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Abstract
Understanding the factors governing protein solubility is a key to grasp the mechanisms of protein
solubility and may provide insight into protein aggregation and misfolding related diseases such as
Alzheimer’s disease. In this work, we attempt to identify factors important to protein solubility
using feature selection. Firstly, we calculate 1438 features including physicochemical properties
and statistics for each protein. Random Forest algorithm is used to select the most informative and
the minimal subset of features based on their predictive performance. A predictive model is built
based on 17 selected features. Compared with previous models, our model achieves better
performance with a sensitivity of 0.82, specificity 0.85, ACC 0.84, AUC 0.91 and MCC 0.67.
Furthermore, a model using redundancy-reduced dataset (sequence identity <= 30%) achieves the
same performance as the model without redundancy reduction. Our results provide not only a
reliable model for predicting protein solubility but also a list of features important to protein
solubility. The predictive model is implemented as a freely available web application at http://
shark.abl.ku.edu/ProS/.
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Introduction
Protein solubility plays an important role in protein production and application 1–3. It was
estimated that ca. 33–50% of all expressed non-membrane proteins are insoluble, and ca.
25–57% of those soluble proteins prone to aggregate or precipitate at higher
concentrations 4–6. Thus understanding the factors governing protein solubility is important
to grasp the mechanisms of protein solubility and improve the efficiency of designing
soluble proteins. Moreover, it may provide insight into protein aggregation and misfolding
related diseases such as Alzheimer’s disease 7, 8.

Exiting predictive methods on protein solubility can be generally grouped into two distinct
classes: structure-based and sequence-based. The structure-based methods usually calculate
the free energy difference between solution and aggregation phases 9, 10. This type of
methods requires experimentally-determined high resolution three-dimensional structures,
which can be difficult to obtain for aggregation prone proteins. Thus often only sequence-
based approaches are feasible. A number of sequence-based methods have been already
developed. For example, Wilkinson and Harrison analyzed 81 proteins and found that
protein solubility is related to amino acid composition 11. A revised Wilkinson–Harrison
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solubility model was later published by Davis et al. 12. Idicula-Thomas and Balaji also found
that amino acid composition especially the proportion of Asn, Thr and Tyr residues and
other sequence-dependent features have impact on solubility of over-expressed proteins 13.
They developed a Support Vector Machine (SVM) predictive model based on six
physicochemical properties and amino acid composition of 192 protein sequences including
130 insoluble and 62 soluble proteins 14. The six physicochemical properties include length
of protein, hydropathic index, aliphatic Index, instability index, instability index of N-
terminus and net charge. Another study, however, revealed that sequence-based methods
based on small dataset may have poor generalization ability 15.

Recently, several methods have been built on larger datasets. For example, Smialowski et al.
built a model named PROSO based on 14000 protein sequences 16. The model achieved an
accuracy of 72% in their tests 16. More recently, the same group of authors reported an
improved model, PROSOII, achieving an accuracy of 75.4% using a logistic function and an
adapted Parzen window algorithm based on k-mer properties of 82000 proteins 17. Magnan
et al. constructed a SVM model SOLpro with 74% accuracy based on 17000 protein
sequences and the frequencies of monomers, di-mers and tri-mers of amino acids 18. It
should be pointed out that the datasets used to build PROSO, PROSOII and SOLpro were
collected by incorporating different search results of Protein Data Bank (PDB) 15, Swiss-
Prot database and TargetDB 19. The proteins were then classified into soluble and insoluble
ones based on the annotations of these proteins. While these approaches were best practices
when a suitable experimental dataset was not available, they may not be always reliable. For
example, a soluble protein missing proper annotation can be mistakenly classified as an
insoluble one, and vice versa. In addition, annotations from different databases are not
consistent with each other. Obviously a large set of protein with experimentally determined
solubility using a single consistent protocol is desirable.

Recently, Niwa et al. analyzed the solubility of entire proteome of Escherichia coli (E. Coli)
using a cell-free translation system and classified the proteins into soluble and aggregation-
prone proteins20. The authors built a predictive model using the SVM algorithm based on
molecular weight, isometric point (pI) and amino acid composition which achieved ~80%
accuracy. Using this dataset, Stiglic et al. developed a comprehensive decision tree model to
classify the soluble and aggregation-prone proteins based on the sequence information21.
This model achieves an accuracy of 72 % based on a 10-fold cross validation. Both studies
have revealed that amino acid composition, molecular weight and pI of proteins are relevant
to protein solubility. However, there is little systematic investigation on the relative
importance of various types of features used to build reliable models. Thus the goal of this
study is to build a model for predicting protein solubility using the most informative and
minimal subset features identified using a state-of-the-art feature selection algorithm. Such a
study can provide information for not only accurately predicting protein solubility but also
aiding in discovering underlying mechanisms of protein solubility.

Materials and methodsd
Datasets

All proteins used in the study were downloaded from eSOL database (http://tp-
esol.genes.nig.ac.jp/)20 in February 2012. Only proteins with available sequences are
retained. A protein with solubility < 30% is considered as aggregation-prone and a protein
with solubility >70% is considered as soluble20. There are 2183 proteins, including 988
soluble and 1195 aggregation-prone proteins. We then prepare a series of subsets with the
sequence identities no higher than 90%, 75%, 50% and 30% using the CD-Hit program22.
We use the set of 30% identity, including 1918 proteins (886 soluble and 1032 aggregation-
prone proteins), to build the final model.
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Features
Each protein is encoded with 1438 features that can be grouped into four classes (Table 1).
The first class (I) is physicochemical properties which are the average values of amino acids
for a given protein. The second class (II) includes absolute counts and normalized absolute
counts by the length of amino acids for a given protein. The third class (III) is absolute
counts and normalized absolute counts by the protein length of di-peptide for a given
protein. The fourth class (IV) includes the remaining features. All 1438 features are
sequence-based features or structural features which are predicted from sequences. Although
actual structural information should be useful in predicting protein solubility, most proteins
in eSOL database have no solved structures. In addition, previous studies20, 21 have revealed
that sequence-dependent features can be effective in predicting protein solubility.

Random Forest
The Random Forest (RF) algorithm 32 is an ensemble machine learning method that utilizes
many independent decision trees to perform classification or regression. Each of the member
trees is built on bootstrap samples from the training data by a random subset of available
variables. RF models built in this study consist of 5000 decision trees. The number of
variable randomly sampled in each tree is , where M is the number of total variables.
The RF algorithm has been successfully used in a number of predictive models 33–35. An
important application of the algorithm is to assess the importance of various features based
on their contributions to the performance. In this study we used variable importance of
features which is based on the mean decrease in accuracy 32. An R package varSelRF
utilizing feature importance for feature selection is used to identify the most informative and
minimal subset features 36.

Performance assessment
Several metrics are used to quantitatively assess the performance. The receiver operation
characteristic (ROC) curve is a graphic plot of the true-positive rate (sensitivity) against the
false-positive rate (1-specificity). The area under an ROC curve (AUC) shows the trade-off
between sensitivity and specificity. The value of AUC is in the range of 0 to 1 and the bigger
the AUC, the better the performance is. An AUC of 0.5 represents random classification and
1 is for perfect prediction. The other metrics include:

(2)

(3)

(4)

(5)

Where TP, TN, FP and FN are true positive, true negative, false positive and false negative
respectively. The MCC is a measure of a correlation coefficient between the observed and
predicted binary classifications. It has value between −1 and +1. A coefficient of +1
represents a perfect prediction, 0 no better than random prediction and −1 indicates total
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disagreement between prediction and observation. ACC with 100% represent perfect
classification model. And the bigger the ACC, the better the performance.

Results and Discussion
Amino Acid composition

The amino acid composition of both soluble and aggregation-prone proteins is shown in
Table 2. The statistical difference of amino acid composition between soluble and
aggregation-prone proteins is estimated using the student t-test. The rows in Table 2
highlighted in red or blue are amino acid residues significantly over-represented (p-value <
10−5) in soluble and aggregation-prone proteins, respectively. It can be seen that
aggregation-prone proteins tend to have more Serine (S), Tyrosine (Y), Phenylalanine (F),
Leucine (L), Proline (P), Tryptophan (W) and Arginine (R) residues, indicating that a
protein with more aromatic amino acid residues tend to be an aggregation-prone protein.
This finding is consistent with previous findings 5, 17. The soluble proteins tend to have
more Aspartic (D), Glutamic (E) and Lysine (K) residues, indicating that soluble proteins
tend to have more charged residues than aggregation-prone proteins. Interestingly, Leucine,
Isoleucine and valine, three amino acids with considerably similar physicochemical
properties, are distributed significantly different in soluble and aggregation-prone proteins.
While the content of isoleucine residue reminds largely unchanged in these two groups,
leucine residue is significantly enriched in aggregation-prone proteins and leucine residue
instead enriched in the other group. Overall, charged and aromatic amino acid residues are
important to protein solubility.

Performance of the feature sets
To estimate the relative importance and relevance of feature sets to the solubility, we build a
series of models using different combinations of the four feature sets (Table 3). The model
using all features achieves the best performance, suggesting all features are relevant to
protein solubility to some extent. Different feature groups have different ability in
classifying soluble and aggregation-prone proteins. The amino acid composition features are
most important and the dipeptide features are least important. Although overall the dipeptide
features may contain more information than the amino acid composition, the information
density for each dipeptide is probably very low because there are 400 dipeptides. Thus the
importance of each individual dipeptide is low.

Features importance
To select the most informative and minimal subset features, the varSelRF package 36 is used
to iteratively eliminate 10% features for each iteration. Two approaches are used to select
features. One way re-calculates the importance of features after each iteration and the
second only evaluates the importance once. The first method results in 17 features (F17).
For the second method, the features are firstly sorted as descending order of importance and
the top17 features are selected (FI17). F17 and FI17 share 16 features.

The annotations and the relative importance of F17 features are listed in Table 4 and Figure
1 respectively. The top 5 features with highest variable importance include free energies of
transfer (WIMW960101), partition coefficient (ZASB820101) of proteins, net charge of
protein (x_netcharge and KLEP840101) and isometric point (pI), consistent with previous
studies that pI 20, 21 and free energies of transfer 9, 10 are important to classify soluble and
aggregation-prone proteins. Partition coefficient is an important parameter related to
molecular solubility. Our study also identifies other features important to protein solubility
such as aromatic amino acid content, surface composition of amino acids, nitrogen atom
content, beta-strand indices for beta-proteins and hydrogen bond. Compared to protein
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length which is important to protein solubility 37, the number of nitrogen atom reveals more
specific information. The results also indicate that the contents of amino acid R and L are
important to protein solubility. Amino acid R is important to maintain the overall charge
balance of proteins and amino acid L is generally buried in proteins. It is also consistent with
amino acid composition analysis presented previously. Partition coefficient, solvent
accessible surface area and the number of buried amino acids are also important factors that
have influence on protein solubility.

Performance with the sequence identity
To further evaluate the effectiveness of selected features, several models have been rebuilt at
different sequence identity. Specifically, the sequence identity of proteins is reduced to
different levels such as 90%, 75%, 50% and 30% using the CD-Hit program 22. The selected
features are then used to rebuild the models. The number of protein sequences and the
performance at different sequence identity levels are shown in Table 5. Both F17- and FI17-
based models achieve good performance at various sequence identity levels. The
performance of models based on F17 features is slightly better than or equivalent to those of
models based on FI17 features. Thus, the features F17 are used in the final model. It can be
seen that although the sequence identity is reduced to 30%, the model still has performance
with sensitivity 0.82, specificity 0.85, ACC 0.84, AUC 0.91 and MCC 0.67. The results
indicate that the selected features are effective and can be applied to build the models based
on both strict and loose sequence identity.

Comparing to previous methods
There are several previous methods to predict protein solubility based on eSOL database
such as SVM model 20, decision tree model (VTJ48 and J48) 21. Their performances are
shown in Table 5. Table 5 shows that the SVM model 20 achieved an accuracy of ~0.80, the
VTJ48 model resulted in an accuracy of 0.76 and J48 had an accuracy of 0.72. The results
indicate that our method has the best performance with sensitivity 0.82, specificity 0.85,
ACC 0.84, AUC 0.91 and MCC 0.67. The SVM model 20 is a close second.

Conclusions
Protein solubility plays an important role in various fields such as pharmacy, food and
protein storage. In this work, we use the RF algorithm on a unified experimental verified
protein dataset in eSOL database (http://tp-esol.genes.nig.ac.jp/) to identified 17 features
which are important to protein solubility. Besides some features are consistent with previous
works such as the number of aromatic amino acids, negative charge amino acids, PI and
transfer free energy 2, 17, 18, 20, 21, several new features are found such as partition
coefficient, solvent accessible surface area, the number of buried amino acids, long range
non-bonded energy, beta-strand indices and flexibility parameter. Based on such 17 features,
a predictive model using RF algorithm is built. Compared with existing methods on the
same dataset, it has the best performance with sensitivity 0.82, specificity 0.85, ACC 0.84,
AUC 0.91 and MCC 0.67. The results indicate that selected features can be effectively used
in discriminating soluble proteins and aggregation-prone proteins. The built model and
subset of selected sequence features should have roles in soluble protein design. The final
predictive model is implemented as a freely available web application at http://
shark.abl.ku.edu/ProS/.
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Figure 1. Variable importance of F17 features
The prefix x represents the normalized absolute count values and c represents the absolute
count values for each amino acid. The prefix num means the count of a specific atom. The
other features are physicochemical properties of AAindex database.
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Table 1

The list of 1438 sequence dependent features

Group Protein features Number of
Features

Source

I physicochemical properties obtained from AAindex 544 23

Density 1 24

Relative experimental aggregation propensities 1 25

Amyloid aggregation propensities 1 26

Solvent accessible area of exposed side chains 1 27

Property index 12 28

II Number and composition of amino acids 40 In house script

III Number and composition of dipeptides 800

IV Sequence length (L) 1

Number and percentage of positive, negative and all charged residues, as well as the net charges 8

Number and percentage of small (T and D), tiny (G, A, S and P), aromatic (F, H, Y, W), aliphatic,
hydrophobic and polar residues

12

Number and percentage of residues which can form hydrogen bond in side chain 2

The average of the maximum solvent accessible surface area (ASA) of each amino acid 1 Eisenhaber 29

Predicted isoelectric point (pI) of protein, the average pI on all residues (pIa) 2 ProtParam 30

Instability index and instability class 2

Aliphatic index 1

Gravy hydropathy index 1

The overall length and percentage of all coils, rem465, and hotloop 6 disEMBL 31

Mean Relative Surface Accessibility - RSA 1

Mean Z-fit score for RSA prediction 1
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Table 2

Amino acid composition of soluble and aggregation-prone proteins

Amino Acid Composition in
soluble proteins

Composition in
aggregation-prone
proteins

P-value
(t-test)

S 0.054±0.021 0.059±0.017 2.52e-09

Q 0.046±0.022 0.046±0.018 0.43

N 0.040±0.018 0.039±0.017 0.60

T 0.054±0.022 0.052±0.015 0.097

C 0.013±0.014 0.013±0.011 0.86

G 0.070±0.027 0.071±0.021 0.10

A 0.095±0.031 0.09237±0.025 0.026

H 0.023±0.015 0.025±0.012 6.11e-05

M 0.028±0.013 0.029±0.011 0.44

Y 0.025±0.014 0.030±0.014 1.31e-15

F 0.032±0.016 0.039±0.015 1.41e-23

V 0.072±0.023 0.067±0.019 7.92e-06

L 0.097±0.029 0.11±0.029 6.41e-25

P 0.042±0.019 0.045±0.015 6.33e-06

I 0.058±0.020 0.059±0.020 0.19

W 0.011±0.010 0.017±0.011 4.91e-32

D 0.059±0.019 0.049±0.016 1.02e-35

E 0.072±0.026 0.055±0.019 1.23e-56

K 0.056±0.028 0.041±0.018 1.96e-46

R 0.055±0.026 0.06±0.019 3.23e-06

The p-values are based on t-test. Amino acids significantly increased or reduced in soluble proteins than aggregation-prone proteins are colored in
red or blue, respectively.
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Table 3

Performance of models built on different feature groups

Group Sensitivity Specificity ACC MCC

I 0.79 0.82 0.81 0.61

II 0.80 0.85 0.82 0.65

III 0.67 0.82 0.75 0.50

IV 0.78 0.85 0.82 0.64

I+II 0.83 0.84 0.83 0.66

I+III 0.83 0.84 0.84 0.67

I+IV 0.83 0.85 0.84 0.68

II+III 0.70 0.85 0.79 0.55

II+IV 0.81 0.86 0.83 0.67

III+IV 0.73 0.86 0.80 0.60

I+II+III 0.83 0.85 0.84 0.68

I+II+IV 0.82 0.85 0.84 0.68

I+III+IV 0.83 0.85 0.84 0.68

II+III+IV 0.77 0.86 0.82 0.63

I+II+III+IV 0.83 0.85 0.84 0.68

The feature sets are physicochemical properties (I), amino acid features (II), di-peptide features (III) and other features (IV).
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Table 4

Selected features and annotations of F17

Feature Annotation

c_aromatic Counts of aromatic amino acids

c_bured Counts of buried amino acids

c_Hbond Counts of hydrogen bonds

c_L Counts of leucine amino acid

c_R Counts of arginine amino acid

FAUJ880112 Negative charge 38

FUKS010102 Surface composition of amino acids in intracellular proteins of mesophiles (percent) 39

GEIM800106 Beta-strand indices for beta- proteins 40

KARP850103 Flexibility parameter for two rigid neighbors 41

KLEP840101 Net charge 42

num_n Counts of nitrogen atoms

OOBM770103 Long range non-bonded energy per atom 43

pI Isometric point

WIMW960101 Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water 44

x_neg Ratio of negative charge amino acids

x_netcharge Ratio of net charge of protein

ZASB820101 Dependence of partition coefficient on ionic strength 45

The prefix x represents the normalized absolute count values and c represents the absolute count values for each amino acid. The prefix num means
the count of a specific atom. The other features are physicochemical properties of AAindex database.
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