adenine dinucleotide (S-NAD)
right:
3-Pyridinealdehyde adenine dinucleotide (H-NAD)

left:
Nicotinic acid adenine dinucleotide (O-NAD)
right:
3-Acetylpyridine adenine dinucleotide (C-NAD)

left:
Nicotinamide hypoxanthine dinucleotide (NHD)
right:
Nicotinamide guanine dinucleotide (NGD)

Nicotinamide 1, N6-ethenoadenine dinucleotide (etheno-NAD)

a
Reproduced from the paper by Li et al. in this issue.
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