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Abstract
We recently demonstrated that the phytotoxin cichorine is produced by Aspergillus nidulans.
Through a set of targeted deletions, we have found a cluster of seven genes that are required for its
biosynthesis. Two of the deletions yielded molecules that give information about the biosynthesis
of this metabolite.

Introduction
Filamentous fungi produce a variety of low-molecular weight secondary metabolites, many
of which have been proven to possess remarkable biological activities. They include the
cholesterol-lowering agent lovastatin and the immunosuppressant cyclosporine.1 It came as
a surprise, then, that the analysis of recently sequenced fungal genomes suggested that the
number of metabolites obtained in laboratory conditions is still far fewer than the number of
putative secondary metabolite genes.2-5

This realization has prompted efforts to activate these silent genes through various
approaches, including epigenetic modification,6 promoter exchange with an inducible
promoter,7 controlled expression of a gene coding for a pathway-specific transcription
factor,8 and co-cultivation with bacteria.9 A different strategy, however, is to alter the media
conditions in which the fungus is cultivated, as different environmental cues may switch on
heretofore unactivated pathways.10 For the filamentous fungus Aspergillus nidulans, this
approach has been key to the isolation of aspoquinolones,11 aspernidine A/B,12 and F9775 A
and B.13

With this approach we obtained the polyketide cichorine from the cultivation of Aspergillus
nidulans on YES (Yeast Extract Sucrose) plates at 37°C for 5 days, during the course of our
work with prenylated xanthones from this species.14 Cichorine is a phytotoxin active against
knapweed, corn, and soybeans.15-16 It was isolated from Aspergillus silvaticus as well as
Alternaria cichorii, which produces foliar blight in the important pest Russian knapweed.15

It had not before been observed in A. nidulans. The compact, functionalized isoindolin-1-
one framework was an attractive target for total synthesis.17-18 Compounds featuring this
framework have been shown to possess antimicrobial,19 anti-HIV,20 and antitumor
properties.21
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Because the genome of A. nidulans has been sequenced and relatively well-annotated,2 and
because a straightforward gene targeting system has been developed for this species,22-23 we
could proceed to efficiently investigate the genes that are responsible for the formation of
cichorine. The presence of an aromatic group in cichorine indicated that it is a product of a
nonreduced polyketide synthase (NR-PKS). Targeted gene deletions revealed that
AN6448.4Δ alone failed to produce any detectable amount of cichorine. (We use the gene
nomenclature of the Central Aspergillus Data Repository, CADRE, http://www.cadre-
genomes.org.uk/, and the Aspergillus genome database, http://www.aspgd.org/.)

In our current investigation, we endeavored to identify other genes that are responsible for
cichorine formation anticipating that intermediate compounds accumulating as a result of
interruption of the pathway would help us understand how cichorine is synthesized.

Results and discussion
Genes required for the synthesis of a particular secondary metabolite tend to cluster together
in the genome in fungi. For this reason we deleted genes both upstream and downstream of
the identified PKS gene, AN6448.4 (Table 1). All strains carried the deletion of stcJ, a gene
responsible for the carcinogenic secondary metabolite sterigmatocystin.24 Eliminating stcJ
may facilitate isolation of other metabolites and also free up precursors to boost their
production. The strains also carried nkuAΔ to improve frequencies of correct gene
targeting.22

All strains were cultivated in the same cultivation medium that yields cichorine. (Cichorine
has also been generated via cultivation in Raulin-Thom media.25) All deletions were verified
by diagnostic PCR (see Experimental section). The result was the elimination of cichorine in
strains ranging from AN6443.4Δ to AN6449.4Δ, with the exception of AN11922.4Δ (Figure
1). Table 2 lists the putative functions of the genes within the cluster and the ones
immediately outside it. We now designate these genes as cicA-cicH. Aside from the PKS
gene, the cluster contains a transporter (cicA) and transcriptional activator gene (cicD), and
also four tailoring genes (cicB, cicC, cicE, and cicH).

Initially, we were unable to detect any obvious biosynthetic intermediates from the knockout
strains. This was perhaps to be expected for the transporter, transcriptional activator, and
backbone PKS genes, but it was reasonable to predict that at least some of the tailoring
genes would yield intermediates upon deletion. Some polyketides feature a carboxylic acid
motif or otherwise become negatively charged in aqueous media. It stands to reason, then,
that these molecules will not partition into the organic layer during extraction. In these
cases, it is necessary to neutralize the molecules with concentrated acid. This strategy was
necessary for the acquisition of the polyketides orsellinic acid and F9775 A and B in A.
nidulans.13

Acidifying the aqueous media allowed us to detect one compound from the cicBΔ strain and
an additional compound from the cicCΔ strain. To determine their structures, we scaled up
the cultivation and purified the metabolites using silica gel chromatography followed by
preparative HPLC. Chemical structures were determined by 1H and 13C NMR, and the
spectra were also compared with literature data.

The cicBΔ intermediate is a simple polyketide, 5, 3-methylorsellinic acid (Figure 2).
Interestingly, this is the same molecule that we have recently acquired through the
upregulation of the PKS gene, cicF. The cicCΔ intermediate, nidulol, 6, has been isolated
from Aspergillus and Alternaria species, including a strain of A. nidulans, and it was found
to be mildly cytotoxic toward human epidermoid carcinoma KB cells.26
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The deletants and the intermediates allow a better understanding of cichorine biosynthesis.
Because upregulation of the backbone PKS gene cicF and deletion of cicB yield the same
molecule, it is reasonable to suspect that the first step in cichorine biosynthesis is the
generation of 5, followed by formation of the next (unidentified) intermediate catalyzed by
the gene product of cicB. Interestingly, the cytochrome P450 monoxygenase gene cicH is
homologous to mpaD in Penicillium brevicompactum, which is predicted to be catalyze the
lactonization of the well-known immunosuppressant mycophenolic acid. Therefore, cicH
may play a similar ring-closing role for cichorine.

The O-methyltransferase gene, cicE, is plausibly the responsible gene for the methylation of
one of the phenol groups. Functionalized, two-ring 6 from the cicCΔ strain may be a later-
stage intermediate, but lactone to lactam formation must still occur in order to generate
cichorine. Other genes would be required for this conversion, and these genes are not found
within this cluster. Based on this information, we have outlined a hypothetical biosynthesis
as depicted in Figure 3. Although the entire set of genes pertaining to a particular fungal
secondary metabolite may fit in one single cluster, it is being increasingly found in A.
nidulans that such genes may be split into at least two distinct genomic loci, demonstrated
with the prenylated xanthones14 and the terpenes27 from A. nidulans, and possibly with
F9775 A and B.13

Conclusion
In summary we have shown that genes from a distinct cluster are required to generate
cichorine in A. nidulans. The cluster contains the PKS gene, one regulatory and transporter
gene each, and four genes involved in the tailoring of the polyketide backbone. We have
also acquired two intermediates, improving our understanding of the biosynthesis of this
isoindolin-1-one-based molecule.

Experimental
Generation of fusion PCR fragments A. nidulans protoplasting, and transformation

The gene deletions were performed using established gene targeting procedures.23 Two
~1000 base pair fragments upstream and downstream of every targeted gene were amplified
from A. nidulans genomic DNA using PCR. Primers used in this study are listed in Table
S1. The two amplified flanking sequences and an A. fumigatus pyrG selectable marker
cassette were fused together by PCR using nested primers. A. nidulans strains in this study
are listed in Table 1. Protoplast generation and transformation were utilized as previously
described.23 The strain LO2026 carrying a deletion of the stcJ gene that eliminates
sterigmatocystin production was used as the recipient strain. Diagnostic PCR of the deletant
strains was performed employing the external primers from the first round of PCR. The
difference in the size between the gene replaced by the selective marker and the native gene
enabled us to determine if the transformants carried correct gene replacements. For further
verification, diagnostic PCR was performed two more times, with one of the external
primers and a primer located inside the marker gene, then the other external primer and an
internal primer. In these cases, the deletants yielded the PCR product of the expected size
whereas no product was present in non-deletants.

Fermentation and LC/MS analysis
YES medium was prepared by combining 20 g yeast extract, 120 g sucrose, 20 g agar, and 2
mL trace element solution in 1 L H2O. For the LC/MS screening experiments, spores of
LO2026 (the control strain) and three strains of each gene deletant were individually
inoculated (1 × 107 spores) onto 10 × 150 mm petri dishes which contained YES agar, and
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they were cultivated for five days at 37°C. Following, the agar was split into ~2 cm2 pieces,
and the material was placed into 250 mL Ehrlenmeyer flasks and covered with methnol. The
flasks were placed in a sonicator (Branson, Model 5510) for an hour. The methanol was then
decanted. The pieces were covered with 1:1 methanol:dichloromethane, followed by another
hour of sonication. The combined organic solvents were removed in vacuo, then partitioned
between H2O (25 mL) and ethyl acetate (25 mL × 2). The combined ethyl acetate layers
were evaporated. The dried, crude material was dissolved at a concentration of 20 mg/mL in
DMSO, and then a sample was diluted 5-fold in methanol for LC/MS analysis.

LC/MS was performed using a ThermoFinnigan LCQ Advantage ion trap mass spectrometer
with an RP C18 column (Alltech Prevail; 2.1 × 100 mm with a 3 μm particle size) at a flow
rate of 125 μL/min and monitored by a UV detector at 254 nm. The solvent gradient was
95% MeCN-H2O (solvent B) in 5% MeCN-H2O (solvent A) both containing 0.05% formic
acid: 0% B from 0 to 5 min, 0 to 100% B from 5 to 35 min, 100% B from 35 to 40 min,
100% B to 0% B from 40 to 45 min, and reequilibration with 0% B from 45 to 50 min.

Isolation of metabolites
The LO2026 (stcJΔ), LO3387 (cicBΔ), and LO3337 (cicCΔ) strains were each cultivated in
25 × 150 mm petri dishes containing YES medium for 5 days at 37°C. As with LC/MS
analysis, the agar was chopped and sonicated in methanol, then 1:1
methanol:dichloromethane. The organic material was evaporated and extracted 4x with an
equal volume of ethyl acetate. For LO3387 and LO3337, the aqueous layer was acidified
with concentrated HCl to a pH of 2. The crude material was subjected to silica gel column
chromatography, using 98:2 dichloromethane:methanol as the eluent for 1 and 5, and 100%
dichloromethane for 6. The materials were further separated by preparative HPLC
[Phenomenex Luna 5 μm C18 (2), 250 × 21.2 mm] with a flow rate of 5.0 mL/min and
measured by a UV detector at 250 nm. See Supplementary Information for more details
about isolation.

Cichorine (1)—white powder; 1H NMR and 13C NMR data (DMSO-d6), in good
agreement with the published data.17,181H NMR (DMSO-d6): δ = 2.04 (3H, s), 3.83 (3H, s),
4.39 (2H, s), 6.81 (1H, s), 7.40 (1H, br s), 8.42 (1H, s), 9.76 (1H, s); 13C NMR (DMSO-d6):
δ= 10.1, 43.9, 59.5, 103.7, 119.7, 123.8, 132.7, 154.2, 157.1, 170.6. For UV-Vis and ESIMS
spectra, see Fig. S1. m/z (M+H) = 194.4; calculated = 194.1.

3-methylorsellinic acid (5)—white powder; 1H NMR and 13C NMR data (acetone-d6),
in good agreement with the published data.291H NMR (acetone-d6): δ = 2.03 (3H, s), 2.48
(3H, s), 6.35 (1H, s); 13C NMR (acetone-d6): δ= 7.4, 23.6, 107.4, 108.6, 110.6, 140.5, 160.3,
174.2. For UV-Vis and ESIMS spectra, see Fig. S1. m/z (M-H) = 181.2; calculated = 181.1.

Nidulol (6)—white powder; 1H NMR and 13C NMR data (acetone-d6), in good agreement
with the published data.301H NMR (acetone-d6): δ = 2.11 (3H, s), 3.98 (3H, s), 5.15 (2H, s),
6.87 (1H, s); 13C NMR (acetone-d6): δ= 8.0, 61.3, 68.5, 103.6, 108.2, 118.1, 148.8, 158.4,
163.3, 168.6. For UV-Vis and ESIMS spectra, see Fig. S1. m/z (M-H) = 193.6; calculated =
193.1.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Organization of the genes surrounding the PKS cicF involved in cichorine biosynthesis.
Genes shown in black are required for cichorine biosynthesis, whereas those in gray are not.
(B) HPLC extracts of strains AN11921Δ to cicDΔ as detected by UV absorbance at 254 nm.
(C) The extracts (as in B) of cicEΔ to AN6450Δ. (D) Structures of cichorine (1), asperthecin
(2), austinol (3), and dihydroaustinol (4). The biochemical origins of 2-4, differing from
cichorine, have been previously determined.27-28
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Figure 2.
3-methylorsellinic acid (5) and nidulol (6), intermediates acquired from acidified extracts of
cichorine deletant strains cicBΔ and cicCΔ, respectively.
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Figure 3.
Proposed biosynthesis of cichorine (1).
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Table 1

A. nidulans strains used in this study

Strain Genotype Source

stcJ Δ
LO2026

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB 6

AN11921Δ
LO5000-LO5002

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;AN11921::AfpyrG This study

cicA Δ
LO4517-LO4519

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicA::AfpyrG This study

cicB Δ
LO4482-LO4484

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicB::AfpyrG This study

cicC Δ
LO4487-LO4488

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicC::AfpyrG This study

cicD Δ
LO4492, LO4494

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicD::AfpyrG This study

cicE Δ
LO4497-LO4499

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicE::AfpyrG This study

cicF Δ
LO4503-LO4505

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicF::AfpyrG This study

cicG Δ
LO4568-LO4569

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicG::AfpyrG This study

cicH Δ
LO4507-LO4508

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;cicH::AfpyrG This study

AN6450Δ
LO4975-LO4977

pyrG89; pyroA4, nkuA::argB; riboB2, stcJ::AfriboB;AN6450::AfpyrG This study
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Table 2

Putative functions of the genes within the cichorine cluster, as indicated from BLAST searches.

Gene designation Putative function CADRE/AspGD annotation Broad annotation

AN11921 Amino acid transporter AN11921.4 ANID_11921.1

cicA ABC transporter AN6443.4 ANID_6443.1

cicB Conserved hypothetical protein AN6444.4 ANID_6444.1

cicC Oxidoreductase AN6445.4 ANID_6445.1

cicD Regulatory protein AN6446.4 ANID_6446.1

cicE O-methyltransferase AN6447.4 ANID_6447.1

cicF Polyketide synthase AN6448.4 ANID_6448.1

cicG Conserved hypothetical protein AN11922.4 ANID_11922.1

cicH Cytochrome P450 AN6449.4 ANID_6449.1

AN6450 Ribosomal protein AN6450.4 ANID_6450.1
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