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Abstract

To date, our work on Solanaceous species (Datura wrightii, Jaborosa caulescens, Physalis hispida,

P. longifolia, Vassobia breviflora, and Withania somnifera) has resulted in the isolation of 65

withanolides, 31 of which were new, as well as the semi-synthesis of a further 30 withanolides.

Structure identification and MTS assay-based antiproliferative evaluation of these 95 compounds

revealed that a Δ2-1-oxo functionality in ring A; in conjunction with either a 5β,6β-epoxy or 5α-

chloro-6β-hydroxy moiety in ring B; are the minimum structural requirements for withanolides to

produce potent cytotoxic activity. Such structural-activity relationship analysis (SARA) also

revealed that oxygenation (the –OH or –OR groups) at C-4, 7, 11, and 12; as well as C-14 to C-28;

did not contribute toward the observed antiproliferative activity. Herein we present a complete

overview of our work as it relates to the withanolides reported from 1965 to 2013.
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1. Introduction

Withanolides are highly oxygenated steroids classified into 24 structural types (I–XXIV)

derived from a C28 ergostane skeleton (Figure 1). The first compound in this class was

reported in 1965 and called withaferin A (1) (Kupchan et al. 1965; Lavie et al. 1965) (Figure

2). Since this time approximately 900 withanolides have been reported, formed by ring

fission, cyclization, or skeleton rearrangements of the steroid nucleus or the nine carbon side

chain (Cao et al. 2014; Jin et al. 2012; Ma et al. 2007; Zhang et al. 2012a). The presence of

these compounds are predominantly reported in the Solanaceous genera of Acnistus,

Aureliana, Brachistus, Browallia, Datura, Deprea, Discopodium, Dunalia, Exodeconus,

Hyoscyamus, Iochroma, Larnax, Lycium, Mandragora, Nicandra, Salpichroa, Saracha,

Solanum, Trechonaetes, Tubocapsicum, Vassobia, and Witheringia. The primary sources of

the natural withanolides come from extensively studied species in the genera Jaborosa,

Physalis, and Withania (Chen et al. 2011; Misico et al. 2011; Zhang et al. 2012a).
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Interestingly, more than 13 (I, III, V–VIII, XI, XVII, XIX–XXIV) of the 24 known

structural types have been reported in Physalis to date (Cao et al. 2014; Jin et al. 2012; Ma

et al. 2007; Zhang et al. 2012a). Withanolides have also been isolated from several non-

solanaceous plants, such as in members of the Dioscoreaceae (Kim et al. 2011), Fabaceae

(Ray et al. 1994), Lamiaceae (Chen et al. 2011), Myrtaceae (Vankar et al. 2009), and

Taccaceae (Chen et al. 2011), as well as the marine Alcyoniidae (Chao et al. 2011, Ksebati

et al. 1988).

Unmodified withanolides (type I) are by far the most abundant withanolide category

observed in nature, where approximately 580 have been reported in the Solanaceae alone.

Due to their vast abundance in nature compared to the other varieties (II–XXIV), type I
withanolides are further sub-categorized according to specific side chain variations (Ia δ-

lactone; Ib δ-lactol; Ic and Id γ-lactone; Ie γ-lactol). Furthermore it is reasonable to suppose

that type I withanolides are the biogenetic precursors to the more advanced structural types

II–XXIV (Figure 1).

In recent years withanolides have gained significant scientific interest due to their structural

and biological diversity, as well as their antitumor capacities, where greatest

antiproliferative potency was observed in type I withanolides containing an α,β-unsaturated

ketone in ring A; a 5β,6β-epoxy group in ring B; and a nine-carbon side chain with a δ-

lactone. (Chen et al. 2011; Misico et al. 2011; Zhang et al. 2012a).

As part of our continuing investigations to discover drug leads from plant biodiversity, we

have explored the antiproliferative potential of compounds present in several members of

the Solanaceae family. The in vitro MTS cytotoxic bioassay guided fractionation of Datura

wrightii Regel; Jaborosa caulescens Gillies & Hook; Physalis hispida (Waterf.) Cronquist;

P. longifolia Nutt.; Vassobia breviflora (Sendtn.) Hunz; and Withania somnifera (L.) Dunal;

led to the isolation and characterization of 65 withanolides (1–65) as well as a further 30

withanolide derivatives (66–95) (Figures 2–5). In this report, we provide a complete

summary of our work as well as an overview of the structural types of withanolides reported

from 1965 to 2013.

2. Withanolides isolated from natural sources

2.1. Withanolides of Vassobia breviflora and Withania somnifera

The first Solanaceae species we investigated was the Latin American spiny shrub V.

breviflora, where cytotoxicity-guided purification led to the isolation and characterization of

withaferin A (1) (Samadi et al. 2009; Samadi et al. 2010). Preliminary results revealed 1 as a

promising chemotherapeutic candidate for antitumor therapy, and that further translational

evaluation of 1 was warranted (Grogan et al. 2013; Samadi et al. 2012). However,

difficulties arose in obtaining sufficient quantities of V. breviflora biomass needed to isolate

the required amounts of 1 for such studies.

To overcome this obstacle we investigated the commercially available roots of W. somnifera

(Solanaceae) from where 1 was first discovered. This species is popularly known as

Ashwagandha or Indian ginseng and widely used in the traditional Ayurvedic system of
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plant medicine for immune-modulation and anti-aging (Misra et al. 2008). To date more

than 130 diverse withanolides, the vast majority of which possess type Ia skeleton (Figure

1), have been identified in W. somnifera, which represents the largest number of

withanolides reported in a single species. In addition to 1, our study of the species also

resulted in the isolation and identification of the new withanolide 6α-chloro-5β,17α-

dihydroxywithaferin A (6) in conjunction with further known [withanolide D (2), 27-

hydroxywithanolide D (3); 5,6-deoxywithaferin A (4); 16β-acetoxy-6α,7α-epoxy-5α-

hydroxy-1-oxowitha-2,17(20),24-trienolide (5); 6α-chloro-5β-hydroxywithaferin A (7); 2,3-

didehydrosomnifericin or 5β,6α-dihydroxywithaferin A (8); withanolides A (9), 27-

hydroxywithanolide A (10), and withanolide B (11); 27-hydroxywithanolide B (12),

withanone (13); (22R)-5β-formyl-6β,27-dihydroxy-1-oxo-4-norwitha-24-enolide (14); 2,3-

dihydrowithaferin A (15); 3-methoxy-2,3-dihydrowithaferin A (16); withanoside IV (17)

and withanoside X (18)] withanolides (Figure 2) (Tong et al. 2011; Zhang et al. 2014a).

2.2. Withanolides of Physalis longifolia and P. hispida

Preliminary screening of our ethnobotanical library, which includes in excess of 200 species

native to the U.S. Great Plain, suggested that withaferin A (1) was also present in the wild

tomatillo Physalis longifolia Nutt. (Solanaceae), commonly known as “long leaf

groundcherry” or “wild tomatillo” (Kindscher et al. 2012). In addition to 1, our investigation

on this species resulted in the isolation and identification of an array of new

[withalongolides A-P (19–34)] and other known [2,3-dihydrowithaferin A (15), 3β-

methoxy-2,3-dihydrowithaferin A (16), sitoindoside IX (35), viscosalactone B (36), 2,3-

dihydro-3β-O-sulfate withaferin A (37), and 3α,6α-epoxy-4β,5β,27-trihydroxy-1-

oxowitha-24-enolide (38)] withanolides (Figure 2) (Zhang et al. 2011; Zhang et al. 2012b).

Such unprecedented withanolide variety indicated that the Physalis genus was a good source

of diverse withanolides and clearly suggested that other Physalis species were worthy of

further exploration. This led to the phytochemical investigation of the North American

herbaceous perennial Physalis hispida (Waterf.) Cronquist, commonly known as “prairie

groundcherry”, which resulted in the isolation of new [withahisolides A–I (39–47)] as well

as known [nicaphysalin E (48), nicandrenone (49), nicandrenone methyl ether (50),

nicandrenone 12 (51); salpichrolides A (52), C (53), and N (54); physalindicanols A (55)

and B (56)] withanolides (Figure 3) (Cao et al. 2014). In an effort to further diversify our

withanolide library and better probe the withanolide antiproliferative structural activity

relationship model, it was decided that different Solanaceous genera warranted further

investigation, namely the species of Datura and Jaborosa.

2.3. Withanolides isolated from Datura wrightii and Jaborosa caulescens var. bipinnatifida

Since the Datura genus is renowned as a rich source of oxygen-substituted C-21

withanolides (Anjaneyulu et al. 1998), we initiated a study into North American herbaceous

perennial Datura wrightii Regel, which resulted in the isolation of new [withawrightolide

(57)] and known [withametelin L (58), daturilin (59), withametelin O (60), and withametelin

F (61)] withanolides (Figure 4) (Zhang et al. 2013). Similarly, our investigation of the

Chilean perennial shrub Jaborosa caulescens var. bipinnatifida also resulted in the isolation

of both new [2,3-dihydrotrechonolide A (62); 2,3-dihydro-21-hydroxytrechonolide A (63)]
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and known [trechonolide A (64), jaborosalactone 39 (65)] withanolides (Figure 4) (Zhang et

al. 2014b).

3. Structural diversity among the naturally occurring withanolides

Withanolides (1–65) obtained from natural sources were characterized by 2D NMR as well

as HRMS data, and compared against those reported in the literature. The structures of 13

(3, 4, 6, 11, 19–21, 24, 33, 39, 40, 58, and 62) of these were subsequently confirmed by

single crystal X-ray diffraction crystallography (Cao et al. 2014; Tong et al. 2011; Zhang et

al. 2011; Zhang et al. 2012b; Zhang et al. 2013; Zhang et al. 2014a; Zhang et al. 2014b).

These naturally occurring withanolides (1–65) represent 8 of the 24 withanolide structural

types, which include type I (1–13), II [ presence of cyclopropane moiety in ring A in the

steroidal nucleus (57)], VI [presence of six-membered ring D in the steroidal nucleus, (39–

45)] VII [presence of re-arranged C-18 methyl group (54)], VIII [19-nor withanolides (29–

32)], XI [4-nor withanolides (24)], XII [presence of re-arranged C-4 (14)], XXIV [absence

of a C-13 to C-17 linkage (46)]. It should also be mentioned that at this juncture all reported

naturally occurring type VI withanolides ubiquitously exhibited an aromatic ring D moiety

(Anjaneyulu et al. 1998; Chen et al. 2011; Misico et al. 2011; Ray et al. 1994; Veleiro et al.

2005; Zhang et al. 2012a). However our recent identification of naturally occurring non-

aromatic six-membered ring D withanolides (39–41) suggests that the drawing style of type

VI withanolides should be altered to incorporate both the aromatic and non-aromatic ring D

varieties as depicted (Figure 1) (Cao et al. 2014).

Even though oxygenated carbons at C-22 and C-26 were present in all isolates, there were

still oxygenation pattern diversities amongst the withanolides (1–65). For instance, 32, 55
and 56 lack oxygenation at C-1, whereas all other withanolides present common oxygenated

carbons at C-1, C-22, and C-26 (Glotter 1991). Further oxygenated positions are observed at

C-3 (15, 16), C-4 (1–3), C-5 (9–13), C-6 (1–3, 5, 8), C-7 (5, 9–13, 29, 33), C-11 (21), C-12

(58, 62–65), C-13 (41, 46), C-14 (41), C-16 (5), C-17 (6, 46), C-19 (19, 20, 25), C-20 (2, 3),

C-21 (57–61, 63, 65), C-23 (62–64), C-24 (39–42, 57–61), C-25 (39–42), C-27 (1, 2, 19),

and C-28 (28–32). Furthermore, among the naturally occurring isolates (1–65) are a series

uncommon 3-O-sulfated (25 and 37) and chlorinated (6 and 7) withanolides.

4. Withanolide artifacts and derivatives

4.1 Artificial withanolides resulted from intra/inter Michael addition

During investigation on the isolation and structural elucidation of withanolides, the

instability of withanolides with Δ2-1-oxo functionality was noticed when exposed to certain

solvents. In depth analysis suggested, and subsequently proven via deuterated solvent

experiments, that intramolecular (66, 67) and intermolecular (16, 22, 68) Michael addition

withanolide artifacts were formed from methanolic solutions of withaferin A (1),

withalongolide A (19) and withalongolide B (20) (Figure 2) (Cao et al. 2013).
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4.2. Derivatives prepared from the natural isolates

In order to better probe the withanolide antiproliferative structural activity relationship

model, a total of 27 semi-synthetic withanolide derivatives (69–95) were prepared from

natural isolates (1, 19, 20, and 33) (Figure 5) (Zhang et al. 2011; Zhang et al. 2012b;

Motiwala et al. 2013).

5. Antiproliferative evaluation of withanolide library

Extensive MTS-based assaying revealed that withaferin A (1) reduced cell viability with

IC50 values in the 0.16–2.9 μM range against an array of human [ brain (U-87, U-251),

colorectal (DRO81-1), laryngeal (JHU-011), oral cavity (JMAR, MDA-1986, UM-SCC-2),

skin (SK-MEL-28), and thyroid (B-CPAP, FTC-133, FTC-236, FTC-238, SW-1736,

TPC-1)] and murine [brain (GL26) and skin(B16-F10)] carcinoma cell lines. Furthermore,

mechanistic studies showed that 1 inhibits proliferation by inducing a dose-dependent G2/M

cell cycle arrest while promoting cell death through both intrinsic and extrinsic apoptotic

pathways (Grogan et al. 2013; Samadi et al. 2009; Samadi et al. 2010; Samadi et al. 2012).

Comparable IC50 values in the 0.26–2.9 μM range were also observed in several other

natural withanolides [2,3-dihydro-3-O-sulfate withaferin A (37); withalongolide B (20), and

withanolide D (2)]. Greater potency was observed in the acetylated derivatives

withalongolide A 4,19,27-triacetate (79), withalongolide B 4,19-diacetate (73), and

withalongolide O 4,7-diacetate (71), which collectively produced IC50 values in the 0.067

nM – 2.0 μM range (Zhang et al. 2011; Zhang et al. 2012b; Motiwala et al. 2013).

6. Structure-activity relationship analysis

A structure activity relationship analysis (SARA) was initiated on the basis of these results

and compared against those reported in the literature. Through this process it became

obvious that the most potent withanolides shared a common pharmacophore (ring-A Δ2-1-

oxo functionality; and ring-B 5β,6β-epoxy moiety) as evidenced in withaferin A (1),

withanolide D (2), withalongolide B (20), withalongolide A 4,19,27-triacetate (79),

withalongolide B 4,19-diacetate (73), and withalongolide O 4,7-diacetate (71) (Zhang et al.

2011; Zhang et al. 2012b).

Examination of structural variations in ring A revealed that potency was retained through

replacement of the Δ2-1-oxo with a 2,3-dihydro-3-O-sulfate-1-keto functionality, as this

generated a water soluble pro-drug variety that spontaneously converted back to the

bioactive Δ2-1-oxo form (Xu et al. 2009). In contrast the presence of either a 2,3-dihydro-1-

keto; 2,3-dihydro-3-oxymethy-1-keto; 1,3-dihydroxy; or Δ3-1-oxo functionality significantly

reduced or lost the antiproliferative activities compared to the bioactive Δ2-1-oxo form

(Figure 6).

Similar analysis of ring-B revealed that replacement of the 5β,6β-epoxy with an 5α-

chloro-6β-hydroxy moiety retained potency. Conversely the presence of a Δ5; 5α,6α-epoxy;

5β-chloro-6α-hydroxy; or 5α-hydroxy-6α,7α-epoxy functionality significantly reduced or

lost the antiproliferative activity (Figure 6).
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Among the withanolide structural types examined only type I produced significant

antiproliferative potency, whereas types (II, VI, VIII, XI, XII, and XXIV) devoid of the

aforementioned pharmacophore were inactive against the antiproliferative assays tested.

Due to the diverse oxygenated patterns of the withanolides obtained, the –OH and –OR

groups at carbons C-4, 7, 11, 19, 20, and 27 could be directly evaluated by comparing the

data of withaferin A (1), 7-hydroxywithaferin A (33), 11-hydroxywithaferin A (21), 19-

hydroxywithaferin A (19), jaborosalatone V 19,27-diacetate (88), 27-deoxywithalongolide A

(20), and 27-O-glycopyranoside-withaferin A (35). In addition, SARA indicated that the –

OH and –OR groups on carbons C-4, 7, and 11–28 were noncontributory toward

antiproliferative activity, although acetylation of the hydroxyl group will increase the

cytotoxicity (Zhang et al. 2011; Zhang et al. 2012a).

7. Conclusions

Identification and antiproliferative evaluation of a total of 95 diverse withanolides (1–95)

revealed a series of bioactive compounds with IC50 values in the 0.07–2.9 μM range, which

could be potentially explored as antitumor agents. Structural-activity relationship analysis

(SARA) confirmed the importance of the presence of a Δ2-1-oxo functionality in ring A, a

5β,6β-epoxy or 5α-chloro-6β-hydroxy grouping in ring B for cytotoxic activity. These

studies also revealed that the –OH or –OR moieties at C-4, 7, and 11–28 were

noncontributory toward antiproliferative activity. We believe that in the future our ongoing

withanolide-based research will contribute to revealing the full mechanism of action of these

promising antitumor therapeutics.
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Figure 1.
The withanolide types (I–XXIV) isolated between 1965 and 2013.
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Figure 2.
New* (6, 19–34, 66–68) and known (1–5, 7–18, 35–38) withanolides from Physalis

longifolia (1, 15, 16, 19–38), Vassobia breviflora (1), Withania somnifera (1–18) and

withanolide artifacts (66–68).
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Figure 3.
New* (39–47) and known (48–56) withanolides from Physalis hispida.
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Figure 4.
New* (57, 62–63) and known (58–61, 64–65) withanolides from Datura wrightii (57–61)

and Jaborosa caulescens (62–65).
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Figure 5.
Derivatives 69–95 prepared from the natural products withaferin A (1), withalongolides A

(19), B (20) and O (33)
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Figure 6.
Structural variations in rings A (left) and B (right) of the withanolides are closely related to

the observed antiproliferative activity.
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