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Abstract

Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of 

depression and response normalization coincides with clinical responsiveness to antidepressant 

medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic 

paraventricular nucleus (PVN) follows selective serotonin reuptake inhibitor (SSRI) 

antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a 

partial desensitization of 5-HT1AR signaling, and synergizes with SSRIs to result in a complete 

and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin 

and adrenocorticotrophic hormone(ACTH) responses to 5-HT1AR stimulation. G protein-coupled 

estrogen receptor1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR 

signaling, although the underlying mechanisms are still unclear. We now find that stimulation of 

GPER1 with the selective agonist G-1 and non-selective stimulation of estrogen receptors 

dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, 

RGSz1, a GTPase activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-

mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and 

phosphorylated, and differentially distributed in subcellular organelles. High molecular weight 

RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) 

of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also 

localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1could reduce Gαz 

activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced partial 

reduction in oxytocin and ACTH responses to 5-HT1AR-stimulation similar to direct injections 

into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the 

treatment of depression.
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Introduction

The most consistent biomarker in depressed patients is increased hypothalamic-pituitary-

adrenal (HPA) axis activity, such as high levels of plasma corticotropin releasing hormone 

(CRH), adrenocorticotrophic hormone (ACTH), and cortisol [1; 2], and successful 

antidepressant treatment is frequently correlated with normalization of HPA axis activity 

[3]. Serotonin is a major mediator of the HPA axis [4]; recent studies have shown that 

depression-like behavior in rodents is modulated by serotonin receptors, in particular the 

serotonin 1A receptor (5-HT1AR) [5; 6].

Selective stimulation of 5-HT1AR with (+)8-OH-DPAT produces an increase in the plasma 

levels of oxytocin (OT), ACTH, and corticosterone, which can be prevented by treatment 

with the 5-HT1AR antagonist WAY 100 635 in the paraventricular nucleus of the 

hypothalamus (PVN)[7; 8]. Chronic treatment with SSRIs produces desensitization of 5-

HT1AR signaling in the PVN, as measured by a reduction in the OT and ACTH response to 

5-HT1AR stimulation [9; 10; 11]. It takes 3–12 weeks to achieve clinical efficacy with 

SSRIs [12; 13]. Since this therapeutic delay is thought to be partly due to the time it takes 

for desensitization of 5-HT1AR signaling in the PVN and contribute to normalization of the 

HPA axis, treatment that reduces the time to achieve desensitization could have tremendous 

therapeutic benefits [9; 14; 15; 16].

Neuroendocrine challenge tests that detect peripheral changes in hormone responses to 5-

HT1AR agonists can be used to measure desensitization of 5-HT1AR signaling in the PVN 

[8; 17]. We found that two-day estradiol treatment accelerates SSRI-induced 5-HT1AR 

desensitization [18]; however, the mechanism underlying this effect is still unclear. Minimal 

estrogen receptor (ER) α is expressed in the PVN, though it is abundant in the peri-PVN 

region [19]. ERβ is abundantly expressed in the PVN and importantly in OT expressing 

neurons and a subset of CRH expressing neurons [20; 21] but does not contribute to the 

desensitization of 5-HT1AR signaling in the PVN, as selective stimulation of ERβ does not 

produce the desensitization response and knocking down ERβ in the PVN does not prevent 

the desensitization response [22].

Several G protein-coupled ERs have been reported. A Gαq-coupled receptor is expressed in 

the arcuate nucleus of the hypothalamus, CA1 region of the hippocampus and primary 

cortical cells in culture but not in the PVN [23]. G protein-coupled estrogen receptor 1 

(GPER1, also known as GPR30) distribution in the brain is distinct from ERα or ERβ [24], 

and colocalizes with 5-HT1AR, OT, and CRH in the PVN [24; 25; 26; 27], demonstrating 

that GPER1 is positioned to play a role in the estradiol-modulated release of these 

hormones. Although the roles of ERα and the Gαq-coupled membrane estrogen receptor in 

the estradiol-induced desensitization response have not been directly tested, the selective 
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GPER1 agonist G-1 is sufficient to produce the desensitization of 5-HT1AR signaling and 

knocking down GPER1 prevents estradiol-induced desensitization [27; 28].

Nonetheless, the mechanisms by which GPER1 signaling alter 5-HT1AR signaling 

components to produce desensitization are still unclear. The release of OT and ACTH via 5-

HT1AR is dependent only on Gαz, not other members of the Gαi/o family [29]. However, 

Gαz protein levels in the membrane fraction [30] and total tissue homogenates of the PVN 

[28] are not altered by estradiol treatment. Gαz is active in the GTP-bound form and has a 

very slow intrinsic rate of GTP hydrolysis. RGSz1, a regulator of G protein signaling (RGS) 

protein, has a high affinity for Gαz and increases the rate of GTP hydrolysis by over 400-

fold, effectively down-regulating Gαz downstream signaling [31; 32]. By this mechanism, 

increased RGSz1 could cause desensitization of 5-HT1AR signaling. Indeed, our previous 

studies have shown that RGSz1 is up-regulated by estradiol and could thereby play an 

important role in the desensitization of 5-HT1AR signaling [28; 33]. Two-day estradiol 

treatment increases RGSz1 mRNA, and several RGSz1 protein isoforms in the PVN, 

including a 29kd protein measured in the membrane fraction [33] and 45 and 55kd proteins 

measured in total homogenates of the PVN [28].

RGSz1 in the rat has a predicted molecular weight of 27kD based on its amino acid 

sequence [34]; however, multiple isoforms exist in the brain. RGSz1 has been shown to 

undergo posttranslational modification in isolated mouse synaptosomal membranes, 

including glycosylation, SUMOylation, and phosphorylation [35; 36], which may affect its 

subcellular localization and ability to regulate Gαz and thus contribute to desensitization of 

5-HT1AR signaling. This study is a comprehensive investigation of the effects of ER 

stimulation on post-translational modifications to RGSz1 protein isoforms. We focus on the 

subcellular localization of the various isoforms, especially the detergent-resistant 

microdomains (DRM) of the plasma membrane, where active Gαz and 5-HT1AR are 

localized, to elucidate the ability of the protein to interact with Gαz and thereby attenuate 5-

HT1AR signaling.

Methods

Animals

Female ovariectomized (OVX) Sprague-Dawley rats (225–250g) purchased from Harlan 

(Haslett, MI) were housed two per cage in a temperature-, humidity-, and light-controlled 

room (12 h light/dark cycle). Food and water were available ad libitum. All procedures were 

conducted in accordance with the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals and as approved by the University of Kansas Institutional Animal 

Care and Use Committee. All efforts were made to minimize animal discomfort and to 

reduce the number of animals used.

Drugs

17β-Estradiol-3-benzoate (EB) (Sigma-Aldrich, St. Louis, MO) was dissolved in 100% 

ethanol to a concentration of 25µg/ml and diluted to the final concentration with sesame oil. 

EB solution and sesame oil were administered at 0.4ml/kg. G-1 (1-(4-(6-
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Bromobenzo[1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl)-

ethanone), EMD Chemicals, Newark, NJ) was dissolved in 100% DMSO to a concentration 

of 5mg/ml and 10mg/ml and administered at 0.5ml/kg. (+)8-Hydroxy-2-

dipropylaminotetralin ((+)8-OH-DPAT, Tocris, Ellisville, MO). (+)8-OH-DPAT was 

dissolved in 0.85% NaCl (saline) at a concentration of 0.2mg/ml and administered at a dose 

of 0.2mg/kg. Solutions were made fresh before injection.

Experimental Procedure

Animals were randomly grouped according to the following complete block design: vehicle/

saline (n = 7), vehicle/DPAT (n = 8), EB/saline (n = 7), EB/DPAT (n = 8), G-1(2.5 mg/kg)/

saline (n = 7), G-1(2.5 mg/kg)/DPAT (n = 8), G-1(5 mg/kg)/saline (n = 7), G-1(5 mg/kg)/

DPAT (n = 8). Five days after OVX, rats were treated s.c. with EB (10µg/kg/day), G-1 (2.5 

or 5 mg/kg/day), or vehicle (DMSO) once a day for 2 days. Eighteen hours after the last 

treatment, rats were injected with (+)8-OH-DPAT (0.2mg/kg, s.c) or saline and sacrificed 

via decapitation 15 minutes later. The EB dosing regimen was based on our previous time 

course and dose-response studies demonstrating that 10ug/kg/day of EB for two days 

produces the maximal desensitization of 5-HT1AR signaling [28; 30]. At the time of 

experimental design, very little had been published regarding the systemic delivery of G-1 in 

rats; therefore, G-1 dose was calculated based on literature using implanted G-1 pellets in 

mice [37] and is similar to that used by Kastenberger et al., [38]. The 15 minute time period 

for sampling serum after 8-OH-DPAT was also based on a previous time course experiment 

which demonstrated that 15 minutes is the maximal response time for the effects of estradiol 

on ACTH and oxytocin [39]. Brains were removed and snap-frozen in dry-ice-cooled 

isopentane and then on dry ice. Trunk blood was collected in tubes containing 0.5ml 3M 

EDTA (pH 7.4). Brains and plasma were stored at −80°C until use.

Immunoblot assays

PVN was punched out from 300 µm-thick sections and tissue was homogenized as described 

previously [28]. Subcellular fractionation and isolation of the DRM from cortical tissue was 

performed as described previously [18]. Protein (10µg/lane) was resolved on a 12% SDS-

PAGE gel followed by transfer to polyvinylidene fluoride (PVDF) membrane. The 

membranes were incubated in blocking buffer and probed overnight using the following 

primary antibodies: goat anti-SUMO2/3 1:200 (#sc-5231, Santa Cruz Biotechnology, Dallas, 

TX), mouse anti-phospho(Ser/Thr/Tyr) 1:100 (#E3074, Spring Biosciences, Pleasanton, 

CA), mouse anti-flotillin-1 1:2000 (#610820, BD Biosciences, San Jose, CA), mouse anti-

Na+/K+ATPase α1 1:2000 (#sc-21712, Santa Cruz Biotechnology), rabbit anti-calreticulin 

1:2000 (#Ab4, Abcam, Cambridge, MA), goat anti-EEA1 (C-15) 1:1000 (#sc-6414, Santa 

Cruz Biotechnology), mouse anti-βactin (C4) 1:20,000 (#69100, MP Biomedicals, Solon, 

OH). Samples to be probed with the RGSz1 antibody were prepared without β-

mercaptoethanol to reduce background. RGSz1 antiserum was raised in rabbits against the 

last 15 amino acids of the C-terminal of RGSz1 by Biosynthesis (Lewisville, Texas). This 

RGSz1 antibody was previously shown to recognize a 27kD protein band in HEK293 cells 

transformed to over-express RGSz1but not in mock transformed cells [28]. Furthermore, the 

affinity purified RGSz1 antibody detected multiple protein bands at approximately the same 

molecular mass as in the current study, namely 27kD, 80kD, 90kD, 135kD and 145kD using 
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from 1.0 to 37 ng/lane of purified RGSz1 protein on a western blot. Detection of each of 

these bands was blocked by preadsorption of the RGSz1 antibody with purified RGSz1 

protein [33]. In the current study the RGSz1 antibody was affinity purified and used at a 

dilution of 1:100. After washing, membranes were incubated with the appropriate secondary 

antibody conjugated with horseradish peroxidase at a dilution of 1:10,000. Bands were 

detected with ECL substrate solution (GE Healthcare Biosciences, Piscataway, NJ) using 

BioRad ChemiDoc XRS+ molecular imager (BioRad, Hercules, CA). Bands were analyzed 

densitometrically using ImageLab software (BioRad, Hercules, CA). Each band was 

normalized to actin and calculated as percent of the control group within each blot. All 

samples were run in triplicate and the average for each was used for the final quantification.

Glycoprotein isolation

Glycoproteins from the membrane fraction of rat cortex were isolated via binding to a 

column containing WGA resin using a Pierce glycoprotein isolation kit (Thermo Scientific 

Inc). Glycoproteins were eluted from the column using the provided elution buffer or by 

heating at 95°C in 200µl SDS-PAGE sample buffer for 5 minutes. Glycoproteins were 

examined on immunoblots probed with affinity-purified anti-RGSz1 (1:100).

Immunoprecipitation

Membrane and cytosol fractions of the cortex containing 500–1000 µg of protein were pre-

cleared with 25 µl pre-washed protein G agarose beads (Invitrogen Carlsbad, CA) in total 

volume of 500 µl of IP buffer (50 mM Tris, pH 7.4, 10 mM EGTA, 100 mM NaCl, 0.5% 

Triton X-100, 20 mM NEM 1:100 protease inhibitor cocktail and 1:100 phosphatase 

inhibitor cocktail I and III) with rotation at 4°C for 1h. After centrifugation at 3000× g at 

4°C for 5 min, the supernatant was incubated with primary antibody (4µg mouse anti-

SUMO-1 (D-11), #sc-5308, Santa Cruz Biotechnology; 1:50 rabbit anti-RGSz1 or 4µg IgG 

control) and rotated at 4°C overnight. Pre-washed protein G beads (50 – 100 µl) were added 

to each tube and rotated at 4°C for 2 h. Protein G beads were pelleted by centrifugation at 

1000× g, at 4°C for 3 min and then resuspended in 0.5 ml ice cold IP buffer. After washing, 

the protein complexes were eluted in 25 µl 2X sample buffer without β-mercaptoethanol by 

heating at 95°C for 5 min, then centrifuging at 3000×g for 5 min. The supernatant was 

collected and stored at −80°C until used for immunoblotting.

Radioimmunoassay of plasma oxytocin and ACTH

Plasma oxytocin and ACTH were determined by radioimmunoassay as previously described 

with minor modifications [17]. Radioactive 125I oxytocin and 125I ACTH (specific activity 

of each: 2200 Ci/mmol) were obtained from Perkin Elmer (Waltham, MA) and DiaSorin 

(Stillwater, MN), respectively. Intra-assay coefficients of variation were 3.93 for the 

oxytocin assay and 2.17 for the ACTH assay.

Statistical analysis

All experiments were performed in triplicate and data are expressed as means ± SEM. One- 

or two-way analysis of variance (ANOVA) and Student-Newman-Keuls post hoc tests were 
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conducted using a statistical program (Statview version 5.0 software, SAS Institute Inc., 

Cary, NC).

Results

RGSz1 isoforms have selective subcellular localization

The predicted molecular weight of RGSz1 is 27 kD; however, previous studies from our 

laboratory and others have demonstrated multiple RGSz1 bands on western blots [28; 33; 

35; 36]. Western blotting with an affinity-purified RGSz1 antibody reveals a series of bands 

with differential distribution in the cytosol and membrane fractions in the cortex, 

hippocampus, hypothalamus and midbrain. Similar patterns of RGSz1 bands were seen in 

these brain regions but the relative abundance of individual RGSz1 isoforms varied.

To understand the functional importance of the different RGSz1 isoforms, we examined 

their subcellular localization via gradient centrifugation to separate the subcellular 

organelles based on their density (Figure 2A). The 135kD isoform colocalized with Na+/K

+ATPase, a plasma membrane marker. Interestingly, while the 90kD and 50kD bands did 

not completely co-localize with any marker tested in the present study, they did localize with 

each other and showed some overlap with the plasma membrane marker (Figure 2B). The 

80kD and 35kD bands were located in the early endosome, as marked by EEA1 (Figure 2C); 

however, as the fractions containing the early endosome also contain cytosolic markers [18], 

these isoforms could be located in the cytosol as well. Finally, the 45kD and 40kD bands 

were predominantly located in the ER, as determined by colocalization with calreticulin 

(Figure 2D).

Because activated Gαz proteins are localized in DRM of the plasma membrane [18], the 

RGSz1 isoform that facilitates GTP-Gαz hydrolysis would need to be located in the DRM. 

To this end, we isolated DRM with Triton X-100 treatment followed by sucrose gradient 

centrifugation. DRM fractions were identified by flotillin 1 (Figure 3A). Interestingly, the 

135kD (Figure 3B) and 90kD (Figure 3C) proteins both distributed in two distinct 

populations: one was located in the DRM as marked by flotillin 1, and another one was 

located outside the DRM. The 50kD RGSz1 isoform localized entirely in the DRM (Figure 

3C), while the 80kD band and the vast majority of the 40/45kD (unresolved) bands were not 

colocalized with the DRM, consistent with their location outside the plasma membrane 

(Figure 2).

Post-translational modification of RGSz1

To determine whether the increased molecular weights of the different RGSz1 isoforms 

could be due to post-translational modifications, we first used computer-assisted analysis of 

the RGSz1 amino acid sequence to predict potential modification sites. We found two 

possible sites for N-linked glycosylation (Center for Biological Sequence Analysis, http://

www.cbs.dtu.dk/services/NetOGlyc/), as well as potential phosphorylation sites on several 

serine, threonine, and tyrosine residues (Center for Biological Sequence Analysis, http://

www.cbs.dtu.dk/services/NetPhos/). In addition, we identified one SUMO consensus site via 

SUMOsp2.0 GPS program (http://sumosp.biocuckoo.org) (Figure 4A).
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To examine glycosylation of RGSz1, glycoproteins from the membrane fraction of the 

cortex were isolated via binding to a column containing WGA resin, then eluted from the 

column using elution buffer. This procedure identified the 135kD band as the major 

glycosylated isoform of RGSz1 (Figure 4B); however, the yield was very low. Boiling the 

sample in SDS-PAGE buffer increased the amount of glycoproteins released from the WGA 

resin, and allowed us to detect significant bands at 135kD, 80kD, and 40kD, as well as 

several others (Figure 4C), suggesting that there are three major glycosylated RGSz1 protein 

isoforms. The lower intensity bands are likely either glycosylation of less abundant isoforms 

or represent degradation products.

We identified SUMOylated RGSz1using immunoprecipitation (IP) with SUMO 1 antibody 

followed by immunoblotting with the RGSz1 antibody. In the cytosol fraction, three bands 

were detected at 90kD, 50kD, and 45kD. In the membrane fraction, a 135kD band was 

detected, as well as a major band at 90 and 40kD (Figure 4D).

Next, anti-RGSz1 antibody was used to IP RGSz1 proteins from cytosol and membrane 

fractions of rat cortical tissue. Immunoblotting with anti-SUMO2/3 revealed a ladder of 

bands, with the clearest being at 35kD and 45kD in the membrane fractions and possibly the 

135kD RGSz1 isoform (Figure 4F). Immunoblotting with an antibody against serine/

threonine/tyrosine phosphorylation detected a strong band at 35kD and a lighter band at 

40kD in both the cytosol and membrane fractions after RGSz1 IP (Figure 4E).

GPER1 stimulation alters RGSz1 isoforms in the PVN

To test the hypothesis that alterations in RGSz1 expression and post-translational 

modification after GPER1 stimulation underlie estradiol-induced desensitization of 5-

HT1AR signaling, we first examined the effect of 5 mg/kg G-1 and EB treatment on the 

expression of the different RGSz1 isoforms in the PVN.

In the cytosol fraction of the PVN, both G-1 and EB treatment had dramatic effects on 

RGSz1 expression (Figure 5A and B). Both pretreatments increased expression of the 80kD 

(F(2,15) = 28, p < .0001) and 50kD bands (F(2,17) = 5.3, p = .017) and decreased expression 

of the 135kD (F(2,20) = 7.7, p = .0033) and 40/45kD bands (F(2,17) = 20, p < .0001), with no 

change in the 35kD (F(2,17) = 1.2, p = .29) relative to control. G-1 pretreatment increased 

expression of the 90kD band relative to both vehicle and EB (F(2,17) = 12, p = .0006). (+)8-

OH-DPAT had no effect on any of the RGSz1 isoforms (Figure 5C). Because the 

unmodified 29kD RGSz1 band is in such low abundance relative to the other isoforms, it is 

not easily detected with the affinity-purified antibody and thus was not measured in these 

experiments.

Interestingly, a 145 kD band is present in the PVN membrane but not detected in the other 

brain regions examined including the whole hypothalamus (Figure 5D). In the membrane 

fraction of the PVN, the predominant bands were at 145kD and 40/45kD (Figure 5E). 

However, due to the abundance of the band running at approximately 40kD, this band could 

also include the 45kD isoform. G-1 treatment produced a robust increase in the 145kD band 

(F(2,15) = 4.4, p =.03), while EB treatment had no effect relative to control (Figure 5F). The 

135kD band in the PVN was expressed in low abundance compared to the cytosol and other 
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brain regions, but was still quantifiable. Interestingly, both EB and G-1 treatment increased 

the 135kD isoform (F(2,14) = 6.1, p = .01) and decreased the 80kD isoform (F(2,16) = 28, p <.

0001). These results correspond to the changes in the cytosol, in which EB and G-1 

treatment had the opposite effect on the 135kD and 80kD isoforms. The abundance of the 

40kD band was not affected by treatment with EB or G-1 (F(2,14) = .25, p = .79). As in the 

cytosol, (+)8-OH-DPAT challenge had no effect on any of the RGSz1 protein isoforms 

(Figure 5G).

Peripheral G-1 administration reduces the hormone response to 5-HT1AR stimulation

Baseline levels of plasma OT were unchanged in the treatment groups compared to vehicle 

(Figure 6A). Activation of 5-HT1AR by (+)8-OH-DPAT increased plasma OT levels in 

vehicle-treated rats. The OT response was significantly reduced in the EB-treated group. 

The high dose of G-1 (5 mg/kg) significantly reduced the OT response comparable to EB; 

the low dose of G-1 (2.5 mg/kg) also reduced the OT response, although the effect was not 

as robust (two-way ANOVA: main effect of (+)8-OH-DPAT: F(1,37) = 493.6, p <.0001; 

main effect of pretreatment: F(3,37) = 8.541, p = .0002; interaction between pretreatment and 

challenge: F(3,37) = 5.840, p = .0023).

ACTH baseline response was not affected by any pretreatment (Figure 6B). Stimulation of 

5-HT1AR by (+)8-OH-DPAT increased ACTH levels in vehicle-treated rats. The magnitude 

of the ACTH response to (+)8-OH-DPAT was significantly reduced in EB-treated rats. Both 

doses of G-1 reduced ACTH significantly compared to vehicle and EB (two-way ANOVA: 

main effect of (+)8-OH-DPAT: F(1,44) = 842.6, p <.0001; main effect of pretreatment: F(3,44) 

= 7.707, p = .0003; interaction between pretreatment and challenge: F(3,44) = 7.180, p = .

0005). Together, these data demonstrate that peripheral injection of G-1 is sufficient to 

reduce the 5-HT1AR-mediated release of ACTH and oxytocin, similar to EB.

Discussion

The purpose of the present study was to identify RGSz1 isoforms that are positioned to alter 

5-HT1AR/Gαz signaling and determine if estradiol and specifically signaling through 

GPER1 impacts these RGSz1 isoforms. Our data suggest that the G-1-induced increases in 

the 135kD and perhaps the 145kD RGSz1 protein isoforms are a possible mechanism 

contributing to the desensitization of 5-HT1AR signaling. This hypothesis is based on the 

findings that the 135kD RGSz1 protein isoform is located in the DRM where it is positioned 

to attenuate 5-HT1AR/Gαz signaling and that stimulation of GPER1 by both estradiol and 

G-1 increased the levels of the 135kD RGSz1 protein isoform in the PVN. Although we 

identified three RGSz1 protein bands in the DRM migrating at approximately 135kD, 90kD 

and 50kD on immunoblots only the 135kD isoform was altered with EB and GPER1 

stimulation. Interestingly, we found that while EB and G-1 treatment produced comparable 

changes in most of the RGSz1 bands measured, only G-1 increased a 145kD band in the 

membrane, resulting in a dramatic increase relative to control and EB treatment. That this 

expression was so markedly affected by G-1 treatment and not EB suggests that this isoform 

could contribute to the apparent sensitivity of the ACTH response to G-1 over EB treatment. 

ACTH release is under the control of CRH, and while the mechanism by which Gαz 
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mediates CRH release is still unclear, it could be particularly susceptible to regulation by the 

145kD RGSz1 isoform. The 145kD band appears to be specific to the membrane fraction of 

the PVN; it is not seen in the cortex, hippocampus, amygdala, or even the other regions of 

the hypothalamus. The PVN does not contain enough protein to perform 

immunoprecipitation of RGSz1, so characterization of this isoform is difficult; however, its 

localization to the membrane fraction suggests that it could be localized to the DRM.

It is clear from the present study that signaling through GPER1 produces dramatic changes 

in posttranslational modifications of RGSz1 in the PVN. Except for the expression of the 

145kD RGSz1 isoform which was only detected in the PVN, the expression of the other 

RGSz1 isoforms is more similar among the brain regions examined, albeit with some 

isoforms being more highly expressed than others. However, changes in RGSz1 protein after 

EB or G-1 treatment are dramatically different depending on the brain region. Previous work 

in our laboratory found that EB treatment produced a decrease in the 40kD RGSz1 isoform 

in the hippocampus but no change in the amygdala. Furthermore, a decrease of the 40kD 

band was observed in the PVN after EB treatment but this band was increased in the rest of 

the hypothalamus [30]. In contrast to our findings in the PVN, the effects EB and G-1 on 

RGSz1 in the frontal cortex are subtle and largely non-significant (data not shown). These 

results suggest that regulation of RGSz1 posttranslational modification is under local 

control, most likely due to the relative levels of specific types of ER expressed in each 

region.

Investigation of RGSz1 posttranslational modifications identified SUMOylation, 

glycosylation, and phosphorylation of RGSz1 isoforms. The present study demonstrated that 

the 135kD, 90kD, and 50kD RGSz1 isoforms are SUMOylated with SUMO1 and are the 

only isoforms located in the DRM. Remarkably, our previous studies demonstrated that 

SUMOylation of both 5-HT1AR in the DRM and the 35kD Gαz isoform located in the DRM 

[18; 40]. Furthermore, treatment with EB and G-1 resulted in an increase in the 135kD 

RGSz1 in the membrane, with a corresponding decrease in the non-SUMOylated 80kD 

isoform in the cytosol. SUMOylation affects a variety of cellular processes including 

subcellular localization and control of protein-protein interactions. Vertebrates express three 

SUMO isoforms SUMO1, SUMO2 and SUMO3; SUMO2 and 3 are nearly identical and are 

referred to in combination as SUMO2/3. SUMO2/3 contains a SUMO consensus sequence, 

and can form poly-SUMO chains via isopeptide linkages; SUMO1 does not contain a 

consensus site and SUMOylation of a poly-SUMO chain with SUMO1 can thus serve to 

terminate the chain [41; 42]. We observed a ladder pattern of SUMO2/3 immunoreactivity 

after RGSz1 IP, which suggests chains of SUMO2/3. Addition of a SUMO1 molecule as a 

cap to a poly-SUMO2/3 chain could account for the increase in apparent molecular weight 

from 80kD to 135kD; thus SUMOylation may be acting as a molecular switch to increase 

RGSz1 in the DRM of the plasma membrane to regulate Gαz signaling. Since the DRM is 

the location of active GPCR signaling proteins, the increase in RGSz1 in the DRM would 

reduce the activity of Gαz signaling by hydrolyzing the activated GTP-bound Gαz to 

inactive GDP-bound Gαz. Our previous studies demonstrated that the 35kD Gαz isoform 

located in the DRM is decreased by EB treatment [18], and that 5-HT1AR is also localized to 

the DRM [40]. The EB and G-1 induced increase of DRM-localized RGSz1 together with 

the EB-induced decrease of DRM-localized Gαz would reduce 5-HT1AR signaling. Further 
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studies will be required to verify this putative mechanism. However, taken together with our 

previous studies [18; 40], our results suggest that SUMOylation with SUMO1 regulates key 

components of 5-HT1AR signaling pathway in the PVN which regulates hormone release, 

including 5-HT1AR, Gαz and RGSz1.

We found that the 35kD, and possibly the 50kD, RGSz1 isoforms are phosphorylated. 

Phosphorylation is critical in the control of many cellular pathways, and may be a regulator 

of non-nuclear SUMOylation as well [42]. Depending on the substrate, the negative charge 

of a phosphate group can enhance or inhibit SUMOylation [43; 44]. There is a serine residue 

(S159) adjacent to the SUMO consensus site that, if phosphorylated, could facilitate 

SUMOylation.

Protein glycosylation plays an important role in protein structure, signal transduction, cell-

cell interactions, and hormone action [45; 46; 47]. Addition and editing of carbohydrate 

units to proteins occurs in the endoplasmic reticulum and Golgi apparatus. Here, we found 

that a major glycosylated form of RGSz1, at 40kD, localized to the endoplasmic reticulum. 

The RGSz1 proteins of greater molecular weights than 40kD are also glycosylated, 

suggesting that the 40kD band, which is the most abundant of the RGSz1 isoforms, may 

serve as a pool from which, once glycosylated, other modifications such as SUMOylation 

can be added or removed, thus regulating RGSz1 localization and function [48].

Recent studies in the mouse have demonstrated a similar RGSz1 immunoblot profile in the 

mouse brain, including high molecular weight bands (130–150kD) that were glycosylated 

[35] and mid-range molecular weight bands that were SUMOylated and phosphorylated 

[36]. These results cannot be compared directly with this present study, as the studies were 

conducted in different species (there is 86% homology between mouse and rat RGSz1), 

different receptor signaling systems were examined, and the antibodies used to detect 

RGSz1 were raised differently. However, the results from the current study are consistent 

with those from the mouse studies demonstrating that post-translational modifications 

including SUMOylation, glycosylation and phosphorylation of RGSz1 result in numerous 

protein bands detectable on western blots.

The long-term goal of the present study is to identify novel targets to more rapidly produce 

desensitization of 5-HT1AR signaling in the PVN to improve the therapeutic effects of 

SSRIs [9; 15]. Two days of EB treatment produces a partial desensitization of 5-HT1AR 

signaling and synergizes with fluoxetine to produce a rapid and complete desensitization 

[18]. This effect is mediated by GPER1, as knockdown of GPER1 expression prevents EB-

induced desensitization, and intra-PVN injection of G-1 produces a partial desensitization of 

5-HT1AR signaling in the PVN [27; 28]. In the present study, we demonstrated that systemic 

G-1 treatment produces similar effects: first, a dose-dependent effect on OT release, with the 

higher dose reducing OT release by the same magnitude as EB. Second, both doses of G-1 

produced a similar reduction of plasma ACTH which was even more robust than EB 

treatment consistent with our previous intra- PVN results [27].

Increasing the dose of EB or extending the length of treatment does not further reduce the 

hormone response to (+)8-OH-DPAT [18; 30]. EB, as a physiologically active estrogen, 
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activates all ER with slightly higher selectivity for the nuclear ERs over GPER1 (Ki of EB 

for ERα, ERβ, and GPER1 is 0.30 nM, 0.38nM, and 5.7 nM, respectively) [49]. ERβ is 

abundantly expressed in OT- and subset of CRH-expressing neurons in the PVN, while ERα 

is abundant in GABAergic neurons of the peri-PVN region [19; 20; 21]; EB treatment 

therefore stimulates ER with potentially opposing effects that may diminish the GPER1 

response. G-1, on the other hand, is highly selective for GPER1 over ERα and ERβ (Ki for 

G-1 at GPER1 is 11 nM, with no significant binding at ERα or ERβ at concentrations up to 

1 µM) [49]. Additionally, there is a partial estrogen response element in the promoter region 

of the CRH gene, and estradiol treatment has been shown to increase CRH mRNA and 

protein expression, as well as AVP mRNA, likely through an ERβ-mediated mechanism 

[50]. Selective stimulation of GPER1 with G-1 avoids an ERβ-mediated EB-induced 

increase in CRH, thus blunting the ACTH response. The selectivity of G-1 for GPER1 over 

the nuclear ERs may also explain the differential changes in RGSz1 isoform between G-1 

and EB treatment.

In conclusion, the present results demonstrate that RGSz1 isoforms with different post-

translational modifications are differentially distributed in subcellular organelle. In 

particular, we identified a SUMOylated 135kD RGSz1 isoform in the DRM where it can 

physically interact with activated Gαz and shut off 5-HT1AR downstream signaling, thus 

reducing HPA axis activity. Most importantly, EB and G-1 treatment alter the expression of 

RGSz1 protein isoforms in the PVN, which is consistent with the hypothesis that RGSz1 

post-translational modifications, especially SUMOylation, have a significant functional 

impact on RGSz1 activity and regulation of Gαz signaling in the PVN. Further studies are 

needed to test this hypothesis and determine the mechanisms by which GPER1 signaling 

increases SUMOylation. In addition, the present results demonstrate for the first time that 

peripheral delivery of the selective GPER1 agonist G-1 produces desensitization of 5-

HT1AR signaling. Peripheral delivery is significant for potential translation to preclinical 

and clinical studies, as peripheral injections are more feasible than intra-PVN delivery. 

Moreover, G-1 produced a more robust response than EB and would be less likely to 

produce off-target effects based on receptor selectivity. Our results provide evidence that 

targeting GPER1 and RGSz1 may provide a selective mechanism for the acceleration of 

SSRI therapeutic effects.
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Figure 1. 
RGSz1 protein in the rat brain. Immunoblot detection of RGSz1 expression in the cytosol (c) 

and membrane (m) fractions of the cortex (CTX), hippocampus (HPC), hypothalamus 

(HTH), and midbrain (MB) using affinity-purified anti-RGSz1 antibody.
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Figure 2. 
Subcellular distribution of RGSz1 protein in subcellular fractions from discontinuous 

iodixanol gradient centrifugation prepared with rat cortex. Representative immunoblot is 

shown in (A). Graphical representations show the colocalization of RGSz1 with plasma 

membrane marker, Na+/K+ATPase (B); early endosome marker EEA1 (C); and ER marker 

calreticulin (D). Data are expressed as % of peak across fractions, and represent the average 

of three experiments.
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Figure 3. 
Distribution of RGSz1 protein in sucrose gradient fractions of Triton X-100 treated cortex 

homogenates. (A) A representative immunoblot is shown. Fractions containing the DRM 

were identified by the DRM marker flotillin. Total: Triton X-100 treatment without sucrose 

gradient centrifugation. Graphical representations show the colocalization of RGSz1 with 

flotillin (B and C). Data are expressed as % of peak across fractions, and represent the 

average of three experiments.
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Figure 4. 
Post-translational modifications of RGSz1. (A) Rat RGSz1 primary amino acid sequence. 

Predicted glycosylation sites are underlined and bolded; predicted SUMOylation site is 

bolded; predicted phosphorylation sites are shaded in gray. (B) RGSz1 immunoblot of 

glycoprotein isolated from cortical membrane fraction. Input: sample before isolation. FT: 

column flow-through. WGA: glycoproteins eluted from wheat germ agglutinin column. (C) 

RGSz1 immunoblot of isolated glycoprotein eluted from column by boiling in SDS-PAGE 

sample buffer. CE: control eluate (WGA column without protein added). CFT: control flow-

McAllister et al. Page 18

Neuroendocrinology. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



through. (D) Immunoprecipitation (IP) of SUMO-1 and immunoblot detection of RGSz1 in 

cytosol and membrane fractions of cortex. Input: sample before IP. IgG: mouse 

immunoglobin G control. IB: immunoblot. (E) IP of phosphorylated RGSz1 in cytosol and 

membrane fractions of cortex. IgG: rabbit immunoglobin G control. (F) IP of RGSz1 and 

immunoblot detection of SUMO2/3 in cytosol and membrane fractions of cortex. IgG: rabbit 

immunoglobin G control.
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Figure 5. 
(A) Representative immunoblot of cytosolic RGSz1 from the PVN of rats treated with 

10µg/kg EB or 5mg/kg G-1 (left panel), or challenged with saline or (+)8-OH-DPAT (right 

panel), with β-actin as loading control. Effect of treatment (B) and challenge (C) is 

quantified and combined from three separate immunoblots. (D) Immunoblot comparison of 

RGSz1 high molecular weight bands in the membrane fractions of the PVN and CTX. (E) 

Representative immunoblot of RGSz1 from the membrane fraction of PVN of rats treated 

with 10 µk/kg EB or 5mg/kg G-1 (left panel), or challenged with saline or (+)8-OH-DPAT 
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(right panel), with β-actin as loading control. Effect of treatment (F) or (+)8-OH-DPAT 

challenge (G) is quantified and combined from three separate immunoblots. Bands were 

analyzed densitometrically (integrated optical density, IOD). Each band was normalized to 

β-actin and expressed as percent of control (vehicle or saline). Data are expressed as mean ± 

SEM (n = 4). Note that the 40 and 45kD RGSz1 bands did not appear to resolve into two 

separate bands as seen on the blots prepared with tissue from the subcellular fractionation 

preparations seen in Figure 2. The single band was quantified and labeled as a 40kD band 

although likely represents both the 40 and 45kD RGSz1 isoform. Probing for β actin was 

done on the same immunoblots as RGSz1 and matched to the correct lanes. (*) Significantly 

different from vehicle control; (#) significantly different from EB, p <.05 by Student-

Newman-Keuls post hoc test.
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Figure 6. 
Effects of 10µg/kg EB, 2.5mg/kg G-1, or 5mg/kg G-1 treatment for 2 days on plasma OT 

(A) and ACTH (B) levels in response to saline or (+)8-OH-DPAT challenge in OVX rats. 

The data are presented as the mean ± SEM (n = 7–8). (*)Significantly different from saline-

challenged group with same treatment, p <.0001; (#)significantly different from (+)8-OH-

DPAT-challenged vehicle group, p <.005 by Student-Newman-Keuls post hoc test.
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Figure 7. 
Summary of RGSz1 isoform characterization. ↑: increased expression after treatment. ↓: 

decreased expression after treatment. X: no change in expression after treatment. Bands that 

were unmeasured in the PVN are left unmarked.
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