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Abstract
Structural characterization of protein–protein interactions across the broad spectrum of scales is
key to our understanding of life at the molecular level. Low-resolution approach to protein
interactions is needed for modeling large interaction networks, given the significant level of
uncertainties in large biomolecular systems and the high-throughput nature of the task. Since only
a fraction of protein structures in interactome are determined experimentally, protein docking
approaches are increasingly focusing on modeled proteins. Current rapid advancement of
template-based modeling of protein–protein complexes is following a long standing trend in
structure prediction of individual proteins. Protein–protein templates are already available for
almost all interactions of structurally characterized proteins, and about one third of such templates
are likely correct.

There is nothing worse than a sharp image of a fuzzy concept. (Ansel Adam, US
nature photographer, 1902–1984)

Introduction
The essence of the low-resolution approach to modeling of proteins and their interactions is
in the epigraph to this paper. Indeed, when the high-resolution details of protein structure are
highly unreliable, it is better not to include them in the picture. Structural characterization of
protein–protein interactions (PPI) across the broad spectrum of scales is key to our
understanding of life at the molecular level. Recently, the low-resolution/coarse-grained
modeling approaches have been increasingly gaining popularity. Still, many biomolecular
scientists will likely tell you that only the high resolution protein structures have an
appreciable value, and the low-resolution ones add little to biology. Coincidentally, one
could conclude that because computational modeling of large and heterogeneous
macromolecular systems has limited accuracy, it is thus rarely useful. Such a notion, of
course, is incompatible with the rapid development of the multiscale approaches to systems
biology and, simply put, studies of the physical phenomena in general that inherently
involve approximation.

Approximation is in the heart of physics, numerical analysis, and other branches of ‘exact
sciences.’ Ironically, the most ‘inexact’ of them — molecular life science — is still not quite
at home with this most basic concept. In fact, numerous studies involving low-resolution
structural information have added a great amount of knowledge on the fundamental
mechanisms of soluble and membrane proteins. Simply put, any level of physical
characterization of a protein, as opposed to its absence, is valuable. The level of structure
resolution is biologically relevant if it captures the functional elements of the structure. If
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such elements are large, then even ultralow resolution can provide important insights. When
it comes to modeling of PPI, the high-resolution protein–protein docking is not necessary for
a number of important biological questions where docking can be useful, such as the design
of PPI inhibitors and other experimental and computational studies that take over from
protein docking once it predicts the protein–protein interface.

Low resolution does not negate high-resolution. To the contrary, it is a prerequisite for our
ability to obtain the high-resolution accuracy in modeling, through refinement of the low-
resolution predictions. The whole paradigm of ‘refinement’ comes from the notion of an
approximate model, which reflect the reality at a lower precision, and which is subject to the
improvement of the precision. The low-resolution modeling of PPI is especially important in
the efforts to model large PPI networks, up to the level of interactome, in the context of
modeling the entire cell. The low-resolution approach is the only currently available tool for
such modeling, given the high-throughput requirements of low computational cost per
interaction, and the significant level of uncertainties inevitable in very large heterogeneous
systems. The first credible model of a cell will be low resolution.

Low-resolution protein recognition factors
The geometric complementarity between interacting protein structures, the cornerstone of
protein–protein docking methodology since its inception, is an essential predictor of
interacting modes at low resolution [1]. A fundamental question concerning protein
association is whether it is determined by local structural elements or whether there are also
large-scale structural motifs that facilitate the formation of the complex. The local
physicochemical and steric factors are responsible for the final ‘lock’ of the molecules when
their binding sites are already in close proximity. At the same time, there are structural
factors that contribute to bringing the binding sites to such proximity. An important insight
into the basic rules of protein recognition is provided by the studies of large-scale structural
recognition factors, such as recognition of proteins deprived of atom-size structural features
[1,2], backbone complementarity in protein recognition [3], macromolecular assemblies [4],
and binding- related anisotropy of protein shape [5,6]. The practical importance of the large-
scale recognition factors for docking is that they often allow one to ignore local structural
inaccuracies (e.g. those caused by conformational changes).

Intermolecular energy funnel is the ultimate low-resolution concept. The large-scale
structural recognition factors in protein association have to do with the funnel-like
intermolecular energy landscape [7]. It has been shown that simple energy functions,
including coarse-grained (low-resolution) models, reveal major landscape characteristics,
such as the number and distribution of the funnel-like energy basins, transition between low
and high resolution, and funnel size [8]. The intermolecular energy landscapes are further
characterized by conformational properties of interacting proteins [9–11].

Coarse-grained flexibility in protein interactions
The unbound/bound difference in protein backbone is often insignificant [12] and the
formation of a complex can be described by the side-chain conformational changes [13–16].
However, the analysis of large-scale structural flexibility is important for understanding
protein–protein association and our ability to model them [17, 18]. The coarse-graining of
protein structures allows exploration of structural dynamics of large macromolecular
systems at long time scales [19•,20]. It also allows comparison with low-resolution
experimental data, which often are the only available structural information on the system
[21]. Coarse-grained elastic networks modeling of structure fluctuations showed that, on
average, the interface is more rigid than the rest of the protein surface [22,23], and the
interface mobility is correlated with the interface type, size and obligate nature of the
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complex [23]. In structural modeling of protein–protein complexes, the coarse-graining
approaches are used to model structural flexibility in protein assembly [10,19•, 24, 25].
Low-resolution allows implicit accounting for local conformational flexibility without
sampling the internal degrees of freedom, and thus is useful in docking [1,26]. The residue
frequencies in co-crystallized protein–protein complexes provide an opportunity to develop
residue-residue statistical potentials for docking and scoring of PPI [27,28]. Such potentials
provide a coarse-grained alternative to atomic-resolution statistical potentials, allowing
greater tolerance to conformational changes.

Docking of models
Direct experimental approaches to structure determination (primarily, X-ray crystallography
and NMR) are capable of determining only a fraction of all protein structures. Thus the
structures of most proteins in genomes have to be modeled by high throughput
computational techniques. The major difference between the experimental structure and a
model, in general, is a lower accuracy of the latter. The accuracy of the protein models may
vary significantly, based on the availability of modeling templates and their similarity to the
target, from ~1 Å RMSD (high-sequence similarity to templates) to >6Å RMSD (low-
sequence similarity to templates, or no templates). Thus, in addition to computational
efficiency (e.g. high-throughput, in case of large-scale modeling) the docking procedure has
to be capable of tolerating significant structural inaccuracies. Docking cannot yield greater
precision than the precision of the interacting proteins. However, even in the extreme case of
low precision (~10 Å relative shift of the proteins) the results provide meaningful structural
information on the interface location on one or both proteins and the general shape of the
complex.

Computationally inexpensive methodology is required for structural modeling of the
interactome. For systematic evaluation of expected accuracy in high-throughput modeling of
binding sites, the analysis of target/template sequence alignments was performed on a
representative protein–protein set [29•]. For most of the complexes, the alignments
containing all interface residues were found, even in cases of poor overall alignments,
inadequate for modeling of the whole proteins. The alignment of the interfaces significant
enough to produce the binding site structure suitable for docking was found in about half of
the complexes. An early study [30], systematically simulated structural inaccuracies of
modeled proteins, starting from a representative set of co-crystallized proteins, and
generating an array of distorted structures for each protein, with inaccuracies from 1 to 10Å.
The models were docked at low-resolution and the results correlated with the accuracy of
the models. The data showed that docking of even highly inaccurate protein models (~6 Å
RMSD from the X-ray structure) still yields structurally meaningful results, accurate enough
to predict binding interfaces and to serve as starting points for further structural analysis.
The utility of the modeled proteins in protein–protein docking was further demonstrated by
other systematic studies, involving docking approaches based on computational geometry
[31,32] validated on benchmark protein–protein sets [31] and the nuclear pore complex [32],
and Rosetta-based docking of antibody–antigen homology models [33]. The template-based
docking approaches increasingly focus on the modeled structures as part of the docking
protocol [34,35•] or the subject of structural alignment [36••,37••]. •]. Modeled proteins
attract increasing attention as drug targets. Studies of binding pockets on modeled protein
receptors, and docking of ligands to modeled receptors showed significant tolerance to the
structural inaccuracies and the general utility of the modeled receptors [38–43]. In our most
recent study, a new large benchmark suite of models with controlled distortions for 320
protein complexes was built using combination of homology modeling, low energy
trajectories, and simulated annealing. For each X-ray monomer in the dataset, six models
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were generated with the pre-defined values of Cα RMSD between the native and the model
structures (examples in Figure 1).

The rise of the template-based docking
The physical principles of protein binding and folding are the same, thus their modeling
shares many aspects. Prediction of individual protein structures has evolved from the ‘first
principles’ approaches to the currently dominating template-based modeling, largely
because of the difficulty the template-free methods face in delivering reliable solutions, and
the explosive growth of the number of experimentally determined protein structures. Protein
docking is significantly younger than the individual protein structure prediction, and much
less advanced in its transition to the template-based approaches. The two factors that
contributed to the evolution of the individual protein prediction determine the current lesser
role of the template-based methodologies in protein docking. First, the template-free
techniques have been relatively more successful in the prediction of protein complexes than
in the prediction of individual proteins. The reason is that the docking first approximation
(rigid-body docking), applicable in many cases, has to cope with only six degrees of
freedom, which is incomparable with the number of degrees of freedom in the prediction of
individual proteins at any meaningful level of approximation. Second, the number of
experimentally determined structures of protein–protein complexes is far less than the
number of such structures for individual proteins. However, with the advances in the
experimental determination of protein complexes the situation is rapidly changing.

The template of the complex may be detected based on the sequence of the target proteins
[34,35•]. However, since the docking problem assumes the knowledge of the components
structure, a growing number of approaches take advantage of structural alignment
techniques, for full and/or interface structure alignment [36••,44–53]. The template-based
structure-comparison approaches (Figure 2) align backbones, secondary structure, and/or
other coarse-grained elements of the structure. This reflects the low-resolution nature of the
macrostructural recognition factors, fundamentally based on the backbone recognition,
dating back to the early studies [3].

To assess the predictive value of the template-based approach, it was benchmarked on
protein–protein structures in PDB released in 2009–2011, utilizing template structures
released before 2009. The templates were found for almost all new complexes, and more
than a third of the new complexes were predicted correctly, with interface RMSD < 5 Å
[37••]. The template-based docking, in general, performed in the community-wide
assessment of docking techniques (Critical Assessment of PRediction of Interactions —
CAPRI) with limited success [54], in sharp contrast with the significantly higher than the
free docking success rates on the docking benchmark sets [53]. The reason is that CAPRI
targets have high representation of novel structures, reflecting the effort of the
crystallographers providing the targets to avoid ‘trivial’ complexes that are similar to the
ones already in PDB. However, in typical ‘real case’ modeling of protein–protein complexes
of biological interest, the novelty of the structure usually is not a consideration and the
existence of homologous co-crystallized complexes is welcome. Thus, the docking
benchmarks, which follow the increasing availability of co-crystallized homologous
complexes, are representative of the biological community needs.

Since the experimentally determined structure of protein–protein complexes is generally
more difficult to obtain than the structure of individual proteins, the availability of templates
for protein–protein docking is a key issue. Comparative studies of protein–protein interfaces
determined that the library of protein interfaces is close to complete [55••], and that it is
generally possible to find representatives of the possible binding modes of a given protein
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[36••,56•]. Still, there are many structurally common binding regions among proteins that
are not related to fold classification [57]. The direct way to assess the availability of
templates for protein–protein complexes in PDB is to have the structural similarity metric
that is correlated with the experimentally determined binding mode. Such a metric can be
used in PPI datasets to see what percentage of PPI corresponds to the metric’s values for
good templates. Recent results obtained in an all-to-all pairwise comparison of 989 co-
crystallized complexes [37••] show a strikingly distinct phase transition to the same binding
mode at minimal TM-score (the lowest of the two component proteins TM-scores [58]) of
0.4. Thus the values of the minimal TM-score > 0.4 can be used in detecting good templates
of the complex. Remarkably, such structural templates were found for nearly all complexes
in a database of known PPI, where the structure of the individual components of the
interaction is determined by X-ray or can be built by homology [37••].

Proteome-scale modeling
To adequately model large systems of PPI, it is important to understand and simulate the
environment in which the proteins interact in vivo. This environment is densely populated,
which strongly affects protein diffusion, binding and conformational transitions. The
investigations of the ‘crowding’ effects in such environment range from studies of protein
stability and other conformational properties [59–61], and detection of binding regions [62],
to the role of hydrodynamic interactions in cells [63•] and physical limits of cells and
proteomes [64].

Structural characterization is essential for the proteome-scale modeling of PPI networks
(Figure 3) [65,66•, 67•,68]. Modeling templates are available for a significant part of soluble
proteins in genomes [69], including those in known PPI [37••]. The approaches to genome-
wide structural modeling of PPI are either ‘traditional’ template-free docking [70,71] or the
template-based docking [36••, 37••, 55••, 56•, 72–74]. The latter, while potentially providing
much greater success rate [53], critically depends on the availability of the templates [36••,
37•• ,55••, 56•]. In a recent study [37••], the X-ray structures of the proteins were
complemented by homology models and the templates for their complexes were detected in
PDB. Figure 4 shows the results for five genomes with the largest number of known PPI.
Structural alignments yielded a dramatic increase in the structural coverage of complexes,
from the coverage provided by the sequence alignment. The structural templates were found
for nearly all (33 537 out of 33 840, or 99%) complexes in which both components could be
built. ‘No template’ in Figure 4 indicates no template for individual proteins, not for the
complex. Thus, contrary to the common perception of rarity of the templates for complexes,
as opposed to the structure prediction of individual proteins where the template-based
modeling has long been the default approach, the limiting factor in interactome modeling is
actually the availability of the templates for the individual proteins (more protein–protein
templates are still needed for greater accuracy of modeling). The structural coverage of
interactome should increase with more structures of individual proteins experimentally
determined, and with more sophisticated modeling of individual proteins at lower levels of
target/template similarity. The ability to detect templates for almost all complexes is a
consequence of the proteins modeling by sequence similarity, followed by protein–protein
modeling by structure similarity (which is significantly broader in scope than the sequence
similarity, since structure is more conserved than sequence).

Future of PPI modeling
The quasi-complete low-resolution description of interactome is likely not that far down the
road. Templates are already available for almost all interactions of structurally characterized
proteins, and about one third of such templates are likely correct. The limiting factor is the
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availability of templates for individual proteins. With more experimentally determined
protein structures becoming available, more accurate genome-wide maps of PPIs, and the
growing computational resources allowing application of more sophisticated template
detection approaches, our ability to structurally model PPI at the level of interactome should
rapidly develop.

With the advance of the template-based docking, the free docking will not fade away —
there are many protein encounters in the crowded cell environment, which are not likely to
correspond to energetically stable co-crystallized templates. And the high-resolution
modeling of PPI will be there too, as the next step in our ability to reveal the full picture, in
all its clarity.
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Figure 1.
Examples of simulated models. The X-ray structure is shown for comparison, with the
binding site in gray.
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Figure 2.
Template-based docking by structural alignment.
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Figure 3.
Structural modeling of interactome. The flowchart shows modeling of two proteins (blue
and green) interaction (orange) from the PPI network, through determination of their
individual structures (X-ray structure from PDB or modeling), and the structure of their
complex (X-ray structure from PDB or modeling by template-based or free docking).
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Figure 4.
Structural coverage of PPI in five genomes with the largest number of known protein
interactions. Complexes with the X-ray structure are in red, and complexes with a sequence
template are in green. Complexes for which the structure of the monomers is known or can
be built by homology are in blue — structural templates are available for 99% of such
complexes
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