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Abstract

Temozolomide (TMZ) has remained the chemotherapy of choice in patients with glioblastoma 

multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, however, quickly 

develop resistance to this line of treatment creating a critical need for alternative approaches and 

strategies to resensitize the cells. Withaferin A (WA), a steroidal lactone derived from several 

genera of the Solanaceae plant family has previously demonstrated potent anti-cancer activity in 

multiple tumor models. Here, we examine the effects of WA against TMZ-resistant GBM cells as 

a monotherapy and in combination with TMZ. WA prevented GBM cell proliferation by dose-

dependent G2/M cell cycle arrest and cell death through both intrinsic and extrinsic apoptotic 

pathways. This effect correlated with depletion of principle proteins of the Akt/mTOR and MAPK 

survival and proliferation pathways with diminished phosphorylation of Akt, mTOR, and p70 S6K 

but compensatory activation of ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, 

EGFR, and Her2 was also observed. WA demonstrated induction of N-acetyl-L-cysteine-

repressible oxidative stress as measured directly and through a subsequent heat shock response 

with HSP32 and HSP70 upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant 

GBM cells with WA was associated with O6-methylguanine-DNA methyltransferase (MGMT) 

depletion which potentiated TMZ-mediated MGMT degradation. Combination treatment with 

both WA and TMZ resulted in resensitization of MGMT-mediated TMZ-resistance but not 

resistance through mismatch repair mutations. These studies suggest great clinical potential for the 
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utilization of WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination 

with the standard chemotherapeutic agent TMZ.
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Introduction

According to the American Cancer Society, over 23,000 new cases of brain and other 

nervous system tumors will be diagnosed in 2013 in the United States [1]. High grade 

gliomas, such as anaplastic astrocytoma and glioblastoma multiforme (GBM), account for 

approximately 38% of primary brain tumors, and to date, treatment options have remained 

limited. Following optimal surgical debulking, radiation therapy alone has been shown to 

increase mean survival time of GBM patients from approximately six months to only one 

year [2-4]. Concomitant and adjuvant temozolomide (TMZ) with surgical debulking and 

radiotherapy represents the most effective approved treatment in GBM patients but still only 

yields a 2.5 month median survival benefit and two year survival rate of 26.5% [5-9].

The efficacy of TMZ is most frequently influenced by the methylation status of the MGMT 

(O6-methylguanine-DNA methyltransferase) gene promoter [10, 11]. In patient tumors with 

an unmethylated promoter, the MGMT protein is expressed and repairs the major O6-

methylguanine cytotoxic DNA lesions caused by TMZ, essentially eliminating its anti-

cancer efficacy [12, 13]. Fifty-five to sixty-five percent of glioma patients do not display 

tumor phenotypes favorable for treatment with TMZ, and those that do often quickly acquire 

resistance through acquisition of MGMT or mismatch repair (MMR) deficiencies that allow 

tolerance of the lesion [14-16].

To date, experimental targeted therapies against proteins such as epidermal growth factor 

receptor (EGFR), mammalian target of rapamycin (mTOR), and PI3 kinase have yielded 

disappointing responses in GBM patients despite promising pre-clinical findings [14, 17]. 

Combined with the limitations of TMZ, this defines a critical need for improved diagnostic 

and therapeutic approaches for patients with both inherent and acquired TMZ resistance to 

either promote resensitization of the malignancy to TMZ or exploit unrelated vulnerabilities.

The 28-carbon steroidal lactone withaferin A (WA; Fig. 1a), extracted from several genera 

of the Solanaceae plant family, has emerged as a promising anti-cancer chemotherapeutic 

agent with thiol-reactive and oxidative properties that exploit redox alterations in cancer 

cells [18-23]. As such, it has demonstrated the ability to modulate many pathways involved 

in promoting cancer progression including specific proteins like heat shock protein (HSP) 

90, Akt, NFkappaB, and the estrogen receptor (ER) [24-34]. Promising anti-tumor efficacy 

has been observed in prostate, thyroid, breast, melanoma, ovarian, cervical, and brain cancer 

models [19, 32, 35-40].
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Here, we follow-up on our previous findings outlining the efficacy of WA in TMZ-sensitive 

glioblastoma cells lines to demonstrate its potential role as a novel therapeutic option against 

resistant tumors as both a single agent therapy and a TMZ-resensitizer through MGMT 

modulation.

Materials and Methods

Cell culture and general reagents

U87, U251, and T98G glioblastoma multiforme cell lines of human origin were grown in 

Dulbecco’s modified Eagle’s medium (DMEM #11995-065; Gibco, Grand Island, NY) 

supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO) and 1% 

penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO) in a 37°C humidified atmosphere of 

5% CO2 in air. An additional human GBM cell line, U138, was maintained in equivalent 

media additionally supplemented with 2% L-glutamine (200 mM; Sigma-Aldrich), 1% 

MEM-vitamin (100x; Hyclone, Logan, UT), and 1% MEM nonessential amino acids (Sigma 

Aldrich). The TMZ resistant cells U87TMZ and U251TMZ were derived as previously 

described via TMZ dose escalation from the parental U87 and U251 cells, respectively [41].

TMZ was generously provided by the NCI Developmental Therapeutics Program (Bethesda, 

MD) and was stored as a 100mM stock solution in DMSO at −80°C. Withaferin A (99% 

pure by HPLC) was extracted, isolated, and stored as a 20mM stock solution in DMSO at 

−80°C as previously described [42]. Propidium iodide (PI), RNase, N-acetyl-L-cysteine 

(NAC), protease inhibitor cocktail, and MEK inhibitor PD98059 were acquired from Sigma-

Aldrich (St. Louis, MO). Annexin V-FITC was obtained from BD Biosciences (San Diego, 

CA). Caspase 8 inhibitor Z-IETD-FMK and caspase 9 inhibitor Z-LEHD-FMK were 

obtained from R&D Systems (Minneapolis, MN).

MTS assay

To determine the IC50 values of WA, all cell lines were seeded in 96-well plates at a density 

of 2,500 cells/well, treated with 0.025-3μM WA, and incubated for 72h. Cell number and 

viability were quantified by the colorometric CellTiter96 Aqueous MTS assay (Promega, 

Fitchburg, WI) at 490nm on a BioTek Synergy 2 plate reader (BioTek, Winooski, VT) as 

per the manufacturer’s instructions.

To assess combinational effects of WA and TMZ, cells were plated in 75cm2 flasks and 

allowed to grow overnight. Cells were treated with 0.5-2μM WA and harvested at 24, 48, 

and 72h post-treatment (60-80% confluency) for seeding in 96-well plates at densities of 

500-10,000 cells/well. Following a 6h incubation period, 10-50μM and 100-500μM TMZ 

were added to each well of the TMZ-sensitive and TMZ-resistant cells, respectively. After 

48-144h, cell number and viability were quantified by the MTS assay as described above.

CellTiter-Glo luminescent assay

To circumvent the auto-reductive potential of NAC that interferes with the MTS assay 

reagent, studies evaluating combination treatment with NAC and WA were completed with 

the CellTiter-Glo luminescent assay (Promega, Fitchburg, WI) measuring cell viability by 
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adenosine triphosphate (ATP) levels. U251TMZ and U87TMZ cells were seeded at a 

density of 2,500 cells/well in white-chambered 96-well plates and allowed to incubate for 6h 

before treatment with 1-5mM NAC. After 1h, 0.5-6μM WA was added to each well. After 

72h, assay reagent was prepared and added as per the manufacturer’s instructions, and the 

plates were evaluated on the BioTek Synergy 2 plate reader.

Cell cycle analysis

U251TMZ and U87TMZ cells were plated and allowed to grow overnight to 30-50% 

confluency. Cells were treated with 0.125-4μM WA for 24h. Cells were then collected, 

resuspended in 0.43mL of 4°C 1x PBS followed by 1mL of −20°C ethanol, and maintained 

at −20°C for a minimum of 24h. Finally, cells were then pelleted by centrifugation, 

resuspended in 1x PBS with 40ug/mL PI and 100ug/mL RNase, and incubated at 37°C for 

30 minutes before analysis by flow cytometry (BD LSRII; Becton Dickinson, San Diego, 

CA). Data analysis included only singlet living cells not displaying DNA fragmentation.

Apoptosis studies

Cells were plated as described for cell cycle analysis, treated with 1-6μM WA, and pre-

treated for 1h with 5mM NAC where indicated. After 24h, cells were collected and washed 

once with Annexin binding buffer as previously described [34]. Staining phosphatidylserine 

on the outer leaflet of the cell membranes on apoptotic cells with Annexin V-FITC and 

DNA staining by PI in necrotic and late apoptotic cells was performed to assess WA-

induced cell death. Cells were stained with both compounds according to the manufacturer’s 

instructions (BD Biosciences, San Diego, CA) for 15 minutes at 4°C and washed twice with 

Annexin binding buffer. Cells were resuspended in buffer and immediately analyzed by flow 

cytometry on the BD LSRII.

Immunoblotting

Cells were plated in the manner outlined for cell cycle analysis and treated with 0.5-5μM 

WA. Where indicated, cells were either pre-treated with 5mM NAC, 50μM PD98059, 50μM 

Z-IETD-FMK, or 50μM Z-LEHD-FMK for 1h or post-treated with 100-300μM TMZ 24h 

after WA. After 24-48h, proteins were collected in lysis buffer (40mM HEPES, 2mM 

EDTA, 10mM sodium pyrophosphate decahydrate, 10mM β-glycerophosphate disodium salt 

pentahydrate, 1% Triton X-100 supplemented with 100μM phenylmethylsulfonyl fluoride, 

1mM Na3VO4, and 2μL/mL protease inhibitor cocktail), quantified, separated by sodium 

dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and electrotransfered 

onto a Hybond nitrocellulose membrane as previously described in Samadi, et al. [43]. 

10-80μg of protein sample was utilized per lane. Actin levels were used to ensure equal 

loading and transfer of proteins. All studies were repeated for accuracy.

Primary rabbit antibodies against MGMT (#2739; 1:5000), MSH2 (#2017; 1:1000), and 

MSH6 (#3996; 1:1000) and primary mouse antibody against MLH1 (#3515; 1:1000) were 

acquired from Cell Signaling Technology (Beverly, MA). Primary mouse antibody against 

p-H2A.X (Ser139; #613401; 1:1000) was purchased from Biolegend (San Diego, CA). 

Additional primary and secondary antibodies were utilized as previously described at 

dilutions ranging from 1:250-1:5000 and 1:5000-1:20000, respectively [34].
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Evaluation of reactive oxygen species

The accumulation of intracellular peroxide-type reactive oxygen species (ROS) in 

U251TMZ and U87TMZ cells was determined using the general oxidative stress indicator 

CM-H2DCFDA (Molecular Probes, Grand Island, NY) that fluoresces upon oxidation. Cells 

were incubated at 37°C in 1x dPBS containing 20μM CM-H2DCFDA for 1h to allow for 

indicator preloading and plated in 96-well plates in phenol red-free DMEM at 20,000 cells/

well. After 30 minutes, 1-5μM WA and/or 5mM NAC was added to the wells. Fluorescence 

was assessed on the BioTek Synergy 2 3h post-treatment with excitation and emission filters 

of 485nm and 528nm, respectively.

Statistical analysis

GraphPad Prism 6 (version 6.02; GraphPad Inc., San Diego, CA) was used to generate best-

fit non-linear sigmoidal dose response curves for IC50 determination. Comparisons of 

differences between two or more means/values were determined by Student’s unpaired t-test 

via the statistical functions of GraphPad Prism and Microsoft Excel 2010 software (version 

14.0.6129.5000; Microsoft Corporation Redmond, WA). Densitometry, where indicated, 

was completed using ImageJ software (version 1.46r; Bethesda, MD). Combination studies 

compared drug efficacy within normalized WA treatment arms. Data are presented as mean 

values with error bars denoting standard deviation or standard error of the mean where 

appropriate. Unless otherwise noted, all experiments were performed minimally in triplicate. 

The level of significance was set at p<0.05.

Results

Characterization of TMZ resistant cell lines

U251 and U87 resistant sub-lines (U251TMZ and U87TMZ) were generated by exposing 

parental lines to increasing concentrations (30-300μM) of TMZ over an 8-week period, 

pooling the resulting colonies, and confirming resistance as previously described [41]. 

Reduced TMZ effectiveness in established lines T98G and U138 has been previously 

confirmed [44]. Characterization of these cell lines demonstrated the absence of MGMT and 

the presence of mismatch repair proteins MLH1, MSH2, and MSH6 in parental U251 and 

U87 cells (Fig. 1b). MGMT expression was observed in U251TMZ, T98G, and U138 cells 

but not U87TMZ. Compared to parental U87 cells, U87TMZ displayed lower levels of all 

three MMR proteins screened, suggesting the mechanism of U87TMZ resistance is due to 

heterogeneic deletion or mutation of these proteins.

Diminished cell proliferation and viability following withaferin A exposure

To evaluate the general cytotoxic effect of withaferin A, parental and resistant glioblastoma 

cells were treated with increasing concentrations of WA (0.025-3μM) for 72h with resulting 

cell number and viability determined by MTS assay (Fig. 1c). WA dose escalation reduced 

cell proliferation and viability. By GraphPad analysis, the IC50 values of TMZ resistant sub-

lines U251TMZ and U87TMZ were lower compared to parental lines, demonstrating 

increased efficacy. IC50 values were determined to be 0.766±0.045μM, 0.357±0.019μM, 
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1.050±0.062μM, 0.657±0.134μM, 1.027±0.105μM, and 0.610±0.279μM for U251, 

U251TMZ, U87, U87TMZ, T98G, and U138 cells, respectively.

Induction of G2/M cell cycle arrest by withaferin A in a dose-dependent manner

Distribution of phases of the cell cycle was assessed by flow cytometry at 24h. Consistent 

with the anti-proliferative effects seen in the MTS assays, WA treatment induced G2/M 

phase accumulation of U251TMZ and U87TMZ cells in a dose-dependent manner, 

demonstrating a key cellular response to WA exposure. WA induced a dose-dependent shift 

in cell cycle arrest from the G0/G1 checkpoint to G2/M arrest with minimal change in the 

percentage of cells in S phase (Fig. 2a). Maximal shift to G2/M arrest above baseline was 

observed at 1.5μM in U87TMZ cells (17.8% G2/M in controls increasing to 42.5% with 

treatment; p=0.0001) and 2μM in U251TMZ cells (43.1% baseline to 72.3% with treatment; 

p=0.0001) (Fig. 2b). Doses above this level demonstrated diminished deviation from control 

with a return to higher G0/G1 and lower G2/M but also increased DNA fragmentation 

observed in the sub-G0/G1 region (data not presented).

Additionally, cyclin B1, a protein that displays G2/M phase-specific elevation, was 

evaluated by Western blotting to provide molecular confirmation of increases in G2/M cell 

cycle arrest. At 24h, dose-dependent induction of cyclin B1 was observed in both U87TMZ 

and U251TMZ cells with maximum expression levels observed at 1μM and 2.5μM WA, 

respectively, corresponding with flow cytometry findings (Fig. 2c). Cyclin B1 levels 

displayed similar peak expression levels at 48h but with a more blunted response.

Withaferin A induces cell death through both the intrinsic and extrinsic apoptotic 
pathways

PI and Annexin V-FITC dual staining analysis with flow cytometry was used to further 

characterize the anti-proliferative effects of WA by assessing levels of apoptosis and 

necrosis following drug exposure. After 24h of 1-3μM WA, U87TMZ and U251TMZ cells 

demonstrated increases in Annexin V-only staining representative of early apoptotic 

processes with increases in dual staining representative of late apoptosis present at higher 

concentrations (2-6μM) (Figs. 3a and 3b). U87TMZ cells alone appear to also show mild 

increases in levels of necrosis with WA exposure as demonstrated by staining with PI only. 

Total positive staining of control U87TMZ and U251TMZ cells was 8.2% and 4.0% but 

increased to 45.5% (p=0.01: 14.7% early apoptosis; 23.0% late apoptosis; 7.7% necrosis) 

and 17.1% (p=0.0004: 9.1% early apoptosis; 6.9% late apoptosis; 1.0% necrosis) with 2μM 

WA, respectively. 6μM WA elevated total cell death to 80.0% for U87TMZ (p<0.0001: 

4.9% early apoptosis; 62.6% late apoptosis; 12.5% necrosis) and 51.8% for U251TMZ cells 

(p<0.0001: 4.0% early apoptosis; 44.6% late apoptosis; 3.1% necrosis).

Molecular confirmation of an apoptotic response was conducted by Western blotting for 

cleaved and/or total levels of the following proteins: extrinsic procaspase 8, mitochondrial/

intrinsic procaspase 9, effector procaspases 3 and 7, and downstream poly(ADP-ribose) 

polymerase (PARP) cleavage (Fig. 3c). At 24h, increasing concentrations of WA resulted in 

progressively decreased levels of all procaspases and PARP, suggesting both intrinsic and 

extrinsic routes of apoptotic cell death. Maximum levels of cleaved caspase 8 were observed 
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at 1-2.5μM WA for U251TMZ and 0.5-1μM WA for U87TMZ while highest levels for 

cleaved caspases 3 and 7 were observed at 5μM WA for U251TMZ and 1-2.5μM WA for 

U87TMZ. PARP cleavage increased up to 5μM in both cell lines, the maximum 

concentration utilized, and suggests that the absence of cleaved caspases despite depletion of 

the procaspase form at high WA concentrations can be explained by a time-dependent nature 

of caspase signaling in which the upstream cleaved caspases are ultimately degraded 

following their activity.

To further evaluate the nature of the intrinsic and extrinsic apoptotic processing in WA-

induced cytotoxicity, U251TMZ cells were pretreated with 50μM of either caspase 8 

inhibitor Z-IETD-FMK or caspase 9 inhibitor Z-LEHD-FMK for 1h followed by 2.5μM WA 

for 24h. Pretreatment with both inhibitors resulted in a return to baseline for both cleaved 

caspase 3 and PARP levels and decreased amounts of cleaved caspase 7 compared to WA 

alone (Fig. 3d). Inhibitors alone resulted in negligible changes. These data support that 

cytotoxicity at WA concentrations above IC50 involves induction of intrinsically- and 

extrinsically-mediated apoptosis in the GBM cell lines tested.

Withaferin A modulates the Akt/mTOR and MAPK pathways

Proteins in and related to the Akt/mTOR and mitogen-activated protein kinase (MAPK) 

pathways are key to proliferation and survival of GBM cells and other cancers [17]. These 

proteins were evaluated by Western blotting at 24-48h post-treatment in U251TMZ and 

U87TMZ cells in order to evaluate WA activity against total and phosphorylated protein 

levels as a potential mechanism for the anti-proliferative effects observed (Fig. 4a). At 24h, 

total levels of Akt and mTOR were decreased between ~1-5μM WA with minimal changes 

occurring in total p70 S6 kinase (S6K) in both cells lines. However, activation of each 

protein via phosphorylation (p-Akt Ser473, p-mTOR Ser2448, and p-p70 S6K Thr389) was 

similarly reduced over this range. Phosphorylation at Thr412 of the nuclear isoform of p70 

S6K, p85 S6K, was also reduced with increasing WA concentration (data not shown). These 

effects were observed through the 48h timepoint and demonstrate an inhibitory effect of WA 

on the Akt/mTOR growth pathway. Additionally, phosphorylation (Thr172) of AMPKα, the 

catalytic subunit of a negative regulator of the Akt/mTOR pathway that responds to cellular 

stressors, was increased with WA treatment, peaking at 1μM in U251TMZ cells (Online 

Resource 1). Despite depletion of total levels of the downstream tumor suppressor TSC2, 

phosphorylation at Thr1462 was enhanced or maintained at all WA concentrations tested in 

U251TMZ cells. In contrast to previous observations in parental U87 cells [34], total and 

phospho- levels of AMPKα were decreased in U87TMZ cells despite maintenance of p-

TSC2 levels (Online Resource 1).

The MAPKKK Raf-1 and the MAPK ERK2 were assessed to evaluate the effects of WA on 

the primary proliferative MAPK pathway (Fig. 4a). Total Raf-1 levels decreased at 

~2.5-5μM in both U251TMZ and U87TMZ cells, however, activating phosphorylation of 

the protein at Ser338 increased over the same concentration range. Downstream, minimal 

changes were observed in total ERK2 levels, but phosphorylation of ERK1/2 (Thr202/

Tyr204) was notably increased in a dose-dependent manner in both cell lines with a 

maximum level achieved at 2.5μM WA in each at both 24h and 48h. Given that 
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phosphorylation of MAPK proteins is typical of a pro-survival response yet WA instead 

induces apoptosis in GBM cells, the MAPK pathway was further explored to determine if its 

activation was necessary for the induction of apoptosis or simply a compensatory pro-

survival response. U251TMZ and U87TMZ cells were pretreated with 50μM of the MAPKK 

MEK inhibitor PD98059 for 1h followed by 2.5μM WA for 6h or 24h. Pretreatment with the 

inhibitor alone resulted in increased ERK1/2 phosphorylation but limited WA-induced 

phosphorylation in a time-dependent manner (Fig. 4b). Alterations in apoptosis were 

assessed by cleaved caspase 3 and cleaved PARP levels. WA alone induced observable 

caspase 3 and PARP cleavage at 24h in both cell lines and PARP cleavage alone at 6h in 

U87TMZ. However, cleaved caspase 3 and PARP levels were increased when combined 

with the MEK inhibitor at 24h in U251TMZ and 6h in U87TMZ, demonstrating that MAPK 

pathway activation with WA treatment appears to represent a compensatory response to the 

apoptotic effects induced by the compound.

Finally, the tyrosine kinase receptors EGFR, Her2/ErbB2, and c-Met, known to signal to 

both the Akt/mTOR and MAPK pathways, were evaluated due to their status as common 

amplified, mutated, and/or drug-targeted surface proteins in GBM [45-49]. Total levels of 

EGFR and Her2/ErbB2 in both U251TMZ and U87TMZ decreased with 2.5-5μM WA 

treatment at 24h and 48h while total levels of c-Met decreased at 5μM (Fig. 4a). 

Interestingly, increased phosphorylation of Tyr1068 on EGFR was observed at 2.5-5μM 

depending on the cell line as well as increased phosphorylation of Tyr1234/1235 on c-Met 

in U87TMZ cells up to 2.5μM WA at 48h. Phosphorylation of c-Met was otherwise 

downregulated with WA treatment in both lines.

Withaferin A elevates oxidative status and induces a heat shock stress response in TMZ-
resistant cells

We have previously demonstrated the ability of WA to elevate oxidative potential and ROS-

mediated cell death in TMZ-sensitive GBMs [34]. TMZ has also been demonstrated to 

produce ROS that result in inhibitory activation of AMPK [50]. We therefore evaluated the 

nature and ability of WA to continue to induce ROS in TMZ-resistant U87TMZ and 

U251TMZ cells. Peroxide-type radical production was monitored with CM-H2DCFDA 

conversion at 3h post-WA exposure. Both cell lines showed statistically significant 

increased detectible CM-H2DCFDA fluorescence with increasing WA exposure. ROS levels 

rose 20.9% (p=0.001), 36.6% (p=0.002), and 38.8% (p=0.01) in U251TMZ and 21.3% 

(p=0.003), 40.6% (p=0.004), 47.3% (p=0.001) in U87TMZ cells at 1, 3, and 5μM WA 

compared to control, respectively (Fig. 5a). The thiol antioxidant and ROS scavenger NAC 

was added simultaneously with WA and was shown to nearly complete abrogate WA-

generated ROS, further demonstrating the nature of the effect.

Various models of oxidative stress are known to be associated with a heat shock response 

via induction of several HSPs [51, 52], and alteration of HSPs were previously reported 

following WA treatment [34, 53]. Treatment with WA yielded a unique pattern of HSP 

expression modulation in U251TMZ and U87TMZ cells (Fig. 5B). Total levels of HSP32/

heme oxygenase 1 and HSP70, but not HSP90, were observed to increase with increasing 

concentrations of WA at 24h. HSP27 was depleted at 24h with 5μM WA in both cell lines 
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but remained largely unchanged in U251TMZ and mildly elevated in U87TMZ with other 

concentrations at 24h. The transcription factor heat shock factor 1 (HSF1) showed dose-

dependent reduction in expression between 1-5μM WA. Pretreatment with 5mM NAC 

virtually eliminated all modulation of proteins in the heat shock system (Fig. 5b).

Functionally, WA-induced depletion of ATP levels, a marker of reduced cellular viability in 

the CellTiter-Glo assay, could be reduced or completely eliminated with 1-5mM NAC 

pretreatment (p<0.0001) (Fig. 5c). Such effects were seen with up to 6μM WA, the highest 

concentration examined. Additionally, re-evaluation of cell death by flow cytometry as 

previously described following pretreatment with 5mM NAC showed the elimination of 

death-associated PI and Annexin V staining normally induced by 5μM WA (p<0.01) (Fig. 

5d). This was supported by blockage of PARP cleavage via NAC pretreatment (Fig. 5b). 

Additionally, WA-mediated cyclin B1 induction was blocked by NAC, demonstrating the 

prevention of G2/M cell cycle arrest seen with WA treatment.

Withaferin A resensitizes TMZ-resistant GBM cells to TMZ through MGMT depletion

Expression of MGMT is associated with TMZ resistance in GBMs and therefore is an 

attractive target for TMZ resistance resensitization and prevention [13]. WA demonstrated 

the ability to induce depletion of MGMT at 48h in cell lines (U251TMZ, T98G, and U138) 

utilizing MGMT as the primary means of TMZ resistance (Fig. 6a). U251TMZ and U138 

cells showed progressive depletion of MGMT from 0.5-10μM WA with approximately 5-

fold and 20-fold less compared to control by 5μM, respectively. At 5μM WA treatment, 

there was a 43% reduction in MGMT in T98G cells with complete elimination by 10μM. 

U87TMZ cells, however, failed to express MGMT altogether.

To determine if these findings extended to functional resensitization of resistant cells to 

WA, two cells lines resistant through MGMT (U251TMZ and T98G) and one cell line 

displaying MGMT-independent resistance (U87TMZ) were treated with WA for 24h 

followed by TMZ and evaluated with the MTS assay (Fig. 6b). Both U251TMZ and T98G 

showed statistically significant decreases in cell viability when 1, 1.5, or 2μM WA was 

combined with 300 or 500μM TMZ. Pretreatment with 2μM WA followed by 300μM TMZ 

yielded a 32% (p<0.0001) and 34% (p=0.004) relative decrease in U251TMZ and T98G cell 

viability compared to TMZ or WA alone, respectively. In contrast, U87TMZ cells only 

demonstrated a statistically significant enhancement of combination therapy over TMZ 

alone – only 6% additional reduction in relative viability – with a 2μM WA and 300μM 

TMZ combination (p=0.02). 48h pretreatment with WA also demonstrated enhanced effect 

with significant elimination of the benefit by 72h pretreatment (data not shown). WA 

pretreatment did not prevent TMZ efficacy in TMZ sensitive U251 and U87 parental cells 

(Online Resource 2a).

Because TMZ also depletes MGMT [54], the effect of WA and TMZ combination on 

MGMT levels was evaluated. Combination therapy demonstrated dose-dependent synergy 

or potentiation to reduce total levels of MGMT in U251TMZ, T98G, and U138 MGMT-

expressing cells (Fig. 6c). At 1μM WA in U251TMZ and U138 cells and 2.5μM WA in 

T98G cells, minimal decreases and/or increases of MGMT levels were observed. The 
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addition of 300μM TMZ for 24h resulted in 43%, 52%, and 34% reduction in MGMT 

protein levels compared to TMZ alone in U251TMZ, T98G, and U138 cells, respectively.

Phosphorylation of H2A.X as a marker of double strand DNA damage and cleavage of 

PARP during apoptosis were evaluated to look for molecular evidence of combinational 

efficacy. Both markers were elevated in the setting of increasing concentrations of WA in 

U251TMZ, T98G, U138, and U87TMZ cells. However, PARP cleavage was then 

diminished at the high levels of U87TMZ and U138 cells suggesting non-apoptotic cell 

death or very late apoptosis at this timepoint. Addition of TMZ was observed to increase p-

H2A.X and PARP cleavage in only T98G, particularly at 1μM WA. Interestingly, despite 

similar or increased levels of cleaved PARP within WA treatment groups, levels of 

uncleaved PARP increased with TMZ treatment in each of the TMZ groups but not control 

in U251TMZ and T98G cells. Given the reported oxidative effect induced by TMZ [50], 

markers of oxidative stress including HSP32, HSP70, and p-AMPKα as well as the AMPK-

influenced downstream phosphorylation of mTOR were evaluated to determine if 

combination of WA and TMZ demonstrated enhanced oxidative effect in GBM. While WA 

increased HSP32 and HSP70 levels in all lines and TMZ enhanced phosphorylation of 

AMPKα in U138, combination therapy did not result in additional effect and failed to 

further diminish mTOR activation (Online Resource 2b).

Discussion

While withaferin A has demonstrated effectiveness as a promising new therapeutic agent in 

a variety of cancer types including TMZ-sensitive GBM, this work is the first to explore its 

efficacy in a known model of drug-resistance. Here, we show for the first time that WA 

induces a potent cytotoxic effect against temozolomide resistant GBMs resulting in G2/M 

arrest and apoptosis from both the intrinsic and extrinsic systems. These findings correspond 

with the elevation of cellular oxidative potential and inhibitory modulation of the Akt/

mTOR pathway but not the MAPK pathway.

Since its approval by the FDA, TMZ remains the standard-of-care chemotherapeutic agent 

in the treatment of primary GBM. Exposure to this agent results in DNA adducts such as 

O6-methylation of guanine which, if not removed by MGMT, can mispair with thymine. 

Cells with intact MMR undergo futile cycles of attempted repair with resultant replication-

associated DNA double strand breaks, G2/M arrest, and ultimately apoptosis [55]. Targeting 

mechanisms of DNA damage repair with various inhibitors, such as those of PARP and 

ataxia telangiectasia mutated (ATM), has provided potentially beneficial strategies in 

enhancing TMZ effect, but comparatively limited effort has gone into addressing both 

inherent and acquired resistance to TMZ by MGMT expression or, less frequently, MMR 

mutation in GBM. Despite about half of patients displaying tumor phenotypes not conducive 

to TMZ use, it remains a first-line agent, demonstrating the need for better tumor screening 

techniques. Furthermore, initially responsive tumors are often quick to develop resistance to 

this line of therapy [14, 15].

Several experimental agents used to resensitize resistant cancer cells to TMZ or other 

alkylating agents – such as valproic acid [44, 56, 57], O6-benzylguanine [58, 59], IL-24 
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[60], and silencing oligonucleotides [61-63] – possess little practical intrinsic anti-cancer 

cytotoxic properties or clinical applicability, however, some do have the potential for 

adverse effects in the patient. Alternatively, dose-dense TMZ scheduling, used to deplete 

MGMT levels quickly to enhance TMZ effects, has yielded disappointing outcomes in 

several clinical trials [64]. In this study, WA acted as both an inherently cytotoxic agent and 

an enhancer of the efficacy of TMZ in MGMT-driven resistant cell lines while maintaining 

TMZ sensitivity in parental lines. Such data conceptually support the utility of combination 

therapy WA with TMZ in the first-line treatment of GBM. Such an approach should 

maximize anti-cancer activity across broad tumor heterogeneity. Importantly, while tumors 

with resistance due to MMR mutation may not be resensitized to TMZ by WA, the presence 

of a second cytotoxic chemotherapeutic agent may provide significant benefit in the context 

of ineffective TMZ treatment. It remains to be fully explored whether increased levels of p-

H2A.X observed with WA treatment are a result of direct DNA damage, perhaps through an 

oxidative mechanism, or rather a known byproduct observed during cellular apoptosis for 

DNA fragmentation [65], however, preliminary results in breast cancer support a caspase-

mediated mechanism (data not published). Elevated total PARP with increasing TMZ in the 

presence of WA in MGMT-expressing lines may indicate the necessity for increased base 

excision repair (BER) during combination therapy, alluding to induction of DNA damage as 

a reason for combinational efficacy which will need to be validated by further scientific 

investigation.

Several studies have implicated the role of WA in the disruption of HSP90 chaperone 

functions through binding to the C-terminus of HSP90 [26, 66]. While direct evidence of 

such an inhibitory effect has not yet been established, downstream depletion of various 

HSP90-related client proteins suggests that WA may indeed act at least in part as a novel 

HSP90 inhibitor. This could explain and support the wide-ranging effects observed in this 

study, including the depletion in total levels of known HSP90 client proteins such as Akt, 

mTOR, Raf-1, and EGFR. By depleting these key regulatory client proteins of HSP90, the 

normal signaling axes of multiple proliferative pathways are simultaneously modulated. 

MGMT, which is depleted in the presence of WA, has not, however, been reported as a 

client protein of HSP90. Indeed, current studies demonstrate that total levels of MGMT are 

not impacted by the widely-utilized HSP90-inhibitor 17-AAG until high concentrations 

(1-2μM) are achieved, suggesting that its stability and function are not directly maintained 

by HSP90 (data not shown). Santagata, et al. demonstrated the thiol reactivity of WA [19], 

and our results implicate an oxidative mechanism, representing an alternative means by 

which MGMT and other non-HSP90 client proteins may be targeted for degradation by WA. 

Interestingly, valproic acid, which diminishes MGMT levels, has also been shown to cause 

oxidative stress in glioma cell lines [67].

Induction of oxidation has become a promising mechanism by which to target cancer. 

Alterations in the redox potential of cancer cells due to various molecular turnover and 

quick replication results in increased cellular stress that can be exploited to shift cells into a 

state of cytotoxicity [68, 69]. This approach circumvents traditional therapeutic options such 

as antigen-targeting and DNA-damaging agents that have received the most attention but are 

often rendered useless due to rapid development of resistance. In GBM, such traditional 

agents have been explored in patients but have yielded unimpressive results in clinical trials 
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largely due to the development of tumor mutations that limit the effectiveness and/or 

relevance of a particular targeted therapeutic [14, 17].

In the present study, thiol-reactivity and oxidation by WA resulted in depletion of proteins in 

the Akt/mTOR and MAPK pathways including many cell surface receptors either through 

direct interaction or as a downstream effect of the inhibition of other proteins. As noted 

previously, other reports have shown additional pathways effected. Such an ability to target 

multiple pathways simultaneously with a single compound has great potential to generate an 

enhanced anti-cancer effect while reducing the development of resistance to a particular 

target. The ability to modulate multiple components of the Akt/mTOR pathway 

simultaneously provides a novel and important mechanism by which WA can manifest its 

beneficial effects against GBMs. Because of mutations in proteins like the tumor suppressor 

phosphatase and tensin homolog (PTEN), this pathway is frequently overactivated in GBM 

to drive proliferation, as shown in both U251 and U87 cells [70-72]. Interestingly, while we 

previously showed activation of AMPKα and downstream tumor suppressor TSC2 which 

act to inhibit mTOR in both U251 and U87 parental cells [34], U87TMZ appears to have 

lost the ability to act through this pathway which suggests direct inhibition of the Akt/

mTOR axis.

WA treatment yields subsequent induction of the MAPK pathway as demonstrated by 

activating phosphorylation of EGFR, Raf-1, and ERK1/2. Previous studies have shown that 

reactive oxygen species generated by epoxide-containing compounds in GBM cells are 

responsible for the phosphorylation of ERK1/2 which then drives apoptosis [73]. In contrast, 

inhibition of this pathway prior to WA exposure yields enhanced apoptosis, suggesting that 

the activation of the MAPK pathway is a compensatory pro-survival response to apoptotic 

shifts in the cell and may be a therapeutic target that would synergistically enhance the 

efficacy of WA in future combinational therapy studies.

The studies presented here provide an important framework for the utilization of WA in 

TMZ-resistant GBM as both a monotherapy and as a resensitizer in combination with the 

standard chemotherapeutic agent TMZ. WA demonstrates an oxidative mechanism that 

leads to anti-proliferative and pro-apoptotic effects largely through Akt/mTOR pathway 

modulation. Simultaneously, depletion of MGMT allows for enhanced activity of TMZ. 

While future pre-clinical animal studies will be necessary to determine its translational 

potential in GBMs, evidence is supportive of a future clinical potential for the utilization of 

WA across the heterogeneic spectrum of glioma patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) 28-carbon steroidal lactone structure of withaferin A. (b) Characterization of TMZ-

resistant cells U251TMZ, U87TMZ, T98G, and U138 compared to parental U251 and U87 

cells. U251 and U87 cell lines demonstrated the absence of MGMT and the presence of 

mismatch repair proteins MLH1, MSH2, and MSH6. MGMT expression was observed in 

U251TMZ, T98G, and U138 cells but not U87TMZ. U87TMZ displayed lower levels of all 

three MMR proteins screened compared to parental U87 cells. (c) All cell lines were 

incubated with increasing concentrations of WA for 72h and then assessed by MTS assay. 

WA dose escalation reduced cell proliferation and viability with IC50 values of 

0.766±0.045μM, 0.357±0.019μM, 1.050±0.062μM, 0.657±0.134μM, 1.027±0.105μM, and 

0.610±0.279μM for U251, U251TMZ, U87, U87TMZ, T98G, and U138 cells, respectively.
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Fig. 2. 
(a) Ability to induce cell cycle modulation was assessed by flow cytometry at 24h revealing 

that WA treatment results in dose-dependent G2/M cell cycle arrest. Maximum arrest was 

observed at 2μM and 1.5μM for U251TMZ and U87TMZ cells, respectively. (b) Histograms 

demonstrate cell cycle distribution for U251TMZ and U87TMZ cells at concentrations up to 

those yielding maximal arrest. (c) Arrest in G2/M phase was molecularly confirmed by 

immunoblotting for cyclin B1 at 24-48h. Highest levels of cyclin B1 were observed at 2.5μM 

and 1μM WA for U251TMZ and U87TMZ cells, respectively, confirming flow cytometry 

findings.
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Fig. 3. 
(a) WA treatment induced apoptotic cell death in U251TMZ and U87TMZ cells with 

increasing concentrations. 1-3μM WA induced early apoptotic processes with increasing 

levels of late apoptosis observed at all concentrations examined. Only U87TMZ 

demonstrated elevated necrosis with treatment. (b) Dot plots demonstrating propidium 

iodide and Annexin V-FITC staining show representative examples from both cell lines 

utilized. (c) An apoptotic mechanism was confirmed by Western blotting for total and 

cleaved initiator caspases 8 and 9, effector caspases 3 and 7, and downstream PARP. 

Uncleaved proteins were decreased with increasing WA concentration. U251TMZ and 

U87TMZ cells demonstrated optimal concentrations for caspase cleavage with highest levels 

of PARP cleavage observed in both lines at 5μM WA. (d) U251TMZ cells were pretreated 

with 50μM of either caspase 8 inhibitor ZIETD-FMK or caspase 9 inhibitor Z-LEHD-FMK 

for 1h followed by 2.5μM WA for 24h to determine if WA-driven apoptosis was 

intrinsically or extrinsically mediated. Inhibition of both caspase 8 and 9 reduced WA-

induced cleavage of caspases 3 and 7 as well as PARP.
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Fig. 4. 
(a) Key proteins of the survival and proliferation PI3K/Akt/mTOR and MAPK pathways as 

well as common surface tyrosine kinase receptors were evaluated by immunoblotting for 

total levels and activation by phosphorylation following treatment with WA at 24-48h in 

U251TMZ and U87TMZ cells. Total levels of specific proteins in both pathways were 

decreased, but reduction of protein activation was only observed in the PI3K/Akt/MAPK 

pathway whereas phosphorylation of Raf-1 and ERK1/2 was increased. (b) To determine the 

nature of MAPK pathway activation, U251TMZ and U87TMZ cells were pretreated with 

50μM of the MEK inhibitor PD98059 for 1h followed by 2.5μM WA for 6h or 24h. 

PD98059 increased ERK1/2 phosphorylation but reduced WA-induced phosphorylation of 

ERK1/2 in a time-dependent manner. WA alone induced caspase 3 and PARP cleavage in 

both cell lines in a time-dependent manner that was increased when combined with MEK 

inhibitor. This demonstrates that MAPK pathway activation with WA was acting in a pro-

survival signal rather than contributing to apoptosis.
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Fig. 5. 
(a) The peroxide ROS indicator CM-H2DCFDA was preloaded into U251TMZ and 

U87TMZ cells prior to WA exposure to determine alterations in oxidative potential. 

Elevations in signal that were observed with increasing concentrations of WA at 3h were 

reduced or completely absent with co-treatment of 5mM NAC. (b) Treatment with WA 

resulted in the induction of an NAC-repressible cellular stress heat shock response. Proteins 

associated with cellular stress and heat shock were evaluated by immunoblotting at 24h and 

revealed elevated levels of HSP32 and HSP70, known to be upregulated in response to 

oxidative stress, but decreased transcription factor HSF1 with increasing WA exposure that 

could be completely eliminated with 5mM NAC pretreatment. NAC also prevented 

induction of cyclin B1 and cleavage of PARP. Functionally, NAC pretreatment reduced the 

anti-proliferative (c) and procytotoxic (d) effects of WA as assessed by the CellTiter-Glo 

assay at 72h and flow cytometry at 24h, respectively. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 6. 
(a) WA treatment reduced protein levels of MGMT in TMZ-resistant U251TMZ, T98G, and 

U138 cell lines at 48h. MGMT was not observed in U87TMZ. (b) 24h pretreatment with 

WA resensitized MGMT-expressing U251TMZ and T98G cells to TMZ in a dose-dependent 

manner as assessed by a normalized MTS assay, but no resensitization was observed in 

MGMT-deficient U87TMZ cells. (c) TMZ-resistant cells were treated with WA for 24h 

followed by TMZ exposure for an additional 24h. Pretreatment with WA potentiated and/or 

synergized with TMZ to induce further depletion of MGMT in MGMT-expressing lines. 

Increasing WA concentrations yielded higher levels of p-H2A.X and cleaved PARP in all 

cell lines, but only T98G demonstrated WA-mediated increased levels with TMZ exposure. 

*p < 0.05, **p < 0.01, ***p < 0.001
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