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Abstract

Resource theory and metabolic scaling theory suggest that the dynamics of a pathogen within a 

host should strongly depend upon the rate of host cell metabolism. Once an infection occurs, key 

ecological interactions occur on or within the host organism that determine whether the pathogen 

dies out, persists as a chronic infection, or grows to densities that lead to host death. We 

hypothesize that, in general, conditions favoring rapid host growth rates should amplify the 

replication and proliferation of both fungal and viral pathogens. If a host population experiences 

an increase in mortality, to persist it must have a higher growth rate, per host, often reflecting 

greater resource availability per capita. We hypothesize that this could indirectly foster the 

pathogen, which also benefits from increased within-host resource turnover. We first bring 

together in a short review a number of key prior studies which illustrate resource effects on viral 

and fungal pathogen dynamics. We then report new results from a semi-continuous cell culture 

experiment with SHIV, demonstrating that higher mortality rates indeed can promote viral 

proliferation. We develop a simple model that illustrates dynamical consequences of these 

resource effects, including interesting effects such as alternative stable states and oscillatory 

dynamics. Our paper contributes to a growing body of literature at the interface of ecology and 

infectious disease epidemiology, emphasizing that host abundances alone do not drive community 

dynamics: the physiological state and resource content of infected hosts also strongly influence 

host-pathogen interactions.
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Introduction

Microparasites in their population dynamics within individual hosts are subject to the same 

ecological processes that shape the abundance and dynamical behavior of all organisms 

(Andrews 1991; Bohannan 2000; Graham 2008). In this paper, we propose that 

environmental conditions favoring high internal resource states and rapid host growth rates 

can be accompanied by the amplification of pathogen replication and proliferation. In some 

cases, we will argue, these resource-dependent effects can set up a vicious positive feedback 

loop that elevates morbidity and mortality risks to infected host organisms, with important 

knock-on consequences for infectious disease dynamics. Moreover, mortality factors 

imposed on host populations can indirectly alter per capita host resource supplies, and this 

can modulate within-host pathogen dynamics and alter the expected relationships between 

mortality regimes and pathogen dynamics (Packer et al. 2003).

The interplay between infectious disease agents and their hosts can be viewed in part as an 

ecological struggle for potentially growth-limiting resources (Smith 1993a, 1993b; Wodarz 

2006; Cressler et al. 2014). All pathogens require the provision of essential nutrients 

(energy, macronutrients, and micronutrients) to fuel their replication within their host 

organism, which serves both as a habitat and as a growth medium once infection occurs 

(Garber 1960; Smith et al. 2005; Smith 2007). Although successful pathogenesis relies upon 

the ability of invading microbes to acquire the nutrients that are necessary for their 

reproduction and survival, we currently have only a limited understanding of the in vivo 
resource-dependent physiology and metabolism of most microbial pathogens (Brown et al. 

2008). The same is true for other groups of parasites as well.

Resource-ratio theory (Smith 1993a, 1993b) suggests that the supply of key nutrients should 

strongly influence the outcome of disease, and a study by Cable et al. (2007) suggests that 

pathogenesis by a diverse set of disease agents (one bacterial, one prion, and three viral 

pathogens) is strongly moderated by the scaling of metabolism in the host. The direction and 

pace of host-pathogen interactions should strongly depend upon the rate of host metabolism: 

the ability of a pathogen to replicate within individual hosts should be strongly constrained 

by the host organism's resource state, as reflected in the size and turnover rates of the host's 

internal pools of energy and other resources. These internal host resource dynamics in turn 

reflect the broad ecological milieu in which the host resides, including its mortality regimes 

and density-dependent processes. In this paper, we first review experimental evidence for 

strong effects of host resource state on viral and fungal pathogen replication, and report 

recent experiments demonstrating this effect. We then explore the implications of these 

resource effects for host-pathogen dynamics using simple models of infectious disease 

dynamics (tracking the densities of susceptible and infected hosts and infectious particles). 

We will in particular focus on how these resource effects indirectly modulate impacts of 

mortality regimes on pathogen dynamics.
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Viral pathogens

Viruses of course are internal parasites of host cells, either free-living (e.g., bacteria), or 

within multicellular organisms. Viruses reproduce in essentially two ways: either they lyse 

their host cell, producing a viral burst of size B, or (more rarely) free virions are shed from 

infected but still living and reproductively competent host cells. Host cell resources thus 

might influence either viral burst size, or viral shedding rates.

Profound effects of host cell condition on viral replication in fact have been reported since 

the earliest beginnings of experimental virology. For example, Cohen (1949) reviewed early 

evidence that lag-phase bacterial cells generally produced fewer phage virus particles than 

exponential-phase populations, and this general sensitivity of viral production to host growth 

rate has been broadly confirmed for an exceptionally broad range of host organisms and 

their viral pathogens.

Although the mechanisms underlying the growth-rate modulation of virus replication are not 

yet fully understood, we hypothesize that growth-rate effects are driven at least in part by 

differences in the internal resource state of the host. Both host cell metabolic activity and 

growth rate can regulate the assembly of viral nucleic acids and proteins (Gons et al. 2006; 

Birch et al. 2012), and strong effects of host population growth stage on viral production 

have been consistently observed across a diverse range of virus and host types (a selection of 

examples is summarized in Table 1).

Empirical evidence for effects of host resource state on viral replication

Multiple studies published in the refereed literature provide support for the proposed 

sensitivity of viral replication to host resource state. For example, Smith et al. (2005) 

reported strong effects of variation in glutamine supply for host cells on the replication of 

HIV-1 in laboratory-cultured CEM cells; they found that viral replication was increased by 

more than 21-fold by increasing the concentration of growth-limiting glutamine from 31 μM 

to 4 mM in the growth medium. Similarly, strong effects of nutrient availability on viral 

dynamics have been observed in terrestrial plants (Borer et al. 2010; Lacroix et al. 2014), 

freshwater phytoplankton (Clasen & Elser 2007), and marine phytoplankton (Wilson et al. 

1996; Monier et al. 2012). Strong growth rate control of viral replication also is clearly 

evident in the negative population density dependence of baculovirus production by insect 

(Spodoptera frugiperda) cells cultivated in laboratory cultures (data from Radford et al. 

1997). In Figure 1, we depict virus production by insect cell populations derived from a 

batch culture grown in a fixed pool of resources; thus, as cell population growth proceeded, 

there were fewer resources available per capita. Aliquots of the suspended insect cells were 

harvested at multiple time points during both the logistic and the stationary phases of the 

batch culture population (see inset), and the susceptible cells harvested at each time point 

were then exposed to infection with recombinant baculovirus β-galAcNPV. Maximum virus 

production per cell was then calculated by dividing each maximum volumetric virus yield by 

the maximum post-infection cell density. The baculovirus virus titer per infected insect host 

cell declined sharply with increasing host cell population density at the time of infection 

(TOI) (Figure 1), and thus with increasingly lower cellular resource state at the time of 

infection.
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Another way to indirectly manipulate the resource state of the host is by imposing an 

additional fixed rate of effective mortality on the host population. In this general scenario, 

which is derived from resource competition theory (Tilman 1982; Grover 1997), the per 

capita population growth rate (r, day−1) of the host increases with the internal concentration 

(Q, pmol cell−1) of the growth-limiting nutrient; r is the difference in the population's 

intrinsic per capita birth and death rates, but does not include imposed additional mortality. 

This internal stores model is commonly referred to as the Droop relationship (Droop 1974; 

Figure 2(a)). The population growth rate should be inversely (but not necessarily linearly) 

correlated with host population density (N, cells mL−1) (depicted in Figure 2(b); for 

simplicity, we are ignoring complications such as Allee effects). If an additional population 

mortality rate is imposed on the host population, the population size will equilibrate (if it 

can) at the fixed density at which its intrinsic population growth rate matches the imposed 

additional mortality rate. Thus, at a higher death rate, the population will persist only if it 

has a correspondingly higher growth rate, requiring a higher availability of resources (lower 

population density). Higher growth rates will tend to correspond to higher internal resource 

stores Q and metabolic rates in the host cells, and parasites can be expected to exploit this 

elevated resource availability.

In earlier papers (Packer et al. 2003; Holt 2008) we have shown in SI (Susceptible-Infected) 

models that imposing density-independent mortality on a host-pathogen system can depress 

the basic reproductive number R0 of the pathogen (the number of secondary infections 

generated by one infected host when infection is rare), and also the equilibrial prevalence of 

the infection. This could imply for instance that predation can prevent epidemics and lower 

the prevalence of persisting pathogen populations. Comparable effects can arise when 

predators attack hosts that support vectors that transmit infectious disease agents (Levi et al. 

2012). However, these analyses have ignored resource dependencies in transmission 

dynamics mediated by changes in host internal resource states. In the model presented below 

we will examine how such dependencies alter the relationship between density-independent 

mortality and infection dynamics.

Experimentally, one way to indirectly impose mortality upon a population of host cells is via 

physical dilution, either in continuous (i.e., chemostat) or in semi-continuous cultures of 

suspended cells. A chemostat consists of a container with a constant volume of a well-mixed 

liquid medium containing a population of cultivated cells, a portion of which flows out when 

new sterile medium is added at the same fixed rate (the dilution rate D, expressed as the 

proportion of inflowing fresh medium relative to the total culture volume per unit time). 

Organisms lost through the outflow are removed from the system, and therefore the dilution 

rate (D, in units of hr−1 or day−1) is effectively a per capita mortality rate imposed upon the 

chemostat population. The population growth rate r must match D in order for the 

population to persist. At high dilution rates, host density drops, resulting in more resources 

per host and allowing them to replicate more rapidly (Figure 2(b)). Thus, this mortality-

induced change in resource state should indirectly boost pathogen replication rates.

For example, Middelboe (2000) established steady-state cultures of the bacterium 

Pseudoalteromonas sp. in which the per capita bacterial host cell population growth rate (r, 
hr−1) just equaled the dilution rate D of the chemostat, for a series of three different dilution 
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rates. They then took aliquots from each of these different steady-state cultures, briefly 

exposed each aliquot to infection by bacteriophage, pelleted and washed the cells of 

unadsorbed virus using artificial seawater, resuspended the washed cells, and then measured 

virus production. A strongly positive relationship was indeed observed between the pre-

infection population growth rate of the bacterial host, and the subsequent post-infection burst 

size, B, of this viral pathogen (Figure 2(c)).

Experimental tests for effects of host resource state on retrovirus replication
—In order to explore the generality of the growth-rate stimulation of virus production that 

was observed by Middelboe (2000) and in the studies compiled in Table 1, we 

experimentally infected a human T-cell line (CEM cells) grown in semi-continuous culture 

at four different dilution rates. These CEM cells were grown in semi-continuous cultures, in 

which a fraction f of the total culture volume was removed manually once per day, and was 

immediately replaced with fresh sterile medium. The steady-state host cell populations were 

then infected with the retrovirus SHIV89.6P, a pathogenic chimera between HIV-1 and a 

simian immunodeficiency virus (SIV). As in the case of the chemostat cultures described in 

the previous section, in persisting host populations, the per capita population growth rate of 

the host cells contained within the semi-continuously diluted culture vessels should just 

match the dilution-imposed mortality rate at equilibrium. A description of our experimental 

methods follows.

Cells, virus, and growth medium: CEM cells were obtained from the NIH AIDS Research 

and Reference Reagent Program. The CEM cells were cultivated in AIM-V ® serum-free 

medium (Invitrogen ®, Carlsbad, CA). O. Narayan, University of Kansas Medical Center, 

kindly supplied the SHIV89.6P strain.

Dilution rate manipulations: Uninfected susceptible CEM cells were cultivated to a large 

volume at a temperature of 37°C in batch cultures containing the growth medium above, and 

counted. These cells were then used to inoculate eight flasks containing 20 mL of medium 

with a constant starting density of 5 × 105 cells mL−1. Duplicate flasks were then allocated 

to four dilution rates (f = 0.125, 0.200, 0.275, and 0.350 day−1) with daily medium changes. 

These semi-continuous dilution rates (f) were calculated as the volume of culture medium 

that was removed and replaced once daily, divided by the total culture volume (Holm & 

Armstrong 1981). Cells in each flask were counted at intervals of 2-3 days (just prior to 

semi-continuous dilution on each sampling date). On day 11, one half of the steady-state 

cells from each flask was pelleted and resuspended in 1 mL of AIM-V ® medium containing 

SHIV89.6P (virus titer 104.8 mL−1) for 2 hr at 37°C, resulting in a variable multiplicity of 

infection (MOI) ranging from 0.015 (at the dilution rate 0.125 day−1) to 0.05 (at the dilution 

rate 0.35 day−1). The infected cells were then pelleted, washed once in pre-warmed Hank's 

Balanced Salt Solution (Invitrogen ®), and resuspended in a constant volume (10 mL) of 

AIM-V ® medium, restoring them to the day 11 cell concentration that had been obtained 

for each growth rate treatment. The infected cells were then incubated at 37°C for 48 hr, at 

which time the cells were pelleted. Aliquots of cell-free virus supernatant were frozen at 

−80°C for viral RNA purification (QIAamp ® viral RNA mini kit, QIAgen ®), and two 

aliquots of the total cells were processed for isolation of DNA by QIAgen DNA columns 
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and for total RNA by Trizol ® (Invitrogen). Purified RNAs were stored at −80°C and 

purified DNA was stored at −20°C.

Real-time PCR: Virus particles in the supernatant were quantified using real-time RT-PCR 

from a defined proportion of the total RNA purified from a known volume of the total 

supernatant volume. Proviral DNA was quantified by real-time PCR from the DNA 

extracted from the cells of each flask, and was normalized to the amount of cellular DNA in 

the reaction (Mackay et al. 2002; Smith et al. 2002).

Experimental results: As predicted, SHIV replication in our CEM cells was exceptionally 

sensitive to host cell population growth rate. The production of SHIV increased from a mean 

of 0.03 viral RNA copy per cell at the lowest dilution rate, to a mean of 11 viral RNA copies 

per cell at the highest dilution rate (Figure 2(d)), a 300-fold increase with less than a 3-fold 

increase in dilution rate.

The evidence in Table 1 and Figures 1-2 together confirms that there is a very strong 

potential for the host cells’ physiological state to influence viral pathogen dynamics, and for 

increases in imposed mortality to indirectly boost the viral production rate per infected host 

cell. The next section provides evidence for comparable influences of resource limitation on 

fungal pathogen dynamics.

Fungal pathogens

Growth state (and its corresponding physiological state) can also strongly influence 

interactions between fungal pathogens and their host organisms. In individual vascular 

plants, Relative Growth Rate is analogous to the per capita growth rate of a population (r, 
day−1), and RGR correlates positively with tissue concentrations of growth-limiting 

nutrients, especially phosphorus and nitrogen (Ågren 2008). Increased resource availability 

within the cells of a plant host should facilitate fungal proliferation. Nitrogen availability has 

been demonstrated to control multiple aspects of fungal infections in numerous vascular 

plant species, including fungal colony formation and spore production (see Table 2 in 

Hoffland et al. 2000). Solomon et al. (2003) and Smith (2007) provide additional 

information on the general effects of nutrient supplies on the dynamics and outcome of 

fungal diseases in terrestrial plants.

Compelling evidence for a very strong coupling between host resource state and fungal 

pathogen dynamics can be found in the algal disease literature. For example, chytrid fungi 

are highly virulent parasites on diatoms: these fungi can infect more than 90% of the 

susceptible cells in a population, with each chytrid infection quickly killing its host (Gsell et 

al. 2013). Bruning (1991a) used semi-continuous culture methods to study interactions 

between the diatom Asterionella formosa and a virulent chytrid pathogen, Rhizophydium 
planktonicum. An exceptionally strong positive correlation was observed between the per 

capita population growth rate (r, day−1) of light-limited A. formosa cells and the 

reproduction of their associated chytrid parasites, as measured by the number of fungal 

zoospores per mature sporangium (Figure 3). An increase in light availability thus greatly 

increased the production rate of fungal zoospores by infected diatoms.
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In a related set of experiments (data not shown), Bruning (1991b) found that phosphorus-

limited cells of the diatom A. formosa were less susceptible to infection with zoospores of 

their R. planktonicum fungal parasite than were non-phosphorus-limited host cells. The 

sporangia on phosphorus-limited diatoms produced substantially fewer zoospores, but the 

development time of the sporangia was only slightly reduced. As a result of these resource 

supply effects, R. planktonicum reached lower growth rates at a given host density, and 

survival of the parasite required higher host densities, when its host A. formosa was 

phosphorus-limited (van Donk & Bruning 1995).

Thus, as with the viral pathogens discussed in the previous section, the dynamics of fungal 

pathogens appear to be very tightly linked to resource availability and the physiological state 

of their host.

Development of a simple disease modeling framework incorporating 

resource availability

The data in Figures 1-3 suggest that host-state-driven modulation of pathogen growth and 

reproduction can be a dramatic feature of host-pathogen interactions. This matches a 

growing recognition that resource dependencies can be significant “bottom-up” drivers of 

infectious disease dynamics (e.g. Hall et al. 2009; Cressler et al. 2014; Hurtado et al. 2014). 

In the next section, we develop a simple model that encapsulates the effects shown in the 

empirical examples reviewed above, and we use this model to explore further the indirect 

effects of mortality regimes on infectious disease dynamics. Despite its simplicity, the model 

demonstrates that bottom-up resource effects can lead to alternative stable states and to 

unstable dynamics, and therefore can influence how host mortality indirectly affects disease 

dynamics.

Disease model

A simple dynamic model structure that is commonly explored in the mathematical virology 

literature (e.g., Perelson et al. 1996; Neumann et al. 1998; Perelson & Nelson 1999; 

Davenport et al. 2006) is the following:

(1)

(2)

(3)
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where S, I, and V are the concentrations of susceptible healthy hosts, infected hosts, and free 

virions (or, in general, pathogen particles, as long as their production is proportional to the 

density of infected hosts), respectively. This model is simpler in some respects than other 

recent theoretical explorations of resource effects in infectious disease dynamics (e.g., 

Hurtado et al. 2014; Cressler et al. 2014), but it leads to complementary results.

The death rate of uninfected host cells is m, and α is the additional cell mortality due to 

infection. As this model is generally used, m is the natural susceptible cell death rate, but 

instead it can also include an imposed increased cell death rate, such as the dilution rate in a 

chemostat. The quantity p is the rate of production of free infectious particles per infected 

host cell, and u is their loss rate; infected hosts do not recover, nor do they give birth to 

susceptible hosts. For viruses that shed, p measures the rate of shedding, and is not directly 

dependent on host mortality. For viruses that replicate by bursting, p will depend on both 

host mortality and burst size. For our purposes, we can keep this dependence implicit, rather 

than explicit. [One possible form would be p = B(q′α + qm), where q′ and q are the 

fractions of host cell mortality events which generate viruses; the first term is likely to 

dominate p.] The quantity β scales the rate at which healthy host cells pick up free 

pathogens and become infected (we ignore here the often trivial loss due to this uptake from 

the pool of free pathogens). The recruitment term, F(S), represents the rate at which new 

susceptible cells are added, and may for example be simply a constant λ, the supply rate of 

new susceptible hosts per unit time. Alternatively, for populations of hosts that are self-

recruiting, F(S) may be an expression such as S(b – cS) (logistic growth), where b is the per 

capita cell birth rate at low density, and c reflects density dependence in growth (for instance 

due to a limited pool of resources being available). (If density dependence is in births, then 

we assume that either b - cS ≥ 0, which is always true as long as it is true for the initial value 

of S.) We assume for simplicity for the most part that infected hosts do not directly 

contribute to density dependence in the susceptible hosts. Moreover, we assume that infected 

hosts have a relatively short lifespan, so that their internal resource states change little from 

the time of infection until death.

This model is frequently used for virus infections within a host organism, in which case S 
and I are respectively susceptible and infected host cells, and V is the abundance of free 

virions. This simple model could also describe the infections in cell cultures of Figure 2(d), 

but the model can broadly pertain to many host-pathogen systems where there is no acquired 

immunity, and infection occurs via an environmental pool of infective propagules. For 

instance, this model (or modifications of it) can describe a chytrid fungus infecting diatoms 

as in Figure 3. In this special case, S and I are susceptible and infected diatoms, respectively, 

and V is the concentration of free fungal zoospores. A zoospore can attach to and infect a 

healthy diatom, which can lead to the development of a sporangium that produces zoospores 

asexually and releases them (sexual reproduction can also occur in chytrid fungi, but often 

asexual reproduction dominates; van Donk & Ringleberg 1983). The above model would 

apply to this system as long as the production of zoospores is proportional to the number of 

infected diatoms, and uptake of zoospores by diatoms is quantitatively negligible, relative to 

other processes. Gerla et al. (2013) uses a model similar to this one, but including a variable 

for the density of sporangia (plus an explicit equation for a resource, which we include 

implicitly in our model through its effect on p). Equations (1)-(3) could also apply both to 
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fungi that reproduce intracellularly and to some fungi that attack multicellular organisms 

(e.g., cladocerans), in which case S and I are susceptible and infected host organisms. Of 

course, many fungi (and other pathogens) have more complicated life histories, and would 

require a more complex model.

If a self-recruited population of host cells is to persist, then we must have b – cS ≥ m, so the 

net growth of susceptible host cells must at least match losses. Any differences in growth 

rate are likely to be reflected as differences in the internal states of the proliferating hosts, 

resulting in altered intracellular environments experienced by pathogens invading them. 

Resource-rich infected host cells would be expected to produce more infectious particles per 

cell than would more resource-poor cells (Clasen & Elser 2007), either by continual 

shedding or by bursting (Holt & Barfield 2006). This implies that there should be a 

relationship between host growth conditions (expressed quantitatively by the magnitude of b 
– cS) and the production rate p of infectious particles per infected host cell, which could also 

lead to an emergent indirect relationship between mortality imposed on the host and this 

production rate.

Although there are exceptions, the value of pathogen production rate p (or burst size B) has 

frequently been treated as a constant in diverse virus modeling efforts performed during the 

past two decades (Bonhoeffer et al. 1997; Nowak & May 2000; Lloyd 2001; Wu et al. 2001; 

Davenport et al. 2002; Gilchrist et al. 2004; Våge et al. 2013). In contrast, pathogen 

production rate has been recognized to be a variable in the modeling of fungal pathogens for 

more than two decades (e.g., chytrid fungi: Bruning 1991a, 1991b). Based upon the data in 

Figures 1-3, we hypothesize that burst size B is not constant but variable, and in particular is 

sensitively dependent upon the physiological and nutritional state of the infected host cell 

for both fungal and viral pathogens.

If we assume that the free pathogen particles equilibrate much faster than the host cells, the 

pathogen number will approximately track the value obtained by setting dV/dt = 0, which is 

V* = pI/u (we will use asterisks to indicate equilibrium values). This can be substituted into 

the dS/dt and dI/dt equations. For the logistic form of F(S), this gives the system

(4)

(5)

where β′ = βp/u. For these equations, the net growth rate of susceptible cells is g = b – cS. If 

pathogen production rate p is an increasing function of this growth rate, then so is the 

effective rate of transmission β′, so we will denote this functional relationship as β′(g). If 

infected cells (and therefore also free pathogens) are rare, then susceptible cells will reach 

the disease-free equilibrium . At this equilibrium, from Equation (5), the 
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condition for the infected cells to increase is that , where , 

which is equal to m.

By varying m (for example, by removing cells at a constant rate via dilution, which 

effectively increases m), the net growth rate at equilibrium is also varied, and presumably 

the metabolic state of the cells. As noted earlier, one general question we are interested in 

examining is revisiting the impact of density-independent mortality (e.g., due to a generalist 

predator) on pathogen dynamics, to discern whether or not bottom-up effects of resources on 

pathogen production can reverse the expected negative effect of increased mortality on 

disease prevalence and persistence.

For this system, we can also find the basic reproduction number R0, which is the average 

number of susceptible cells infected by free pathogens produced by a single infected cell, 

assuming infection is rare. When infection is rare, an infected cell infects susceptible cells at 

a rate of  and has an average lifetime of 1 / (m + α), giving

(6)

For the infection to increase when rare, R0 must be greater than 1, which gives the same 

condition as derived above. R0 decreases with increasing m in three circumstance: i. β′ does 

not depend on m; ii. β′ decreases with increasing m, or iii. β′ increases with m, but not at a 

sufficient rate. By contrast, if β′ increases strongly with increasing m, as in the empirical 

examples shown in Figures 2 and 3, then it is possible for R0 to increase with increasing m 
for some ranges of m (R0 drops to 0 at m = b, so it drops with increasing m for sufficiently 

high m). The condition for R0 to increase with increasing m is

(7)

To go beyond these results requires specifying the functional form of β′. We consider two 

possibilities. For the first, β′ is an exponential function of g (as suggested by the data in 

Figures 2(b) and 2(c)), so . At the disease-free equilibrium, g = m, so 

, and the left side of (7) is constant (k). If b < α, the right side 

increases with increasing m, so for R0 to increase with m requires that it does so for m = 0, 

which requires k > (b + α) / (bα) [the right side of (7) for m = 0]. If this is true and R0 < 1 

for m = 0 but R0 peaks at a value above 1, then it is possible for increasing m to allow a 

pathogen to become established that could not do so otherwise (there are two values of m for 

which R0 = 1, with R0 > 1 between them; Figure 4(a)). If b > α, the right side of (7) 

decreases with increasing m for small m, reaching a minimum value of 4 / (b + α) at m = (b 
– α) / 2 and increasing for higher m. Therefore, in this case it is possible for R0 to decrease 

at small m [if k < (b + α) / (bα)], then increase at intermediate m [if k > 4 / (b + α)] before 
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decreasing at large m. In this case there can be three values of m for which R0 = 1, with R0 > 

1 at low m and for a range of higher m, as in Figure 4(b).

The bottom line of these analyses is that if effective transmission can increase with 

increasing host growth rates, then starting with low mortality, an increase in mortality 

imposed on all hosts can facilitate establishment of a pathogen, because this increased 

mortality boosts host growth rates and thus the transmission efficacy of infected hosts. At 

sufficiently high mortality, however, the pathogen cannot persist. In some cases, there are 

more complex patterns of establishment along gradients in mortality, with establishment 

possible within distinct mortality regimes, one low, and one higher; we show an example in 

Figure 4(b).

Given that the pathogen persists, the net growth rate of susceptible host cells is no longer 

equal to m, so we have to return to β′ = β′(g) = β′(b – cS). The equilibrium value of 

susceptible cells, S*, can be found by setting the derivative in (5) to 0, giving S* = (m + α) / 

β′(b – cS*). This can have multiple solutions. For example, if , then the 

equilibria satisfy . The left side is 0 for S* = 0 and 

approaches 0 as S* approaches infinity, and is positive otherwise. If its peak is greater than 

the right side, then there are two solutions (otherwise there are none). This can happen 

because the pathogen reduces S and therefore increases g, which increases β′. If the 

pathogen starts out rare and can increase, it can reach a low S equilibrium, at which the 

growth rate is low, so β′ is low, which restricts further growth of the pathogen. If the 

pathogen could reach high levels, then it would reduce S to low levels, at which g and 

therefore β′ are high, facilitating higher levels of the pathogen. The upper equilibrium tends 

to be unstable, and, depending on initial conditions, this instability can result in loss of the 

pathogen or movement toward the lower equilibrium. The lower equilibrium can be 

unstable, which can result in persistent cycles (Figure 5(a), which has the same parameters 

as Figure 4(a)), or in some cases in loss of the pathogen.

Isoclines

In Figure 5(b), we depict the isoclines for this case. It may be useful to lay out the reason for 

the isoclines to have the shapes shown there. The isocline for the infection (I) is actually a 

pair of vertical (dashed) lines, with a positive growth rate for I between these two lines. At 

low S, the infection declines because there are two few healthy cells available to sustain the 

infection. At high S, the infection declines because healthy hosts are competing among 

themselves, reducing their growth rate and hence the ability of the pathogen to replicate 

itself. The isocline for the healthy portion of the population (S) has a hump. This resembles 

the familiar humped isocline of the classical Rosenzweig-MacArthur predator-prey model, 

but the positive rise of the isocline to the left occurs for a quite different reason than in that 

model (viz., a saturating functional response). As host numbers rise, they compete among 

themselves. This in turn reduces the rate at which infected hosts can produce infective 

propagules, which means more infected hosts are required for the susceptible portion of the 

population to be in equilibrium.
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Holt & Barfield (2013) recently examined a system which superficially seems very different 

than this host-pathogen system, namely models for food chains in which the abundance of 

the basal resource (a plant) entered directly into the functional response coupling the 

predator and herbivore populations. This led to isoclines that qualitatively resemble those of 

the above model (e.g., Figure 9 in Holt & Barfield 2013 is quite comparable in form to 

Figure 5(b) in the current paper), permitting alternative states and unstable limit cycle 

dynamics.

The second functional form of β′ that we examined is a linear increase, so that 

, which is analytically more tractable. In this case, the condition for R0 to 

increase with increasing m is . The condition at m 

= 0 is that . If this is true, then R0 increases with m until 

, above which it decreases. Therefore, it is possible for 

increasing m to facilitate pathogen establishment (for m below this peak), and for there to be 

two values of m for which R0 = 1 (if the value at 0 is less than 1 but the peak is greater than 

1), as we show in Figure 6(a). (It is not possible for there to be more than two, however.)

As with the exponential form of β′, it is possible to get two equilibria, such as in the isocline 

diagram in Figure 6(c), which has parameters corresponding to Figure 6(a) (and m = 0.2). In 

this case, the right equilibrium (indicated by the filled circle) is stable. The left equilibrium 

is unstable, and starting near it, the system sometimes moves to the stable equilibrium, as 

shown in Figure 6(b) (in the figure we show only the initial part of the trajectory; the 

oscillations continue to decrease until the stable equilibrium is reached). In other cases, 

starting near the unstable equilibrium results in loss of the pathogen. This can happen 

because R0 < 1, as shown in Figure 6(a) (the × corresponds to m = 0.2, the value for Figures 

6(b) and 6(c)). In Supplemental Material Appendix A, we also show that it is necessary that 

R0 < 1 for there to be two feasible equilibria (two equilibria with S* and I* > 0) for linear β
′.

Changes in equilibrial prevalence with increasing m

In Susceptible-Infected models with fixed transmission rates, increases in mortality (due say 

to generalist predators) on hosts reduces the equilibrial prevalence of infectious diseases 

(Packer et al. 2003; Holt 2008). Adding acquired immunity, with density dependence, can 

permit low levels of predation to actually increase disease prevalence (Holt & Roy 2007). 

How does host-growth dependence in disease transmission alter the relationship between 

mortality and disease prevalence? In Appendix A (Supplemental Material), we derive the 

equilibria of a system like Equations (4) and (5), but more general, in that the mortality of 

susceptible cells is mS and that of infected cells is mI, rather than both being set equal to the 

same rate m. The equilibria are that S* is the solution of S* = (mI + α) / β′(S*) and I* = (b – 

mS – cS*) / β′(S*), which gives an equilibrium prevalence (proportion of cells infected) of
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In Appendix A (Supplemental Material), we also show that an equilibria of this system is 

unstable (in a way that causes the system to move monotonically away from the equilibria, 

resulting in movement to the neighborhood of a different equilibrium) if d(β′S*) / dS* < 0. 

We show there that the equilibrium prevalence always decreases with increasing mS when 

mI is constant, with increasing mI when mS is constant, or with increasing m when mS = mI 

=m, for any stable equilibrium or for that matter equilibrium around which the system 

oscillates (equilibria not satisfying the above inequality).

The bottom line of this analysis is that increases in mortality in this system always depress 

the equilibrial prevalence of the infection, despite the complexities noted above in effects of 

mortality on R0. Hence, the results of Packer et al. (2003) with respect to effects of 

generalist predators on equilibrial disease prevalence still hold when transmission increases 

with increasing host growth rates.

However, we caution that this result might depend on particular assumptions made in the 

above model. For instance, we assumed that density dependence in the host (emerging say 

from resource competition) was driven by the abundance of susceptibles, not by infectives. 

In effect, this assumes that infected individuals stop consuming resources (so the pathogen 

in its own dynamics experiences the within-host resource environment of the host that is 

present at the moment of infection). An alternative assumption would be to allow density 

dependence to occur from infected individuals that continue post-infection to interact 

demographically and ecologically with susceptibles (so the density dependence depends on 

N = S + I rather than S; this is comparable for instance to an assumption made in the model 

explored by Hurtado et al. 2014). For instance, Equations (4) and (5) might become

(8)

(9)

where now β′ ≡ β′(g) = β′(b – c(S + I)). Since R0 is calculated when infection is rare, the 

previous results for the form of R0 for the model of Equations (4) and (5) also apply to 

Equations (8) and (9). In particular, our conclusions about nonlinearities in R0 as a function 

of morality imposed on the host (e.g., Figure 4) still hold. However, the equilibria and 

isoclines for this system will be more complicated, and little can be done analytically. For 

the linear form of β′, we obtained closed-form expressions for the isoclines. In this case, the 

isocline of Equation (8) (plotted as I as a function of S, as in Figure 6(c)) is shifted to the left 

(lower S) by making the density dependence depend on N instead of S. The isoclines of 

Equation (9) are no longer vertical lines; the S-axis intercepts are identical to those with S 
density dependence, but as I increases the lower S value increases and the upper S value 

decreases, until they join to produce a continuous curve (for the parameters of Figure 6(c), 

they meet at about I = 25, well above the I values in the figure; for the values in the figure, 

the dashed lines would only be modestly tilted inward with increasing I). The use of this 
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form of density dependence does not change the behavior of the system of Figure 6(c); the 

equilibria are merely shifted. For stronger density dependence (higher c), making the density 

dependence depend on N can result in loss of either or both equilibria.

Discussion and Conclusions

Population ecology has long focused on the dynamics of abundance, but there has been an 

increasing recognition of the need to monitor changes in internal resource (and other) states 

of the organisms involved, ranging from the Droop internal stores model of resource-limited 

phytoplankton growth (Droop 1974; Grover 1997), to maternal effects in models of 

population cycles (Inchausti & Ginzburg 2008), to the density dependence of cellular 

metabolism (DeLong & Hanson 2009), to the implications of individual energy and material 

budgets (Brown et al. 2004; Kooijman 2010). In the present study, we have tried to place 

disease ecology into this broader context, recognizing that the metabolic state of interacting 

organisms also has a major role to play in the dynamics of species interactions. Researchers 

are increasingly recognizing that resource dependencies can strongly modulate the dynamics 

of interactions between hosts and parasites. The examples we review above demonstrate that 

host resource state can have very strong impacts on pathogen abundance. Our own 

experimental study demonstrates that an increase in mortality (in our case resulting from 

imposed dilution in a cell culture) can indirectly very strongly boost the production of viral 

pathogens (see Figure 2(d)). Both in this example, and in zoospore production in infected 

diatoms (Figure 3), pathogen production does not just increase with increasing mortality, but 

increases at an accelerating rate. This suggests that rather small changes in mortality regimes 

can have large and surprising impacts on pathogen dynamics. An interesting question for 

future investigation would be to tease out the physiological mechanisms underlying these 

strongly nonlinear responses.

Authors of several recent papers have used theoretical models to explore resource effects on 

host-pathogen dynamics. Despite differences in model assumptions, all lead to a consistent 

set of conclusions. Hurtado et al. (2014), for instance, track a logistic resource explicitly, and 

assume that infected and susceptible hosts all consume that resource at the same rate. 

Cressler et al. (2014) characterize the interaction between an immune response and 

pathogens within a host as a predator-prey interaction, where both the “predator” and its 

“prey” can depend on host resources. Gerla et al. (2013) developed a Susceptible-Infected 

model for a diatom host-chytrid parasite system that explicitly includes reproduction of the 

parasite on hosts and free-living infective parasite stages. A distinguishing feature of their 

model is that the rate of parasite production by infected hosts increases with increasing 

nutrient availability to those hosts, and that the nutrient is replenished in a semi-chemostat 

fashion. All of these models demonstrate properties parallel to those we have shown in our 

simple model, such as the emergence of alternative equilibria and unstable dynamics. An 

increase in host death rates does not automatically imply that pathogen persistence is 

impaired (as in Packer et al. 2003), but instead can provide an indirect boost to pathogen R0 

and thus its persistence, because with fewer hosts present, each remaining host when 

infected can generate more pathogens before it itself dies.
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Our review of the empirical literature and our own experimental results, together with these 

theoretical studies, show that the direction and pace of host-pathogen interactions is strongly 

dependent upon the rate of host cell metabolism, and that the physiological state of infected 

plant and animal hosts can profoundly influence the dynamics and outcome of infectious 

disease. Resource quantity and quality not only can modulate the virulent effects of 

pathogens on the survivorship of infected hosts, but also can directly influence pathogen 

production (Hall et al. 2009), which then can modulate the emergent effects of mortality 

regimes in host-pathogen dynamics. We suggest that it will be valuable to assess more 

broadly, across a wide range of host-pathogen systems, the dependence of pathogen load and 

burst size on nutrient availability to hosts. Future studies quantifying pathogen titer levels in 

response to altered host resource state are highly desirable and very strongly warranted 

because important aspects of disease dynamics may be unrecognized or overlooked if key 

ecological interactions between hosts, pathogens, and their shared resources are not 

explicitly taken into account (Gerla et al. 2013). Nutrient availability and host resource 

content surely play an important role in shaping within-host competition among pathogen 

strains, as well as across-host transmission success. These effects have largely unexplored 

implications for the evolution of virulence, as well as of host and parasite life cycles (see 

Gsell et al. 2013 and LaCroix et al. 2014 for examples), for instance by altering competitive 

interactions in coinfection (LaCroix et al. 2014).

There are also strong public health and applied implications of this issue. Research that links 

resource availability to pathogen replication and virulence can provide important new 

insights into the resource modulation of host-pathogen dynamics, and potentially enhance 

our ability to predict the persistence, spread, and outcome of infectious disease in applied 

settings. For example, although the cellular mechanisms responsible for the patterns shown 

in Figure 2(d) are not yet clear, we speculate that diet- or disease-induced variations in the 

metabolic state of susceptible target cells may have important implications for in vivo HIV 

dynamics.

In addition, humans are enriching many environments with excess nitrogen and phosphorus, 

and this bottom-up effect can be predicted to alter disease dynamics. Plant hosts with high 

tissue concentrations of phosphorus and elevated metabolic rates can harbor greater 

pathogen loads (Clasen and Elser 2007; Cronin et al. 2010); environmental eutrophication 

can lead to such nutrient enrichment and indirect facilitation of infection (e.g., by viruses in 

a successional grassland, Borer et al. 2014). Moreover, anthropogenic landscape change can 

shift community composition so as to favor “fast-lived” species, as in early succession, and 

by exhibiting rapid growth, such fast-lived individuals could be more susceptible as 

pathogen hosts and sustain greater intensities of infection, relative to more slow-lived 

individuals (Johnson et al. 2010, 2012; Cronin et al. 2014). Across the Tree of Life, fast-

living and resource-rich host phenotypes can be expected be more susceptible, more 

competent, more tolerant, and more likely to support greater vector and pathogen 

populations (Cronin et al. 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Strong density dependence of maximum recombinant baculovirus production per cell in Sf9 

Spodoptera frugiperda insect cells cultivated in laboratory batch cultures. The cell 

population densities depicted on the abscissa represent the initial pre-infection cell densities. 

Growth medium was not replaced prior to baculovirus infection of samples collected at each 

time point, and thus host cells in each infection experiment exhibited the resource state 

corresponding to 10 different sampling times along the cell population's growth curve (see 

inset). Data obtained and reanalyzed from Table I in Radford et al. (1997).
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Figure 2. 
(a) Hyperbolic relationship between per capita growth rates of a cell population (r, day−1) 

and the intracellular concentration or cell quota (Q, pmol cell−1) of the growth-limiting 

nutrient (Droop 1974). The term q0 is the subsistence cell quota at which the birth rate of the 

cell population just offsets mortality losses and thus r = 0. (b) Inverse relationship between 

per capita growth rates of a cell population (r, day−1) and cell population size (N, cells 

mL−1) for logistic growth. (c) Relationship between the burst size (B, virions released per 

infected cell) of bacteriophage viruses and the pre-infection per capita growth rate of 

Pseudoalteromonas sp. bacterial populations cultivated in chemostat cultures at three 

different dilution rates. Data from Table 3 in Middelboe (2000). (d) The post-infection 

production of SHIV, as measured by the number of viral RNA (vRNA) copies in the 

supernatant that were produced per CEM cell, was a strongly positive power function of the 
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semi-continuous dilution rate f, which was experimentally varied from 0.125 to 0.350 day−1. 

The non-linear least-squares regression equation for this relationship is: vRNA = 2687 D5.23, 

r2 = 0.99.
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Figure 3. 
Relationship between zoospore production by the chytrid fungus pathogen Rhizophydium 
planktonicum and the light-dependent per capita population growth rate of its freshwater 

diatom host, Asterionella formosa. The non-linear regression equation for this relationship 

is: B = 169.5 μ2 - 20.0 μ + 5.7, r2 = 0.98. Original data digitized and statistically reanalyzed 

from Bruning (1991a).
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Figure 4. 
Basic reproduction number as a function of mortality rate for system of Equations (4) and 

(5) with  and parameters (a) b = 5, α = 8, c = 0.09, , k = 0.45, 

or (b) b = 4, α = 1, c = 0.1, , k = 0.9.
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Figure 5. 
(a) Cycles for system of Equations (4) and (5) with m = 0.6; other parameters as in Figure 

4(a). (b) Isoclines for this system of equations. Both equilibria (open circles) are unstable. If 

the system is started near the right equilibrium, the result can be pathogen extinction or 

cycles around the left equilibrium (such as those shown in panel a).

Smith et al. Page 28

Isr J Ecol Evol. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smith et al. Page 29

Isr J Ecol Evol. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smith et al. Page 30

Isr J Ecol Evol. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(a) Basic reproduction number as a function of mortality rate for system of Equations (4) 

and (5) with . Parameters are b = 5, α = 4.75, c = 0.09, , k = 0.2. (b) 

Trajectories of S and I for this system started near the equilibrium with higher S*. The 

system eventually settles at the stable equilibrium at S* = 5.234 and I* = 4.577. For other 

initial values near the higher S* equilibrium, the pathogen is lost. The mortality rate is m = 

0.2, indicated by the × in panel (a); other parameters as in panel (a). (c) Isoclines for this 

system with parameters of panel (b). The right equilibrium is unstable (open circle) and the 

left one is stable (filled circle).
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Table 1

Examples of virus-host systems in which host population growth rate or growth stage has been observed to 

have strong effects upon viral replication rate.

Virus Host Virus group Reference

Sendai virus (SeV, HVJ) mouse fibroblasts (−)ssRNA Ogura et al. (1984)

hepatitis C virus (HCV) human hepatoma cells (+)ssRNA Pietschmann et al. (2001)

Phaeocystis pouchetii virus (PpV01) Phaeocystis pouchetii (marine alga) dsDNA Bratbak et al. (1998)

vaccinia virus (VACV) HeLa cells dsDNA Chillakuru et al. (1991)

bacteriophage T7 E. coli BL21 (Gal− λS hsdS) cells dsDNA You et al. (2002)
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