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Abstract

Data sets may have instances where multiple values are possible which are described

as set-value attributes. The established LEM2 algorithm does not handle data sets

with set-value attributes. To solve this problem, a parallel approach was used during

LEM2’s execution to avoid preprocessing data. Changing the creation of characteristic

sets and attribute-value blocks to include all values for each case allows LEM2 to

induce rules on data sets with set-value attributes. The ability to create a single local

covering for set-value data sets increases the variety of data LEM2 can process.
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Chapter 1

Introduction

The LEM2 (Learning from Examples Module version 2) algorithm uses predefined concepts to

induce rules. Unfortunately, the algorithm’s implementation is limited to data sets which contain

only single-value attributes. Fortunately, inducing rules from set-value information can be accom-

plished without modification of the established algorithm. Only the creation of characteristic sets,

attribute-value blocks, and approximations will be updated.

Chapter 2 will define terms and concepts used throughout the paper. Chapter 3 will cover the

necessary data set preparations required for the LEM2 algorithm. Rule induction using LEM2 will

be shown in Chapter 4. Chapter 5 will describe set-value attributes. The process for preparing

set-value data for LEM2 will be given in Chapter 6. Chapter 7 will show how to induce rules on

set-value data using the LEM2 algorithm and evaluate the different methods. Lastly, in Chapter

8 a walk-through of an implementation of LEM2 capable of handling set-value attributes will be

given.

1



Chapter 2

General Definitions

Rough Set Theory A brief foundation of Rough Set theory is needed to establish a common set

of terms. For an in-depth explanation of Rough Set theory see Rough set theory and its applications

[8]. Attributes are independent variables while the decision is a variable dependent on the set of

attributes. A will represent the set of all attributes and v will represent the corresponding value of

the attribute. Cases, represented by x, are numbered rows in the decision table. U will represent

the Universe or set of all cases.

Decision Table Data sets can be represented in the form of a decision table. A decision table is

comprised of a number of cases (rows) which contain values belonging to either the set of attributes

or the decision. Table 2.1 is an example data set displayed as a decision table. Each case represents

the symptoms of a patient and the decision represents the flu diagnosis. Cases have a value for each

attribute (Temperature, Headache, Weakness, Nausea) and a corresponding decision value (Flu).
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Table 2.1: Example data set

Case Attributes Decision
Temperature Headache Weakness Nausea Flu

1 very_high yes yes no yes
2 high yes no yes yes
3 normal no no no no
4 normal yes yes yes yes
5 high no yes no yes
6 high no no no no
7 normal no yes no no

Rules The value of the decision given a set of attributes can be determined using rules. A rule

is a set of conditions (attribute-value pairs) which indicate a corresponding decision-value pair

(action). A rule can be expressed as a statement of conditions to an action.

i f (attribute1, value1) and (attribute2, value2) and...and (attributen, valuen) then (decision, value)

These statements are represented in the following form where d is the decision, a1,a2, ...an are

attributes and v1,v2, ...vn are attribute values:

(a1, v1)∧ (a2, v2)∧ ...(an, vn)−→ (d, v).

For example, a rule which identifies case 1 of the decision table in Table 2.1 is shown below:

(Temperature, very_high)∧ (Headache, yes)∧ (Weakness, yes)∧ (Nausea, no)−→ (Flu, yes).

The rule can be interpreted as such: at the time of data collection the patient’s temperature was

very high, and the patient had a headache and experienced weakness. The diagnosis based on the

information was the patient had the flu.
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Concept A concept is the set of all cases with the same decision value [5]. Each concept is a

subset of the universe. For Table 2.1, the concept of all cases affected by Flu is the case set {1,

2, 4, 5}. Each case in this set has a value of Flu being yes. Similarly, the concept of all cases not

affected by Flu is the case set {3, 6, 7}. Each case in this set has a value of Flu being no.

Rule Set A rule set is a set of rules used to identify a decision value. A case is covered by a rule,

if and only if, every condition of the rule is satisfied by the case. The set of cases covered by a

rule set is the union of all cases covered by the rules in the rule set. Ideally we determine a rule set

which covers an entire concept. A rule set completely covers a concept, if and only if, each case in

the concept is covered by a rule in the rule set.

Local Covering Using a rule set, a local covering describes a concept. Let B be a non-empty

concept. Let T be a set of attribute-value pairs. Let T be a non-empty collection of non-empty sets

of attribute-value pairs. T is a local covering, if and only if, the following conditions are satisfied

[3]:

1. Each member T of T is a minimal complex of B. T is a minimal complex of B, if and only

if, B depends on T and no proper subset T ′ exists such that B depends on T ′ [2],

2. B =
⋃

t∈T[T ] where t is an attribute-value pair (a,v),

3. T has the smallest possible number of members (minimal).
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Chapter 3

Preparing Data Sets for LEM2

Consistency The LEM2 algorithm requires a consistent data set as an input. A consistent data

set contains no indistinguishable cases which belong to more than one concept. A case is indistin-

guishable from another case if each and every attribute value for the cases are equal. An example

of a consistent data set can be seen in Table 2.1. An example of an inconsistent data set can be

seen in the Table 3.1 where cases 5, 6 and cases 3, 7 are indistinguishable.

Table 3.1: Inconsistent data set

Case Attributes Decision
Temperature Headache Nausea Flu

1 very_high yes no yes
2 high yes yes yes
3 normal no no no
4 normal yes yes yes
5 high no no yes
6 high no no no
7 normal no no no

Attribute-value Blocks LEM2 uses blocks of attribute-value pairs to create rules. A block of

an attribute-value pair is the set of cases which contain a specific attribute value. Let a ∈ A, and

t = (a, v) be an attribute-value pair. A block of t, denoted by [t], is a set of all cases from U for

which attribute a has value v [3].
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Attribute-value Blocks Example The attribute-value blocks of the data set shown in Table 2.1

are as follows:

[(Temperature, very_high)] = {1},

[(Temperature, high)] = {2, 5, 6},

[(Temperature, normal)] = {3, 4, 7},

[(Headache, yes)] = {1, 2, 4},

[(Headache, no)] = {3, 5, 6, 7},

[(Weakness, yes)] = {1, 4, 5, 7},

[(Weakness, no)] = {2, 3, 6},

[(Nausea, yes)] = {2, 4},

[(Nausea, no)] = {1, 3, 5, 6, 7}.

Characteristic Sets Definition A characteristic set is the intersection of cases which contain a

specific attribute value for an attribute corresponding to a particular case. More specifically, given

B is a subset of A, the characteristic set KB(x) is the intersection of blocks of attribute-value pairs

(a, v) for all attributes a from B for which a(x) is specified and a(x) = v [3]

KB(x) = ∩
a∈B

Ka(x) where Ka(x) = [(a,v)].

Consistency of a data set can be determined by comparing the characteristic set of each case to

the concepts of the data set. If any characteristic set is not a subset of a concept, the data set is

considered inconsistent and an approximation should to be created.
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Characteristic Sets / Consistent Data Set Example For example, the intersection of blocks for

case 1 in Table 2.1 are as follows:

[(Temperature, High)]∩ [(Headache, Yes)]∩ [(Weakness, Yes)]∩ [(Nausea, No)]

= {1}∩{1, 2, 4}∩{1, 4, 5, 7}∩{1, 3, 5, 6, 7}

= {1}.

The characteristic sets of the consistent data set shown in Table 2.1 are as follows:

KA(1) = {1}∩{1, 2, 4}∩{1, 4, 5, 7}∩{1, 3, 5, 6, 7}

= {1},

KA(2) = {2, 5, 6}∩{1, 2, 4}∩{2, 3, 6}∩{2, 4}

= {2},

KA(3) = {3, 4, 7}∩{3, 5, 6, 7}∩{2, 3, 6}∩{1, 3, 5, 6, 7}

= {3},

KA(4) = {3, 4,7 }∩{1, 2, 4}∩{1, 4, 5, 7}∩{2, 4}

= {4},

KA(5) = {2, 5, 6}∩{3, 5, 6, 7}∩{1, 4, 5, 7}∩{1, 3, 5, 6 ,7}

= {5},

KA(6) = {2, 5, 6}∩{3, 5, 6, 7}∩{2, 3, 6}∩{1, 3, 5, 6, 7}

= {6},

KA(7) = {3, 4, 7}∩{3, 5, 6, 7}∩{1, 4, 5, 7}∩{1, 3, 5, 6, 7}

= {7}.
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Given a consistent data set, each characteristic set is a subset of one and only one concept.

[(Flu, yes)] = {1, 2, 4, 5},

[(Flu, no)] = {3, 6, 7},

KA(1) = {1} ⊆ {1, 2, 4, 5},

KA(2) = {2} ⊆ {1, 2, 4, 5},

KA(3) = {3} ⊆ {3, 6, 7},

KA(4) = {4} ⊆ {1, 2, 4, 5},

KA(5) = {5} ⊆ {1, 2, 4, 5},

KA(6) = {6} ⊆ {3, 6, 7},

KA(7) = {7} ⊆ {3, 6, 7}.
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Inconsistent Data Set Example A data set is inconsistent if any characteristic set is not a subset

of a concept. The characteristic sets of the inconsistent data set shown in Table 3.1 are as follows:

KA(1) = {1}∩{1, 2, 4}∩{1, 3, 5, 6, 7}

= {1},

KA(2) = {2, 5, 6}∩{1, 2, 4}∩{2, 4}

= {2},

KA(3) = {3, 4, 7}∩{3, 5, 6, 7}∩{1, 3, 5, 6, 7}

= {3, 7},

KA(4) = {3, 4, 7}∩{1, 2, 4}∩{2, 4}

= {4},

KA(5) = {2, 5, 6}∩{3, 5, 6, 7}∩{1, 3, 5, 6, 7}

= {5, 6},

KA(6) = {2, 5, 6}∩{3, 5, 6, 7}∩{1, 3, 5, 6, 7}

= {5, 6},

KA(7) = {3, 4, 7}∩{3, 5, 6, 7}∩{1, 3, 5, 6, 7}

= {3, 7}.
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Inconsistencies identified in the data set shown in Table 3.1 are as follows:

[(Flu, yes)] = {1, 2, 4, 5},

[(Flu, no)] = {3, 6, 7},

KA(5) = {5, 6}* {1, 2, 4, 5},

KA(5) = {5, 6}* {3, 6, 7},

KA(6) = {5, 6}* {1, 2, 4, 5},

KA(6) = {5, 6}* {3, 6 ,7}.

Cases 5 and 6 belong to more than one concept, meaning the data set is inconsistent.

Approximations Definition An approximation of a consistent data set can be created from an

inconsistent data set. Approximations are a way to represent a concept in a consistent manner. The

upper approximation is the union of characteristic sets and the lower approximation is the largest

definable set containing the concept [5]. Rules induced from lower approximations are described

as certain and rules induced from upper approximations are described as possible. Let BX be the

upper approximation and BX be the lower approximation.

BX = ∪{KB(x)|x ∈ X ,KB(x)⊆ X},

BX = ∪{KB(x)|x ∈ X}.
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Approximations Example The approximations for the data set shown in Table 3.1 are as fol-

lows:

A{3, 6, 7}= KA(3)∪KA(5)∪KA(6)∪KA(7)

= {3, 7}∪{5, 6}∪{5, 6}∪{3, 7}

= {3, 5, 6, 7},

A{1, 2, 4, 5}= KA(1)∪KA(2)∪KA(4)∪KA(5)∪KA(6)

= {1}∪{2}∪{4}∪{5, 6}∪{5, 6}

= {1, 2, 4, 5, 6},

A{3, 6, 7}= KA(3)∪KA(7)

= {3, 7}∪{3, 7}

= {3, 7},

A{1, 2, 4, 5}= KA(1)∪KA(2)∪KA(4)

= {1}∪{2}∪{4}

= {1, 2, 4}.
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Chapter 4

Rule Induction Using LEM2

Because the LEM2 algorithm will not be modified to enable processing of set-value attributes,

only a brief overview will be provided. For an in-depth explanation of the LEM2 algorithm see

Rough Set Theory with Applications to Data Mining [3].

LEM2 Given a decision table, the LEM2 algorithm will compute a single local covering in the

form of a rule set for each concept [1]. For a set X , |X | denotes the cardinality of X .

Procedure LEM2

(input: a set B,

output: single local covering T of set B);

begin

G := B;

T := /0;

while G 6= /0

begin

T := /0;

T (G) := {t | [t]∩G 6= /0};

while T = /0 or [T ]* B
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begin

select a pair t ∈ T (G) such that |[t]∩G| is maximum; if a tie occurs,

select a pair t ∈ T (G) with the smallest cardinality of [t]; if another tie

occurs, select first pair;

T := T ∪{t};

G := [t]∩G;

T (G) := {t|[t]∩G 6= /0};

T (G) := T (G)−T ;

end {while};

for each t ∈ T do

if [T −{t}]⊆ B then T := T −{t};

T := T∪{T};

G := B−
⋃

T∈T[T ];

end {while};

for each T ∈ T do

if
⋃

S∈T−{T}[S] = B then T := T−{T};

end {procedure}

Start with a consistent data set (or it’s approximation) and create attribute-value blocks. A goal

equal to the set of cases for a selected concept is created. Loop through the blocks, selecting the

best block for the goal based on LEM2 heuristic criteria. Each loop will select an attribute which

may be used in a rule.

Candidate rules will be built by adding attribute-value blocks together until the candidate rule

forms a subset of the selected concept. The cases covered by the candidate rule are removed from

the goal and the loop continues until the entire goal has been met. Once a candidate rule covers

a subset of the selected concept, the rule is finished and the goal is reduced based on the cases

13



covered by the candidate rule. This process continues until the entire concept has been covered.

All rules are reduced to their simplest form and redundant rules are removed.

Table 4.1 and Table 4.2 are examples of determining rules for the data set shown in Table 2.1.

The · symbol indicates the attribute value was selected as a condition for the candidate rule.

Table 4.1: Computing rules for [(Flu, Yes)]

(a,v) = t [(a,v)] {1,2,4,5} {5} {5} {5}
[(Temperature, very_high)] {1} {1} /0 - -
[(Temperature, high)] {2,5,6} {2,5} {5} · - -
[(Temperature, normal)] {3,4,7} {4} /0 - -
[(Headache, yes)] {1,2,4} {1,2,4} · /0 /0 -
[(Headache, no)] {3,5,6,7} {5} {5} {5} · -
[(Weakness, yes)] {1,4,5,7} {1,4,5} {5} {5} {5} ·
[(Weakness, no)] {2,3,6} {2} /0 /0 /0
[(Nausea, yes)] {2,4} {2,4} /0 /0 /0
[(Nausea, no)] {1,3,5,6,7} {1,5} {5} {5} {5}

T {1,2,4} {2,5,6} {5,6} {5}
T {{1,2,4}} {{1,2,4}} {{1,2,4}} {{1,2,4},{5}}

Table 4.2: Computing rules for [(Flu, No)]

(a, v) = t [(a, v)] {3,6,7} {3,6,7} {3,6,7} {6} {6} {6}
[(Temp, very_high)] {1} /0 /0 /0 /0 - -
[(Temp, high)] {2,5,6} {6} {6} {6} {6} · - -
[(Temp, normal)] {3,4,7} {3,7} {3,7} {3,7} · /0 - -
[(Headache, yes)] {1,2,4} /0 - - /0 /0 /0
[(Headache, no)] {3,5,6,7} {3,6,7} · - - {6} {6} {6} ·
[(Weakness, yes)] {1,4,5,7} {7} {7} {7} /0 /0 -
[(Weakness, no)] {2,3,6} {3,6} {3,6} {3,6} {6} {6} · -
[(Nausea, yes)] {2,4} /0 /0 - /0 /0 /0
[(Nausea, no)] {1,3,5,6,7} {3,6,7} {3,6,7} · - {6} {6} {6}

T {3,5,6,7} {3,5,6,7} {3,7} {2,5,6} {2,6} {6}
T /0 /0 {{3,7}} {{3,7}} {{3,7}} {{3,7},{6}}

14



Rules

1. (Headache, yes)−→ (Flu, yes),

2. (Temperature, high)∧ (Headache, no)∧ (Weakness, yes)−→ (Flu, yes),

3. (Headache, no)∧ (Nausea, no)∧ (Temperature, normal)−→ (Flu, no),

4. (Temperature, high)∧ (Weakness, no)∧ (Headache, no)−→ (Flu, no).

These rules can be simplified by dropping (Headache, no) from Rule 2, (Nausea, no) from Rule

3, and (Temperature, high) from Rule 4. LEM2 will produce a simplified rule set (see below) for

the data set shown in Table 2.1.

1. (Headache, yes)−→ (Flu, yes),

2. (Temperature, high)∧ (Weakness, yes)−→ (Flu, yes),

3. (Nausea, no)∧ (Temperature, normal)−→ (Flu, no),

4. (Weakness, no)∧ (Headache, no)−→ (Flu, no).
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Chapter 5

Data Sets with Set-Value Attributes

Set-Value Attribute So far we have dealt only with data sets where each attribute contains only

one value per case. Even ranges are represented as symbolic values instead of a set of numeric

values. For example, the numeric value 3.2 can be represented by the symbolic value 3..4 (3 to 4)

through the process of discretization. For an in-depth explanation of the Modified LEM2 algorithm

which handles discretization see A Local Version of the MLEM2 Algorithm for Rule Induction [6].

When attributes contain more than one value per case, these types of values can be defined as

set-value attributes. Table 5.1 shows a data set with set-value attributes.

Table 5.1: Example data set with set-value attributes

Case Attributes Decision
Temperature Headache Cough Flu

1 high, very_high yes no yes
2 high no yes yes
3 very_high no no no
4 normal, high yes yes maybe

A set-value for an attribute means all values in the set are valid for the case. For example, the

Temperature value for case 1 in the data set shown in Table 5.1 was either high or very high, but not

both, during data collection. These values can be interpreted as being connected with an Exclusive

Or clause.
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Chapter 6

Preparing Set-Value Data Sets for LEM2

There are two approaches for creating a consistent set of rules from a data set with set-value

attributes. A rule set is consistent, if and only if, every rule in the rule set is consistent with the

data set [4]. The first approach is sequential (preprocessing the data) and will not modify LEM2,

but instead modify the data set to contain only single-value attributes which is compatible with

the algorithm. The second approach is parallel (processing set values during induction) and will

modify LEM2’s definitions and interpretations to handle set values.

6.1 Sequential Methods

Sequential methods to handle set-value attributes convert the original data set, with set-value

attributes, into a data with only single-value attributes prior to rule induction.

Split Set-Value Attributes To represent multiple values occurring using single-value attributes

requires cases be split into multiple sub-cases. Each combination of attribute values for a set will be

represented as a new sub-case. The increase in size of the data set will be considerable, potentially

by many orders of magnitude. If even the simple data set shown in Table 5.1 were split in this

manner, a fifty percent increase in the number of cases would result (see Table 6.1).

17



Table 6.1: Case-splitting of data set with set-value attributes

Case Attributes Decision
Temperature Headache Cough Flu

11 high yes no yes
12 very_high yes no yes
2 high no yes yes
3 very_high no no no
41 normal yes yes maybe
42 high yes yes maybe

Table 6.2: Computing rules for split set-value attribute values (Flu, yes)

(a, v) = t [(a,v)] {11,12,2} {11,2} {11,12} {11,12}
[(Temperature, high)] {11,2,42} {11,2}· - {11} {11}
[(Temperature, very_high)] {12,3} {12} - {12} {12}
[(Temperature, normal)] {41} /0 - /0 /0
[(Headache, yes)] {11,12,41,42} {11,12} {11} {11,12} {11,12}·
[(Headache, no)] {2,3} {2} {2} · /0 /0
[(Cough, no)] {11,12,3} {11,12} {11} {11,12}· -
[(Cough, yes)] {2,41,42} {2} {2} /0 -

T {11,2,42} {2} {11,12,3} {11,12}
T /0 {{2}} {{2}} {{2},{11,12}}

Rules

1. (Temperature, high)∧ (Headache,no)−→ (Flu, yes),

2. (Cough, no)∧ (Headache,yes)−→ (Flu, yes),

3. (Cough, no)∧ (Temperature,very_high)−→ (Flu, no),

4. (Cough, yes)∧ (Headache,yes)−→ (Flu, maybe).

Replace Set Values with Attribute Variables This sequential method substitutes attribute vari-

ables for attribute-values containing sets. For example, any instance of (Temperature,{high, very_high})

is replaced with the single attribute variable temp1. After rules have been created, attribute vari-

ables are replaced with the corresponding set of attribute values.
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As an example, for the data set shown in Table 5.1, (Temperature, {high, very_high}) becomes

the variable temp1 and (Temperature, {normal, high}) becomes the variable temp2. The data set

now contains only single-value attributes. The results of these substitutions can be seen in Table

6.3.

Table 6.3: Attribute variables data set

Case Attributes Decision
Temperature Headache Cough Flu

1 temp1 yes no yes
2 high no yes yes
3 very_high no no no
4 temp2 yes yes maybe

Table 6.4: Computing rules for data set with attribute variables

(a, v) = t [(a, v)] {1,2} {1} {3} {4}
[(Temperature, high)] {2} {2} · /0 /0 /0
[(Temperature, very_high)] {3} /0 /0 {3} · /0
[(Temperature, temp1)] {1} {1} {1} · /0 /0
[(Temperature, temp2)] {4} /0 /0 /0 {4} ·
[(Headache, yes)] {1,4} {1} {1} /0 {4}
[(Headache, no)] {2,3} {2} /0 {3} /0
[(Nausea, yes)] {2,4} {2} /0 /0 {4}
[(Nausea, no)] {1,3} {1} {1} {3} /0

T {2} {1} {3} {4}
T {2} {{2},{1}} {{3}} {{4}}
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Rules After the rule set has been created, each attribute variable is replaced with the original set

of attributes values. An attribute-value set as part of a condition is represented as the union of each

attribute-value in the set and logically combined with Exclusive Or.

1. (Temperature, high)−→ (Flu, yes),

2. (Temperature, temp1)−→ (Flu, yes) becomes

((Temperature, high)∨ (Temperature, very_high))−→ (Flu, yes),

3. (Temperature, very_high)−→ (Flu, no),

4. (Temperature, temp2)−→ (Flu, maybe) becomes

((Temperature, normal)∨ (Temperature, high))−→ (Flu, maybe).

The downside to replacing set values with attribute variables is the potential for broad rules with

inconsistencies. For example, variables temp1 and temp2 both use (Temperature, high) as an

attribute value. The overlap causes an inconsistency between Rule 1, Rule 2, and Rule 4. Each

rule covers cases in more than one concept for the data set shown in 5.1, meaning the rule set is

inconsistent.

6.2 Parallel Method

Ideally a single local covering of a data set with set-value attributes can be created without

increasing the complexity of LEM2’s execution. Doing so requires the modification of how the

data set is processed instead of a costly change to the data set. Unlike sequential methods, no data

preprocessing is used with parallel methods. Instead the LEM2 algorithm induces rules directly

from a data set with set-value attributes.

Concept Determining concepts for a data set with set-value attributes is no different than deter-

mining concepts for single-value data sets. The concepts for the data set shown in Table 5.1 are as
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follows:

[(Flu, yes)] = {1, 2},

[(Flu, no)] = {3},

[(Flu, maybe)] = {4}.

Consistency To check set-value data sets for consistency we need to extend the definition of

characteristic sets. By changing the way characteristic sets combine attribute-value blocks, the

existing method can be used to determine consistency.

Attribute-Value Block Creation The interpretation of attribute-value blocks will change slightly

to accommodate changes made to characteristic sets. Attribute-value blocks of data sets which

contain set-value attributes are created the same as for data sets with only single-value attributes.

An important difference between single-value attributes and set-value attributes is the existence

of cases in more than one attribute-value block. Cases in a set-value attribute may exist in more

than one attribute-value block, while cases in a single-value attribute exist in a maximum of one

attribute-value block. This will not affect execution of the LEM2 algorithm.
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Attribute-Value Block Example The attribute-value blocks of the set-value data set shown in

Table 5.1 are as follows:

[(Temperature, high)] = {1, 2, 4},

[(Temperature, very_high)] = {1, 3},

[(Temperature, normal)] = {4},

[(Headache, yes)] = {1, 4},

[(Headache, no)] = {2, 3},

[(Cough, yes)] = {2, 4},

[(Cough, no)] = {1, 3}.

Characteristic Set Creation Characteristic sets must account for cases belonging to multiple

attribute-value blocks for the same attribute. The union of each block intersecting the case will be

used instead of a single attribute-value block containing the case. Given B is a subset of A and a(x)

is a set of all values of a for case x, the updated definition of characteristic sets is as follows:

KB(x) = ∩
a∈B

Ka(x) where Ka(x) = ∪{[(a,v)] : v ∈ a(x)}.

22



Characteristic Set Example The characteristic sets for the set-value data set shown in Table 5.1

are as follows:

KA(1) = ({1, 2, 4}∪{1, 3})∩{1, 4}∩{1, 3}

= {1},

KA(2) = {1, 2, 4}∩{2, 3}∩{2, 4}

= {2},

KA(3) = {1, 3}∩{2, 3}∩{1, 3}

= {3},

KA(4) = ({4}∪{1, 2, 4})∩{1, 4}∩{2, 4}

= {4}.

Inconsistent Set-Value Data Set Example Approximations become increasingly important for

data sets with set-value attributes due to the greater possibility of inconsistent cases. See Table 6.5

for an example of an inconsistent set-value data set.

Table 6.5: Inconsistent data set with set-value attributes

Case Attributes Decision
Temperature Headache Nausea Flu

1 high, very_high no yes yes
2 normal, high yes no no
3 normal no no no
4 normal yes no no
5 very_high no yes yes
6 high yes yes yes
7 high yes yes no
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Attribute-value blocks for the data set shown in Table 6.5 are as follows:

[(Temperature, very_high)] = {1, 5},

[(Temperature, high)] = {1, 2, 6, 7},

[(Temperature, normal)] = {2, 3, 4},

[(Headache, yes)] = {2, 4, 6, 7},

[(Headache, no)] = {1, 3, 5},

[(Nausea, yes)] = {1, 5, 6, 7},

[(Nausea, no)] = {2, 3, 4}.
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Below we can see the characteristic sets for Table 6.5 and identify inconsistent cases 6 and 7.

KA(1) = ({1, 2, 6, 7}∪{1, 5})∩{1, 3, 5}∩{1, 5, 6, 7}

= {1, 5},

KA(2) = ({2, 3, 4}∪{1, 2, 6, 7})∩{2, 4, 6, 7}∩{2, 3, 4}

= {2, 4},

KA(3) = {2, 3, 4}∩{1, 3, 5}∩{2, 3, 4}

= {3},

KA(4) = {2, 3, 4}∩{2, 4, 6, 7}∩{2, 3, 4}

= {2, 4},

KA(5) = {1, 5}∩{1, 3, 5}∩{1, 5, 6, 7}

= {1, 5},

KA(6) = {1, 2, 6, 7}∩{2, 4, 6, 7}∩{1, 5, 6, 7}

= {6, 7},

KA(7) = {1, 2, 6, 7}∩{2, 4, 6, 7}∩{1, 5, 6, 7}

= {6, 7}.

Approximation The LEM2 algorithm can be executed using either the upper or lower concept

approximations. Approximations for set-value data sets are created using the updates to the inter-

pretation of attribute-value blocks and creation of characteristic sets.
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Set-Value Approximation Example The approximations created for the data set shown in Table

6.5 are as follows:

Ā{1, 5, 6}= KA(1)∪KA(5)∪KA(6)∪KA(7)

= {1, 5}∪{1, 5}∪{6, 7}∪{6, 7}

= {1, 5, 6, 7},

Ā{2, 3, 4, 6, 7}= KA(2)∪KA(3)∪KA(4)∪KA(6)∪KA(7)

= {2, 4}∪{3}∪{2, 4}∪{6, 7}∪{6, 7}

= {2, 3, 4, 6, 7},

A{1, 5, 6}= KA(1)∪KA(5)

= {1, 5}∪{1, 5}

= {1, 5},

A{2, 3, 4, 7}= KA(2)∪KA(3)∪KA(4)

= {2, 4}∪{3}∪{2, 4}

= {2, 3, 4}.

26



Chapter 7

LEM2 Execution on Set-Value Data Sets

A modification of characteristic sets extends the use of the LEM2 algorithm to data sets con-

taining set-value attributes. Because LEM2 relies on attribute-value blocks to create rules, the new

interpretation of attribute-value block creation used for checking consistency can be used. This

can be seen in the execution of the algorithm on the approximation created in Chapter Six on Table

6.5.

7.1 Execution Walkthrough

Table 7.1 is an example data set generated randomly with a mixture of attribute types. There exists

an attribute of only single values (Single), an attribute of set-values (Multiple), and an attribute

with both set-values and single values (Mixed). This data set will be used to demonstrate the

described process with simulated real-world data.
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Table 7.1: Randomly generated data set

Attributes Decision
Case Single Multiple Mixed Letter

1 S9 M2,M6 X3 D
2 S9 M0,M2,M7,M9 X1 C
3 S2 M1,M2,M4,M7 X2,X3 B
4 S1 M6,M7,M10 X1,X3 C
5 S10 M0,M5 X1 C
6 S4 M0,M2,M3,M10 X1 A
7 S1 M4,M9 X1 A
8 S1 M4,M5,M8 X1,X3 D
9 S9 M5,M9 X3 B

10 S1 M3,M9 X1,X2,X3 C

Attribute-value Blocks The attribute-value blocks of the data set shown in Table 7.1 are as

follows:

[(Single, S1)] = {4, 7, 8, 10},

[(Single, S2)] = {3},

[(Single, S4)] = {6},

[(Single, S9)] = {1, 2, 9},

[(Single, S10)] = {5},
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[(Multiple, M0)] = {2, 5, 6},

[(Multiple, M1)] = {3},

[(Multiple, M2)] = {1, 2, 3, 6},

[(Multiple, M3)] = {6, 10},

[(Multiple, M4)] = {3, 7, 8},

[(Multiple, M5)] = {5, 8, 9},

[(Multiple, M6)] = {1, 4},

[(Multiple, M7)] = {2, 3, 4},

[(Multiple, M8)] = {8},

[(Multiple, M9)] = {2, 7, 9, 10},

[(Multiple, M10)] = {4, 6},

[(Mixed, X1)] = {2, 4, 5, 6, 7, 8, 10},

[(Mixed, X2)] = {3, 10},

[(Mixed, X3)] = {1, 3, 4, 8, 9, 10}.
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Characteristic Sets The attribute-value block combinations of the attribute Multiple in the data

set shown in Table 7.1 are as follows:

KMultiple(1) = {1, 2, 3, 6}∪{1, 4}

= {1, 2, 3, 4, 6},

KMultiple(2) = {2, 5, 6}∪{1, 2, 3, 6}∪{2, 3, 4}∪{2, 7, 9, 10}

= {1, 2, 3, 4, 5, 6, 7, 9, 10},

KMultiple(3) = {3}∪{1, 2, 3, 6}∪{3, 7, 8}∪{2, 3, 4}

= {1, 2, 3, 4, 6, 7, 8},

KMultiple(4) = {1, 4}∪{2, 3, 4}∪{4, 6}

= {1, 2, 3, 4, 6},

KMultiple(5) = {2, 5, 6}∪{5, 8, 9}

= {2, 5, 6, 8, 9},

KMultiple(6) = {2, 5, 6}∪{1, 2, 3, 6}∪{6, 10}∪{4, 6}

= {1, 2, 3, 4, 5, 6, 10},

KMultiple(7) = {3, 7, 8}∪{2, 7, 9, 10}

= {2, 3, 7, 8, 9, 10},

KMultiple(8) = {3, 7, 8}∪{5, 8, 9}∪{8}

= {3, 5, 7, 8, 9},

KMultiple(9) = {5, 8, 9}∪{2, 7, 9, 10}

= {2, 5, 7, 8, 9, 10},

KMultiple(10) = {6, 10}∪{2, 7, 9, 10}

= {2, 6, 7, 9, 10}.
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The attribute-value block combinations of the attribute Mixed in the data set shown in Table

7.1 are as follows:

KMixed(3) = {3, 10}∪{1, 3, 4, 8, 9, 10}

= {1, 3, 4, 8, 9, 10},

KMixed(4) = {2, 4, 5, 6, 7, 8, 10}∪{1, 3, 4, 8, 9, 10}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

KMixed(8) = {2, 4, 5, 6, 7, 8, 10}∪{1, 3, 4, 8, 9, 10}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

KMixed(10) = {2, 4, 5, 6, 7, 8, 10}∪{3, 10}∪{1, 3, 4, 8, 9, 10}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Using the combination of attribute-value blocks above, the characteristic sets of the data set in

Table 7.1 are as follows:
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KA(1) = {1, 2, 9}∩{1, 2, 3, 4, 6}∩{1, 3, 4, 8, 9, 10}

= {1},

KA(2) = {1, 2, 9}∩{1, 2, 3, 4, 5, 6, 7, 9, 10}∩{2, 4, 5, 6, 7, 8, 10}

= {2},

KA(3) = {3}∩{1, 2, 3, 6, 7, 8}∩{1, 3, 4, 8, 9, 10}

= {3},

KA(4) = {4, 7, 8, 10}∩{1, 2, 3, 4, 6}∩{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

= {4},

KA(5) = {5}∩{2, 4, 5, 6, 8, 9}∩{2, 4, 5, 6, 7, 8, 10}

= {5},

KA(6) = {6}∩{1, 2, 3, 4, 5, 6, 10}∩{2, 4, 5, 6, 7, 8, 10}

= {6},

KA(7) = {4, 7, 8, 10}∩{2, 3, 7, 8, 9, 10}∩{2, 4, 5, 6, 7, 8, 10}

= {7, 8, 10},

KA(8) = {4, 7, 8, 10}∩{3, 5, 7, 8, 9}∩{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

= {7, 8},

KA(9) = {1, 2, 9}∩{2, 5, 7, 8, 9, 10}∩{1, 3, 4, 8, 9, 10}

= {9},

KA(10) = {4, 7, 8, 10}∩{2, 6, 7, 9, 10}∩{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

= {7, 10}.
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Given the concepts [(Letter, A)] = {6, 7}, [(Letter, B)] = {3, 9}, [(Letter, C)] = {2, 4, 5, 10},

[(Letter, D)] = {1, 8}, inconsistencies identified in the data set shown in Table 7.1 are as follows:

KA(7) = {7, 8, 10}* {6, 7},

KA(7) = {7, 8, 10}* {1, 8},

KA(7) = {7, 8, 10}* {2, 4, 5, 10},

KA(8) = {7, 8}* {6, 7},

KA(8) = {7, 8}* {1, 8},

KA(10) = {7, 10}* {6, 7},

KA(10) = {7, 10}* {2, 4, 5, 10}.

Case 7 belongs to three different concepts and cases 8 and 10 belong to two different concepts.

Therefore the data set is inconsistent and an approximation will be created.
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Approximations Upper and lower approximations of the data set shown in Table 7.1 are as

follows:

[(Letter, A)] = {6, 7},

A[(Letter, A)] = {6}∪{7, 8, 10}∪{7, 8}∪{7, 10}= {6, 7, 8, 10},

A[(Letter, A)] = {6},

[(Letter, B)] = {3, 9},

A[(Letter, B)] = {3}∪{9}= {3, 9},

A[(Letter, B)] = {3}∪{9}= {3, 9},

[(Letter, C)] = {2, 4, 5, 10},

A[(Letter, C)] = {2}∪{4}∪{5}∪{7, 8, 10}∪{7, 10}= {2, 4, 5, 7, 8, 10},

A[(Letter, C)] = {2}∪{4}∪{5}= {2, 4, 5},

[(Letter, D)] = {1, 8},

A[(Letter, D)] = {1}∪{7, 8, 10}∪{7, 8}= {1, 7, 8, 10},

A[(Letter, D)] = {1}.
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Execution Execution of the LEM2 algorithm on the data set shown in Table 7.1 is shown in the

following tables.

Table 7.2: Computing rules for the upper approximation of [(Letter, A)]

(a, v) = t [(a,v)] {6,7,8,10} {6,7,8,10} {7,8,10} {6,10}
[(Single, S1)] {4,7,8,10} {7,8,10} {7,8,10} · - {10}
[(Single, S2)] {3} /0 /0 /0 /0
[(Single, S4)] {6} {6} {6} /0 {6}
[(Single, S9)] {1,2,9} /0 /0 /0 /0
[(Single, S10)] {5} /0 /0 /0 /0
[(Multiple, M0)] {2,5,6} {6} {6} /0 {6}
[(Multiple, M1)] {3} /0 /0 /0 /0
[(Multiple, M2)] {1,2,3,6} {6} {6} /0 {6}
[(Multiple, M3)] {6,10} {6,10} {6,10} {10} {6,10} ·
[(Multiple, M4)] {3,7,8} {7,8} {7,8} {7,8} · /0
[(Multiple, M5)] {5,8,9} {8} {8} {8} /0
[(Multiple, M6)] {1,4} /0 /0 /0 /0
[(Multiple, M7)] {4,5,6} {6} {6} /0 {6}
[(Multiple, M8)] {8} {8} {8} {8} /0
[(Multiple, M9)] {2,7,9,10} {7,10} {7,10} {7,10} {10}
[(Multiple, M10)] {4,6} {6} {6} /0 {6}
[(Mixed, X1)] {2,4,5,6,7,8,10} {6,7,8,10} · - - {6,10}
[(Mixed, X2)] {3,10} {10} {10} {10} {10}
[(Mixed, X3)] {1,3,4,8,9,10} {8,10} {8,10} {8,10} {10}

T {2,4,5,6,7,8,10} {4,7,8,10} {7,8} {6,10}
T /0 /0 {{7,8}} {{7,8},{6,10}}
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Table 7.3: Computing rules for the upper approximation of [(Letter, B)]

(a, v) = t [(a,v)] {3,9} {3,9} {9} {9}
[(Single, S1)] {4,7,8,10} /0 /0 - /0
[(Single, S2)] {3} {3} {3} · /0 /0
[(Single, S4)] {6} /0 /0 /0 /0
[(Single, S9)] {1,2,9} {9} {9} {9} · -
[(Single, S10)] {5} /0 /0 /0 /0
[(Multiple, M0)] {2,5,6} /0 /0 /0 /0
[(Multiple, M1)] {3} {3} {3} /0 /0
[(Multiple, M2)] {1,2,3,6} {3} {3} /0 /0
[(Multiple, M3)] {6,10} /0 /0 /0 /0
[(Multiple, M4)] {3,7,8} {3} {3} /0 /0
[(Multiple, M5)] {5,8,9} {9} {9} {9} {9} ·
[(Multiple, M6)] {1,4} /0 /0 /0 /0
[(Multiple, M7)] {4,5,6} {3} {3} /0 /0
[(Multiple, M8)] {8} /0 /0 /0 /0
[(Multiple, M9)] {2,7,9,10} {9} {9} {9} {9}
[(Multiple, M10)] {4,6} /0 /0 /0 /0
[(Mixed, X1)] {2,4,5,6,7,8,10} /0 /0 /0 /0
[(Mixed, X2)] {3,10} {3} {3} /0 /0
[(Mixed, X3)] {1,3,4,8,9,10} {3,9} · - {9} {9}

T {1,3,4,8,9,10} {3} {1,2,9} {9}
T /0 {{3}} {{3}} {{3},{9}}
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Table 7.4: Computing rules for the upper approximation of [(Letter, C)]

(a, v) = t [(a,v)] {2,4,5,10} {2,4,5,10} {2,5}
[(Single, S1)] {4,7,8,10} {4,10} {4,10} /0
[(Single, S2)] {3} /0 /0 /0
[(Single, S4)] {6} /0 /0 /0
[(Single, S9)] {1,2,9} {2} {2} {2}
[(Single, S10)] {5} {5} {5} {5} ·
[(Multiple, M0)] {2,5,6} {2,5} {2,5} · -
[(Multiple, M1)] {3} /0 /0 /0
[(Multiple, M2)] {1,2,3,6} {2} {2} {2}
[(Multiple, M3)] {6,10} {10} {10} /0
[(Multiple, M4)] {3,7,8} /0 /0 /0
[(Multiple, M5)] {5,8,9} {5} {5} {5}
[(Multiple, M6)] {1,4} {4} {4} /0
[(Multiple, M7)] {4,5,6} {2,4} {2,4} {2}
[(Multiple, M8)] {8} /0 /0 /0
[(Multiple, M9)] {2,7,9,10} {2,10} {2,10} {2}
[(Multiple, M10)] {4,6} {4} {4} /0
[(Mixed, X1)] {2,4,5,6,7,8,10} {2,4,5,10} · - -
[(Mixed, X2)] {3,10} {10} {10} /0
[(Mixed, X3)] {1,3,4,8,9,10} {4,10} {4,10} /0

T {2,4,5,6,7,8,10} {2,5,6} {5}
T /0 /0 {{5}}
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Table 7.5: Computing rules for the upper approximation of [(Letter, C)] (continued)

(a, v) = t [(a,v)] {2,4,10} {2,4,10} {10} {10}
[(Single, S1)] {4,7,8,10} {4,10} {4,10} {10} /0
[(Single, S2)] {3} /0 /0 /0 /0
[(Single, S4)] {6} /0 /0 /0 /0
[(Single, S9)] {1,2,9} {2} {2} /0 /0
[(Single, S10)] {5} /0 /0 /0 /0
[(Multiple, M0)] {2,5,6} {2} {2} /0 /0
[(Multiple, M1)] {3} /0 /0 /0 /0
[(Multiple, M2)] {1,2,3,6} {2} {2} /0 /0
[(Multiple, M3)] {6,10} {10} {10} {10} · -
[(Multiple, M4)] {3,7,8} /0 /0 /0 /0
[(Multiple, M5)] {5,8,9} /0 /0 /0 /0
[(Multiple, M6)] {1,4} {4} {4} /0 /0
[(Multiple, M7)] {4,5,6} {2,4} {2,4} · /0 /0
[(Multiple, M8)] {8} /0 /0 /0 /0
[(Multiple, M9)] {2,7,9,10} {2,10} {2,10} {10} {10}
[(Multiple, M10)] {4,6} {4} {4} /0 /0
[(Mixed, X1)] {2,4,5,6,7,8,10} {2,4,10} · - /0 /0
[(Mixed, X2)] {3,10} {10} {10} {10} {10} ·
[(Mixed, X3)] {1,3,4,8,9,10} {4,10} {4,10} {10} {10}

T {2,4,5,6,7,8,10} {2,4} {6,10} {10}
T {{5}} {{5},{2,4}} {{5},{2,4}} {{5},{2,4},{10}}
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Table 7.6: Computing rules for the upper approximation of [(Letter, D)]

(a, v) = t [(a,v)] {1,8} {1,8} {1} {1}
[(Single, S1)] {4,7,8,10} {8} {8} /0 /0
[(Single, S2)] {3} /0 /0 /0 /0
[(Single, S4)] {6} /0 /0 /0 /0
[(Single, S9)] {1,2,9} {1} {1} {1} {1} ·
[(Single, S10)] {5} /0 /0 /0 /0
[(Multiple, M0)] {2,5,6} /0 /0 /0 /0
[(Multiple, M1)] {3} /0 /0 /0 /0
[(Multiple, M2)] {1,2,3,6} {1} {1} {1} {1}
[(Multiple, M3)] {6,10} /0 /0 /0 /0
[(Multiple, M4)] {3,7,8} {8} {8} /0 /0
[(Multiple, M5)] {5,8,9} {8} {8} /0 /0
[(Multiple, M6)] {1,4} {1} {1} {1} · -
[(Multiple, M7)] {4,5,6} /0 /0 /0 /0
[(Multiple, M8)] {8} {8} {8} · /0 /0
[(Multiple, M9)] {2,7,9,10} /0 /0 /0 /0
[(Multiple, M10)] {4,6} /0 /0 /0 /0
[(Mixed, X1)] {2,4,5,6,7,8,10} {8} {8} /0 /0
[(Mixed, X2)] {3,10} /0 /0 /0 /0
[(Mixed, X3)] {1,3,4,8,9,10} {1,8} · - {1} {1}

T {1,3,4,8,9,10} {8} {1,4} {1}
T /0 {{8}} {{8}} {{8},{1}}
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Possible Rules

1. (Single, S1)∧ (Multiple, M4)−→ (Letter, A),

2. (Multiple, M3)−→ (Letter, A),

3. (Single, S2)−→ (Letter, B),

4. (Single, S9)∧ (Multiple, M5)−→ (Letter, B),

5. (Single, S10)−→ (Letter, C),

6. (Mixed, X1)∧ (Multiple, M7)−→ (Letter, C),

7. (Multiple, M3)∧ (Mixed, X2)−→ (Letter, C),

8. (Multiple, M8)−→ (Letter, D),

9. (Multiple, M6)∧ (Single, S9)−→ (Letter, D).

Certain Rules

1. (Single, S4)−→ (Letter, A),

2. (Single, S2)−→ (Letter, B),

3. (Single, S9)∧ (Multiple, M5)−→ (Letter, B),

4. (Single, S10)−→ (Letter, C),

5. (Multiple, M7)∧ (Mixed, X1)−→ (Letter, C),

6. (Multiple, M6)∧ (Single, S9)−→ (Letter, D).
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7.2 Method Evaluation

To evaluate the different methods presented of inducing rules from set-value data sets, we ex-

ecute each method on a collection of set-value data sets. Five data sets of all symbolic data with

missing values from the machine learning data repository, University of California at Irvine were

used [7]. Missing values were replaced with the set of all possible values for the attribute to create

a set-value data set. Four randomly generated data sets with a mixture of single-value and set-

value attributes were created for use in the evaluations. Finally, the set-value data set from the test

for foreign language ability in Shanxi University will be used [9]. Data sets used for evaluation

are outlined in Table 7.7. Experiments are based on those performed in Rough sets based matrix

approaches with dynamic attribute variation in set-valued information systems [10].

Table 7.7: Description of evaluation data sets

Number of
Data Set Source Cases Attributes Classes
Congressional Voting Records UCI 435 16 2
Mushroom UCI 8124 22 2
Soybean-large UCI 307 35 19
Audiology (Standardized) UCI 226 69 24
Dermatology UCI 336 34 6
Set-value data one Data Generator 2000 5 5
Set-value data two Data Generator 200 100 4
Set-value data three Data Generator 500 10 8
Set-value data four Data Generator 800 8 20
Shanxi Foreign Language Test Shanxi University 50 4 2

Rule complexity will be used to evaluate the different methods for handling set-value attributes.

To compare rule complexity, the number of rules and the total number of conditions are measured

for each rule set created. Results can be seen in Table 7.8 of the different methods executed on

each data set.

41



Table 7.8: Experimental evaluation results

Parallel Split Variables
Data Set Rules Conditions Rules Conditions Rules Conditions
Congressional Voting Records 206 3290 36 220 32 120
Mushroom 12 28 14 33 11 26
Soybean-large 47 374 NA NA 44 164
Audiology (Standardized) 40 152 47 149 44 163
Dermatology 30 118 35 145 30 118
Set-value Data One 1253 5616 10175 43072 1895 6866
Set-value Data Two 47 156 NA NA 80 179
Set-value Data Three 211 834 NA NA 464 1523
Set-value Data Four 557 1975 772 2416 737 2551
Shanxi Foreign Language Test 17 101 58 213 17 60

For the data sets Soybean-large, Set-value Data One, and Set-value Data Three the split set

values approach produced data sets too large to be processed by the implementation described in

Chapter 8. The large number of cases resulted in increased processing time and memory usage

to unpractical levels. For example, a single case in the Set-value Data Two data set exploded into

hundreds of thousands of split cases.

The parallel method produced rule sets with the fewest number of rules in seven out of ten

data sets compared to only five for the attribute variables method and none for the split set values

method. The parallel method produced rule sets with the fewest number of conditions in five out of

ten data sets compared to only five for the attribute variables method and one for the split set values

method. For real world data, the attribute variables method produced the least complex rule sets

while the parallel method produced the least complex rule sets for generated data sets. Generally,

the parallel method produced rule sets with fewer rules and the attribute variables method produced

rule sets with fewer conditions.
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Chapter 8

Implementation

As a proof of concept an implementation of the LEM2 algorithm was written in JavaScript. Im-

plementation includes functionality to induce rules on data sets with set-value attributes. A web

interface for the application is available at https://lrdodge.github.io/lem2.

Technology The technologies used to create the application are as follows:

• Bootstrap 3,

• jQuery,

• Mocha.js,

• Chai.js,

• PapaParse.js,

• GitHub Pages.

Data Source Data sets are input into the application using the Comma Separated Value (CSV)

format. Any data processing errors will be displayed below the data input field and must be re-

solved before proceeding. The first row of the data source should be the column labels and the last

column should be the decision. Omit case numbers and separate set values with the | character.
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For example, the set {A, B, C} would be represented as A|B|C. For optimum performance and rule

coverage, data should be discretized prior to processing.

A data source must be selected or input to initialize the application. Select a data source by

clicking one of the data source option buttons and then clicking the Load Data button. Example

data sets are provided to quickly show the capabilities and functionality. Data source options

include:

• Input File - Local CSV file with headers,

• Manual Input - Enter CSV data directly into the data field,

• Examples - Data from one of several existing data sets.

Concept Selection After initial data processing (concept and attribute-value block determina-

tion), a dialog will display with the concepts derived from the input data. Each concept will show

the value and number of cases within the concept. Clicking on the number badge will display the

cases. Clicking the badge again will hide the cases.

Select a concept by clicking one of the concept option buttons in the dialog. A concept must

be selected before rules can be induced. Once a concept has been selected, click the Induce Rules

button. Depending on the size of the data set and number of attribute-value blocks, rule induction

may take a significant amount of time. Size and complexity of the data set will be constrained by

the memory available to the browser.

Rule Set Display Once rule induction is complete rules will be displayed in the Rules section

at the bottom of the page. Rules are shown in the order in which they were created. Because

consistent data is not enforced, it is possible for the goal to not be equal to the empty set and no

blocks available for selection. This is an indicator the input data set is inconsistent. An exclamation
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sign will be displayed by any rules which were unable to be completed. In these instances it is

recommended an approximation of the data set should be created instead.
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Chapter 9

Conclusion

LEM2 is constrained to single-value data sets, limiting the algorithm’s range of application. By

examining each step of the LEM2 algorithm, the definition of characteristic sets was identified as a

point of failure for set-value data sets. Modifying characteristic set creation and the interpretation

of attribute-value blocks will expand the data sets which LEM2 can handle. Data sets with set-

value attributes can be now processed without modification or expansion of the data set.

The parallel method to inducing rules for set-value data sets creates rule sets which are less

complex than those created with sequential methods. Only for the Congressional Voting Records

data set did the parallel method produce the most complex rule set. Given the attribute variable

method’s propensity towards inconsistent rule sets, the parallel method is the best way to induce

rules from set-value data sets.

The change to the characteristic sets and attribute-value blocks solves issues of determining

consistency as well as the algorithm’s execution itself. The output of the algorithm is consistent

for both single-value data sets and set-value data sets and will cover cases for each concept. The

solution scales to data sets of any size and attribute count, opening the door to a solution where

complete coverings of set-value data sets are possible.
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The parallel method presented will produce a consistent, but not complete, set of rules for a

set-value data set. Some values in a set-value attribute may not be used during rule induction, even

when the attribute was selected for rule creation. Currently a case is considered covered if one,

but not all, attributes in a set-value attribute are used in a rule. For a rule created with a set-value

attribute, there is no guarantee all values in a particular set will be accounted for in the final rule.

For example, consider the rules induced for (Letter, B) for the data set shown in Table 7.1:

1. (Single, S2)−→ (Letter, B),

2. (Single, S9)∧ (Multiple, M5)−→ (Letter, B).

When (Multiple, M5) was selected to create Rule 2, (Multiple, M9) was not included in the rule

set despite belonging to one of the cases covered. The rule set created for the data set shown in

Table 7.1 does not cover all cases for the logically equivalent split version of cases 3 and 9 shown

in Table 9.1.

Table 9.1: Split cases of concept (Letter, B)

Attributes Decision
Case Single Multiple Mixed Letter

31 S2 M1 X2 B
32 S2 M2 X2 B
33 S2 M4 X2 B
34 S2 M7 X2 B
35 S2 M1 X3 B
36 S2 M2 X3 B
37 S2 M4 X3 B
38 S2 M7 X3 B
91 S9 M5 X3 B
92 S9 M9 X3 B

As we can see, Rule 2 covers case 91, but not case 92. Additional work is needed to modify the

process to produce a complete set of consistent rules for the data set.
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Further exploration into updating attribute-value block selection heuristics is also needed. Pos-

sible new preferences include single value attributes and smallest set cardinality of set-value at-

tributes. These should be compared for a potential increase in rule set coverage or a decrease in

rule set complexity.
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