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Abstract

Auditory brain-computer interfaces (aBCI) may be an effective solution for communi-

cation in cases of severely locked-in, late stage ALS (Lou Gehrig’s disease) and upper

spinal cord injury patients who are otherwise not candidates for implanted electrodes.

Feasibility of auditory BCI has been shown for both healthy participants, (Hill et al.,

2004), and impaired populations (Sellers and Donchin, 2006). (Hill et al., 2014) found

similar BCI performance in healthy participants and those with locked-in syndrome

in a paradigm comparing words to pure tone stimuli. Additional BCI research has

explored variations to augment P300 signals for use in speller paradigms, including

more meaningful auditory stimuli (Klobassa et al., 2009; Furdea et al., 2009; Simon

et al., 2014). It has been recognized in these studies that end users would much prefer

natural sounds over a repeated tone stimulus. All of these systems required an as-

sociation of sound with target stimuli, typically enforced by a visual support matrix.

These systems would not be usable by the target end users of an auditory BCI. At-

tempts to remove the need for visual referencing by investigating a BCI system with

serial presentation of spoken letter streams as stimuli (Hoehne and Tangermann, 2014)

or spoken words (Ferracuti et al., 2013) has met with limited success but presents a

potential high speed communication solutions. The present study highlights a method

of using BCI task relevant spoken word stimuli to eliminate visually presented refer-

ences. By utilizing spoken word stimuli, a BCI system could utilize a range of stimuli

equivalent to the size of the users vocabulary and provide faster communication out-

put than spelling systems. As a control, spoken word stimuli that have no task specific

relevance are also tested. Stimuli audio-spatial cues have shown significant improve-
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ments in aBCI performance (Käthner et al., 2013; Schreuder et al., 2011). The present

study specifically evaluates the potential improvements to BCI performance of seman-

tic and audio-spatial relevance by eliciting auditory oddball P300 responses to task

relevant directional stimuli (spoken words: ‘front’, ‘back’, ‘left’, ‘right’). Participants

completed several trials of a motivational game with directionally relevant targets over

two experimental sessions. Offline analysis of training data was accomplished to eval-

uate the impact of stimulus characteristics on BCI performance. Questionnaire results

on workload, motivation and system usability accurately reflected participant’s BCI

performance. A behavioral button press study was utilized to further investigate the

influence of spatial cues used in the paradigm, but also highlighted differences in the

semantic relevance of the stimuli. Behavioral results correlated with BCI performance.

The results of this study indicate task relevant stimuli are a viable option for elimi-

nating artificial and visual stimulus references. This study’s results highlight several

considerations for future auditory BCI studies, including: classifier selection, hear-

ing threshold importance, aid of behavioral correlates to BCI performance and use of

spatially separated spoken word stimuli.
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Chapter 1

Introduction

The condition of quadriplegia and mutism is known as locked-in syndrome (LIS) and is character-

ized by complete paralysis of the voluntary motor system with intact cognition and sensation Plum

and Posner (1972). The etiology of LIS is associated with brainstem stroke, but may also arise

from progressive neuromotor disorders such as amyotrophic lateral sclerosis (ALS) (Bauer et al.,

1979). Patients with progressive motor neuron diseases gradually lose the ability to voluntarily

control their muscles and will eventually require assistive technology to aid communication.

Augmentative and alternative communication (AAC) devices have provided many novel and

effective ways to interpret what little output patients can still produce. This technology provides

opportunity for diverse communication with or without the aid of a caregiver or speech and lan-

guage pathologist. As they begin to show signs of speech and language impairments, patients with

motor impairments master the skills needed to control these devices with their remaining motor

abilities. As the disease progresses, patients need to learn and adapt to new input methods that

match their changing sensory, cognitive, and motor ability. For example, initially a touch screen

could be used to select communication options and later eye tracking may allow for reliable cursor

control on the device.

Brain-computer interfaces (BCIs) are an emerging technology that uses recordings of brain

activity to allow a user to control a computer program. BCIs are generally intended for individuals
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with profound neuromotor impairments that may result in paralysis (quadriplegia or hemiplegia)

and / or the loss of articulate speech (anarthria). For example, Complete LIS leaves an individual

completely unable to communicate or interact with the world around them. This horrific condition

is highlighted by Brumberg and Guenther and deserves continued focus from BCI researchers and

clinicians (Guenther and Brumberg, 2013). These systems can be beneficial to clinical patients by

controlling their environment, locomotion or even provide communication output (Wolpaw et al.,

1998, 2000; McCane et al., 2015). Individuals with cerebral palsy (CP), may also benefit from BCI

owing to their severe neuromotor and speech impairments.

The prevalence of brain stem stroke leading to LIS is so low that no prevalence data is available

(Smith and Delargy, 2005). In the US, there are approximately 20,000 people living with ALS at

any given time (The ALS Association). A study on clinicopathology of LIS patients found that

only 3.4% of the sample population reached CLIS status (Hayashi et al., 2016). Using this limited

information, it may be estimated that approximately 680 CLIS patients may be living in the US,

unable to communicate. The instances of LIS or complete LIS are likely not enough to promote the

investment of medical device companies or communication device companies to develop products

for this population.

1.1 Brain-Computer Interface for Communication

One of the primary and original applications for BCI was proposed by Wolpaw and colleagues

to replace communication for those that had no other means (Wolpaw et al., 1991; Kübler et al.,

2001). Despite decades of research this original application has yet to be fully integrated into

clinical practices. BCI has a history of neuroscience and engineering development, but the future

of BCI must also incorporate clinical experiences and practices currently in use for individuals

with ALS, CP, and LIS.

The overall motivation for development or improvement in BCI technology is to eventually

realize a clinically effective system (Wolpaw et al., 2000; Vaughan et al., 2006). BCI commu-
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nication may allow more freedom and self-reliance than these patients could achieve otherwise,

but in some cases this may be the only solution for any interpersonal communication. As these

diseases progress, eye movement and eyelid control may become labored or unreliable, which can

negatively impact visual BCI performance. In these cases, an auditory BCI paradigm may be the

best option available. Auditory brain computer interfaces are one possibility to potentially re-open

the door of communication for many individuals and could provide an enormous positive impact

on their quality of life.

The present study uses lessons learned from AAC device development to provide a firm founda-

tion for future communication replacement using an auditory BCI. The design and configurations

of AAC devices comes from years of speech pathologist work and research and individualized

considerations for each AAC user. By moving to a user interface that reflects systems that already

exist and are already used by both patient and clinicians, we can leap over one huge hurdle of

general clinical acceptance. The cost of developing and implementing a BCI user interface for

communication is also ameliorated by this approach. There are still many hurdles to overcome to

meet performance standards and ease of use of a widely accepted clinical BCI, but this approach

overcomes several of them.

The research covered in this dissertation is motivated by clinical considerations that have been

somewhat absent in the BCI research community. Past BCI research and current developments are

summarized with a focus on non-invasive BCI systems intended for communication replacement.

A BCI system for clinical use is proposed with a heavy influence from clinical practices of aug-

mentative and alternative communication. Some unique features of such a BCI are investigated

in study participants without any neurological impairments in both BCI and associated behavioral

experiments. The research reported informs on future BCI development of a purely auditory BCI

for communication using spoken word stimuli.
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1.1.1 Principles of BCI

Brain-computer interface (BCI) was first conceptualized by Vidal (1973), but has since become

a reality and is a quickly growing field of research in electrical and biomedical engineering, psy-

chology, neuroscience, as well as clinical rehabilitation fields such as speech-language pathology,

physical therapy, and occupational therapy. BCI systems developed in research labs may provide

evidence that communication through BCI is possible but additional research is needed to bring

the technology to widespread clinical acceptance. Understanding how these systems operate and

their current capability is a first step in uncovering how they may be improved for clinical use.

Operation of any BCI can be broken into four steps (Schalk et al., 2004). First, for any BCI

paradigm, the user completes a mental task. By completing this task, specific neural activity in the

brain is produced. Second, accurate and reliable measurements of that brain activity are recorded.

Third, brain activity recordings are interpreted as a decision or intention of the BCI user. Finally,

the BCI produces the desired output (i.e. moving a wheelchair forward), providing feedback to the

user on how the system interpreted the brain activity. Each of these steps is highly dependent on

the others, making the development of an effective BCI a challenging but rewarding endeavor.

The study presented here utilizes non-invasive EEG recording for BCI control of communica-

tion outputs. This class of BCI will be the primary focus of discussion on BCI, however, many

examples and concepts presented apply to other types of BCI systems.

1.1.1.1 Producing and Measuring Brain Activity

BCI systems use a number of technologies for measuring brain activity. Signals from invasive

techniques like electrocorticography ECoG or microelectrodes represent single neurons (action

potentials or single-unit recordings) or groups of neural firings (multi-unit recordings and local

field potentials). A number of invasive techniques have demonstrated very reliable control of BCI

systems (Moritz and Fetz, 2011; Schalk and Leuthardt, 2011). These technologies require surgery.

Non-invasive approaches monitor brain activity from outside the skull and are intended for

patients that are unwilling or unable to undergo invasive surgery. Non-invasive techniques like
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EEG, fMRI or fNIRS must consider indirect measures of the composite activity of millions of

synchronized neurons. Signals measured with non-invasive measurements are often noisier and

less reliable than invasive technologies.

Depending on the BCI task, the user’s brain activity may be endogenous or exogenous. Endoge-

nous signals are produced from internal intentions of the BCI user. A class of neural signals called

sensory-motor rhythms (SMR) are produced by the BCI user when imagining limb movements or

other motor outputs. These signals are initiated by the user or may be cued by the experimenter

but are produced by entirely internal thought and are therefore classified as endogenous.

Exogenous signals are typically produced by processing of presented stimuli. Modification of

attention to these stimuli is one of the primary ways exogenous signals can convey the BCI user’s

intention. A rapid serial visual presentation (RSVP) paradigm visually presents a set of symbols to

the user, one at a time. The user has a specific symbol in mind and when that symbol is presented,

a well characterized, amplified positive deflection around 300ms is elicited in the user’s EEG.

By processing the visual stimuli with some intention, the P300 signal can be used to identify the

desired symbol.

1.1.1.2 Interpreting Brain Activity

The P300 is an example of an event related potential (ERP). An ERP is simply an (averaged)

deflection in the EEG time course which is time locked to an attended stimulus, provoking a neural

response. Identifying which stimulus exhibits the most pronounced P300 signal allows the BCI to

interpret a discrete selection out of multiple options.

In other paradigms, a more continuous control of the BCI can be interpreted. The SMR is

represented by spectral power of the EEG signal at specific frequency bands termed mu (8-12 Hz)

or beta (18-25Hz). By modifying imagined limb movement and/or sensation, a BCI user can output

a continuously variable spectral power within these frequency bands. This continuous signal lends

itself to effective control of computer cursor position or movements.

The method of interpreting brain activity depends on how it is produced and measured. Inter-
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preting ERP’s is often accomplished with discrete linear models or machine learning algorithms

(Krusienski et al., 2006) which classify each stimulus presentation into a category. Typically, bi-

nary categories represent either target or non-target stimulus. By identifying the ’target’ stimulus

the BCI can interpret the user’s decision.

Collection of sufficient training data to produce a reliable model is required to account for

considerable noise in non-invasive measurements. The user’s intention is known by the BCI during

training, so that brain activity can be characterized for each possible BCI selection. This trained

model is then used to interpret future brain signals as specific BCI outputs. This model is the link

between the brain’s activity and control of the computer program.

1.1.1.3 Control a computer program

All BCIs aim to interpret neural activity so that reliable control of a computer program is achieved.

The system may act as an extension of the individual’s body by providing feedback to the BCI

user. Limb movements provide tactile, proprioceptive and visual feedback of the neuromotor ac-

tivity in the cortex, improving dexterity and coordination over time. A BCI can provide cortical

activity information to the user through multiple sensory modalities, which can improve the level

of control of a BCI with practice. This phenomenon highlights the widespread possibilities of BCI

applications that plastically change neural activity utilized by the BCI system.

With some BCI’s, the plastic changes of brain activity alone may bring therapeutic benefits.

Stroke rehabilitation applications are gaining momentum and many researchers are now focused

on BCI’s effectiveness in recovering motor function after stroke. Neurorehabilitation BCIs have

utilized SMR signals to feedback cortical motor neuron activity, aiding in recovery of hand and arm

mobility (Ramos-Murguialday et al., 2013). These same signals can control a robotic limb, control

cursor locations, or direct a powered wheelchair. The interface is key to providing feedback to the

BCI user and this feedback may serve a number of purposes. Brain-computer interface directed

control of neural activity has been shown in non-human primate studies (Moritz and Fetz, 2011).

Success in human control of a non-invasive, EEG based BCI systems has also been demonstrated
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(Wolpaw and McFarland, 2004). BCI systems utilizing this type of therapy are already being

produced commercially, including Recoverix by g.tec, which has been used in the rehabilitation of

upper limb motor skills after relatively few training sessions in stroke patients with severe paralysis.

A BCIs for communication replacement might take on many forms. Literate patients will likely

be able to spell or select words in order to convey ideas and maintain interpersonal relationships.

Discrete selection paradigms will likely use ERP brain signals to select from a number of possible

items. Often, an ERP signal is used to make discrete letter selections for spelling applications, but

this study will explore selection of words.

1.1.2 Communication BCI in Research

The design of a communication replacement BCI determines how the BCI user expresses them-

selves. Non-invasive BCI research has centered around spelling systems in order to provide users

with communication output as diverse as their own speech. Continued communication is key to

a good quality of life, so optimizing communication output from the BCI is a paramount goal of

BCI research and development.

1.1.2.1 RSVP and SMR Spelling Systems

Many EEG features and ERPs can be used to control a computer program though the BCI approach,

but the P300 signal is the most common one employed in communication replacement BCIs. A

spelling task is the most frequently used as well. In such a paradigm, the P300 ERP is elicited by

identification of a target letter in an oddball paradigm presentation and is present in healthy and

impaired populations that BCI research targets (Sellers and Donchin, 2006). An oddball paradigm

is one in which a set of stimuli are presented in a random order with a particular target stimulus

presented less often than other non-target stimuli.

The P300 ERP is reliably elicited across a wide range of paradigms making it advantageous

for BCI applications. A survey of P300 spellers highlights the influences of system parameters

on BCI usability and its widespread applicability to healthy users (Guger et al., 2009). The P300
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designation indicates that the signal is a positive deflection (P) in the EEG voltage approximately

300ms after the onset of the target stimulus. The timing and scalp location of maximum P300

amplitude can vary depending on several factors, including: presentation scheme, the mode and

clarity of the stimulus, mental state of the study participant and EEG recording parameters (namely

ground and reference electrode locations).

The interpretation step of the BCI system aims to identify differences in P300 amplitudes due to

target or non-target stimulus presentation. Recent P300 feature extraction algorithms consider the

entire ERP waveform in machine learning context and do not focus solely on the P300 amplitude.

BCI performance in oddball paradigms have further shown to rely heavily on ERP features other

than the P300 amplitude (Halder et al., 2013; Hill et al., 2014).

While new algorithms, user interfaces and parameters for P300 Speller BCIs have been op-

timized through systematic research, the P300 spelling task of attending to the target letter, has

remained largely the same (Krusienski et al., 2006). One development in visual P300 spelling

paradigms has come in the way of efficient letter presentation using language models (Orhan et al.,

2011), improving time to selection of the desired letter. These systems identify which letters are

most likely to be selected next, according to those language models, and increase the presentation

frequency of those letters. This approach may speed up the rate of accurately selecting desired

letters.

Spelling systems using SMR signals have been developed as well and include clever ways

of optimizing letter selection. The virtual keyboard also uses SMR signals to select letters on an

asynchronous timeline (Scherer et al., 2004). Imagined foot movements scroll letters through a left

and right selection box and the corresponding imagined hand movements select the desired letters.

The Hex-o-Spell method uses binary selection of groups of letters to reduce both the accuracy

needed in the continuous output and the number of decisions to make a letter selection (Blankertz

et al., 2006).
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1.1.2.2 Visual Grid Spellers

The visual P300 speller has been a popular paradigm for communication BCI in research (Farwell

and Donchin, 1988; Donchin et al., 2000). The grid spelling paradigm has served as the bench-

mark task of communication BCI development in terms of performance (Cecotti, 2011). While

RSVP presents a single letter at a time, the grid spelling systems present all letters simultaneously.

Highlighting of grid rows and columns in a randomized fashion is used to elicit an amplified P300

signal when the letter of focus is highlighted. Grid spelling systems produce faster spelling rates,

because the target letter can be presented (highlighted) more frequently without biasing a specific

letter.

Many visual P300 BCI user interfaces have used black and white spelling grids or single let-

ter presentation. Bi-color chromatic flickering or highlighting has shown some improvements in

performance (Takano et al., 2009). See Figure 1.1 for an example of a visual P300 grid spelling

display. The 3rd row is highlighted in this figure. Once the letter of focus is highlighted multiple

times, the BCI system would make an accurate selection.

Figure 1.1: P300 Grid speller example Farwell and Donchin (1988)

Language models can also be used to optimize the highlighting of likely letters in the gird

speller system. Ma et al. (2012) found that optimizing letter flashing, according to a statistical

language model, reduced character selection time by over 50%.

BCI speller design considerations have improved the speed of letter selections while maintain-
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ing accuracy (Blankertz et al., 2007). All of these developments have resulted in minor gains in

accuracy and speed of communication.

1.1.2.3 Auditory spellers

While visually evoked ERP’s are reliable and well researched, there is a clinical need for a system

that doesn’t rely on visual acuity and attention (Nijboer et al., 2008b). For those patients with

strong visual control, eye tracking technology is well developed and is a widely used clinical

tool to augment or replace communication output for paralyzed patients. Patients may benefit

from RSVP spellers if gaze control is limited. Patients with poor eye or eyelid control may have

difficulties with eye tracking systems and these systems do not work reliably in all lighted or any

unlit environments (e.g., outdoors). Visual BCI systems are unlikely to ever be more effective than

eye tracking, so for many potential BCI users an auditory BCI may be the best solution.

An auditory brain computer interface (aBCI) is a system that uses auditory stimuli to elicit

a neural response, which is detected, classified and used to convey an intended decision. The

P300, outlined previously, is also elicited by auditory oddball stimulus presentation schemes. Grid

spelling techniques may still be employed by having a set of auditory stimuli that correspond to

the rows or columns of the grid of letters. By making a selection of row and then of column the

intended letter can be selected (Cai et al., 2012; Käthner et al., 2013; Schalk et al., 2004; Schreuder

et al., 2011).

Improvements in Stimuli A myriad of auditory stimuli have been employed in an effort to

move away from the less pleasant tone stimuli typically used in auditory ERP studies. Simon

et al. (2014) conducted a pre-study found a set of animal sounds were the most discriminable

stimuli from a group of 5 different environmental sound sets. A comparison of visual and an

auditory P300 based speller using simple environmental sounds (i.e. ’Thud’, ’Chime’) showed

it was able to perform similarly to the visual paradigm after 11 sessions (Klobassa et al., 2009).

A study comparing tones, spoken and sung syllables found that the tone stimuli showed lower
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classification accuracy than syllables (Höhne et al., 2012). Researchers have used paradigms where

spoken letters were presented as auditory stimuli showing these stimuli were viable (Horki et al.,

2015; Sellers and Donchin, 2006) . These studies support the use of more natural auditory stimuli

for both performance and acceptance by potential BCI users.

Auditory only BCI Visual references or visual support matrices are used extensively in auditory

BCI grid spelling systems (Kübler et al., 2009; Klobassa et al., 2009; Furdea et al., 2009). Visual

references allow the user to maintain a continuous association of auditory stimulus and grid row

or column to be selected. While this allows any set of auditory stimuli to be used in the P300

oddball paradigm, it forces either memorization of letters associated with each auditory stimulus

or a visual reference. Memorization of letter-stimulus associations may increase working memory

requirements and has a negative impact on the ERP used for BCI control (Pratt et al., 2011). The

blind or those suffering from complete LIS would be unable to utilize a visual reference in an

auditory BCI.

In an ’auditory only BCI’ the user is provided auditory instruction, auditory stimuli to control

the system, and auditory feedback of BCI selections. No visual reference, stimulus or instructions

would be critical to the use of the system. Such systems are intended for blind individuals, those

with poor visual acuity, limited eye control and/or no other means of conventional communication

output.

Auditory Steady State Response (ASSR) paradigms have served as auditory only BCI in mul-

tiple research studies, (Hill and Schölkopf, 2012; Hill et al., 2012; Halder et al., 2010). Typically,

one auditory stream is played in the BCI users right ear and the other in the left ear. Attention mod-

ulation to one of two concurrent auditory streams allows only binary decisions to be made in the

ASSR paradigms. Binary decisions are common in communication of severely paralyzed patients

and may provide a comfortable transition to BCI but would provide a very slow communication

rate (Higashi et al., 2011; Kanoh et al., 2010).
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Spatial Cues Just as ASSR used lateralization of auditory streams to aid the user in attending

to one sound stream, separation of auditory stimuli in other paradigms can aid the aBCI user’s

attention to a target stimulus. In attempts to speed up spelling rates in an auditory only BCI

the Charstreamer paradigm used rapidly presented spoken letters in multiple asynchronous sound

streams (Hoehne and Tangermann, 2014). Two sound streams were played in the right and left ear

independently and the third stream was played in both ears. While this audio was presented over

headphones this presentation utilized human spatial hearing to give the perception that streams

were coming from the left, right and in front of study participants.

Spatial cues have been identified as beneficial for performance of auditory oddball BCI perfor-

mance (Schreuder et al., 2010; Käthner et al., 2013). Separating stimuli by sound source location

provides an additional auditory cue to the stimuli allowing improved attention to a target stimulus.

These studies used tones with noise to enhance the perception of sound source location.

Auditory BCI research has provided evidence that spatial cues and natural stimuli are ben-

eficial to BCI performance. Auditory only systems have been developed but suffer from slow

spelling rates or poor performance. Utilizing spoken word stimuli would allow an auditory only

BCI to communicate ideas with a single selection instead of the many required to spell a word with

spelling systems.

Speech stimuli have been utilized in several studies already mentioned. Recent studies have

used common word stimuli in oddball paradigms with success (Ferracuti et al., 2013; Kleih et al.,

2015). With a number of studies succeeding in utilizing speech like or spoken word stimuli for

auditory BCI, future research should continue to explore speech driven auditory only BCI for

clinical use.

1.2 A Proposed BCI for Clinical Use

While improvements in the functionality of BCI systems are being realized in research, considera-

tions for user experience and effectiveness in daily communication have been overlooked. Consid-
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ering clinical acceptance and BCI features optimal for daily communication replacement, a BCI is

proposed.

The proposed BCI would use words or ideas as selection items instead of letters for spelling,

limiting the output to frequently communicated ideas but allowing communication to occur faster

and with less effort. Discrete selections will be made by characterizing target class EEG features in

the time domain. The system should be auditory in both stimulus presentation and in feedback and

instruction to the user. The control of an AAC device provides a well-developed BCI user interface

that has already achieved clinical acceptance. These features provide the primary guidelines for

developing a clinically focused BCI.

Motivation from AAC It is very important to ensure that user-centered design practices are in-

corporated into new BCI research. The BCI society has formally recognized the need for clinician

and patient involvement in the research and development activities surrounding BCI (Kubler et al.,

2006), and some clinical researchers are already paving the way for inclusion of clinicians and

patients to be full partners in BCI development (Peters et al., 2016). BCI could aid in activities of

daily living of the BCI user (Suyama, 2016).

BCI control of an AAC device highlights many advantages in clinical acceptance. Most elec-

tronic AAC devices output synthesized or recorded speech, and typically provide a selection of

words and phrases rather than just letters. These audio outputs are meant to communicate to in-

dividuals around the patient, but could be used as stimuli for aBCI paradigms and also serve as a

means of informing the user without intact vision of available selection items.

Many AAC device ‘page sets’ represent a collection of communication items, customized by

the user along with a speech language pathologist or caregiver. A communication item often resides

in a categorical, nested menu, which allows for a large number of possible communications with

very few item selections. For example, a menu of 5 different categories with 6 items in each

category would allow 30 different options to be selected with 2 trials. In most auditory grid spelling

applications two selections, a row and a column, are required to select a letter. With some AAC
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devices menus include an option to move the user into a spelling mode with individual letter

selection. This spelling mode could utilize any BCI spelling system that works best for that specific

AAC-BCI user.

Many patients with neurodegenerative disease may use an AAC device in the earlier stages of

the disease progression. By using BCI control of this device they will already be very familiar with

much of the system and method of communication, as will their friends, family and caregivers.

Utilizing BCI control of an AAC device may be the easiest transition for such patients entering

complete LIS.

Clinical Need for Auditory Only BCI BCI represents a complex and likely expensive clinical

tool that may be somewhat unreliable and slow in terms of communication output. For patients

that still retain some motor control or eye movement, physical switches, caregiver interpretation

of motor output or eye tracking are likely to be less complicated, less expensive, more reliable and

less prone to environmental factors than BCI. When patients completely lose motor output and

intact vision, auditory only BCI may be the only communication option available. In this way,

auditory only BCI represents a more likely clinical tool than vision based BCI or aBCI requiring

vision. Such systems might also be necessary for blind or severely visually impaired patients.

Auditory only BCIs may reduce user fatigue compared to visual BCIs. In an ASSR study an

ALS patient with good visual acuity was quoted as saying “my eyes get tired, but never my ears“

(Hill et al., 2014). This study featured a purely auditory BCI, where ERP eliciting stimuli and

other task instructions were presented through auditory means.

Another use-case for auditory BCI would be controlling a communication device while using

vision for other tasks. When controlling wheelchair movement it would be beneficial for BCI users

to use their vision to monitor their surroundings instead of attending to visual stimuli. An aBCI

could be used while users look at the person they are communicating with instead of looking at a

computer screen. This would fit a very natural communication paradigm and may improve social

interaction.
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Currently auditory BCI has demonstrated lower performance in terms of percent accuracy and

information transfer rate (ITR) compared to similar visual P300 spelling systems (Sellers and

Donchin, 2006; Kleih et al., 2015). However, studies conducted over multiple sessions show aBCI

accuracy can reach that of visual systems with training (Nijboer et al., 2008b; Klobassa et al.,

2009). BCI researchers frequently report the number of participants able to use the BCI system

above a threshold (70%), indicating that the BCI system proposed in a study is feasible for clini-

cal use for communication (Kübler et al., 2001). Many auditory BCI systems have demonstrated

meeting this requirement but improvements in speed and improved accuracy are desired.

Auditory only BCI communication replacement candidates can greatly benefit from or may

even require this paradigm modality. A method to greatly increase speed of communication would

greatly benefit the clinical acceptance and usability of these systems.

Word vs. Letter Selection BCI A system of selecting whole words or even phrases in a series

of nested menus would greatly increase the time to communicate those available communication

outputs. While developments in BCI for communication focus primarily on spelling applications,

some patients may prefer or require this alternative means of communication. This system allows

a patient to convey more complex ideas in much less time than spelling, but provides a limited set

of outputs.

While full-word selection should not replace spelling applications, it should be recognized as

a useful paradigm to any potential BCI user (as it is for AAC). The arrangement and configura-

tion of such page sets could be customized and re-arranged with little user training and no new

memorization of stimulus-item association.

For regular clinical use, improvements in the user interface are needed in order to aid attention,

motivation and ease of use. Improvements in the user interface (UI) will not only help to promote

clinical acceptance of such devices, but if carefully designed, would aid in the proficiency of the

fundamental cognitive tasks required for users to operate the system.

Percent accuracy reflects how often a correct selection is made by the BCI system while ITR
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combines both speed and accuracy to describe the amount of information conveyed per second.

Depending on the aBCI paradigm, an item or letter selection can require many seconds of stimuli

presentation. ITR is used to compare performance across various paradigms that may favor either

speed of selection or percent accuracy. Expressed in units of bits per minute, this measure considers

time to selection, how many selections are available, and percent accuracy achieved. aBCI grid

spelling systems require at least two item selections for a single letter to be chosen. RSVP systems

require several letters to be presented. Depending on how a nested menu is arranged, hundreds

of possible communication items could be chosen in the same number of selections as would be

required to spell a single word. By utilizing a system where more complex ideas can be conveyed

the slower auditory paradigms may become more accepted and useful in clinical systems.

Spoken Word Stimuli Spoken Word Stimuli provide an intuitive means of selecting whole

words or concepts in a BCI paradigm. The proposed BCI would be an item selection BCI us-

ing spoken word auditory stimuli in order to control an AAC device a patient is already familiar

with. By utilizing spoken word stimuli, a number of advantages can be realized.

It is anticipated that classifying EEG of spoken word stimulus may be more complex and

variable and yield poorer accuracy than tone or environmental sound stimulus. Several studies

have already used spoken letters, syllables and words with some success. These studies have used

BCI systems with binary decision or spelling output and have yielded slow communication rates.

Selecting words will allow for fewer BCI selections to convey frequently communicated ideas.

While spoken word stimuli have been used in auditory BCI research, the full benefits in com-

munication replacement have not been explored. By utilizing spoken word stimuli, a clinical BCI

for communication replacement may exhibit many benefits including:

• Presenting natural and comfortable auditory stimuli

• Reducing the cognitive load of memorizing stimulus/decision associations.

• Utilizing the well characterized P300 EEG signal and oddball paradigm.
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• Providing a purely auditory system with no visual reference required.

• Easily integrating BCI with AAC devices, and

• Allowing for rapid communication of frequent ideas

Motivation Factor User-centered BCI design has the potential to improve user motivation,

which past research has correlated to improved performance (Käthner et al., 2013; Nijboer et al.,

2008b). Some studies show that patients with impairments sometimes outperform healthy subjects

(Piccione et al., 2006), and it is hypothesized that motivation may play a large role in this result.

Attentiveness and focus also influence EEG signals and it is likely that motivation improves BCI

performance through these two cognitive state characteristics. For healthy participants, there is no

real-life benefit from performing well in these studies. For patients that may benefit from BCI use

in the future, aiding research and development of BCI may provide a very motivating scenario.

Researchers have found that grouping participants by motivation doesn’t show any significant ef-

fects on performance between groups (Kleih and Kübler, 2013). Between subject variability in

BCI performance is typically high and other factors besides motivation may play a larger role.

While the impact of motivation on performance needs further study, it should be accepted that

a lack of motivation would not be beneficial to BCI use. Future studies on BCI user interfaces

should consider motivating aspects but not at the expensive of other factors of BCI performance.

1.3 Investigating Stimulus Relevance

In the proposed BCI, a multitude of auditory stimuli must be effectively classified by the BCI for

a diverse set of communication ideas to be expressed. It may be that standard auditory stimuli

may allow for much more reliable BCI classification accuracy and overall performance. This

would require a stimulus-communication item reference that would eliminate one of the benefits

of decision relevant stimuli. It is important to also understand how using a set of standard spoken

word stimulus over relevant stimuli might impact BCI performance.
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This is the first aBCI study to measure the effect of task relevant stimuli on BCI performance.

Optimization of auditory BCIs using task or decision relevant stimuli is expected to reduce cog-

nitive workload, reduce or eliminate required training periods and aid in clinical acceptance of

auditory only BCI. This study aims to quantify any BCI performance enhancement that can be

realized with decision relevant stimuli.

Research should continue to investigate how the unique characteristics of such a system will

influence BCI operation and which features might be considered for future clinical BCI design.

Stimulus relevance will be investigated in a directional task to allow for association of stimuli spa-

tial cues and decision to add another layer of relevance to the stimuli. A behavioral experiment is

included to further investigate how spatial separation of stimulus and stimulus presentation param-

eters will influence optimal attention modulation by the BCI user. These behavioral measures are

anticipated to correlate with aBCI performance, so this hypothesis will also be tested.

In order to maintain engagement, the BCI task in the current study engages participants in

a game-like environment, with multi-trial goals and a colorful and interesting visual reference.

Although the aim of the study is to investigate aspects of spoken word stimuli and their influence

on BCI performance, improved performance through a motivating task is also considered. The

vast majority of BCI research uses spelling tasks to gauge performance but this study introduces

an intuitive non-spelling task, more reflective of the AAC – BCI paradigm proposed thus far.

BCIs must be customized for each user, by taking into consideration: residual motor output,

visual acuity, hearing loss, and experience with AAC devices. Cost of the BCI system, maintenance

and operation of the system and availability and training of caregivers may influence the optimal

solution for a patient. The preferences of a patient may lead to use of a BCI like the one proposed

but a host of other options, including spelling tasks, are also likely to be clinically desirable.
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Chapter 2

A Novel aBCI to Investigate Spoken Word

Stimuli Relevance

2.1 aBCI Design Rationale

This section details the process of developing the auditory BCI system used in this study, along

with a discussion of its motivation and experimental design. Much of the rationale is based on

existing theoretical frameworks, but practical considerations influenced the study design as well.

A summary of the scope and goals of the study is initially given, followed by the rational for

developing the BCI system and study design.

2.1.1 BCI Requirements

The motivation of this study is to investigate aspects of spoken word stimuli that might prove use-

ful for an auditory only BCI for communication. The first aim is to test the impact of semantic

relevance of the words, as this characteristic would be critical to the flexible and intuitive bene-

fits of such a system. The second aim is to understand how audio-spatial cues benefit auditory

BCI performance. The design utilized also aims to incorporate motivating factors and engaging

interfaces to optimize performance of the system.
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The Requirements of the BCI in this study are:

System Should incorporate features that have exhibited optimal performance in past BCI studies

including:

1. Feature extraction and classification approach

2. Comprehensive EEG acquisition

Task

1. must be non-spelling

2. Selections must have some spatial relevance

3. must be engaging and motivating to optimize performance

Stimuli

1. optimal presentation rate for performance

2. must have semantic relevance and include control stimuli without task relevance

3. must be presented in an oddball paradigm to elicit P300 like ERP signals

4. Must include spatial cues as this has shown performance enhancement

2.1.2 BCI System Design

The BCI designed for this study took into account all of the requirements defined in the previous

section. The BCI system will utilize a professionally designed EEG acquisition system developed

by BCI experts, g.tec. Feature extraction and classification approaches are modeled after those used

in past BCI research. The user interface and stimulus presentation are novel to the BCI literature

and are designed to test stimulus characteristics inherent in an auditory only, word selection BCI

using spoken word stimuli.

20



This study aims to uncover the influence of the of semantic and spatial relevance of spoken

word stimuli on BCI performance. Piccione et al. (2006) employed a directional task that required

a ball icon to be moved to a target location. This unique auditory BCI helped inspired the use

of a directional task, allowing spatial and semantic relevance of the target stimulus to be tested

simultaneously. By using a directional task in a game like environment, audio source location cues

(spatial cues) of the stimuli will hold relevance to the task itself. The impact of semantic relevance

will be tested by using ’directional’ and ’non-directional’ word stimuli.

The functional components of the BCI system are first described and then the details of the

study itself are described.

2.1.2.1 BCI System Components

Any BCI system can be separated into five of major components. Each of these components will

be defined and discussed below:

1. Stimulus Presentation

2. Signal Acquisition

3. Signal Processing

4. Feature Extraction

5. Feedback Mechanism

Stimulus Presentation in this study is primarily comprised of the auditory presentation of spoken

words from various speakers positioned around the head of the participant. It also includes the

visual presentation of the target sound’s location, as well as the concept of the PacGame described

later in more detail. In many BCI systems the processing of a stimulus evokes EEG signals or

ERPs that are used to control the BCI. Presenting well controlled and consistent stimuli with well

characterized ERP features is key mechanism of BCI functionality. The participant’s task is simply

to attend to the target stimulus and ignore all other stimuli as best they can.
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For this study, well controlled recording of spoken word stimuli in a sound dampening envi-

ronment with professional audio equipment was accomplished. Each auditory stimulus is post-

processed to ensure auditory features of the stimuli are as equivalent as possible.

Signal Acquisition is accomplished here with 62 channels of EEG recording, with monopolar

ground and left ear recording reference electrode. In whatever manifestation of neuronal activity

recording done, it is important that the recording device monitor activity of the area of the brain

expected to produce the signal of interest. This illustrates how stimulus presentation and signal

acquisition for a given system are linked and should be designed with one another in mind. The

EEG channels utilized here extensively cover all areas of the cortex anticipated to produce useful

signals for BCI control. Utilization of numerous channels enables sophisticated post processing of

the signal to eliminate spatially centralized non-brain activity, user motion artifacts.

Other features of the acquisition hardware aided in elimination of additional sources of noise.

Active electrodes were utilized in this study to aid in additional elimination of environmental noise.

A high input impedance EEG amplifier was used to again eliminate signals induced in the recording

hardware. Additional steps to eliminate non-brain activity from the recorded EEG signals can be

accomplished through signal processing.

Signal Processing steps often including spectral filtering and selection of EEG features based

on the expected cortical activity generated by the presented stimulus. These steps are specific to

the signal of interest and are applied to eliminate confounding variability and environmental noise,

which is a major challenge in EEG signals. Whether applied after the EEG recording is complete

or in real-time, as the EEG is being recorded, these steps modify the raw voltage measurements at

the scalp.

ERP signals are often averaged together to help improve signal to noise ratio (SNR). In the

present BCI design, presenting each stimulus 15 times per trial allows random variation in the

signal to be potentially cancelled out. Again, it should be noted how appropriate signal processing

is dependent on the stimulus presentation and signal acquisition details of the overall system.

In auditory oddball paradigms, a number of stimuli are played in random sequence with one
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stimulus acting as the ’target’. A single trial includes several randomized sequences of the stimuli.

The user attends to and anticipates the presentation of the target stimulus by keeping count of the

number of ’target’ presentations they hear throughout a trial.

Feature Extraction is a process of identifying the differences in EEG signals that can be used

to control a BCI. Training the BCI classifier characterizes the differences in EEG signals result-

ing from target stimulus presentation and those occurring due to non-target stimuli. In training

sessions, recording EEG signals for each participant during stimulus presentation allows differ-

ences in target vs. non-target EEG traces to be identified and quantified for that specific BCI user.

The mathematical representation of these differences in EEG defines the BCI classifier. In online

sessions, this classifier is applied to the continuously recorded EEG and decisions about which au-

ditory stimulus most closely represents the target category can be made. This decision is conveyed

as the BCI user’s choice and that result is feedback to the user through some user interface.

Feedback Mechanisms are often accomplished by the same features of the system accom-

plishing the stimulus presentation, but this may not always be the case. Visual, auditory and/or

tactile feedback inform the BCI participant what outputs the BCI system has produced. The BCI

user is not consciously aware of the neural activity that produced the BCI output, but giving feed-

back of the system’s choice allows the participant to create those associations. This connection of

unconscious cortical activity to the BCI user’s consciousness through artificial feedback is hypoth-

esized to induce neural plasticity and potentially provide an avenue for physiological recovery of

function.

Feedback during the online sessions of the present study was accomplished by the movement of

a computer screen icon in the direction corresponding to the ’target’ sound. An auditory feedback

also indicated if the selection was correct or not. See Section 2.1.4 for more information on the BCI

paradigm. In SMR paradigms continuous feedback is essential and is shown to rapidly allow users

to change their mental tasks to produce the desired outputs (Wolpaw et al., 2002). In the present

system, feedback occurs only at the end of a trial and may not allow for significant adaption by the

user within a single session.
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2.1.3 Participants

As in the majority of BCI studies (Furdea et al., 2009; Halder et al., 2010; Nijboer et al., 2008b;

Piccione et al., 2006; Klobassa et al., 2009; Hoehne and Tangermann, 2014; Schreuder et al.,

2011), healthy participants are initially utilized to investigate the feasibility and advantages of a

BCI system. Healthy participants do not fatigue as quickly and can complete many trials, are

easily recruited, provide clear feedback and don’t require many special considerations during ex-

perimentation. Feasibility of BCI approaches in healthy patients has been shown to generalize to

impaired populations showing similar outcomes, albeit often with reduced performance (Sellers

and Donchin, 2006; Kübler et al., 2009; Nijboer et al., 2008a; Simon et al., 2014). This high-

lights the need for improved methodologies and the importance of continued research with the

disadvantages of clinical populations in mind.

2.1.4 The Task

The BCI task used in the present study is similar to all auditory P300 based tasks. The participant

is instructed to count the number of presentation of the target stimulus in an oddball paradigm. The

auditory oddball paradigm is characterized by serial presentation of multiple stimuli, in random or-

der, where a specific ’target’ stimulus is presented much less frequently than the other distracting

stimuli. The presentation of anticipated and rarely occurring target stimulus elicits an amplified

P300 signal in the EEG compared to the non-target stimulus presentation. In the ubiquitous BCI

spelling systems the participant attends to a letter in a specific visual location or a specific auditory

stimulus corresponding to a letter and counts the number of presentations they recognized. Count-

ing is a strategy to maintain attention on that target over the repeated presentation of all the other

stimuli.

The PacGame user interface uses the task described to move a pac-man icon in one of four

direction in a 5x5 grid. Four spoken words are presented from four different locations around the

participant, each corresponding to a direction the icon would move. Details of the PacGame user

interface are covered in Section 3.1.3.1.
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2.1.5 Spoken Word Stimuli

Testing the feasibility of spoken word stimuli in an auditory BCI paradigm is most informative if

the ultimate clinical system is considered. In an auditory BCI the spoken word stimulus allows the

user to have an intuitive association with item selection and the target stimulus. This eliminates

the need for visual reference and flexibility in item selection options. One of the primary aims of

this study is to test how this intuitive connection between the meaning or semantics of the stimulus

and the item selection influences the BCI operation.

Directional words [’front’, ’back’, ’left’, and ’right’] were used to represent the intended di-

rection of the PacGame icon and the stimulus location with respect to the seated participant. The

control group for this experiment utilizes spoken words that do not have any semantic relevance to

the directional task. Non-Direction words [’joy’, ’while’, ’care’, ’doubt’] were chosen that meet

the following criteria:

• English words with high linguistic frequency similar to the direction words being used.

• Should have similar duration, syllables and phonemic content as the direction words.

• Abstract words that could not be easily associated with a direction, location or object.

• Non-action words as these could be associated with motion in a specific direction.

All word chosen are monosyllabic and common words in American English. Selecting high fre-

quency English words is one of the easier tasks as these are words that are most likely to come

to mind for any native English speaker. Words dealing with time and emotions meet the third and

fourth criteria. All eight words were matched in intensity, pitch and duration using Praat software.

Each stimulus was recorded in a sound booth and then processed to maintain similar acoustic

characteristics.

Because of the acoustic complexity and high degree of variability of human speech, acoustic

characteristics for all words could not be perfectly matched. While an envelope of intensity can

have equivalent energy between words, the profile of intensity over the utterance of ’front’ and
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’back’ cannot be identical due to the differences in proper pronunciation of the two words. By

limiting acoustic variance between words, the amount of variability in neural processing that occurs

as the participant hears each stimulus is limited.

Previous research has shown EEG signals are more variable between participants when using

words than when utilizing more simplistic auditory stimuli, like pure or complex tones (Hill et al.,

2014; Hoehne and Tangermann, 2014). The activation of a diverse set of cortical areas related to

the lexical representation of these spoken word stimuli surely makes for a more difficult challenge

in reliably differentiating the resulting EEG traces. The feasibly of using this category of auditory

stimulus with previously vetted feature extraction techniques is one of the major outcomes of this

study.

2.1.6 Classifier

The term classifier, here, refers to the method of selecting of a possible BCI output based on

ERPs from the EEG signal. With most ERP classifier approaches the EEG data recorded during

a stimulus presentation is separated into spatial and temporal features. The spatial component is

comprised of several different EEG channels placed in different locations on the scalp for head and

earlobes. In the present study, 62 monopolar active electrode channels serve as spatial locations of

EEG. EEG voltage at each of these 62 locations were recorded at 256 Hz sampling frequency.

In order to differentiate signals produced during stimulus presentation EEG data is segmented

into epochs which are time aligned to the onset of the stimulus presentation. In order to improve

signal to noise ratio (SNR) of ERP signal detection, several epochs can be collected by presenting

multiple sequences of each stimulus over several trials. Using many trials, a mathematical model

can be generated for each spatial and temporal feature to describe the statistical differences in

target and non-target EEG signals.

EEG data collection in research environments often includes a large number of EEG channels

(spatial locations) and is capable of high data collection rates (up to 1000 Hz). Consequently,

there may often be a huge number of temporal/spatial features in a BCI training set (In the present
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design: 62 channels x 0.6 sec x 256 Hz x 15 reps x 4 stimuli x 32 trials).

Researchers often reduce this feature set by decimating the temporal stream of data, which also

eliminates some noise sources in the process. Decimating includes two steps. First the data is low

pass filtered at a frequency equal to the sampling rate divided by the decimation factor. Second, the

data is downsampled to this rate by selecting evenly spaced values over time. This process reduces

the size of the feature set.

Selecting of EEG channels that reflect large P300 deflections in a given paradigm may allow

for a reduction of spatial features. These could be identified visually after processing and plotting

target and non-target averages for a given participant (Schreuder et al., 2011). The step-wise linear

discriminate analysis (SWLDA) algorithm automates feature selection by adding each feature,

one at a time, to a linear discriminant model and determining the features that provide significant

increases in predictive power for categorizing target and non-target stimuli. The order in which

to add features to the linear model is randomized to remove effects of bias on the specific spatial

location or temporal feature. This data centric approach may suffer from overfitting and a lack of

generalization for future data collection, but has been shown to yield good accuracy results in P300

BCIs (Krusienski et al., 2008).

Many of the P300 BCI systems in recent research have utilized SWLDA (Simon et al., 2014;

Käthner et al., 2013; Furdea et al., 2009). This approach was also used in the present study’s aBCI

pilot trials. Regularized linear discriminant analysis (RLDA) model was compared offline and

found to yield improved accuracy, so RLDA replace the SWLDA classification approach for the

final study design.

2.1.6.1 BCI2000

A pilot study attempted to implement a step-wise linear discriminant analysis (SWLDA) approach

using BCI2000 software, developed and maintained by the National Center for Adaptive Neu-

rotechnologies (Schalk et al., 2004). SWLDA is programmed into the core BCI2000 environment,

which can be used to control a P300 based BCI.
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This experiment’s user interface and stimulus presentation software was initially constructed

in Python and it was expected that BCI2000 could provide EEG classification and interpretation

along with this interface. Unfortunately, after many attempts to use multiple BCI2000 extensions,

incompatibility between the EEG acquisition hardware, the User interface, and BCI2000 elimi-

nated this option.

Custom Python Classifier Another pilot attempt was made, using a custom BCI classifier

algorithm constructed in Python to ensure compatibility between PacGame interface and EEG

acquisition. Much of the SWLDA approach was previously coded in Python by Collin Stocks

(PY3GUI, https://github.com/collinstocks/Py3GUI). This publicly available set of scripts

from GitHub was used to guide development of an online classifier. EEG data analysis tools de-

veloped for MATLAB in the Speech and Applied Neuroscience Lab were used to process the

EEG data and generate the SWLDA classifier model. The PacGame software would then load the

classifier model to provide real-time decoding and control of the BCI interface. See Appendix:

pacgame_decoder.py for details on the decoder programming.

Increasing presentation rate Pilot participants suggested the presentation rate was somewhat

slow, losing the participant’s focus and engagement in the task. The stimulus onset asynchrony

(SOA) was initially set to 750ms and was able to be decreased to 400ms, giving no significant

silence period between stimuli. The number of presentations increased from 10 to 15 per trial as a

result of faster presentation.

2.1.6.2 Online EEG Processing

The final online processing pipeline for incoming online data included filtering, downsampling,

segmenting of data, a baseline correction step and then passing the pre-processed data to the online

classifier. The data for an entire trial was collected before starting the online pre-processing.
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Filtering and Downsampling A forward-backward 1 to 51.2 Hz band pass filter was applied to

ensure zero phase shift would occur in the data. A factor of 5 downsampling was accomplished

by selecting only every 5th time data point. The upper limit of 51.2 Hz in the bandpass filter was

determined by dividing the original sampling rate of 256 Hz by the downsampling factor of 5 (256

Hz/5 = 51.2 Hz).

Segmenting The start of a trial’s data collection in the PacGame program was adjusted to begin

before the target presentation instead of after, allowing a few seconds of data collection buffer to

reduce the filter edge effects on the EEG corresponding to actual trial stimulus presentation. Using

the bi-directional filter and using 12 points of zero padding on either end of the data the filter edge

effects were further minimized. The computer sound and parallel port channels were recorded

simultaneously with EEG data to mark each stimulus onset. These flags were used to segment

epochs 100ms before and 800ms after each stimulus onset. Parallel port values indicated which

stimulus was being presented and whether or not it was a target or non-target stimulus. Baseline

correction averages data points collected 100ms before to the onset of sound stimulus [-100 0]ms

and subtracts this value from all data points in the recorded epoch window.

2.1.6.3 RSLDA

In initial pilot runs suggested that target vs. non-target average ERP plots might differ significantly

between each spoken word stimulus. In order to help minimize the variation of modeling a target

sound over 8 different spoken word stimulus presentations, separate classification models were

generated for the Direction and Non-Direction word sets. This was completed for sessions using

both SWLDA and RLDA.

Regularized sub-class linear discriminant analysis (RSLDA) completes the RLDA method for

each unique target stimulus (Hohne et al., 2014; Höhne et al., 2016). Splitting the binary target

vs. non-target model into separate classification models based on each stimulus as a target, as op-

posed to each grouping of stimuli (Direction/Non-Direction), might be advantageous and segregate
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sources of variation in the training data. This technique was evaluated in offline analysis along with

RLDA and SWLDA to compare BCI performance between classifier approaches (Section 4.2.3).

2.1.6.4 Dynamic Stopping

Dynamic stopping is a technique used in a BCI system to evaluate the confidence of a decision af-

ter each sequence of stimuli is presented. If the confidence of that decision meets a pre-determined

selection criteria prior to the end of the stimulus sequences, the system will stop the stimulus pre-

sentation and output the decision to the BCI user. This allows a dynamic number of presentations

of the stimuli set for each trial and optimizes the time to selection on a trial-by-trial basis.

In the current paradigm fifteen sequences of four words are presented during each trial. Op-

timizing the number of presentations needed to make a correct decision could speed up commu-

nication rates. By making a confident decision after, for example, six or seven presentations the

BCI system can work faster and require less participant effort as the system and user improve their

accuracy.

The potential benefit of implementing the dynamic stopping routine in the present system was

investigated with offline analysis. BCI percent accuracy of decisions made after one through all

fifteen sequences per trial can be found in Figure 4.8. The ITR performance is also reported for

different number of sequences, which accounts for the shorter time to selection that results from

requiring fewer sequences. ITR considers accuracy and time to selection. By reducing the number

of required sequences to make an accurate selection, the ITR may increase.

2.1.7 Questionnaires

One major design consideration for the BCI was to ensure the user interface was highly motivating.

Participants’ self-reported level of motivation, and reports of workload and system usability were

collected in past auditory BCI studies (Käthner et al., 2013; Simon et al., 2014). Factors of self-

reported motivation, workload and system usability were tested in this study for their influence

on performance. Analysis of motivation, workload and usability are invaluable for user-centered
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clinical BCI development and should be included in future studies.

2.1.8 aBCI analysis

The number of trials that were correctly classified as the intended choice of the participant divided

by the total number of trials attempted gives the percent accuracy for each group of trials com-

pleted. BCI system performance was estimated using the training data collected and estimating

accuracy using 10-fold cross validation on each individual sub-trial as well as 2-fold cross valida-

tion on full-trial aggregates. Subject, session and word set condition performance were compared

to uncover the influence of these factors.

Investigation into the morphology of ERPs utilized by the aBCI classifiers was investigated

through participant specific grand-average plots of target and non-target stimulus presentations.

Topographical plots over the course of stimulus presentation indicated specific electrodes of inter-

est that present with maximal voltage fluctuation over the course of stimulus presentation. Stimu-

lus specific grand-average plots of target and non-target informed on the variance in morphology

across spoken word stimuli.

ITR was calculated, per Wolpaw et al. (1998), for each sequence within a trial. ITR averaged

across participant and for select participants is plotted for each sequence in Figure 4.9 on page 66.

This metric along with accuracy reflects the capability of the tested aBCI system.

Self-reported workload or cognitive load was assessed using the NASA-TLX questionnaire

giving a weighted score out of 100 with 100 being the highest possible workload for a task. Cat-

egories of workload are given individual scores and these results highlight the level and type of

workload demand perceived by the participant while utilizing the aBCI system. Correlation be-

tween questionnaire results and BCI performance are computed and summarized in 4.4.1.

The impact of spatial cues on BCI performance was expected to be reflected in the differ-

ence between ’centralized’ stimuli (those coming from the front and back speakers) and lateral-

ized stimuli (sounds coming from the left and right speakers). During the BCI sessions of this

study, experimenter observations as well as participant reports suggested no consistent difference
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in performance between centralized and lateralized stimuli existed. This was confirmed through

statistical comparison included in 4.2.6.1.

2.2 Word Recognition Task

The Word Recognition (WR) task was developed and utilized here to further investigate the impact

of spatial cues in the BCI task. It was confirmed that BCI percent accuracy results did not reflect an

influence from stimulus spatial cues. A behavioral test was employed to precisely evaluate spatial

cue influence on attending and recognizing target stimuli without the added complexity of collect-

ing EEG. No influence of semantic relevance of stimuli on aBCI performance was uncovered, so

both Direction and Non-Direction word sets were tested in this behavioral task as well.

Spatial cue information was modified for three different presentation conditions to evaluate

spatial cue impact on behavioral performance. The task was designed to be similar to the BCI

system in that four words were serially presented with one acting as the target. Participants were

instructed to press a button when they heard a target word. The ability of the participants to rec-

ognize the target word presentation is expected to influence the morphology of the ERP measured

in the BCI experiment (influencing BCI performance), as well as the reaction time in pushing a

button (behavioral measure). Therefore, a correlation was computed between BCI accuracy in the

aBCI task and behavioral measures (reaction time and accuracy) in the Word Recognition Task.

2.2.1 Presentation Condition

The first condition tested was one that most closely matched the BCI trial presentation. Four

different spoken word stimuli were each played from a different speaker around the participant

in several random sequences. Each stimulus was always played from the same speaker. This

condition provides a strong sound source location cue for the target stimulus. This condition was

termed the BCI condition.

In the second condition the spoken word stimuli all came from the same speaker, in front of
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the participant, forcing the participant to identify the target word through acoustic cues of the word

itself and no longer rely on spatial cues. This condition was termed the NoCues condition. Since

spatial cues were hypothesized to be the primary cue used in the BCI paradigm, it was expected

that the NoCues condition would yield poorer button push performance than the BCI condition.

In the third condition, target and non-target words came from randomly selected speakers for

each sequence. This condition applies spatial cues to each stimulus as in the BCI condition, but

because the spatial location of each spoken word varies during a trial a participant cannot solely

utilize stimulus location to identify the target. Participants will again need to rely more on the

acoustic characteristics of the target word itself. This condition was termed the Dynamic condition.

Random speaker/location assignment is similar to the presentation scheme in a past aBCI study

using spoken word stimuli (Ferracuti et al., 2013). For directional words, the meaning and sound

location may be congruent or match up in some sequences, enhancing recognition of the target

stimulus. In other sequences the stimulus meaning and location may be incongruent, disrupting

the participants focus and decreasing performance. Reaction time measures between congruent

and incongruent target stimuli presentations were also compared.

2.2.2 Attention and Fatigue

BCI classification typically benefits from additional stimulus presentations per trial; additional data

creates a better, more generalizable classification model. It is possible that some or all participants

become fatigued during trials of longer duration and may lose focus on the target. This could

increase noise and reduce the signal of interest in the recorded EEG used to train the BCI classifier,

as well as noise created during online use of the BCI.

The impact of the number of sequences of the four words presented in a given trial was also

tested in the WR experiment. Fewer sequences within a trial may reduce fatigue-induced errors

in the behavioral experiment and reflect improvements in focus that might enhance signals used

by the BCI classifier. A reduction in SNR may also result from reduced stimuli presentations but

overall advantages of reduced trial lengths can be investigated using the ITR metric.
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In the aBCI paradigm an orange arrow serves as a visual reference for the target. The target

stimulus was presented at the beginning of each trial in the WR experiment, as it was in the aBCI

experiment, but no visual indicator of the target was ever present on the screen. The WR experi-

ment therefore, requires a greater working memory requirement on participants, which may also

increase fatigue and reduce performance.

2.2.3 Reaction Time and BCI performance

Recognition of a target word within a randomized sequences of auditory stimuli was the goal

for the participants of both the PacGame and WR experiments. The experimenter is informed of

this target stimulus recognition via EEG signals in the PacGame task and by button press in the

WR task. A more precise behavioral measure is used in the WR task to further investigate the

influence of stimulus presentation parameters on target stimulus recognition. Reaction time (RT)

is a behavioral measure that summarizes the time of several sensory, cognitive, motor, and attention

processes (Carlson et al., 1983).

Most participants of the aBCI study contributed to the Word Recognition study so correlation

within participants could be tested. The results of this behavioral study were expected to correlate

with BCI accuracy but strong correlations weren’t expected, because many other factors influence

RT and BCI performance.

This experiment will inform on a framework for testing stimuli presentation parameters of

novel BCI systems with simpler behavioral measures independent of EEG signals. For P300 odd-

ball driven BCI studies, significant correlation could provide support for collecting behavioral

results to inform on optimal stimulus presentation parameters. Behavioral studies may yield more

definitive results with less effort from both researchers and participants. Using behavioral studies

would allow for more BCI system features to be tested independent of other BCI system influences

like EEG acquisition and classifier approach.
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Chapter 3

Study Protocols

The methods used in this study follow typical clinical practice, past literature on auditory Brain

Computer Interfaces and lessons learned through iterative pilot studies. The following chapter

outlines the specific details of executing the final experimental study design. Pilot study results

are mentioned as they informed on final study design. All study procedures were approved by the

Institutional Review Board of the University of Kansas and all participants provided their informed

consent prior to engaging in study activities.

3.1 PacGame BCI System and Protocol

The finalized BCI system used for the study conducted here is composed of several hardware and

software components. The following list highlights the major components.

1. EEG equipment

(a) G-tec Gamma cap

(b) 62 g.SCARABEO and or g.LADYbird active EEG electrodes (g.tec)

(c) 2 g.GAMMAearclip Ag/AgCl electrodes (g.tec)

(d) 1- g.SCARBEOgnd, 1- g.SCARABEO ’Z’ electrode (g.tec)
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(e) g.tec Hiamp with 64 active channels and 16 passive channel recording capability

(f) g.HEADbox Active

(g) g.TRIGbox

2. Audio Equipment

(a) Mackie 1202-VLZPro Sound board

(b) Motu Ultralite mk3 external sound card

(c) Crown D-75A ampliphier

(d) 2x Tannoy 6” Passive Nearfield Monitors (Left/Right)

(e) Bose Video Roommate Monitors (Front/Back)

(f) microphones

(g) MAICO MA40 audiometer - hearing screening

(h) Brüel & Kjær G-4 Type2250 sound level meter

3. Computers and connections

(a) Intense PC - EEG data acquisition

(b) Windows 7 Dell Desktop - PacGame UI

(c) Custom serial port connection to g.TRIGbox

(d) Custom Parallel port connection to g.TRIGbox

(e) Custom audio line-in(s) to g.TRIGbox

(f) ASUS VG248 video monitors

4. Environmental

(a) A temperature controlled, electrically shielded anechoic chamber
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3.1.1 Screening Participants

Participants completed a hearing screening to ensure similar dichotic hearing between both ears.

No strict criteria for hearing thresholds were implemented so that hearing loss (if present) could

be investigated as an influencing factor on BCI performance of lateralized stimuli.

Participants also completed a screening questionnaire to ensure they met critical inclusion cri-

teria, including:

• No pacemaker

• No metal implants in the body

• Fluent American English speaker

• No history of severe mental disease or brain injury

Potential participants were then scheduled for their first and if possible second session. Participants

completed screening procedures and provided informed consent to participate in the study. See

Appendix A.3 for screening form details. After reviewing the screening sheet the experimenter

conducted the hearing screening. If any criteria for inclusion were not met then the participant was

dismissed.

3.1.1.1 Hearing Screening

Participant sat in a comfortable chair inside a sound proof room along with the experimenter and

the audiometer. The participant faced away from the experimenter and the audiometer so no visual

cue of the tones being played would influence the test results. Calibrated headphones were placed

on the participant’s ears and the test began. The participant was instructed to raise their left or right

hand whenever they heard a two-tone train in the corresponding ear.

A MAICO MA40 audiometer was used to test the lowest intensity tone that could be identified

by the participant in each ear. A set of tones at the frequencies: 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8

kHz were tested. Audiograms were recorded for each participant and are included in the tabulated
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data in the Appendix A.5. For each tone a volume of 0dbSPL was initially presented in a two-

pulse train in both of the participants ears. The intensity was raised 5dB and the two-pulse train

repeated until the participant was able to identify the tone and raised their hand. Once the tone

was identified the intensity was reduced 5dB once again to ensure that intensity was the actual

minimum value that could be identified. The intensity was then recorded on paper corresponding

to the frequency and ear tested. This procedure was repeated for both ears and all previously listed

tone frequencies.

Criteria

The primary reason for conducting the hearing screening was to ensure that participants did

not have significant hearing loss or have significant loss in one ear as opposed to the other over

the frequencies important for speech. The decision to reject participants based on hearing loss

was revoked once the study began in anticipation that notable hearing thresholds may influence

BCI results in a measurable way and could be characterized. For this reason, no participants were

rejected due to hearing loss.

3.1.2 EEG setup

After the hearing screening the participants remained seated in the sound proof room where a 64

channel EEG cap was placed on the head of the participant. Alignment of the cap to anatomical

features was accomplished. A chin strap held the cap in place. A clip from the EEG lead sleeve

to the back of the cap helped reduce imbalanced tension on any single or group of EEG electrode

leads.

MATLAB (The MathWorks, Natick, MA) Simulink models were used for data acquisition

from the g.HIamp. These models included impedance measurement modules that were used to

investigate the relative impedance of all electrodes with respect to the ground and a Z-electrode

use for this active electrode impedance measurement. Electrolytic gel was injected beneath each

electrode and the tip of the syringe was used to move hair out of the way so that good contact

between the scalp and electrode surface was achieved with the gel. Color coded indicators for each
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electrode in the Simulink impedance module signaled to the researchers that <30KOhm relative

impedance had been reached.

Once all 62 EEG and the two ear clip reference electrodes exhibited this minimum impedance

the impedance module was closed. The g.Hiamp module was then opened and acquisition settings

were loaded for the training data collection. The amplifier settings included recording of trigger

channel data, 256 Hz sampling rate, 8-point buffer and Butterworth notch filters applied at 58-62

Hz to remove power line noise.

3.1.3 aBCI User Interface Software

The PacGame user interface begins with a prompt to enter the participants ID as well as session

ID. When running the ’online’ blocks of trials the participant ID is used to identify the classifier

file used for decoding and for naming log files written out during online trials. This participant

ID also contained a designation for condition and session as different decoder model weights were

used for each condition and session within each participant. The main menu appeared after hitting

enter on the session ID prompt input screen.

See Figure 3.1 for a view of the PacGame Menu screen. On this screen icons can be clicked

with a mouse cursor to enter a routine that presents a single block of either training or online trials

of conditions 1, 2 or 3. Condition three was tested in pilot runs and utilizes pure tone stimuli. It

was found that participants were not able to easily associate the tones with direction or location

and would not serve as good controls to past studies that utilized such stimuli. A help button was

available to be clicked to view the instructions to the participant and information about each BCI

condition (1,2,3). A button labeled ’Dyn’ turned off and on the dynamic stopping feature for online

sessions, but this feature was never fully implemented into the software. Clicking the ’Quit’ button

closed the program.
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Figure 3.1: PacGame Main Menu

3.1.3.1 PacGame BCI Task

The PacGame BCI paradigm is imbedded in a game like interface where a little yellow face icon,

called Pac, is positioned in the middle of a 5x5 grid of spaces. See Figure 3.2 for visual reference.

A cherry icon was placed at one of the four corners of the grid. The objective was to move

Pac to the cherry location. For each trial the aBCI classifier identifies one stimulus/direction as

the mostly likely target. The classifier decision will move Pac one grid space in the associated

direction. Once Pac reaches the cherry, the icon will move back to the center and the cherry icon

will move to another corner of the grid. The four trials required for the Pac icon to reach the cherry

icon will be referred to as a run. Four runs are accomplished with the cherry icon in each corner

to complete one block of trials. With this configuration, each block included 4 trials with each

direction/stimulus acting as the target, resulting in 16 trials total.

The instructions to the BCI user are typical of an auditory oddball task. Each trial consisted of

the presentation of the target stimulus, presented twice, with a 1 second pause in between, before

the trial began. Next, a rapid serial presentation of all four auditory stimuli, each played from a

specific speaker placed around the seated participant, began. Each of the four stimuli were played

in a random order before they were repeated again in another random sequence. Each trial included
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15 randomized sequences of the 4 stimuli. There was no pause or interruption between sequences.

The participant was instructed to count the number of target presentations that occurred throughout

the trial. The strategy suggested was to ignore all other non-target stimuli for that trial and focus

on the target word.

The target presentation also includes the visual presentation of an orange arrow indicating the

relative source location of the target sound stimulus. The arrow above the grid pointing up indicates

the target stimulus will be played from a speaker positioned directly in front of the participant at 0º

azimuth. Arrows on the left or right side of the grid pointing in the left or right direction will play

from speakers positioned at ±90º azimuth respectively. An arrow displayed below the grid pointing

down indicated the target sound is played from a speaker positioned behind the participant. Two

seconds after the second target stimulus presentation the series of auditory stimuli is initiated.

Figure 3.2: Example of PacGame interface

3.1.3.2 Training Trials

With the EEG system ready for acquisition, the experimenter changed the monitor in the sound

proof booth to receive input from the Dell Desktop where the experimental presentation software

was running. Microphones in the experiment control area were wired through the sound board and

the experimenters voice was heard in the left and right speakers in the sound booth. A microphone

placed behind the participants monitor allowed the participant to be heard by the experimenter,

listening through headphones outside the booth.

After giving the participant a single trial demonstration of the PacGame task the block was
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restarted and EEG acquisition was initiated. After any questions were answered for the participant

the training trials began. Participants completed two blocks of the BCI PacGame task for each

condition to account for training data.

During training sessions Pac will move in the direction of the arrow after each trial. The target

direction will be one that will bring Pac closer to the target, cherry location. For example, if the

cherry was placed in the bottom left corner as is seen in the first image of Figure 3.2, the four trials

will include two trials of left speaker targets (’care’ or ’left’) and two trials of rear speaker targets

(’while’ or ’back’). Which of the two possible directions is selected as the target for each trial is

randomized by the program.

Once Pac reaches the cherry, the Pac icon is returned to the center grid square and the cherry

is relocated to another corner of the grid. With completion of subsequent runs, the cherry will

move to each of the four corners in a randomly generated order. Once Pac has reached each corner

one block of trials is complete. This results in completion of four trials for each stimulus acting

as target for a total of 16 trials. Two blocks of training trials were completed for each word set

condition.

During stimulus presentation of the training blocks the PacGame software set parallel port

and serial port signals to indicate which stimulus was being presented. These signals along with

audio channel signals, indicating when an auditory stimulus was presented to the participant, were

recorded along with the EEG data by the Hiamp via the g.StimBox.

Thresholds for these ’trigger’ channels were manually set by the experimenter to allow for

audio triggers to appear with each stimulus presentation at minimum volume. This aided the timing

accuracy of stimulus onset and to minimize silence periods in the audio trigger channels during

word production. These trigger channels were used by the model generation script to segment

the EEG data into appropriate target and non-target stimulus presentation segments. See Section

2.1.6.2 for additional details of EEG preprocessing and decoding algorithm approach.

42



3.1.4 Stimuli

The stimuli were spoken word stimuli presented in a 400 ms long sound file recorded and post

recording processed in Praat software. Stimuli were recorded with an AKG head mounted micro-

phone and Motu Ultralite_mk3 external sound card connected to a Dell desktop computer running

Window 7. These stimuli were adjusted to have the time of voicing begin as early as possible in the

400 ms long sound file. No silence or breaks are intended between stimulus presentation during

the trial so each word was spoken at a rate to reach as close to 400 ms duration as possible.

Each stimulus intensity was scaled to match the recorded envelope intensity at the location of

the participant’s seated position. With stimuli played from their respective speakers, intensity was

recorded with a Brüel & Kjær sound level meter positioned at expected head height and location

of study participants, equidistant from all four speakers. The average intensity over the 400 ms

duration of each stimulus was adjusted to meet approximately 65db SPL. Pilot participants were

queried on any differences in stimulus intensity. No perceptible intensity imbalanced was reported.

Table 3.1 reports the duration of voicing of each auditory stimulus used in the BCI paradigm

in seconds. See Appendix A.1 for additional details of each acoustic stimuli including waveform,

spectrogram and pitch and intensity contours.

Table 3.1: Stimuli Durations (seconds)
Front Back Left Right Joy Care While Doubt

0.3929 0.4375 0.4277 0.3899 0.3903 0.3961 0.4037 0.3073

Stimulus files were played through four output channels of the Motu sound card, each channel

fed to one of the four speakers placed around the participant in the sound-treated chamber. Each

sound file is a four-channel file with silence on all channels but the one corresponding to the appro-

priate speaker. Figure 3.3 shows the spoken word stimuli and the location around the participant

for each condition.
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Figure 3.3: Stimuli Locations

3.1.5 Model Generation

After completion of training trails for both Direction and Non-Direction stimuli groups, EEG

recordings were stored and processed by a MATLAB script to pre-process and compute the linear

discriminate analysis (LDA) weights for the online decoder. See Appendix A.7 for the script code.

3.1.5.1 Preprocessing

The raw EEG data was initially zero-phase high-pass filtered above 1.0 Hz. This data was run

through a blind source separation algorithm termed to compute an independent components anal-

ysis (ICA) with FastICA with parameters to segregate independent components that have high

correlation to the EEG electrodes closest to the participant’s eyes. This algorithm presented sev-

eral candidate independent components potentially representing eye movement. Scalp topograph-

ical plots and full session recorded data traces were inspected and independent components were

manually selected for removal.

After ICA rejection, the reconstructed time series data was low pass filtered at 51.2 Hz again

using a zero-phase shift technique. The EEG data was then down-sampled by a factor of 5, and all

trigger channel data and time stamp vectors were also aligned to this processed dataset.

EEG time segments or epochs were segregated by aligning time zero to the onset of the au-

ditory trigger channel during aBCI trials. The parallel port value at the time of auditory trigger

onset provided a label for each sound presentation with which target and non-target epochs were
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identified.

Epochs that contained a value of greater than ±150 microvolts were rejected from the dataset

in expectation that a large muscle or motion artifact has influenced this piece of EEG signal and

the values are not reflective of neural activity due to the BCI task.

The RLDA model was trained using algorithms developed by the Berlin BCI group and de-

scribed previously (Hohne et al., 2014).

A single block includes four trials for each stimulus to serve as the target sound. Completing

2 blocks per condition gives 8 trials of EEG data, or 120 target presentations for each stimulus.

A total of 480 target presentations and 1440 non-target presentations utilized by the decoder to

fit the linear discriminate model for a given condition/session. A classifier file was written by the

MATLAB script to the experimental computer. This file was then loaded by the PacGame software

to set parameters for the online decoder.

While the classifier was being generated, the participant filled in the form for the payment

system during the first session and read details on the NASA-TLX workload survey in the second

session.

3.1.6 Online Trials

The participants then completed two rounds of online trials. The original intention was to complete

an entire block of trials, but because of very poor online performance and limited time only two

rounds were complete for both conditions. This still typically resulted in sixteen trials total as each

online round is limited to eight trials. The minimum number of correctly classified trials to reach

the cherry and complete the task was four, however very few participants reached the cherry in

eight trials so the round ended after eight trials. This ended the EEG portion of the session.

3.1.7 Session Balancing

The EEG-BCI protocol for both session 1 and session 2 are identical. The order of completing Non-

Direction words [’care’, ’joy’, ’doubt’, ’while’] or Directional words [’right’, ’left’, ’front’. and
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’back’] was balanced across the sessions and also across participants. Even numbered participants

completed thirty-two trials of Direction words first and odd completed Non-Direction words first

in both training and online paradigms. This order was switched for all participants in Session 2.

3.1.8 Interviewing Methods

At the start of each session the participant was asked to rate their current level of mood or mo-

tivation on a continuous scale from 1 to 10. The number 1 being a “bad mood” or “Extremely

unmotivated” and 10 being a “good mood” or “Extremely motivated”. This visual analog scale

(VAS) rating will be referred to as the participants self-reported level of motivation.

Next, the hearing screening was conducted in the anechoic chamber. The anechoic chamber

was also where the EEG recording took place. During Session 2 the participant was again asked

to complete the VAS for motivation after signing the consent form. The EEG protocol was again

conducted and afterwards two more questionnaires were completed.

The first questionnaire was the NASA-TLX. This questionnaire is meant to identify the type

and level of workload on the participant while they are attempting to use the BCI.

The survey is composed of two stages of reporting workload. First the participant was asked

to select between two of six different workload categories that were most important to the partic-

ipant’s experience of workload. All combinations of binary comparison of the 6 categories were

presented and the participant’s selections were tallied. Weightings based on the tallies for each of

the 6 categories were made. The participant then rated the six categories on a 20 point, unnumbered

scale from Very Low to Very High.

A descriptive prompt is provided for each category. For example, rating of Temporal Demand

is elicited by the prompt, “How hurried or rushed was the pace of the task?” The 20-point scale

rating was converted to a 0-100 scale by 5 point increments and was multiplied by the weightings

to give a score for each workload category. See Appendix A.4 for worksheets used for this survey.

The participants then completed the System Usability Scale (SUS) survey which asks ten ques-

tions, rated on a 1 to 5 scale from Strongly Disagree to Strongly Agree respectively. The overall
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score for usability was computed with a formula provided with the SUS survey. See Appendix A.5

for SUS survey materials.

The NASA-TLX and SUS ratings are completed independently for Directional and Non-Directional

word sets. Only one set of weightings for the NASA-TLX workload categories are used for both

Condition 1 and 2 ratings.

3.2 The Word Recognition Task

The word recognition task tested three different stimulus presentation paradigms, similar to those

presented during the BCI task. In this experiment, the participant is again seated in the sound

proof booth, approximately 1 meter from a computer monitor and positioned equidistant from four

speakers surrounding them orthogonally. Direction and Non-Direction words are again tested and

balanced across participants in order of completion.

There are several differences in the Word Recognition (WR) task and presentation from the

aBCI paradigm, however. In the WR task there is no PacGame visual presentation, instead a

fixation cross is presented on the screen. No EEG cap is placed on the participant, instead the

participant’s attention to the target sound is evaluated by pressing a button each time they hear that

trial’s target sound. Each trial’s target word is randomly assigned beforehand, instead of relating

to the direction the Pac icon would go to reach the cherry. Each of the four words are used as

the target once before being used as target again. In addition, each trial is randomly assigned the

number of sequences it will utilize.

3.2.1 Audio Presentation Conditions

The ’BCI’ presentation paradigm or condition is one that most closely matches the word presen-

tation scheme of the aBCI task. A target presentation plays the target word from its respective

speaker twice and the random sequences begin. In this paradigm, a set of four words is played

from one of a set of four speakers at random, just as was done in the BCI task. During the trial
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presentation, each of the four words are randomly presented before repeating, just as in the BCI

paradigm. Sixteen trials were completed with Direction words or the Non–Direction words be-

fore switching this condition and repeating the trials with the other set of words. There was no

orange arrow or other visual reminder of which stimulus was the target, so minor working memory

influences are potentially more present in this task.

In the second word recognition task presentation condition the spatial cues are removed from

the auditory stimuli. Here all the parameters of presentation and instructions of the task are equiva-

lent except that the presentation of the targets and all stimuli are presented from the speaker placed

directly in front of the participant. This condition will be referred to as the NoCues condition.

The third word recognition task again alters the location of sound presentation and will be

referred to as the Dynamic condition. Here all four speakers are again used, however, a given word

stimulus was not always presented from the same speaker.

The target stimulus in the Dynamic condition was first played twice from the front speaker and

then random sequences of the four words are again played with the variable number of sequences

as described before. The target word and the three other words of the current condition will play

from a randomly selected speaker during each sequence. In each sequence, each of the four words

will be played from a different speaker, so that each speaker plays exactly one word per sequence.

See Figure 3.4 for an example of the first two sequences of a trial in which the word ’Right’ is the

target and the sequences include playing the target word from the back and left speakers. During

a trial, the target sound will play an equal number of times from each speaker. This again requires

an interval of four trials per condition to balance these stimulus specific conditions.

3.2.2 Number of Sequences per Trial

The number of sequences or presentations per trial of each of the four words is not set at 15 as it

was in the BCI paradigm. The influence of the number of sequences in a trial was tested by running

trials with 4, 8, 12 or 16 sequences of stimuli presentation.
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Figure 3.4: Dynamic Condition Example

A trial with each of these number of sequences was run before repeating a trial with a given

count. Each of the target words were used in a trial with each of the four different counts. In the Dy-

namic condition, each of the four words is played from each of the four speakers an equal number

of times. Balancing the location presentation of each stimulus in the Dynamic condition requires a

multiple of four sequences per trial, so that is why these numbers of sequences were tested. Using

four different target words with four different counts gives us 16 trials per presentation condition

and per word set condition (Directional or Non-Directional words).

3.2.3 Protocol

The order of presentation conditions completed for the word recognition task was randomly as-

signed to each participant. BCI, NoCues, and the Dynamic condition were completed with 16

trials per word set condition for all participants. Completion of all possible condition orders re-

quires 12 different experiment condition sets. Three different presentation conditions yield six

presentation orders. Multiply this by the two different orders of completing the word set condition.

What improvements in task performance result from practice or what influence fatigue has on the

participant.

As was done with the aBCI tasks, the EEG amplifier and g.TRIGbox recorded the onset of

each auditory stimulus, a signal indicating which stimulus was presented and if the stimulus was a

target or not. The g.TRIGbox also recorded the timing of the participants button press. The data
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collected through these trigger channels was then analyzed to determine what the reaction time for

each stimulus presentation was. A percent accuracy of button press was determined by detecting

how many target stimuli did not get a button press.

Participants were instructed to keep their eyes open and to maintain fixation on a fixation cross

to mimic the BCI instructions. It was also stressed to the participant to press the button immediately

after the target stimulus was presented. Participants were allowed to press the button in whatever

way they felt most comfortable.

A brief survey was completed by each participant after the experiment. This survey queried the

participants for information about the easiest and most difficult conditions regarding presentation

order, stimulus sequence, word set condition or any aspect of the task they found difficult. Partici-

pants were also asked to estimate the number of target stimuli they missed pressing the button for

each presentation condition.
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Chapter 4

aBCI Study Results

The results of testing the aBCI on several healthy participants is detailed here with reference to

additional results in the Appendix. The initial focus is on the general performance of the system

and the effect of word condition on performance. A number of analyses are completed to de-

scribe or discount influence of many other variables such as BCI session, the sequence of auditory

presentation within a trail or the order of Direction vs. Non-Directional completion.

4.1 Participants

Participants in the current study were primarily college aged young adults with self-reported nor-

mal or corrected to normal vision, and no history of neurological disorder, disease or injury. In total

22 participants signed consent and participated in at least some portion of the study. Recruitment

was primarily accomplished through word of mouth, flyers and referrals from participants in other

studies. The hearing screening, thorough checks on equipment settings, and immediate scheduling

of both sessions for eligible participants helped mitigate unnecessary loss of participant data.

Four participants were included in the pilot study, but the pilot paradigm was changed to re-

move SWLDA classification approach and speed up presentation from 750ms inter-stimulus inter-

val (ISI) to 400ms ISI. Pilot results are reported as it is still informative in reflecting the paradigm

used. The majority of results are reported with a focus on the data collected from 16 subsequent
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participants that completed 2 sessions of the final aBCI study design.

For the sixteen participants included in the study the age, handedness and gender of each is

reported in Table 4.1. All participants included in the study reported their race and ethnicity as

White, not Hispanic. Additional health history information regarding compatibility with EEG

data collection and neurophysiological condition was also collected. No participants were rejected

based on screening information.

Table 4.1: Participant Information
Participant age handedness gender

05 22 Left female
06 26 Right female
07 29 Right female
09 26 Right female
10 29 Right female
12 21 Left female
13 25 Right female
14 21 Left female
15 20 Right female
16 27 Right male
17 25 Right male
18 18 Right female
19 22 Right male
20 59 Right female
21 26 Right female
22 19 Right female

The sample of participants was heavily biased by female gender. Females have exhibited larger

P300 amplitudes in Käthner et al. (2013) and other studies cited by this author. However, Oliver-

Rodríguez et al. (1999) found male P300 amplitudes were larger in a study to compare gender

differences from affective stimuli. A study comparing ERP BCI performance has seen no influence

from gender in similar studies Schreuder et al. (2011). A Mann-Whitney test on the difference

between male and female BCI performance as described in 4.2.2, suggests there was no difference

between gender (W = 247, p-value = 0.4531).

A list of languages that participants were familiar with is included in Table 4.2 along with the

number of participants that reported having some familiarity with the language.
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Table 4.2: Participant Language Familiarity
Languages Spanish ASL* Hebrew Mandarin Japanese German Italian

# of Participants 8 3 2 2 1 1 1
*ASL - American Sign Language

4.2 BCI % accuracy

The number of trials that were correctly decoded divided by the total number of trials attempted

gives the percent accuracy for any group of trials completed. Percent accuracy is the primary

metric of performance for the BCI system. The feasibility of the system to robustly and correctly

select the items the user is intending to is evaluated with the accuracy metric. It is important

to understand the aspects of the system that yield the highest accuracy and which features could

benefit from modification.

Understanding the influence of each system feature requires computing accuracy from several

different approaches. Investigation into the accuracy of the BCI system will include estimating

percent accuracy using 10-fold cross validation on each individual sub-trial as well as full-trial ap-

plication where 2-fold cross validation will be used. Comparing single-trials to full-trial accuracy

will highlight the benefit of averaging multiple single-trials together. Across Session accuracies

tell us how well the models generated will generalize over multiple EEG sessions. All percent

accuracies for offline data analysis were computed using RSLDA classifiers.

Comparing accuracies across word sets, individual target stimuli, and participants illustrates

variability resulting from use of spoken word stimuli. The importance of spatial cues was in-

vestigated by identifying any imbalance in performance between stimulus location. Specifically,

the difference in performance of centralized (’front’ and ’back’) speakers and (’left’ and ’right’)

speakers was used to evaluate the performance benefits of spatial cues.

4.2.1 Sub-Trial Percent Accuracy (offline)

The initial approach taken to test the predictive power of the model generated from the aBCI

training data was to run cross-validation on the resulting model. Cross-validation splits the training
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data into parts, using one subset (A) to fit the linear model. Another subset (B) will act as input

to the model to generate predicted outcomes. The process was repeated by varying what data

comprises subset A and B and an average of predicted outcomes was used to estimate offline

percent accuracy. Accuracy estimates can be computed with many variations in the data subsets

on which the model is trained or tested.

A 10-fold cross-validation technique was used to predict the percent accuracy for every stimu-

lus presentation to be correctly categorized as a target or non-target. 10-fold cross-validation splits

training data into 10 random noncontiguous, but equally sized sets. A model was generated from

one of the 10 sets of data and that model was tested on the other 9 subsets. Accuracy was estimated

for each of the 10 subsets and the average accuracy across all these iterations is reported.

Results for each participant can be found in Table 4.3a. In Table 4.3b. the accuracy score was

aggregated over each Session and Condition.

It may be noted that the majority of participants, sessions and conditions yield similar accura-

cies in the mid 60s. This result comes from the classification of every single utterance as target

or non-target reflecting Type I and Type II errors. This result could also be termed single-trial

accuracy and are often reported as such (Blankertz et al., 2011; Hill et al., 2014; Hohne et al.,

2014). A very consistent mid 60’s percent was somewhat encouraging as sub-trial accuracy re-

flects a difficult decoding problem for BCI. The BCI system proposed here intends to aggregate

15 trials and their classification scores together in order to improve accuracy performance beyond

what was reported here. The training data used in this calculation was also 1/10th of that expected

to be used in the real-time BCI system.

The uniqueness of each participant’s accuracy can be seen in Figure 4.1 as each box-plot con-

siders the 10-fold cross validated percent accuracy for each session and condition completed by

that participant. These boxplots show the results for the first four pilot participants as well as the fi-

nal study design results. A horizontal line indicates the BCI research fields standard for minimum

performance with a BCI. Four participants (aB07, aB21, aB9, and aB10) were able to achieve

>70% accuracy in at least one session/condition with this measure of offline accuracy.
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Table 4.3: Offline sub-trial Accuracy (10-fold cross validation)

a.

Participants Mean %Accuracy
05 63.346
06 65.401
07 67.864
09 66.302
10 64.336
12 62.318
13 66.562
14 65.313
15 63.438
16 62.174
17 66.380
18 65.026
19 68.438
20 67.6330
21 74.010
22 67.930

b.

Session Condition % Accuracy
1 Direction 65.452
2 Direction 66.357
1 NonDirection 66.535
2 NonDirection 65.755

4.2.2 Full-Trial Percent Accuracy (offline)

The BCI system was designed to make predictions of target vs. non-target categorization for

a given stimulus class based on the median score of 15 sequences of each stimulus. In order

to compute the expected accuracy of the system offline, an approach to use cross-validation but

compute decisions based on all 15 sequences was used.

When splitting data for cross-validation but evaluating full trials, it is most valid to retain all

stimulus presentations from a full trial in the tested data subset. It is also important to retain

balanced number of trials where each of the stimuli serve as target, in order to capture all EEG

variability due to stimulus differences. Instead of randomizing the sequences that go into model

training and tested data subsets, here a 2-fold cross-validation design was accomplished by splitting

the test and training sets into the two different blocks completed during the training session. Each

block was composed of sixteen full trials where each of the stimuli act as the target in four trials.

For each percent accuracy reported the percent correct reflects an aggregate of trials trained on

Block 1 and tested on Block 2 as well as trials trained on Block 2 and tested on Block 1, resulting

in thirty-two cross-validated trials.
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Figure 4.1: Offline Sub-trial Accuracy

Accuracies aggregated for each participant are included in Figure 4.2. Pilot data and horizontal

line at 70% accuracy is also included as in Figure 4.1. It should be noted the general increase

in accuracy over sub-trial calculations was likely due to the fact that accuracies are based on 15

sequences instead of just one and that more data was used to generate the classifier models. Twelve

of the sixteen final study design participants that exhibit at least one session/condition that resulted

in >70% accuracy using RSLDA decoder as opposed to the four participants that met this criterion

using the sub-trial 10-fold cross validation result. The sizable improvement in full-trial accuracy

over single trial supports the use of full-trial decoding in such a system.

Table 4.4 highlights some of the best performances in regard to offline percent accuracy. While

these best-performer results are often highlighted in the BCI literature it should also be noted that

a very high number of participants achieved minimum offline performance in this study with no

training or accurate feedback.

The accuracy between sessions was not found to differ dramatically. Figure 4.3 on page 59

shows the similarity of between Session 1 and Session 2, although Session 2 exhibited less variance
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Participant Accuracy Session Condition
aB22 84.38% 1 Non-Direction
aB19 87.5% 1 Direction
aB20 87.5% 1 Non-Direction
aB22 87.5% 1 Direction
aB19 90.62% 2 Direction
aB21 90.62% 1 Non-Direction
aB21 90.62% 2 Direction
aB21 96.88% 1 Direction

Table 4.4: Top Offline Accuracies

(session 1 - 353.51, session 2 - 272.11). A paired t-test shows these two distributions are not

different from one another (t = -0.2026, df = 59.001, p-value = 0.8401). Difference between

session would highlight the effect of experience or training with the BCI system.

A paired t-test of accuracy between conditions was not significantly different (t = 1.368, df =

28, p-value = 0.1822). 4.4 shows the similarity of performance between the Direction and Non-

Direction word trails. This result suggests that semantic relevance was not an influencing factor on

performance.

The order in which each condition was completed was balanced across participant and within

participants to balance any effects of training or experience with the BCI. A paired t-test between

the offline RSLDA accuracies of the first condition in a session and the second condition within a

session, regardless of condition, was not significant (t = 0.023078, df = 59.849, p-value = 0.9817),

proving the order of completion did not have an appreciable effect on BCI performance.
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Figure 4.2: Offline % Full-TrialAccuracy: Participant

Figure 4.4: Offline % Accuracy: Condition
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Figure 4.3: Offline % Accuracy: Session

4.2.3 Classifier Comparison

When comparing the full-trial classification results using RLDA and the SWLDA it was discovered

that RLDA yielded higher accuracy. RSLDA was also tested and yielded results very similar and

often better than RLDA. See offline percent accuracy estimates for these three classifier methods

aggregated across participants, sessions and conditions in Figure 4.5. A plot is provided for Pilot

subjects data as well as the subsequent 16 participants in the final study design. For all offline anal-

ysis reported the RSLDA approach was utilized. An omnibus ANOVA test of effect of accuracy

found a significant main effect of classifier (F=20.544 p-value=9.48e-09). The results in accuracy

using RSLDA over SWLDA were significant (t = 5.7667, df = 114.82, p-value = 6.943e-08).
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Figure 4.5: Offline Classification by Decoder

4.2.4 Accuracy Across Sessions

In BCI systems, the training session data is used to generate a model used in online trials to clas-

sify EEG features and provide output to the BCI interface. Differences in EEG cap placement

and cognitive states of alertness produce variance in EEG signals from the BCI user across ses-

sions, requiring new training data to be collected and a new classifier model to be generated each

session. A good deal of data is necessary to generate a reliable and flexible model so training a

classifier each time an EEG cap is worn is time consuming and bothersome in research or clinical

application. Often researchers test the usefulness of past session training data in hopes that the

signals produced by the user and extracted by the system are generalizable enough to work well in

a variety of conditions including different days and different EEG cap applications.

Across-session accuracy was calculated by averaging of the percent accuracy from training a

model on session 1 data and testing on session 2 data and vice versa within a participant. The

accuracies by participant include calculations across both sessions in both word set conditions,

since separate models are made for each word set.

Figure 4.6 shows that across-session accuracies are similar to those found by cross-validation

within a session and are not statistically different between word set conditions (t = 0.96945, df =

53.004, p-value = 0.3367) or by session used for training (t = 0.053397, df = 53.971, p-value =
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0.9576).

Figure 4.6: Offline % Accuracy: Across Sessions

The across-session accuracy calculation was most similar to the 2-fold full-trial accuracy cal-

culation. Accuracies collected across session and within session were found to be very similar,

indicating a substantial generalization of the models created in the aBCI system. Although the

SWLDA classifier was found to be less accurate than the RSLDA classifier in offline within-session

analysis, it was found to be statistically equivalent in generalizing across sessions. Figure 4.7 com-

pares the mean full-trial, across session, accuracy of each participant utilizing both of SWLDA

and RSLDA classification methods. A t-test of these distributions yields no significant difference

in means (t = 0.67738, df = 27.997, p-value = 0.5037).

Unlike within session accuracy, the classifier models utilized here use the full training dataset

of a given session, doubling the training data used to generate the model. It may be that additional

data fed into the model may benefit the SWLDA classifier. Because the RSLDA generates a unique

model for each target stimulus, it utilizes one quarter of the data used by SWLDA. In terms of

required data, RSLDA may be at a disadvantage.
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Figure 4.7: Across Session Accuracy Decoder Comparison

4.2.5 Accuracy by Sequence

The use of dynamic stopping has been tested using RLDA previously Schreuder et al. (2013) and

should be considered in future versions of the current aBCI if evidence suggests this would en-

hance the average time of making an accurate selection. The potential benefit of dynamic stopping

was evaluated by looking at the accuracy of utilizing fewer than were presented sequences or pre-

sentation of each stimulus.

RSLDA was used in an offline dynamic stopping approach. In a RSLDA model weights for

classifying each stimulus are defined. During a trial, each stimulus presentation was assigned a

classification score. This score indicates how likely the stimulus was a target or non-target for that

specific spoken word. After a number of presentations of each stimulus, scores for each stimulus

sub-class are combined. The median instead of the mean of these scores was utilized as it is a more

representative statistic when outliers are present. The median score of all sub-classes are compared
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and the one which is closest to the target direction (in this case the most negative) was the decided

stimulus sub-class. If that stimulus was the intended target then the classification was correct.

Classification was completed for each sequence of the four stimuli being presented, producing an

estimate of accuracy for each sequence within a trial.

Figure 4.8 shows accuracies obtained by using 2-fold cross-validation of full-trials using the

RSLDA decoder. Each point represents the mean accuracy across all trials, participants and ses-

sions, if that number of sequences was used to make the BCI decision. Error bars represent 2

standard errors of the data for each sequence.

Accuracies by sequence are also plotted for select participants. Participants 19 and 21 achieved

some of the best accuracies, while participants 6 and 16 some of the worst. For participant 16 a

performance ceiling was reached at about 8 sequences while participant 21 benefited from at least

13 sequences.

Sequences greater than thirteen may not provide better BCI performance in the current aBCI

paradigm. Accuracy at fifteen iterations was less than 70%, on average, so any optimization of

parameters to improve accuracy should be implemented in future designs to reach this threshold.

The balance of accuracy and time to present numerous stimuli gives an overall rate of selection.

Information transfer rate (ITR) is a metric that can be used to evaluate BCI performance taking

into account accuracy, time to selection and the number of selection items possible.
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Figure 4.8: Accuracy by Sequence

The calculation for Information transfer rate (ITR) starts with computing number of bits or

binary pieces of information generated per trial (Wolpaw et al., 1998). In Equation 4.1, the letter

B signifies the bit rate in bits per minute, N is the number of stimuli or possible targets and P is the
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probability of correctly selecting the intended target.

B = log2N +Plog2P+(1−P) log2

(
1−P
N−1

)
(4.1)

The ITR is then calculated with the formula below, were B is the bit rate defined above and V is

the rate of selections or trials per minute.

IT R = B ·V

Average ITR for all participants plateaued near the 15 sequences mark in both Figure 4.9 and

Figure 4.8. Fewer sequences in this system would not appear to improve ITR. Looking at ITR for

select participants shows that those that performed well were able to improve performance through

multiple sequences while those that performed poorly did not see their accuracy improve with

additional data added to the decision process. Accuracy improvements were not present between

fourteen and fifteen sequences for participant aB19 and aB21, so minor drop in ITR occurred

between these points. The maximum ITR achieved (8.48bits/min) by participant aB22 was at

sequence 13. The worst maximum ITR was achieved by participant aB11 at sequence 10 (0.930

bits/min).
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Figure 4.9: ITR by Sequence
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4.2.6 Accuracy by Stimulus

Several participants commented that a certain direction or word was more prominent or distracting

than others. Front and back stimuli location confusion was anticipated but not profoundly observed

by the participants or through the data. One pilot participant did voice that they could not identify

that the word ’while’ was actually coming from the speaker behind them and perceived it came

from the front speaker. Throughout other pilot and official study design trials it was expressly

explained that the words ’joy’ would come from the front speaker and ’while’ from the rear speaker

before starting training blocks of the Non-Directional condition.

Participant comments on the Non-Directional words often centered around the emotional feel-

ings elicited by the word ’doubt’ or ’joy’. These emotion words were selected based on the

proposed difficulty of associating an emotion with a spatial direction. Emotional or meaningful

words for participants may induce some influence on attention originating from the semantics of

these two stimuli. This influence was expected to be highly individualized, and was not explored

further.

Figure 4.10 summarizes the mean RSLDA 2-fold cross-validated accuracy by target stimulus

across all participants and sessions. The target words spoken are listed below each bar. The

direction the sound comes from is indicated by the bar color. The blue bars, coming from the front

speaker, exhibit the lowest Accuracy of either condition.
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Figure 4.10: Accuracy by Stimulus

4.2.6.1 Spatial Salience

In order to investigate how spatial separation of stimuli influence aBCI performance, a comparison

of lateralized [’left’, ’right’, ’care’, ’doubt’] and centralized [’front’, ’back’, ’joy’, ’while’] sounds

was made. Lateralized words or those coming from the left and right of the participant in either

Directional or Non-Directional conditions was anticipated to have more spatial salience and poten-

tially provide improved BCI accuracy. A pairwise t-test of full-trial RSLDA accuracy by subject,

session and condition between lateralized targets and centralized targets yielded no significant dif-

ferences (t = 0.015817, df = 494, p-value = 0.9874). An ANOVA of accuracy on left, right or

centralized sounds didn’t show a significant effect either (F = 1.4717 p-value = 0.2335).

Individual preferences for left, and right lateralized sounds may be pronounced at the individ-

ual level and effectively washed out in aggregated results across participants. Figure 4.11 shows

stimulus specific percent accuracy of each participant grouped into left [’left’, ’care’], right [’right’,

’doubt’] lateralized stimuli or central [’front’,’back’, ’joy’,’while’] stimuli. For all but two partic-

ipants, one of the lateralized groups has the highest accuracies. For 11 of the 16 participants the
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right lateralized words are the highest accuracy, reflecting the highest accuracy for the word ’right’

shown in Figure 4.10. Two of the three left handed participants, aB05, and aB12 had their highest

and tied for highest accuracies with left side targets. The third left handed participant, aB14 still

showed minor preference for right lateralized sounds. Participant aB07 showed left side prefer-

ence but is right handed, however this subject showed higher hearing thresholds in the right ear as

shown in Table 4.5. Minor hearing loss in the right ear may explain some left side preference in

this participant. These results suggest handedness and binaural hearing thresholds play some role

in lateralized aBCI stimuli performance.

Figure 4.11: Lateralized Accuracies

4.2.6.2 Hearing Loss and Lateralized Performance.

There was hope to investigate if sizable differences in thresholds between ears might yield a dif-

ference or preference for stimuli played from the left or right location. For this reason a strict

requirement on perfect hearing in study participants was not enforced. This concept could be
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tested by presenting a given stimulus at different volumes to perfect hearing listeners, but a full

spectrum reduction in volume is not the same as frequency specific, asymmetric hearing loss, so

effects could differ.

Differences between thresholds at the specific frequencies tested in the hearing screening were

computed. The thresholds in the right ear were subtracted from those in the left ear and any instance

of an absolute value of greater than 10dB in this difference is listed in Table 4.5. Positive values

in the right most column of this table indicate higher thresholds in the right ear and may induce

some preference or increased performance with left side presented target stimuli as demonstrated

by participant aB07. Negative values indicate higher thresholds or increased hearing loss in the left

ear. Participants aB06, aB20, aB19 all showed better performance on right side presented target

stimuli as well as displaying some relative hearing loss on the left side.

Participant Frequency(Hz) Right-Left(Thresholds)
aB06 4,000 -15
aB07 250 15
aB07 500 15
aB07 1,000 20
aB17 6,000 -25
aB17 8,000 -20
aB19 4,000 -20
aB19 6,000 -15
aB20 4,000 -15

Table 4.5: Lateral Difference in Hearing Thresholds

The instances of notable hearing threshold differences and coincidence with BCI performance

of lateralized stimuli indicates some relationship on a within-participant basis. While this study

was not optimized to uncover the specific correlation of hearing thresholds and aBCI performance,

multiple cases in these results support the notion that hearing loss, as well as handedness, may

influence aBCI performance using spatially separated auditory stimuli.
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4.2.6.3 Target Confusion

aBCI accuracy estimated by target stimulus gives us some indication on which directions were

potentially the most difficult. It may also be informative to explore which direction or stimulus

was selected instead when the target was not chosen. Figure 4.12 shows 2 confusion matrices

indicating the percent of trials each word was chosen given a specific target word. The x-axis

indicates the target word and the y-axis indicates the word chosen. The percentages indicate how

often for that Target word the Winner word was chosen. The graph on the left includes accuracies

for the Direction Words and the graph on the right the Non-Direction words.

The highest confusion for the Direction words was ’right’ as a winner when ’left’ was the target,

at more than 17% of the time. The confusion of ’left’ being selected when ’right’ was the target

was only 9.85% showing the strong preference for the stimulus ’right’ between the two. These two

direction are likely to be the most salient and produce the most confusion or distraction when not

serving as the target. The top left four numbers in the Direction Words chart indicate how often

left and right were selected when neither were the target. It should be noted all of these numbers

are higher than all numbers in the bottom right quadrant where we see the percentages for ’front’

and ’back’ being selected when neither was the target. This highlights a minor preference for the

lateralized stimuli but this effect was not found in ’care’ and ’doubt’, the lateralized words in the

Non-Direction set.

The front and back directions were anticipated to have a high level of confusion between each

other but at an average of 12.71% confusion they are not confused much more often than any other

pair and less than the left / right presented stimuli confusion at 13.45%. The Non-Direction words

’while’ and ’joy’ represent the back and front locations in the second set of stimuli. They saw a

confusion of 13.475% on average, while ’doubt’ and ’care’ saw an average confusion of 11.915%.

These results oppose the trend seen in the Direction words, indicating that this spatial cue may not

be detrimental and that acoustic and semantic features of the words themselves may have larger

influences on salience and distraction.
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Figure 4.12: Confusion Matrix

4.2.7 Online Results

Online sessions utilized the PacGame RSLDA classifier to select the intended stimulus and corre-

sponding direction. Although a few participants exhibited somewhat promising online results the

majority of online sessions yielded near chance control of the system (26.185% average across all

data). Online results for the RLDA classifier using a single session or 32 trials of training data for

each condition was reported in Figure 4.13. This figure plots a smoothed density estimate line plot

of the Direction and Non-Direction conditions. The variance in Online accuracy averaged for each

participant, session and condition was 1.84%.

Because the percent accuracies of online trials were far less than offline analysis some differ-

ences in these two classification approaches must still remain. For this reason, no conclusions will

be gleamed from the online results.
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Figure 4.13: Online Accuracy by Condition

4.3 Waveform Analysis and P300 amplitude

Grand-average EEG waveforms of each stimulus for Target and Non-target averages across all

participants and sessions are presented in Figure 4.14. The shaded regions around each average

trace represent 95% confidence intervals over all the stimulus presentations averaged into the plots.

The Target traces in blue present a slightly more negative deflection than Non-Target traces around

100ms after stimulus onset. Differences between stimuli in the positive deflection around 200ms

and decay thereafter are not as pronounced.
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Figure 4.14: Grand Average by Stimulus and Condition

Participant averages were investigated to identify patterns in the ERP signals that might fit with

past observations of speech stimuli in BCI paradigms. Figure 4.15 illustrates the approach taken.

Initially the grand average of all Stimulus presentation aligned epochs are plotted in a series of

topographical plots (or scalp map) of the time course of the epoch, showing, by color, the relative

EEG amplitude at different locations on the scalp over time. Yellow and orange indicate more

positive potentials at a location while green and then blue indicate more negative scalp voltages.

Each topoplot’s color scheme is normalized for the range of voltages present at that time point.

The time after stimulus onset represented by each topographical plot is noted above the scalp map.

The time series topoplot was inspected to identify what central electrode might see the largest

amplitude deflections during a stimulus presentation. In Figure 4.15 a positivity over fronto-central

electrodes grows and dissipates around 100ms after stimulus onset. Then a more central positivity

persists until approximately 240ms. A frontal negativity appears before another positivity around

350ms.

After selecting between FCZ, CZ, CPZ or PZ based on the topoplots, a grand average plot of

all Target and Non-Target stimuli (across conditions and sessions) was made. The blue, Target

traces typically show a pronounced positive deflection at ~200ms over non-Targets that persists to
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300 to 400ms after stimulus onset, depending on participant.

The differences between the target and non-target traces are the basis for the linear classification

method. The differences are modeled at each time point and at all electrode locations on the

scalp. The RSLDA method was utilized for offline data presented in this report, which generates a

model of the target/non-target differences for each target stimulus. To illustrate what the RSLDA

classification method would focus on, the target and non-target traces for each target stimulus

are also included in the example figure. While similar morphology appears in all stimulus plots,

differences between stimuli are apparent, especially in the differences between target and non-

target. White space between the traces indicates a lack of overlap in the 95% confidence interval

shaded regions and a likely strong predictor of difference that will be utilized by the classifier to

identify target stimuli.

Figure 4.15: Participant aB21 ERP example

Figure 4.16 illustrates the same topographical plots and grand average ERP comparisons as

Figure 4.15 but of participant aB16. Graphics of these kind for all participants can be found in the

Appendix A.3. While general timing of relative positive and negative deflections was very similar

between these two participants, as can be seen in the Grand average plots, some differences in

location of most pronounced positivity and negativity was apparent in the scalp maps. Participant
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21 in the first figure was one of the best offline RSLDA percent accuracy performers while aB16

was one of the worst. The noise or additional oscillations apparent in the grand average and

stimulus specific ERP traces for aB16 may illustrate some of the reasons for lower percent accuracy

performance in the aBCI. The 95% confidence regions of the stimuli specific plots appear much

wider for aB16 than aB21, illustrating the increased variance in aB16’s training data.

Figure 4.16: Participant aB16 ERP example

4.4 Questionnaire Summaries

A self-reporting of motivation was given at the start of each session and 2 questionnaires were com-

pleted at the end of session 2. These same self-reports have been completed in past research and

may give some indication of the sources of success or failure arising from individual participants

or the BCI system as a whole. Many of these measures were quite consistent across participants,

indicating they are a result of the system design and not wholly based on individual preference.

4.4.1 NASA-LTX

The NASA-Task Load Index (NASA_TLX) overall score was negatively correlated with the RSLDA

percent accuracy score., indicating increased self-reported workload corresponded to lower aBCI
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accuracy. The NASA_TLX data doesn’t fit a normal curve or pass the Shapiro-Wilks test for nor-

mality (W = 0.92158, p-value = 0.0008884) so a non-parametric measure of correlation is reported

yielding a very weak correlation (Spearman’s rho = -0.2757801). NASA-TLX survey was com-

pleted for both Direction and Non-Direction word conditions, but no significant difference was

found between the participant’s overall ratings between conditions (t = -0.20909, df = 25.975,

p-value = 0.836).

Figure 4.17 shows the mean and 2 standard deviation error bars for the weighting of the individ-

ual categories of workload included in the NASA_LTX. These weightings come from the selection

of one category between each possible pair of workload sources. The maximum and minimum

weighting for each would be 5 and 0 respectively.

Participant comments and explanation during administration of the survey yielded some insight

into the cause of the resulting weightings. Physical demand was selected the least often, likely due

to no perceived physical task associated with the aBCI. Mental demand was weighted the highest,

while at least some combination of Frustration, Effort and Performance related workload seemed

to be present for most participants.

Figure 4.17: NASA weightings
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4.4.2 SUS

The global average for the System Usability Scale is a score of 76, a typical score for most systems

evaluated with this scoring system. The overall averaged score for the PacGame aBCI was 64.3,

indicating that the participants were less satisfied with the system than most systems evaluated with

this scale. In most cases, participants voice disappointment in the poor online results. Because the

online tests yielded very low accuracies, completion of a round (Pac reaching the cherry icon)

occurred very seldom.

The SUS rating was found to pass the normality test (W = 0.96666, p-value = 0.08097) and did

weakly correlate with aBCI percent accuracy (Pearson’s r = 0.2797689). The online feedback par-

ticipants received was not a good indication of performance. However, participants may perceive

internal clues of how well they are attending to the target stimuli and accomplishing the BCI task,

reflecting somewhat accurate self-reports.

Figure 4.18: SUS Score Summary
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4.4.3 Motivation

In Käthner et al. (2013) a correlation of self-reported motivation and P300 amplitude was found,

however a Pearson correlation was used which assumes normality in the distributions tested. Mo-

tivation, in this study, doesn’t pass the Shapiro-Wilks test for normality (W = 0.93932, p-value

= 0.003529) and so a rank order, non-parametric, Spearman correlation was calculated (rho =

0.1928773).

Motivation was self-reported and should be viewed as relative to each participant. Motivation’s

influence on BCI performance by relating the difference in motivation and BCI accuracy between

sessions. Figure 4.19 plots the change in motivation vs the change in RSLDA offline percent

accuracy between sessions. Session 2 motivation and accuracy were subtracted from Session 1

motivation and accuracy respectively. The blue dashed line shows the significant regression line

indicating, inverse an relationship between change in motivation and change in accuracy. Each

point is labeled with the participant’s id number.

Figure 4.19: Change in Motivation and Accuracy Across Sessions
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4.5 BCI results Summary

The BCI system displayed a high level of performance in a few participants and was found to pro-

duce generalizable models that could be used across EEG sessions. While participant performance

varied greatly, the average accuracy of the system did not greatly deviate between sessions, stimuli

or word sets. In analyses where additional training data was used to generate the linear model

improved accuracy was estimated. Use of a regularized linear classification method was shown to

be significantly better than SWLDA.

Spatial relevance was tested by looking at performance of target words from specific auditory

source locations, but found no statistical differences. However, stimulus specific analysis high-

lighted the importance of hearing thresholds in performance of lateralized stimuli. This would

suggest hearing to be tested and accounted for in future auditory BCI studies utilizing spatially

separated auditory stimuli.

Questionnaire results tended to mathematically align with the offline aBCI accuracy. Although

online feedback did not give clear indication of their performance, participants seemed to under-

stand how well they were doing with the task. The importance and reliability of self-report in

these types of research environments is critical to efficient development of useful BCI systems.

Self-reports of motivation trended opposite that of aBCI performance across sessions.

Investigation of ERP waveforms in all participants gave a thorough account of what EEG is

elicited by spoken word stimuli in such a paradigm. These results qualitatively reflect performance

across participants through differences in target/non-target traces. Timing of ERP difference in

target/non-target do not suggest a positive deflection at or after 300ms was the primary predictor

of BCI performance, which has also been found in other aBCI studies (Halder et al., 2013). ERP

variation seen across participants and across stimuli suggest stimulus specific models, like RSLDA,

may be beneficial with spoken word stimuli sets, however dramatic differences in ERP morphology

between stimulus were not identified.
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Chapter 5

Word Recognition Results

5.1 Purpose

The overall effect of spatial separation, the difference in performance between central and lateral-

ized stimulus, was expected to be significant in the aBCI, but it was not. An additional behavioral

experiment was undertaken to further investigate the usefulness of spatial separation of stimuli.

The Word Recognition task (WR) is, as the name implies, a task of recognizing a target word

amongst distractor words presented as they were in the aBCI task. A button press is used to signal

to the experimenter the participant has identified the target word has been played.

Fifteen healthy participants completed three different stimulus presentation conditions includ-

ing the BCI, NoCues and Dynamic conditions outlined in Section 5.3.1. Each presentation condi-

tion included the the Direction and Non-Direction word sets used in the aBCI study. Reaction time

and accuracy measures further investigated spatial cues, the number of presentations in a trial, and

specific stimuli influences on recognition of the target word in the experiment’s participants.

All but one WR participant completed some portion of the aBCI study, although one WR partic-

ipant was dropped from the aBCI study. In attempts to extend the WR results to aBCI, correlation

of reaction time (RT) and aBCI accuracies was computed from results of 13 participants.
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5.2 RT and Button Press Accuracy

The performance metrics of the Word Recognition Task are the reaction time (RT) and the percent

accuracy of pressing the button after target presentation. Using no timing restrictions, participant’s

percent accuracy was near ceiling in most cases and additional attempts to identify missed or very

late button presses was implemented into the automated reaction time analysis.

Reaction time calculations were accomplished by computing the difference in the recorded

time of first button press directly following the onset of a target stimulus. If this time difference

was greater than 2 seconds, the target presentation was recorded as a miss. If this time was less than

100ms than it is expected that the button press was in anticipation of the target or a result of a late

button press from a previous target. One hundred millisecond RT was chosen as the low-end cutoff

as it is referenced as a rare and nearly physiologically impossible reaction time. Only highly trained

athletes have exhibited lower reaction times in less complicated stimulus recognition paradigms

(Pain and Hibbs, 2007). Reaction time outside ±2SD (standard deviations) from the grand mean

is often filtered out in Psychology research. With the higher level of variability resulting from

these tasks, this approach would have resulted in a negative reaction time low-end cutoff and a

high-end cutoff at ~830ms. The upper bounds of reaction time was calculated by adding 3 times

the interquartile range (IQR) to the grand median of all reaction time measurements, resulting in

an upper limit of 638.3ms. This value is well outside the reaction time IQR of each participant.

The median reaction time for all button presses within the finalized boundaries [100ms 638.3ms]

range was 307.5ms.

Reaction times within zero to 100ms are tabulated by participant in Table 5.1, along with

presses occurring after the upper limit threshold. The late hits category also includes button presses

greater than 2 seconds that were originally recorded simply as misses. Percent accuracy scores

reflect the number of reaction times that fall within acceptable bounds divided by the total number

of target presentations. There were 960 target presentation for each subject, including all three

presentation conditions and two word set conditions. There was no penalty included in accuracy

for additional button presses during the experiment.
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Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Early Hits 2 10 1 1 11 7 3 18 7 14 46 46 8 11 2
Late/Miss 49 132 14 17 19 89 36 97 121 17 112 299 91 82 19

Total Outliers 51 142 15 18 30 96 39 115 128 31 158 345 99 93 21

Table 5.1: Misses and Anticipation by Participant

The relationship of accuracy and reaction time is typically intertwined. Strategies of the par-

ticipant will vary in preference for rapid reaction time or accuracy. In the current paradigm, the

rate of stimuli presentation may limit the ability of the participants to decide whether to bias quick

reaction time or accuracy. The correlation between the accuracy and reaction time was expected to

be negative as increases in reaction time should allow for accurate button presses and vice versa.

As the reaction time and accuracy are not normally distributed a Spearman’s rho correlation was

computed. By pairing mean reaction times and accuracies for each participant, presentation and

word set condition a significant rho value of -0.6527137 (S = 175180, p-value = 9.781e-12) was

found. This strong negative correlation indicates good performers likely had both short (fast) re-

action times and high accuracies and that poor performers had long reaction times (slow) and low

accuracies. Good correlation suggests that either measure is a good indicator of performance in

the task.
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Figure 5.1: Accuracy and RT by Participant

Figure 5.1 illustrates the variability in participant’s Accuracy and RT. The percent accuracy and

median RT are illustrated for each presentation condition. The BCI condition consistently yields

the highest accuracy and the the shortest reaction time for nearly every participant. The NoCues
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condition represents the slowest RT for most participants.

5.3 Effects of Condition

In order to account for several influencing factors in the reaction time, a linear mixed effects model

was generated with the main effects of presentation condition and word set condition along with

interaction of these conditions with their respective order of completion for each participant. A

main effects of number of sequences and a random effect of participant was also included. The F-

table in Table 5.2 on page 85 shows that all of these independent variables are significant predictors

of log10 RT except for the interaction between word set and order of completion of the two word

sets.

numDF denDF F-value p-value
(Intercept) 1 12321.00 997.75 0.00

Presentation Condition 2 12321.00 354.32 0.00
Order 2 12321.00 47.36 0.00

Word Set 1 12321.00 17.35 0.00
Word Order 1 12321.00 11.56 0.00

Sequences 1 12321.00 62.96 0.00
Presentation Cond:Order 4 12321.00 40.57 0.00

Word Set:Word Order 1 12321.00 0.13 0.71

Table 5.2: Controlling for Order of Presentation

5.3.1 Presentation Condition

The presentation conditions were designed to investigate the impact of spatial cues as they were

employed in the aBCI paradigm. Overall, the Reaction time between the presentation conditions

showed significant results in a one-way ANOVA of log10 RT (F = 276.9, p-value = < 2.2e-16

). These results not only give some indication of the importance of spatial cues in P300 oddball

presentation schemes but in speech recognition as a whole. The presentation was at a reasonable

speaking rate and while the words are few and repeated at random the paradigm may have implica-

tions and influences tied to general speech recognition. Multiple comparisons between conditions
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confirms the RT differences between each of the presentation conditions. See Table 5.3 for statis-

tical comparison between presentation conditions with Tukey corrected p-values.

The lack of spatial cues in NoCues condition made the task more difficult for some partici-

pants. The median RT for the BCI condition was 51.7ms faster than the NoCues condition. Nearly

every participant exhibited equal or better accuracy RT in the BCI condition than in NoCues. The

Dynamic condition had the greatest variation within condition as illustrated in Figure 5.2. When

questioned which of the conditions was hardest, 10 of the participants chose the Dynamic condi-

tion and 4 chose the NoCues condition. Participant 11 commented that the Dynamic condition was

the easiest and that BCI was the most difficult despite their Dynamic condition having the worst

performance in RT and accuracy.

Linear Hypotheses: Estimate Std. Error t value Pr(>|t|)
NoCues-BCI==0 0 0.070764 0.003036 23.310 <2e-16

Dyn-BCI==0 0.043216 0.003160 13.677 <2e-16
Dyn-NoCues==0 -0.027548 0.003210 -8.582 <2e-16

Table 5.3: Presentation Conditions Multiple Comparisions

Figure 5.2: RT by Presentation
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5.3.2 Sequence Count

Using a generalized linear model the equation for RT predicted by number of sequences returns

the following equation (stderror=0.000234, t-value=6.601, p-value=4.25e-11).

RT = 0.001545∗ sequences+0.302

The fewer number of target sounds to identify in a trial, the faster the reaction times were, indi-

cating that some fatigue during the longer trials may influence reaction times. For every sequence,

RT increased by 1.545ms, according to the resulting model. The variance in RT reduces as the

number of sequences goes up, but this may be due to the larger number of reaction time measures

recorded as the number of sequences increases.

The accuracy of the aBCI should improve with additional sequences as was shown in Section

4.2.5. Reaction time demonstrated the opposing effect of fatigue within a trial. The benefit of

additional trials must be balanced with increasing fatigue in the BCI system in order to reach

optimal ITR.
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Figure 5.3: RT by Sequence Count

5.3.3 Word Sets

In the aBCI experiment no significant difference in performance was found between word sets.

One hope for the WR experiment was to uncover differences in semantic and spatial relevance that

were not measurable in the noiser EEG signal. The difference in RT between word sets for each

presentation condition was investigated.

In the ’BCI’ presentation condition there is a semantic connection between each word stimulus

and its spatial location. In the other two conditions, participants must utilize the acoustic differ-

ences in the stimuli and cannot rely solely on spatial cues. In order to uncover the influence of

Word Set on RT, a multiple comparison of word set RT within each presentation condition was

completed. The log10reaction time difference between word sets within the BCI condition was

significantly different than zero (t-value=2.662, p-value = 0.0231) well as within the Dynamic

condition (t-value=6.264, p-value=<1e-06).
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Figure 5.4: Word and Condition Median RT

The NoCues condition did not see significant differences between word set reaction times (t-

value=-2.075, p-value=0.1098). A further comparison of the effect of word set is accomplished,

taking into account each stimulus.

5.4 Location and Stimulus Specific Performance

The word ’front’ exhibited the best reaction time of the Directional words in both the BCI and

NoCues condition. For the BCI condition this was the stimulus that the participant was oriented

towards, so this may have given an advantage. In the NoCues condition this word is the only one

where sound location and word meaning match up. The other stimuli likely create an incongruence

and slow RT.

In the BCI condition there is a better reaction time for the Non-Direction words that are lat-

eralized (’care’ and ’doubt’) than centralized (’joy’, ’while’) (t = -4.7457, df = 2048.9, p-value
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= 2.221e-06). This may indicate that lateralized sounds provide more salience, but not when se-

mantic relevance is included in the distractors. This highlights another example of the Directional

stimuli providing benefits of relevance for the targets, but also detriments by making the distractors

relevant as well.

In the NoCues condition the lateralized words did poorer. Since these words may be expected to

come from the left and right speakers instead of the front speaker, there seems to be an effect. This

concept is again highlighted by the fact that the word ’front’, which corresponds to the presented

stimulus location, exhibited the best reaction time. The Non-Direction words in the NoCues case

don’t show such a separation between stimuli. ANOVA tables of log10 RT predicted by stimuli

word set and specific stimuli are included in Table 5.4, showing that the significance of the word

set in the BCI condition. In the No cues condition the word set is not a significant effect.

BCI
Df Sum Sq Mean Sq F value Pr(>F)

targ 1 0.07 0.07 2.56 0.1099
word 1 1.80 1.80 61.43 5.642e-15
targ:word 1 0.04 0.04 1.28 0.2586
Residuals 4683 136.91 0.03

NoCues
Df Sum Sq Mean Sq F value Pr(>F)

targ 1 0.13 0.13 3.73 0.0535
word 1 0.05 0.05 1.32 0.2509
targ:word 1 0.02 0.02 0.67 0.4114
Residuals 4562 160.62 0.04

Table 5.4: ANOVA of word and stimulus on RT

These results present several cases that indicate the directional meaning of the words is a factor

in RT measures.
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Figure 5.5: Stimulus RT

Incongruence Events Incongruence is the condition where features of a stimulus contradict one

another. In the classic Stroop test a color word is presented on a screen, for example ’green’. If

the color of the letters in the word ’green’ are in fact red, for example, then there is an incongru-
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ence with that stimuli. In the Dynamic condition the location of the Directional words may have

congruence (i.e. ’left’ coming from the left speaker) or an incongruence (’right’ coming from the

front speaker). Many participants voiced difficulty with incongruent stimulus, such as the word

left coming from the right speaker, during the Dynamic condition trials. This incongruence of

location and word meaning only occurs in the Directional word set in the Dynamic condition. The

influence of RT between congruent and incongruent target stimuli in this condition was tested with

a pairwise t.test of log10 transformed RT, but was not found to be significant (t = -0.48867, df =

843.38, p-value = 0.6252).

It has been documented that individual strategies of navigation influence the incongruence neg-

ativity, an EEG artifact present during incongruent auditory stimuli presentation with spatial cues

(Buzzell et al., 2013). Individual differences may determine how semantic and audio-spatial rele-

vance influences BCI performance, creating an inconsistent effect across subjects and conditions.

Figure 5.6 shows the median RT for congruent and incongruent target stimuli in the Dynamic con-

dition. In most participants, the differences in RT are negligible. Participant 8 saw faster times

with congruent stimuli but participants 9 and 12 RT were faster for incongruent targets.

5.4.1 WR and aBCI Precent Accuracy

The ability to identify a target stimulus in these paradigms should impact button press reaction and

influence P3 and other ERPs used by the BCI. Therefore, the relationship of BCI accuracy and

reaction time is expected to correlate. Correlation between RSLDA offline aBCI percent accuracy

and mean RT for each participant and word set was computed using Spearman’s rho and was found

to be significant. See Table 5.5. This table includes correlations of participant aBCI accuracy and

RT including breakdown of correlation with each presentation condition of the WR experiment.

When comparing correlations of aBCI accuracy and RT of the BCI or Dynamic Word Recog-

nition conditions, the correlation is similar to the overall. The RT from the NoCues condition,

however, does not show a significant correlation with aBCI percent accuracy. Spatial separation

between stimuli has been shown to be an important factor of performance in the RT performance of
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Figure 5.6: Congruence RT performance

the WR experiment and is critical in the relationship with the aBCI experiment performance. From

this relationship, it may be concluded that other factors that influence the WR-RT result would also

impact the aBCI performance in a similar fashion.

aBCI % accuracy Cor rho S p-value
All WR-RTs -0.4198087 4152.9 0.03275

WR-BCI -0.4138412 4135.5 0.03558
WR-NoCues -0.1500774 3364 0.4643

WR-Dyn -0.3963695 4084.4 0.045

Table 5.5: Correlation of WR and aBCI accuracy
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Chapter 6

Discussion

6.1 Discussion of Study Results

With comparison to other BCI systems tested the offline performance showed similar results. This

system utilized spatially separated spoken word stimuli as has been featured in very few BCI

paradigms until now (Ferracuti et al., 2013; Kleih et al., 2015). These results support the feasibil-

ity of a multi-class auditory BCI for communication replacement using word stimuli with maximal

spatial separation. With improvements in online decoding and optimization of presentation param-

eters, such a system should be tested with patient populations.

The investigation into spatial relevance lead to interesting findings regarding preference for

specific lateralization of stimuli that may be influenced by individual’s handedness and relative

hearing thresholds. RT measures proved that spatial cues were significantly beneficial in the WR

experiment.

RT was found to correlated with aBCI performance, giving strong support that behavioral stud-

ies can inform on BCI paradigms. The influence of stimulus presentation parameters may be better

elucidated through behavioral measures than through measuring BCI performance.
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6.1.1 Semantic and Spatial Relevance.

6.1.1.1 Semantic

Semantic relevance of spoken word stimuli is a key feature in the auditory only clinical BCI pro-

posed in Chapter 1. This study introduced a novel BCI design that aimed at testing how the rele-

vance of auditory stimulus to the BCI selection could impact or influence the performance of the

BCI. The Directional word set’s meaning corresponded to the audio-spatial features of the stimulus

and related to the task of moving an on-screen icon in the related direction. The semantic relevance

was tested through the use of a control group of Non-Directional, semantically irrelevant words.

The performance between the stimuli sets was very similar, therefore, the results of this study do

not suggest relevance of spoken word stimuli has influence on the performance of the system.

Participants rated the two sets of spoken word stimuli in the aBCI equivalently on ratings of

workload (NASA_TLX) and system usability (SUS) and typically voiced no difference in the dif-

ficulty between word sets. The participant’s task is simply to count the number of target stimuli as

they are presented. Comments from study participants completing the BCI tasks, word recognition

tasks and pilot trials indicate that in the BCI task audio-spatial cues were primarily used. The audi-

tory cues and semantics of the words appear to be ignored and not critical in the task when stimuli

are clearly spatially separated. However, in the Word Recognition task experiment the influence of

spatial separation was found to supports the notion that this cue is valuable in an oddball paradigm.

In the WR experiment, RT differences between word sets was found to be significant, within

conditions that had spatial separation. In both the BCI and Dynamics condition the Non-Direction

words exhibited faster reaction times, indicating that processing of relevant stimuli may be con-

founding in the WR experiment. In the NoCues condition RT was not significantly different be-

tween word sets, however, the only word that held semantic/spatial relevance was the word ’front’,

since all stimuli came from the front speaker. The word ’front’ exhibited the fastest reaction time

of all Direction and Non-Direction stimuli for the NoCues condition (Figure 5.5), suggesting that

congruence in semantics and spatial location was able to improve word recognition. One hypoth-

95



esis on why the BCI and Dynamic conditions show improved RT in Non-Direction stimuli may

be that the Directional non-target words more effectively distracted participants in recognizing a

directional target word. This could be further explored by utilizing Directional target words pre-

sented with Non-Directional, non-target stimuli. This suggest that in the BCI paradigm competing

influences from semantic and spatial relevance may have played a role in BCI performance.

Semantic meaning inherent in the stimulus provides intuitive association to the BCI user and

may eliminate the need to memorize association of stimulus and BCI item selection. Auditory only

BCI are likely most beneficial to users that couldn’t use visual reference, so use of such stimuli is

critical to realize a useful tool for many LIS patients.

6.1.1.2 Spatial

While several past studies have highlighted the benefit of spatial cues (Schreuder et al., 2011;

Käthner et al., 2013; Schreuder et al., 2010; Ferracuti et al., 2013), a recent auditory BCI spelling

system did not find inclusion of spatial cues in stimuli advantageous (Baykara et al., 2016). In

the BCI experiment we did not find significant performance differences between lateralized or

centralized groups of stimuli. While minor differences were seen in performance between different

auditory locations in some participant, other potentially influencing factors were identified. Spatial

separation of auditory stimuli may lend to variations in aBCI performance that relate to hearing

thresholds, handedness or other lateralized perception preferences.

The total effect of spatial separation in word recognition is explored through comparison of

the BCI and NoCues condition in the Word Recognition experiments in 5.3.1. Reaction time dif-

ferences between the BCI and NoCues conditions suggest audio-spatial features of stimuli allows

much easier identification of the target stimulus. Even in the confounding circumstance of the

Dynamic-WR condition, having spatial cues in the stimuli improved RT and accuracy over the

NoCues condition.

In a past aBCI paradigm using spoken word stimuli the location of specific stimuli was not

held constant as in this aBCI task (Ferracuti et al., 2013), while in past aBCI using tone based
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stimuli the sound source locations were held constant. Faster RT in the BCI condition over the

Dynamic condition suggest optimal performance is likely to result from a constant stimulus sound

source location. Although confirmation of these anticipated effect should be confirmed in an aBCI

experiment this behavioral result should be considered by BCI researchers.

The word ’right’ had the highest accuracy by a noticeable margin (mean = 70.8%). The next

highest was ’while’ at 66.8%. In the Non-Direction word condition, the right side presented word

’doubt’ had a fairly high accuracy as well (66.02%). It may be that words played in the right

ear might have some additional salience due to the laterality of language processing in the left

hemisphere. Right handed participants may have a preference for stimuli originating from their

right side. The words ’right’ and ’doubt’ both had the shortest duration in their respective stimuli

groups, which may influenced their recognition in some way.

’Joy’ and ’front’ are the least successful targets regardless of distractor. The front speaker

acting as the target direction may be the most susceptible to distraction due to participants having

to resist head orienting response encouraged by distractor stimuli. Also, front presented stimuli

may be the most easy to perceive and so less effort goes into attending to that sound. Reduced

effort or focus may have had detrimental effects on EEG resulting from front presented stimulus

targets. In the WR-BCI condition the ’front’ stimulus target exhibited the fastest median RT for

all the Direction words. This contradictory result may highlight the variable influence of stimuli

presentation on aBCI accuracy and RT measures. Factors enhancing EEG signals to be used by the

BCI may not always improve reaction time measures in a similar task, and vice versa.

Investigating the stimulus specific RT measurs showed no consistent difference in lateralized

vs. centralized stimulus except in the Non-Directional word set. The words ’care’ and ’doubt’

(lateralized) showed faster reaction times than ’while’ and ’joy’ (centralized) in the BCI condition.

However, this was also true in the NoCues condition suggesting that the acoustics of words them-

selves may be the source of this effect and not the spatial separation present in the BCI condition.
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6.1.2 ERP findings and BCI performance

A positive peak near 200ms was consistently present across many participants and stimuli. A

negative peak near 100ms was also often present as well. The timing variation in peak negativity

around 100ms may partly be due to the difference in attack and voice onset time inherent in the

different constant sounds that begin each spoken word stimulus. See Appendix A.1 for more detail

on the rise in intensity of each stimulus noted by the yellow intensity curves in the spectrogram of

each auditory stimulus. Topographic maps of activity showed large positive and negative deflection

in centralized electrodes over the ERP windows of stimulus presentation.

The ERP plots of stimuli and participant averages showed that a consistent difference in target

and non-target stimuli responses occurred between 200 and 300ms. These differences persisted out

to 400ms in some participants. For example, participant aB18 exhibited a more negative deflection

around 300ms in the target EEG response as compared to non-target EEG responses in nearly all

of the spoken word stimuli. In some participants more pronounced differences in target and non-

target response could be identified in the 100 to 200ms range. When comparing the ERP signals

elicited by spoken word vs beep stimuli in an auditory oddball presentation it has been found that

patterns are far less consistent between subjects (Hill et al., 2014, 2004).

The notable ERP features described here do not fit the classic definition of P300 ERP. In the

most similar paradigms to those used in the present study, it is not the P3 signal that differentiates

target and non-target ERP traces (Halder et al., 2013).

In a few participants, including aB07 and aB19, a central negativity persisted much later into

the ERP window than other participants. This difference did not seem to coincide with poor per-

formance as these two participants exhibited better performance than most.

Mean accuracy was consistent in across-session accuracy and within session cross validation

10-fold. Different amounts of training data. lending to the generalizable use of training data using

the method of this particular system. This also indicates that a small amount of training data proved

good performance but that a full sessions worth would result in some improvements to % accuracy.

Means of BCI accuracy were not statistically improved across the 2 sessions, however, the
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variance in session 2 data suggests some improvement in participants performing poorly in the

first session. It is expected that listening to spoken word stimuli is so natural that participants

acclimate to the task quickly and reach ceiling performance with little BCI experience. It’s also

possible that this study included far too little experience with the system to see improvements over

sesssions. In Jeremy Hill’s study of word and tone stimuli, two sessions was not sufficient to foster

improvements in performance (Hill et al., 2014). In a comparison of visual and auditory BCI,

researchers found that auditory BCI accuracy was statistically less than visual BCI until the 11th

session (Klobassa et al., 2009). Five sessions of training was able to increase an average aBCI ITR

from 0.17 bits/min to 3.08 bits/min for five motor impaired end-users (Halder et al., 2016).

6.1.3 Questionnaires were accurate predictors of offline performance

More frequent selection of Temporal demand in NASA-TLX sources of workload weighting com-

parisons likely stemmed from perception that word stimuli presentation was at a rapid rate. This

varied between participants. While most participants felt it was a comfortable pace, some may

have found the rate somewhat rapid and might have hindered performance. Performance and Frus-

tration were often rated highly and it is suspected that the poor online classifier performance likely

influenced this with many participants.

Every participant’s change in motivation between sessions was opposite in sign to their change

in aBCI percent accuracy. Relative motivation between sessions exhibited a statistical relationship

with BCI performance but this relationship was counterintuitive, indicating that decreased moti-

vation increased BCI performance. Past reports on motivation showed correlations between P300

amplitude and motivation (Käthner et al., 2013).

Participants gave great insight through the experiment development and during the study. It is

not only critical to have BCI user involvement for clinical applications but during system devel-

opment so that proper prioritization can be given to design aspects influencing performance and

usability. Utilizing questionnaires, as were employed in the current study, will allow BCI system

developers to compare systems of varying design in terms of ergonomics and user preference.
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6.1.4 Decoding Approach

Three EEG classification techniques were evaluated offline with the aBCI training data collected

during the experiment. The SWLDA, and RSLDA decoding approaches were of primary focus

for offline analysis and RSLDA proved to be consistently superior. SWLDA did provide lower

accuracy in nearly every analysis, including those in across session accuracy.

SWLDA likely suffers from overfitting, where model weights reflect all the variance present

between target and non-target classes and may include non robust features. Such a model may not

hold true with data collected under slightly different circumstances, making it less generalizable.

The regularization employed in the RLDA or RSLDA approaches more appropriately weights

small differences in the target/non-target groupings. Regularization penalizes redundant terms that

cause high covariance in the many EEG signals.

RSLDA may lack over fitting but may also require less data than the SWLDA approach. For

smaller training sets it may be that SWLDA would do worse, as it seemed to in the 2-fold within

session full trial offline accuracy measures as compared to the cross session accuracy.

The RSLDA method utilizes four models in this study, one for each stimuli in a condition,

using 1/4th the data used for the RLDA. If data for a given stimulus is dramatically different than

other stimuli the RSLDA method might better classify each sound as target or non-target. If target

and non-target EEG traces are different in similar ways, regardless of the stimulus representing

both classes, than the increased data used to fit the single model in RLDA may yield improved

results. RSLDA yielded improved or equivalent performance to RLDA classification for every

session, condition and subject. For more diverse spoken word stimuli RSLDA is likely to yield

improved performance over RSLDA.

A dynamic stopping feature is not likely to benefit the performance of the current system. ITR

and accuracy calculations by sequence indicated that accuracy below 70% would result from fewer

than fifteen sequences for many participants. For the best performing participants only one or two

sequences less than 15 resulted in higher ITR. With increased training it is possible users of the

current aBCI may improve accuracy and general performance to allow dynamic stopping to aid in
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increasing ITR of the system.

6.1.5 Word Recognition

RT in the word recognition task significantly correlated with BCI performance. This type of be-

havioral test may be a reliable indicator of auditory-oddball-task BCI performance. Analysis of

RT and button press Accuracy metrics did show effects of spatial separation, while evaluation of

this in the aBCI paradigm was not sensitive enough to highlight differences.

Number of sequences, the order of word set and the word set itself were all found to be signif-

icant predictors of RT. This highlights the sensitive nature and powerful metric that button-press

reaction time represents. This research tool, primarily utilized in Psychology, may serve as a useful

performance indicator in BCI development in both research and clinical application.

Faster reaction times were seen in the Non-Direction words when spatial cues were used (BCI

and Dynamic conditions). The Direction word set may have provided more distracting non-target

stimuli than in the Non-Directional word set. When spatial cues were removed (NoCues), the

Directional word produced faster reaction times although the differences between word set was

not significant. This effect of semantic relevance was not uncovered by the aBCI experiment but

indication from the WR experiment suggested that differences exist between the perception of

spoken words with and without contextual relevance.

Many participants commented that the WR task was difficult and that they were challenged in

at least some of the conditions. Most participants were able to identify instances where they had

missed a target presentation and which conditions, word sets, or words they did better or worse on.

While many participants found various aspects of the task difficult performance was homogenous

overall. Participant 12 demonstrated consistent outlier performance in accuracy and RT for all

conditions. Participant 12 admitted to having an attention deficit diagnosis after completing the

study which is likely to explain this result. Participant 10 exhibited much faster reaction time

averages in all conditions than the other participants. This participant mentioned just having come

to the lab after exercising so may have been in a heightened physical and mental state.
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While correlation in performance of the current aBCI and behavioral experiments were found,

this may not apply in all cases of behavioral and BCI paradigms. It is likely other auditory oddball

paradigms will see similar correlation, however, many parameters such as number of unique stim-

uli, presentation rate, and diversity in acoustic profiles of the stimuli may have large influences on

aBCI and button press results that don’t equate. Additional comparison of behavioral indicators

and BCI performance should be accomplished to further understand this relationship in the wide

array of BCI system configurations already present in the research field.

Future development of BCI presentation schema should include a behavioral correlate using

RT and accuracy as metrics. Slower rate of stimulus presentation and changes in spatial separa-

tion suggested in the aBCI should be first optimized through behavioral experiments that can be

completed with far less complication and more precise results.

6.1.6 Slower presentation rate

The presentation rate used in the WR was rapid enough to challenge participants and tease apart the

differences in nearly all tested parameters. This rate was likely a detriment to the PacGame aBCI

performance. In the WR-BCI task, two of the 15 participants were able to achieve 100% accuracy

with the button press. The average WR-BCI accuracy for all 15 participants was 93.90%. While

this is a high accuracy some participants likely missed recognizing the target stimulus multiple

times. The presentation of stimulus in an aBCI paradigm should not be so challenging that target

presentation could be missed.

Faster presentation rates likely require aBCI users to utilize basic sensory processing to dis-

criminate and identify target stimuli. Slower presentation rates might allow more cognitive pro-

cessing to occur before the next stimulus is presented allowing more complex neural processing

to be used in identification of target stimuli. In the present study it is expected that participants

primarily attended to audio-spatial cues of the stimuli. The processing of interaural time and level

differences (ITD, ILD) begin as early in the auditory pathway as the superior olivary complex.

Identification of acoustic characteristics defining the spoken words will be processed much later
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in auditory cortex. Semantics of the words would be accomplished even later in areas within and

outside of the temporal lobe.

The rate of auditory presentation is likely to influence EEG features in terms of timing and

morphology. In past research it has been found that the P300 amplitude does not predict perfor-

mance Halder et al. (2013) but can be correlated with earlier and later ERP features. In this study

the largest difference in target and non-target auditory evoked potentials (AEP) occurred well after

300ms. The later ERP features may result from the much slower presentation rate of 960 SOA. In

contrast, earlier (100ms, 200-300ms) ERP features showed differences in target/non-target aver-

ages in the present study. In the present study the SOA was 400ms. Similar target/non-target ERP

features were found in Höhne et al. (2012)where tones and syllable stimuli were used. The rate

of presentation in this study was 135ms SOA more closely matching the present study. Various

timing in auditory ERP differences can be found as can stimuli presentation rates.

It has been documented that presentation rate of visual stimuli influences timing of ERP fea-

tures Krusienski et al. (2006). The influence of the SOA and number of distractors has also been

investigated thoroughly by Gonsalvez and Polich (2002). A slower auditory presentation rate was

found to improve BCI performance in Käthner et al. (2013). This study utilized tones in noise so

additional investigation into optimal presentation rates with spoken word stimuli should be consid-

ered. With new paradigms and/or stimuli these parameters could be optimized through behavioral

experiments like the WR task.

6.2 Future Directions

6.2.1 Stimulus and Presentation

While presentation rate using spoken word stimuli has yet to be optimized, a number of other

parameters may also benefit from optimization. The duration, intensity and pitch (or gender) of

the stimuli are very difficult to equate between different spoken words but standardizing these

characteristics is likely to aid BCI performance. However, optimizing discriminability of stimuli
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is also important and could be accomplished with participant feedback as was done in Simon et al.

(2014) but a behavioral measure like RT may provide more useful quantitative metrics. Use of

multiple talkers or other highly discriminable acoustic features may prove ideal for aBCI use.

Use of synthesized words would allow for greater control of most acoustic characteristics of

the stimuli and would be a likely solution for a flexible clinical tool. Synthesized stimuli would

allow generation of any word desired by the BCI user without needing a produce a processed,

standardized, high quality recording. Acoustics of the newly generated word could be processed

in a more automated way meet any standards deemed beneficial.

The number of unique stimuli in a set could also be increased from four, in attempts to increase

ITR, improve ERP signals due to more rarity in the target stimulus and provide more options in

the BCI protocol.

aBCI research has primarily used front field presentation, which is well known to provide op-

timal spatial discrimination. All stimuli presented in the front field and/or through headphones.

Headphones represent a more likely clinical scenario and front field would be a better comparison

of more published aBCI systemsKäthner et al. (2013); Schreuder et al. (2010). Headphone pre-

sented stimulus should utilize ILD and ITD as well as HRTF Ferracuti et al. (2013) information

to optimize the perceived spatial separation of auditory stimuli. Pneumatic Headphones would

present stimuli with minimal influence on EEG signals, provide a quiet environment, and ensure

spatial cues would be independent of head position.

Emotional words ’joy’ and ’doubt’ appeared to be very salient to participants in the present

study. Influencing Emotional characteristics could be tested in a behavioral study and confirmed

in an aBCI protocol. Familiar faces are used in visual spellers, so it may be that more emotion

provoking spoken words would enhance aBCI performance.

6.2.2 BCI system components

Functional system improvements may also benefit a future auditory BCI design. RLDA was found

to be effective but test of online performance in future studies would provide additional support
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for RLDA use in clinical aBCI. Continued comparison of RSLDA, RLDA and SVM decoding

approaches may elucidate an optimal method for spoken word stimulus. In Ferracuti et al. (2013)

SVM was utilized and although a different measure of performance was reported, similar number

of participants were able to achieve >70% full-trial accuracy.

Word stimuli elicited fairly consistent ERP morphologies across word stimuli. Classification

models capable of differentiating target vs. non-target regardless of the target stimulus may be

capable of classifying words that were not included in classifier training. If classifiers could be

developed that would extend to untrained word stimuli a BCI for word selection would be drasti-

cally more flexible than a system that required training of all possible stimulus target options. This

would be a major achievement in the development of the BCI system proposed in Chapter 1.

6.2.3 Study Design

In past aBCI research, multiple sessions showed that auditory BCI could reach the performance

levels of visual BCI techniques. Multiple sessions using an optimized auditory only spoken word

stimuli BCI could highlight benefits and/or challenges inherent in using this class of BCI in a daily

use clinical setting.

A Purely auditory system, with only a fixation cross as was used in the WR task. A similar pre-

sentation scheme with a question-answer paradigm may provide a means of engaging participants

in a purely auditory BCI with real-life communication context. By presenting a question sentence

to the participants and providing a number of possible answer words, the BCI user could select an

internally generated answer. This may be somewhat analogous to the free spelling mode used in

some BCI speller research studies (Simon et al., 2014; Kleih et al., 2015).

6.3 Clinical Acceptance and Translational Research

Entering the realm of translational research requires several considerations beyond that of basic

science research. Namely, the end users of the developing technology should be consulted to
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ensure successful acceptance and satisfaction of the technology’s intended functionality. If the BCI

system developed through basic science research is highly functional in a laboratory environment

but does not meet the requirements of its intended benefactors, then there is still a great deal of

work to do.

Using a BCI for communication requires a highly flexible system that can work, reliably, in

everyday living environments and must be useable by the user and their caregivers. Systems typ-

ically run by engineering and neuroscience researchers are likely not well suited for patients and

clinicians. Researchers in the field have become aware of the importance of clinical acceptance of

BCI systems and have begun to push for inclusion of clinical researchers to partner with engineer-

ing and basic science researchers to provide relevant clinical direction to research study designs

Kubler et al. (2006); Peters et al. (2016).

Neuroscience, engineering and clinical collaboration in the BCI research field is a necessary

step in moving these critical scientific discoveries out of the labs and into the real world where

they can make a real difference in someone’s life. The user of a BCI may use the device for all of

their activities of daily living Suyama (2016). It may be the only way for them to communicate

and interact with the world around them. How they do this must be highly personalized in order

for the system to be utilized and for it to achieve true communication replacement.

Clinician and end user feedback on design and development will continue to shape clinical BCI

research. While advancements in software and hardware of the systems have been achieved, the

proof of concepts have occurred in well controlled environments, do not completely reflective of

real-world use. Signal acquisition, BCI paradigm and user interface will need to be customized

and optimized of for every clinical BCI user.

6.3.1 Custom Signal Acquisition

The technology behind BCI use has been developed and thoroughly tested in highly controlled

environments. While BCI research technology has proven to be feasible for the intended user

population, the systems tested would not be suitable for daily use by an impaired individual. Expe-
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rienced EEG technicians and expensive research grade EEG systems are required for high quality

brain signal acquisition.

Most studies, like this one, employ rigorous electrical noise canceling environments and signal

processing techniques to ensure clear and reliable EEG or EcOG signals. EEG system manufac-

tures have had some success creating acquisition systems that can provide the signal quality needed

for BCI use in mobile, real-life scenarios. Some researchers have even taken it upon themselves

to develop tools that will take the field much closer to acceptance by the end user (Debener et al.,

2015; De Vos et al., 2014).

Hardware developments like these may allow the acquisition of brain signals for BCI control

in real life environments a possibility. This has been the aim of EEG technology advancement

for many years. Dry electrodes and mobile EEG acquisition provide the convenience likely to be

required for any clinical daily use of a BCI to be effectively implemented. While an ideal clinical

system of hardware is not readily available, the basic technology development needed is nearing

the level where such a device is feasible. Cost of these devices is also a necessary consideration

and some researchers and open source EEG enthusiasts are making large strides to make open

access inexpensive hardware and software for BCI development, (i.e OpenBCI).

6.3.2 BCI approach (Paradigm and classifier)

Very complex algorithm development and mathematical model training should be optimized for

specific BCI system users. Various EEG signals may be more prominent in certain BCI users

so this may challenge a BCI design to utilize different types of EEG signals depending on the

users neurophysiology, capacity for attention and working memory as well as other cognitive and

executive functions. Machine learning techniques do attempt to provide this flexibility, however

simple linear models often provide maximal performance in most BCI research.

Clinicians must be trained to evaluate a patients ability to use various BCI paradigms and clas-

sification approaches. By developing a decision tree pathway and efficient BCI success evaluations

this may be possible .
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It has been documented that inter-subject variability in EEG representing speech sounds does

not allow for a grand averaged model between subjects O’Sullivan et al. (2014). All BCI studies

utilize subject and session specific training so extending this to target stimulus specific model

generation is not a burdensome step. This concept was accomplished in the present study with

minimal effort. The results of this study suggest stimuli specific classifier models may be beneficial

when using spoken word stimuli.

6.3.3 User Interface

This study utilized a custom user interface that presented a motiving game to the aBCI user. User

interfaces (UI) should be highly customized to the users preferred communication schemes. In-

fluences from optimal BCI paradigms and stimulus choices may restrict UI configurations but

effective use of the BCI should be highly prioritized based on the user’s specific need.

The proposed clinical BCI system discussed in Chapter 1 was suggested to incorporate the use

of an existing AAC device that would work best for the candidate BCI user. Utilization of spoken

word stimulus to directly select full word or phrase communication selections would greatly en-

hance BCI-Utility, a metric proposed in a BCI-based AAC review (Thompson et al., 2013). This

metric, not yet well defined by the BCI research field, would highlight the improvements in aBCI

performance and communication output achieved by the proposed paradigm.
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Appendix A

Appendix

A.1 Spoken Word Stimuli

For each stimulus utilized in the PacGame and Word Recognition experiments a graphic from

Praat shows the detail of the recorded spoken word acoustic stimulus. The top graph is the sound

waveform and bottom graph is the spectrogram of the .wav file. The x-axis for both graphs is time

and the two graphs are horizontally aligned in time. The y-axis in the waveform is voltage and the

spectrogram is in Hertz. The blue line in the spectrogram represents a pitch contour and the yellow

line an intensity contour.
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left

front

right

back

Figure A.1: Acoustic Graphics of the Directional Spoken Word Stimuli

123



care

joy _

doubt

while

Figure A.2: Acoustic Graphics of the Non-Directional Spoken Word Stimuli
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A.2 Questionnaire Materials

The information sheet filled out by each participant during the screening process is included below.

Demographic information as well as questions concerning study eligibility are included.

125



Phone / Email Screen

____  Age ____  Gender      ____  Handedness (right/left)

Please identify with one of the following ethnic categories (choose one):

□ Hispanic or Latino, □ Not Hispanic or Latino

Please indicate all of the following racial categories you most identify with (may check more than one):

□ American Indian or Alaska Native, □ Asian, Native Hawaiian or Other Pacific Islander

□ Black or African American, □ White

____  Native speaker of American English 

____  Familiar with Language other than American English; if so, explain:

____  History of claustrophobia (explain procedure)

____  Injury to head/hands that could impede task performance

____  History of serious head injury; if so, explain:

____  History of neurological disorder(s) (including stuttering) or seizure disorder (including epilepsy); 
if so, explain:

EEG / BMI Compatibility

Do you have/have you had: YES NO IF YES, Please Explain

History of Head Trauma ____ ____ ____________________________

Electrical or Magnetic Implant ____ ____ ____________________________

Cardiac Pacemaker ____ ____ ____________________________

Neurostimulator ____ ____ ____________________________

Implanted Pumps ____ ____ ____________________________

Last Updated: 6/19/2012

Figure A.3: Screening Sheet

126



The NASA_TLX is composed of two sections. The first is the weighting of each source of

workload as accomplished by comparison of each. The sheet these weighting selections are tallied

on and the sheets where participants indicate the ratings for each source of workload are included

in Figure A.4 below.
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Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index
Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High

Figure A.4: NASA_TLX
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Subject	
  	
  	
  	
  _____________	
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  SANLAB	
  2016	
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Figure A.5: VAS and Audiogram
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Subject	
  	
  	
  	
  _____________	
  	
  	
  	
  	
  Session:	
  	
  _____________	
  
	
  

VAS	
  and	
  SUS	
  Questionnaire	
  –	
  SANLAB	
  2016	
   	
  

SUS  –  Condition  1  
1.   I  think  that  I  would  like  to  use  this  system  frequently.  

  
2.   I  found  the  system  unnecessarily  complex.  

 
3.   I  thought  the  system  was  easy  to  use.  

 
4.   I  think  that  I  would  need  the  support  of  a  technical  person  to  be  able  to  use  this  system.  

  
5.   I  found  the  various  functions  in  this  system  were  well  integrated.  

  
6.   I  thought  there  was  too  much  inconsistency  in  this  system.  

  
7.   I  would  imagine  that  most  people  would  learn  to  use  this  system  very  quickly.  

  
8.   I  found  the  system  very  cumbersome  to  use.  

  
9.   I  felt  very  confident  using  the  system.  

  
10.  I  needed  to  learn  a  lot  of  things  before  I  could  get  going  with  this  system.  

	
  
	
  
	
  

Figure A.6: System Usability Scale Rating Form
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Word Recognition Task Questionnaire 

 

Participant ________________ Condition Order ________________ Talkers   ________________ 

1. Which set of words was hardest?  Direction   Non-Direction 

2. Which condition was hardest? (Circle One)        BCI  No_Cues Dynamic 

3. Which was easiest? (Circle One)          BCI  No_Cues Dynamic 

4. How many target sounds did you miss all together? 

BCI _________  No_Cues ________ Dynamic _________ 

5. Did you ever forget which sound was the target? Was there a condition or set of words that this 
happened more with? 
 

 

6. Did you ever close your eyes? Did you every look somewhere other than the focus cross? Why? 

 

7. What situations (combination of words, condition, presentation order made it the hardest to 
identify the target and hit the button?) 

 

 

 

Figure A.7: Word Recognition Questionnaire
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A.3 Waveform Analysis by Participant

Figure A.8: Participant aB05 ERP example

Figure A.9: Participant aB06 ERP example
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Figure A.10: Participant aB07 ERP example

Figure A.11: Participant aB09 ERP example
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Figure A.12: Participant aB10 ERP example

Figure A.13: Participant aB12 ERP example
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Figure A.14: Participant aB13 ERP example

Figure A.15: Participant aB14 ERP example
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Figure A.16: Participant aB15 ERP example

Figure A.17: Participant aB16 ERP example
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Figure A.18: Participant aB17 ERP example

Figure A.19: Participant aB18 ERP example
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Figure A.20: Participant aB19 ERP example

Figure A.21: Participant aB20 ERP example
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Figure A.22: Participant aB21 ERP example

Figure A.23: Participant aB22 ERP example

A.4 Additional Results

A.5 Data Profile

Although several precautions were taken to prevent loss of data from participants, some unexpected

events, technical difficulties and human error resulted in partial or total loss of data. What specific
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Figure A.24: WR lateralized Performance by Subject

data is not included in the following aggregated results will be outlined here but may be included

in specific sections when noteworthy.

EEG data collected was interrupted and the raw data files were corrupted and unusable. for

subject aB07, session 2, condition 1 or Direction words. Participant aB14, session 1, condition 2

or Non-Direction words also had a corrupted file. No online trials were completed for those spe-

cific session/conditions, as no data to train a decoding model was available. Because the training

sequence takes the majority of the session time, in the instance of a corrupted training data file,

there is little time to rerun the training set. Extending the session time would violate the consent

form signed and increase fatigue. Conducting additional training trials would also provide the par-

ticipant additional experience with the aBCI and potentially bias their results. For these reasons

additional training sessions were not completed.

Participant aB10’s second session of data collection was missing some of the sound onset

trigger information due to hardware setup or malfunction. This precluded online trials and any

offline data analysis including ’Across Session’ testing.
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The RLDA online decoder was not finalized until the second session for participant 6, therefore,

no online aBCI data was collected for participant 5, and the first sessions for participants 6 and 7.

The NASA-TLX was not completed or lost for participants 6 and 7.

Two participants that completed session 1 were dropped from the study completely. Participant

8 was dropped due to an inability to schedule the second session and technical issues with data files

from their first session. Participant 11 did not meet all criteria to be included in the study and was

not scheduled for a second session.

The WR task had 15 participants with 2 participants that did not have aBCI results to compare

RT and aBCI accuracy.

Participants WR1 and WR2 do not have Dynamic condition results due to technical errors in

data acquisition.

A.6 PacGame Code

A git repository of the PacGame software python code can be found here: https://epinasty@bitbucket.org/epinasty/bcipacgame.git

Git is a software versioning system that can you can learn more about here: https://git-scm.com/

Python installation and several dependencies are needed to run this software. This software

was written in Python 2.7 syntax. The user interface primarily relies on pygame library that is not

supported on macOS.

https://www.python.org/downloads/

A.7 Decoder Training Script: MATLAB

The following script was run after collection of aBCI training data to generate a RLDA classifier

weight file. This file would be loaded into the PacGame software to be used in online classification.

% Process aBCI script

% another version of a scrip meant to generate a decoder file for the

% PACGame software. This version works with a commit put into the PacGame
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% git repository branch test_data 10/17/16. This branch was used to debug the decoder.

% decoder_mat_comparison.m was used to achieve this.

% This scrip will generate a classifier for the following parameters, will not include

% dynamic stopping thresholds but will work best with online decoding.

starttime = 10;

forder = 4;

decR = 5.; %going to make about 51.2Hz sampling(20ms)

badpar = [];%1,32:34];

ewin = [-0.1 0.8];

base = [-0.1 0];%[-.5 0];

addpath(’E:\\programs\\matlab\\eeglab13_4_4b\\’);

%eeglab %need to run and close this for topoplots

pres= 15*4; %number of presentations per trail

%load in and process Symulink files

[dfiles,dpath] = uigetfile({’*.mat’, ’EEG data files (*.mat)’;’*.*’,’All files (*.*)’},...

’Pick EEG data files’,’multiselect’,’on’);

if isnumeric(dfiles) & dfiles == 0

error(’User canceled’)

end

if ~iscell(dfiles)

dfiles = {dfiles};

end

subject = dfiles{1}(1:8);

raw = eegdata(fullfile(dpath,dfiles),[62 2 0 5],starttime);

raw.readlocs(’L:\\eeg.locs’); %fullfile(pname,fname));

raw.fs = round(raw.fs);

fs = raw.fs;
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flt = raw.filter(1,forder,’filtertype’,’high’,’filtermethod’,@filtfilt,’logging’,true);

%badchannels

%flt.averagebadchannel({’C6’});

% % Semiautomated removal of artifacts

[ic, A, W] = eegdata.dobss(flt,’fastica’);

% Other options include: ’fastica’, ’runica’, ’infomax’, ’sobi’, ’amuse’

a_ic = eegdata.selectartifactic(flt, ic, eegdata.montage.eog, A,...

’thresh’,[0.05,2]);% can include a fourth parameter A for manual selection of ICs, otherwise

use automatic criteria

flt.data = eegdata.removeartifactic(a_ic, ic, A);

flt = flt.filter(raw.fs/decR,forder,’filtertype’,’low’,’filtermethod’,@filtfilt,’logging’,true);

% downsample

dec = flt.copy();

dec.data = downsample(dec.data’,decR)’;

dec.trig(2,:) = dec.trig(1,:)+dec.trig(2,:)+dec.trig(3,:); %new snd trigger novisual situation

dec.trig = downsample(dec.trig’,decR)’;

dec.time = downsample(dec.time’,decR)’;

dec.fs = dec.fs/decR;

% trig correction

indx = find(dec.trig(2,:)>1);%fix instances of 2 values

dec.trig(2,indx) = 1;

dec.parsetrigs([5,2], ’logging’,true);

%dec.parsetrigs(5, ’logging’,true, ’offset’,3);

figure, plot(dec.time, dec.trig([5,2],:))

itol = find(dec.evts.tdur < 0.085); %event’s caused by overlap of sound and next par trigger

dec.evts =dec.rejectevents(itol); %this should leave 640 trials/training block

fprintf(’Number of Trials: %d \n’,length(dec.evts.tdur))
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epoch = dec.copy();

epoch.epochdata(ewin,base,’logging’,true);

test = epoch.copy();

parth = ’E:\\data\\eeg\\aBCI\\Training\\processed\\’;

test.save(strcat(parth,subject,’.mat’),’abci’);

disp(strcat(’file saved \’,parth,subject,’.mat’));

%% Reject large amplitude epochs

reject = expdata.threshold(epoch,150,’logging’,true);

epoch = epoch.rejectepochs(reject(1:end-1)); %errors because numtrials is now in event struct

doesn’t matter

%% model weight setup

modwin = [0,0.6]; %time window of data we’ll create the model for.

mtimes = find(epoch.etimes>modwin(1) & epoch.etimes<modwin(2)); % && find(epoch.etimes<0.61)];

%time points considered for model

mch = 1:62;%channels considered for the model

z=randperm(size(epoch.vepochs,3));%array of random trial indecies

[ch,tpts,trials]=size(epoch.vepochs(mch,mtimes,z)); %use this randomized subset of trials

%arrays to pass model fit function

targs_z = [squeeze(epoch.evts.label(z)>16);squeeze(epoch.evts.label(z)<16)]; %

flat_ep_z = reshape(epoch.vepochs(mch,mtimes,z),[ch*tpts,trials]);

weights =train_RLDAshrink(flat_ep_z,targs_z);

pth=’E:\\data\\eeg\\aBCI\\classifiers\\’;

save(strcat(pth,subject,’_rlda2_classifier.mat’),’weights’,’decR’,’ewin’,’pres’,’base’,’modwin’,’fs’,’forder’);

disp(’classifier saved’)
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